

5/10/95 JSG
2
PREPARED FOR THE U.S. DEPARTMENT OF ENERGY,
UNDER CONTRACT DE-AC02-76-CHO-3073

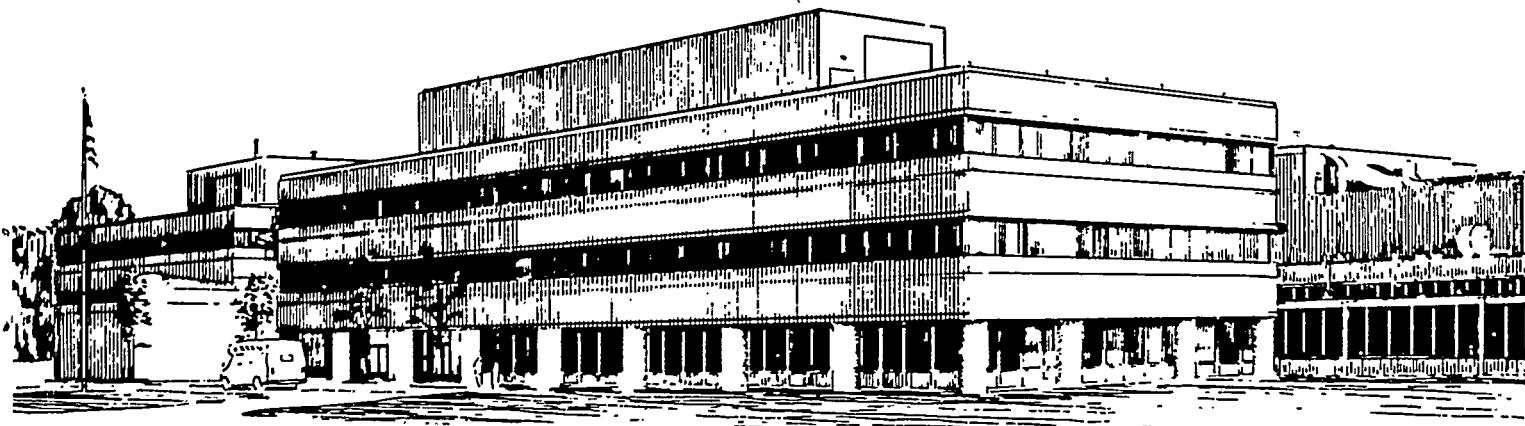
Conf-9406270--1

PPPL-3029
UC-426

PPPL-3029

INITIAL H-MODE EXPERIMENTS IN DT PLASMAS ON TFTR

BY


C.E. BUSH, S.A. SABBAGH, R.E. BELL, ET AL.

JANUARY 1995

DISTRIBUTION OF THIS DOCUMENT IS RESTRICTED

PPPL

PRINCETON
PLASMA PHYSICS
LABORATORY

PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial produce; process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

NOTICE

This report has been reproduced from the best available copy.
Available in paper copy and microfiche.

Number of pages in this report: 8

DOE and DOE contractors can obtain copies of this report from:

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831;
(615) 576-8401.

This report is publicly available from the:

National Technical Information Service
Department of Commerce
5285 Port Royal Road
Springfield, Virginia 22161
(703) 487-4650

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Initial H-Mode Experiments in DT Plasmas on TFTR

(to be published in the proceedings of the 21th EPS Conference
on Controlled Fusion and Plasma Physics)

C.E. Bush,¹ S.A Sabbagh,² R.E. Bell, E.J. Synakowski, M. Bell, S. Batha,³
R. Budny, N.L. Bretz, Z. Chang,⁴ D.S. Darrow, P.C. Efthimion, D. Ernst,
E. Fredrickson, J. Kesner, F. M. Levinton,³ M.E. Mauel,²
G.A. Navratil,² C.K. Phillips, S.D. Scott, G. Taylor,
M.C. Zarnstorff, S. Zweben and the TFTR Group

Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543
¹ORNL, ²Columbia Univ., ³FP&T, ⁴Univ. of Wisc., ⁵MIT.

ABSTRACT

H-modes have been obtained for the first time in high temperature, high poloidal beta plasmas with significant tritium concentrations in TFTR. Tritium is provided mainly through high power neutral beam injection (NBI) with powers up to 28 MW and beam energies of 90-110 keV. Transition to a circular limiter H-mode has been obtained following a rapid ramp down of the plasma current. Some of the highest values of τ_E have been achieved on TFTR during the ELM-free phase of these DT H-mode plasmas. τ_E enhancements greater than four times L-mode have been achieved.

MASTER

DISTRIBUTION OF THIS DOCUMENT IS RESTRICTED

Initial H-Mode Experiments in DT Plasmas on TFTR

C.E. Bush,¹ S.A. Sabbagh,² R.E. Bell, E.J. Synakowski, M. Bell, S. Batha,³ R. Budny, N.L. Bretz, Z. Chang,⁴ D.S. Darrow, P.C. Efthimion, D. Ernst,⁵ E. Fredrickson, J. Kesner, F. M. Levinton,³ M.E. Mauel,² G.A. Navratil,² C.K. Phillips, S.D. Scott, G. Taylor, M.C. Zarnstorff, S. Zweben and the TFTR Group

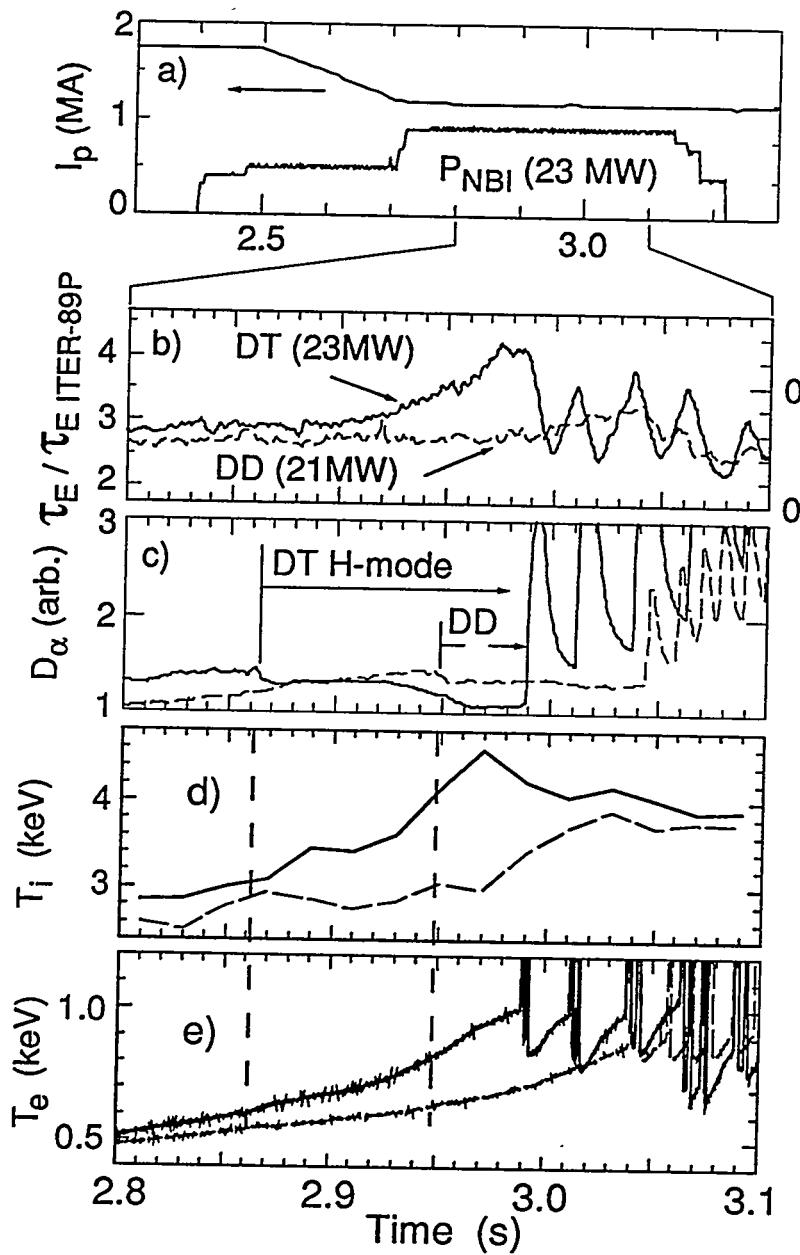
Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543

¹ORNL, ²Columbia Univ., ³FP&T, ⁴Univ. of Wisc., ⁵MIT.

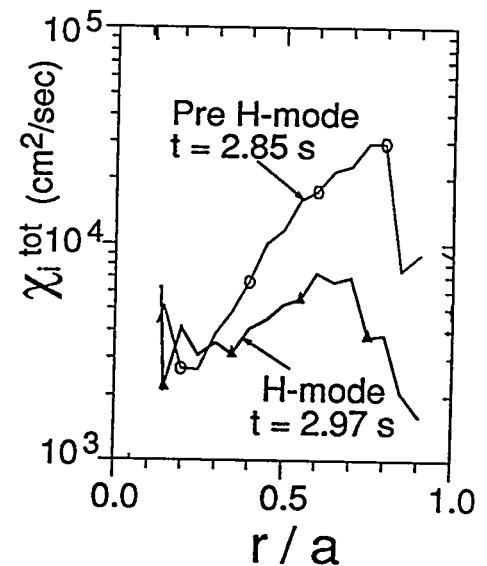
Abstract. H-modes have been obtained for the first time in high temperature, high poloidal beta plasmas with significant tritium concentrations in TFTR. Tritium is provided mainly through high power neutral beam injection (NBI) with powers up to 28 MW and beam energies of 90-110 keV. Transition to a circular limiter H-mode has been obtained following a rapid ramp down of the plasma current. Some of the highest values of τ_E have been achieved on TFTR during the ELM-free phase of these DT H-mode plasmas. τ_E enhancements greater than four times L-mode have been achieved.

1. Introduction

DT fueled limiter H-mode plasmas with high tritium concentrations have been obtained in TFTR. These plasmas are important because the effects of tritium on the transition, the H-mode confinement, and ELM behavior may be of interest to ITER. The H-mode data to date in TFTR operation have been obtained in high poloidal beta plasmas in which I_p is rapidly decreased (I_p ramp down) to improve global MHD stability [1]. Ramps from 1.65 to 0.85 MA and from 2.5 to 1.5 MA have been used in DT and DD comparison discharges. Beam powers from 9 to \sim 28 MW with voltages of 90-110 kV have been used. The tritium input to the plasma is predominantly through the heating beams, and the beam species mix can be varied from all D⁰ to all T⁰ sources. Most of the H-modes have been obtained with a very well conditioned graphite inner bumper limiter. Discharge cleaning is used to reduce deuterium recycling, followed by lithium pellet conditioning which reduces carbon influx [2].


2. Experimental Results

The greatest energy confinement enhancement following an H-mode transition on TFTR [3] (whether DD or DT fueled) has been obtained in a DT fueled discharge. Waveforms for this plasma are shown in Fig. 1. Shown for comparison are parameters for an equivalent DD plasma (i.e., with similar beam power, power deposition, I_p ramp, and NBI heating scenarios). Figure 1(a) shows I_p ramping down from 1.85 to 1.2 MA. NBI heating of 13 MW starts at 2.4 sec, increasing to 23 MW at 2.7 sec, just after I_p reaches 1.2 MA. The initial heating of \sim 13 MW of co-only NBI is applied, from 2.4 to 2.7 sec, in both cases before full heating power is applied. The H-mode transition for both is indicated by a small, but rapid, drop in D _{α} light as shown in Fig. 1(c). In the DD plasma, the D _{α} signal remains relatively constant following the initial perturbation at $t = 2.94$ sec until the beginning of the ELMs. However, for the DT plasma, the initial change in D _{α} occurs at \sim 2.86 sec, and the rate of decrease accelerates between 2.9 to 2.96 secs. The quiescent phase following the transition onset is, in general, longer in DT than in DD; 130 ms vs 100 ms in the cases shown. The ELM frequency is lower in the DT case or, \sim 40 Hz compared to 100 Hz for DD. However, for this pair of discharges, the ELM amplitude is greatest for the DT plasma


A dramatic increase in τ_E for the DT plasma is evident in Fig. 1(b), this is in contrast to the small change in τ_E for the DD comparison plasma (the change is not always as small for DD). τ_E increased from 160 ms before the transition to ~ 232 ms just before the onset of ELMs. This is a gain of 72 ms or an increase in τ_E of 45%, due mostly to the dE/dt term. At the peak in τ_E , the enhancement is greater than four times ITER89-P scaling [4]. At peak τ_E , $\beta_{N\text{-dia}}$ is relatively high at 2.7. This plasma was obtained using nearly balanced NBI with 12.6 MW co + 10.4 MW ctr power. During the main heating phase nearly 13.7 MW of power (60% of total) was provided by T° beams. The DT neutron rate reached a peak value of $\sim 1.6 \times 10^{18}$ neutrons/sec during the H-mode phase, equivalent to 4.2 MW of fusion power. High enhancement factors, ≥ 4 , and a fusion power of 5.6 MW have also been obtained in plasmas with an I_p ramp down from 2.5 to a 1.5 MA plateau.

In general in TFTR, the characteristics of the DT H-mode are essentially the same as found in DD H-modes [5-7] and are similar to those obtained through L- to H-mode transitions on other tokamaks. An initial observation is that the main difference in DD and DT H-modes on TFTR appears to be that the gain in τ_E can be somewhat higher in DT, and the ELM frequency and amplitude are slightly different. As found during earlier DD operation, changes in edge T_e , T_i , V_ϕ , and n_e are observed; the change in D_α can be very subtle and slow at the H-mode transition in TFTR. Usually at the transition, changes in magnetic fluctuations and poloidal rotation, indicated by a shift in the microwave scattering spectra toward the electron diamagnetic drift direction, are also observed.

Figures 1(d) and 1(e) show the time variation of the edge T_i and T_e for the two plasmas. Just before the transition, the T_i and T_e profiles for the DD and DT cases are essentially the same for $R > 275$ cm. At ~ 5 cm just inside the plasma edge ($R_{\text{edge}} \sim 325$ cm), $T_e \sim 610$ eV and $T_i \sim 3000$ eV in both cases. The center T_i and T_e were higher for the DD plasma before the transition. In the quiescent H-mode phase at the time of $\tau_{E\text{max}}$, T_i is significantly greater for DT than DD across the entire profile, with a difference of 7 keV at the center and 700 eV at the edge. The difference in T_e is much smaller, ~ 130 eV for the edge plasma. The edge T_e and T_i values at the H-mode transition for a variety of discharges were found to be the same as those of Fig. 1. The large gain in τ_E in the DT case is due to the large increase in T_i . For DT, the central T_i increased by ~ 14 keV while for DD, the increase was ~ 5.5 keV. Corresponding to the increase in τ_E , the high frequency magnetic fluctuations in the range 250-350 kHz decreased during the quiescent phase of the H-mode, with the decrease for DT being somewhat greater than for DD. TRANSP analysis of the experimental data for the DT case shows that the ion conductivity is reduced significantly during the ELM-free H-mode phase compared to the pre-transition value. This is shown in Fig. 2, which is a plot of χ_{tot} vs r/a for a time just before the H-mode transition and the time during the H-mode at which τ_E is a maximum. χ_{tot} includes both convective and conductive fluxes. At $r/a = 0.7$, the decrease is by a factor of 3. The change in χ_{tot} was much more modest. The changes in χ_{tot} and χ_{tot} between two similar times for the DD H-mode were also rather modest. Based on the comparison of experimental data for the DD and DT plasmas of Fig. 1 and the TRANSP analysis results of Fig. 2, there is an apparent species effect on the H-mode confinement and on ELM behavior. Further quantitative evidence is shown in Fig. 3 which is a plot of $\tau_{E\text{max}}$ vs I_p/P_b for DD and DT H-mode plasmas obtained during the DT run. From the figure it is clear that τ_E is consistently higher for DT H-modes. (Similarly, the gain in τ_E during the quiescent H-mode phase vs I_p/P_b shows the values for DT plasmas to be higher.) This would indicate that there is a larger gain in τ_E with the transition to the H-mode for DT plasmas than for DD. To date, the gain in τ_E is relatively transient and is usually

Fig. 1 Time variation of parameters for comparable DD and DT H-modes. Shown are I_p , P_b , τ_E , D_α , T_i (edge), and T_e (edge).

Fig. 2 Total diffusivity, χ_i tot from TRANSP, as a function of r/a for the DT plasma of Fig.1; at times before and during H-mode.

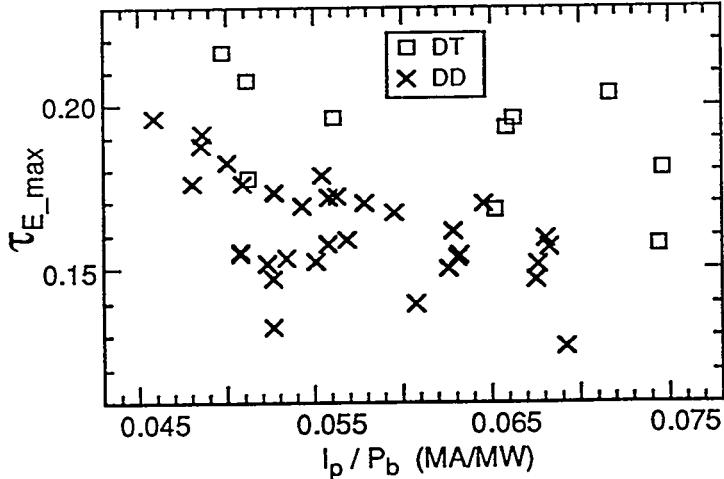


Fig. 3 Variation of the value of τ_E just before ELMs with the ratio I_p/P_b for both DD and DT plasmas studied since the beginning of DT operation.

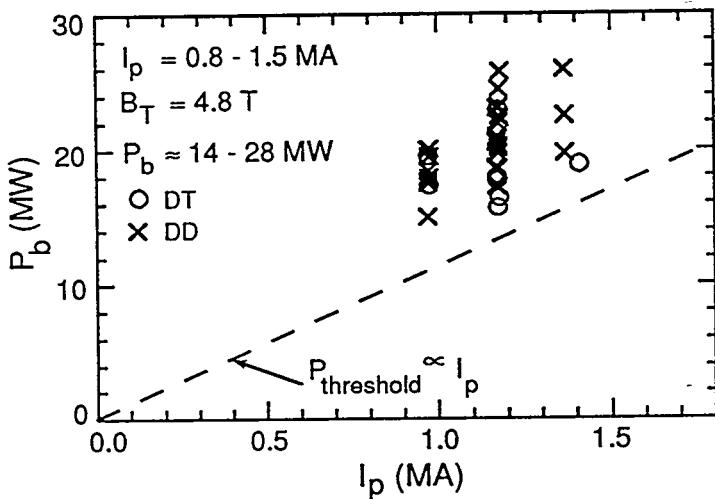


Fig. 4 Comparison of recent DD and DT data to the threshold power scaling from earlier TFTR DD operation.

terminated by the onset of ELMs. Larger gains might be possible if the ELM-free period could be extended.

In general, for operational purposes, the threshold power scaling for H-mode transitions in DD was found to scale linearly with plasma current, such that $P_{th}(\text{MW}) \sim 1.1 \times I_p(\text{MA})$ [3]. A plot of P_b vs I_p for DD and DT H-mode plasmas obtained during the present run is shown in Fig. 4. Qualitatively, the I_p dependence of P_{th} for DT appears to be similar to that for DD, with higher power required for plasmas with I_p ramps of 2.5 down to 1.5 MA compared to ramps from 1.85 down to 1.2 MA. The scaling found earlier for DD operation is indicated in the plot. The data is insufficient to determine whether the threshold is lower for DT than for DD; since beginning DT operation, the NBI power has been well above the threshold. Experiments aimed at determining the threshold scaling for DT and for taking advantage of the apparent favorable isotope effects on H-mode confinement and behavior (Figs. 1 - 3) are planned for future TFTR operation.

Acknowledgments

We express our deep appreciation for the dedication and support of the TFTR Team. This work was supported by the U.S. Department of Energy Contract No. DE-AC02-76-CHO-3073 and DE-FG02-89ERS3297.

References

- [1] S.A. Sabbagh, R.A. Gross, M.E. Mauel, *et al.*, Phys. Fluids B 3 (1991) 2277.
- [2] J.A. Snipes, E.S. Marmar, J.L. Terry, *et al.*, J. Nucl. Mater. 196-198 (1992) 686.
- [3] C.E. Bush, R. Goldston, S. Scott, E. Fredrickson, K. McGuire, *et al.*, Phys. Rev. Lett. 65, 424 (1990).
- [4] P.N. Yushmanov, T. Takizuka, K.S. Riedel, *et al.*, Nucl. Fusion 30 (1990) 1999.
- [5] C.E. Bush, N. Bretz, R. Nazikian, *et al.*, Princeton University Plasma Physics Laboratory Report PPPL-2863 (1993), submitted to Nuclear Fusion.
- [6] C.E. Bush *et al.*, Proceedings of the 13th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Washington, DC (IAEA, Vienna, 1991) Vol. 1, p. 309.
- [7] C.E. Bush *et al.*, Proceedings 19th European Conference on Controlled Fusion and Plasma Physics, Innsbruck, (1992) Vol. 16C, Part 1, p 203.

EXTERNAL DISTRIBUTION IN ADDITION TO UC-420

Dr. F. Paoloni, Univ. of Wollongong, AUSTRALIA
Prof. R.C. Cross, Univ. of Sydney, AUSTRALIA
Plasma Research Lab., Australian Nat. Univ., AUSTRALIA
Prof. I.R. Jones, Flinders Univ, AUSTRALIA
Prof. F. Cap, Inst. for Theoretical Physics, AUSTRIA
Prof. M. Heindler, Institut für Theoretische Physik, AUSTRIA
Prof. M. Goossens, Astronomisch Instituut, BELGIUM
Ecole Royale Militaire, Lab. de Phy. Plasmas, BELGIUM
Commission-European, DG. XII-Fusion Prog., BELGIUM
Prof. R. Boucqué, Rijksuniversiteit Gent, BELGIUM
Dr. P.H. Sakanaka, Instituto Fisica, BRAZIL
Prof. Dr. I.C. Nascimento, Instituto Fisica, Sao Paulo, BRAZIL
Instituto Nacional De Pesquisas Espaciais-INPE, BRAZIL
Documents Office, Atomic Energy of Canada Ltd., CANADA
Ms. M. Morin, CCFM/Tokamak de Varennes, CANADA
Dr. M.P. Bachynski, MPB Technologies, Inc., CANADA
Dr. H.M. Skarsgard, Univ. of Saskatchewan, CANADA
Prof. J. Teichmann, Univ. of Montreal, CANADA
Prof. S.R. Sreenivasan, Univ. of Calgary, CANADA
Prof. T.W. Johnston, INRS-Energie, CANADA
Dr. R. Bolton, Centre canadien de fusion magnétique, CANADA
Dr. C.R. James,, Univ. of Alberta, CANADA
Dr. P. Lukáč, Komenského Universzita, CZECHO-SLOVAKIA
The Librarian, Culham Laboratory, ENGLAND
Library, R61, Rutherford Appleton Laboratory, ENGLAND
Mrs. S.A. Hutchinson, JET Library, ENGLAND
Dr. S.C. Sharma, Univ. of South Pacific, FIJI ISLANDS
P. Mähönen, Univ. of Helsinki, FINLAND
Prof. M.N. Bussac, Ecole Polytechnique., FRANCE
C. Mouttet, Lab. de Physique des Milieux Ionisés, FRANCE
J. Radet, CEN/CADARACHE - Bat 506, FRANCE
Prof. E. Economou, Univ. of Crete, GREECE
Ms. C. Rinni, Univ. of Ioannina, GREECE
Preprint Library, Hungarian Academy of Sci., HUNGARY
Dr. B. DasGupta, Saha Inst. of Nuclear Physics, INDIA
Dr. P. Kaw, Inst. for Plasma Research, INDIA
Dr. P. Rosenau, Israel Inst. of Technology, ISRAEL
Librarian, International Center for Theo Physics, ITALY
Miss C. De Palo, Associazione EURATOM-ENEA , ITALY
Dr. G. Grosso, Istituto di Fisica del Plasma, ITALY
Prof. G. Rostangni, Istituto Gas Ionizzati Del Cnr, ITALY
Dr. H. Yamato, Toshiba Res & Devel Center, JAPAN
Prof. I. Kawakami, Hiroshima Univ., JAPAN
Prof. K. Nishikawa, Hiroshima Univ., JAPAN
Librarian, Naka Fusion Research Establishment, JAERI, JAPAN
Director, Japan Atomic Energy Research Inst., JAPAN
Prof. S. Itoh, Kyushu Univ., JAPAN
Research Info. Ctr., National Instit. for Fusion Science, JAPAN
Prof. S. Tanaka, Kyoto Univ., JAPAN
Library, Kyoto Univ., JAPAN
Prof. N. Inoue, Univ. of Tokyo, JAPAN
Secretary, Plasma Section, Electrotechnical Lab., JAPAN
Dr. O. Mitarai, Kumamoto Inst. of Technology, JAPAN
Dr. G.S. Lee, Korea Basic Sci. Ctr., KOREA
J. Hyeon-Sook, Korea Atomic Energy Research Inst., KOREA
D.I. Choi, The Korea Adv. Inst. of Sci. & Tech., KOREA
Prof. B.S. Liley, Univ. of Waikato, NEW ZEALAND
Inst of Physics, Chinese Acad Sci PEOPLE'S REP. OF CHINA
Library, Inst. of Plasma Physics, PEOPLE'S REP. OF CHINA
Tsinghua Univ. Library, PEOPLE'S REPUBLIC OF CHINA
Z. Li, S.W. Inst Physics, PEOPLE'S REPUBLIC OF CHINA
Prof. J.A.C. Cabral, Instituto Superior Tecnico, PORTUGAL
Prof. M.A. Hellberg, Univ. of Natal, S. AFRICA
Prof. D.E. Kim, Pohang Inst. of Sci. & Tech., SO. KOREA
Prof. C.I.E.M.A.T, Fusion Division Library, SPAIN
Dr. L. Stenflo, Univ. of UMEA, SWEDEN
Library, Royal Inst. of Technology, SWEDEN
Prof. H. Wilhelmson, Chalmers Univ. of Tech., SWEDEN
Centre Phys. Des Plasmas, Ecole Polytech, SWITZERLAND
Bibliotheek, Inst. Voor Plasma-Fysica, THE NETHERLANDS
Asst. Prof. Dr. S. Cakir, Middle East Tech. Univ., TURKEY
Dr. V.A. Glukhikh, Sci. Res. Inst. Electrophys.I Apparatus, USSR
Dr. D.D. Ryutov, Siberian Branch of Academy of Sci., USSR
Dr. G.A. Eliseev, I.V. Kurchatov Inst., USSR
Librarian, The Ukr.SSR Academy of Sciences, USSR
Dr. L.M. Kovrizhnykh, Inst. of General Physics, USSR
Kernforschungsanlage GmbH, Zentralbibliothek, W. GERMANY
Bibliothek, Inst. Für Plasmaforschung, W. GERMANY
Prof. K. Schindler, Ruhr-Universität Bochum, W. GERMANY
Dr. F. Wagner, (ASDEX), Max-Planck-Institut, W. GERMANY
Librarian, Max-Planck-Institut, W. GERMANY