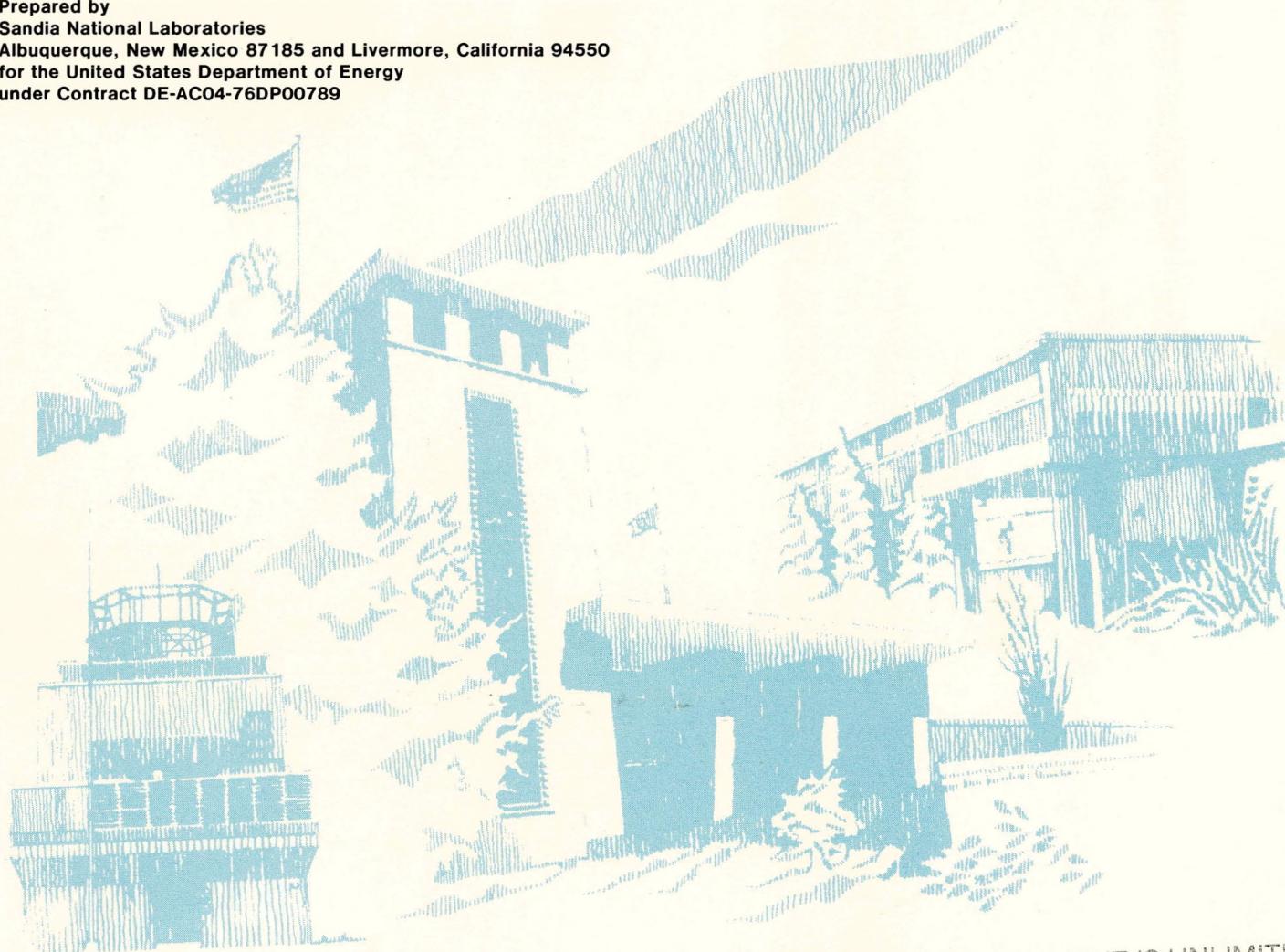


10/10/92 850

SANDIA REPORT

SAND90-2509 • UC-721


Unlimited Release

Printed November 1991

Experimental and Modeling Results for Reconsolidation of Crushed Natural Rock Salt Under Varying Physical Conditions

David H. Zeuch, David J. Holcomb

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy
under Contract DE-AC04-76DP00789

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche copy: A01

Experimental and Modeling Results for Reconsolidation of Crushed Natural Rock Salt Under Varying Physical Conditions*

David H. Zeuch and David J. Holcomb
Geomechanics Division 6232
Sandia National Laboratories
Albuquerque, NM 87185

Abstract

Mined salt from the underground facility at the Waste Isolation Pilot Plant (WIPP) Project is a candidate material for use as backfill around the waste packages and in the underground openings during and after the operational phase. We have conducted a series of hydrostatic and triaxial compression experiments on the time-dependent compaction behavior of crushed salt under nominally dry, "damp," (0.5-3 wt% added water), and brine-saturated conditions. Though the compaction of dry crushed salt is very slow in the laboratory, damp salt is likely to compact as rapidly as the mine walls can converge. Drained tests on brine-saturated crushed salt indicate that, though effects associated with saturation do retard consolidation rates slightly, high fractional densities (≥ 0.95) can still be obtained on laboratory time scales at pressures below lithostatic at the WIPP. Triaxial compression experiments indicate that small deviatoric stresses have little impact on consolidation rates. Micromechanical models for the compaction of dry and damp crushed salt, based on isostatic hot-pressing models, are discussed.

*This report was originally published in *Proceedings of the Seventh International Congress on Rock Mechanics*, held in Aachen, Germany, September 16-20, 1991.

Acknowledgments

The experiments discussed in this report were performed by Daniel J. Zimmerer and Marlene E. F. Shields, to whom the authors are indebted.

Contents

1.0	Introduction.....	1
2.0	Test Specimens, Experimental Apparatus, and Procedures	2
3.0	Experimental Results	4
3.1	Nominally Dry Crushed WIPP Salt	4
3.2	Damp Crushed WIPP Salt.....	5
3.3	Brine-Saturated Crushed WIPP Salt	7
3.4	Shear-Consolidation Experiments	7
4.0	Modeling of Crushed Salt Consolidation	10
5.0	Conclusions and Direction of Future Work.....	12
6.0	References.....	13

Figures

3.1	(a) Fractional density-time and (b) densification rate-fractional density plots for compaction experiments on brine-saturated and "damp" crushed rock salt	6
3.2	(a) Fractional density-time and (b) densification rate-fractional density plots for shear-consolidation and hydrostatic experiments on "damp" crushed rock salt	9

1.0 Introduction

The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy research and development facility intended to demonstrate the safe geologic disposal of transuranic wastes. The facility is located approximately 40 km east of Carlsbad in southeastern New Mexico. Underground workings at the WIPP are situated at a depth of about 650 m in a halite-rich horizon of the Salado Formation, part of a 1000-m thick sequence of bedded evaporites.

Mechanical behavior of crushed rock salt is of interest to the WIPP Project because the mined salt (referred to hereafter as "WIPP salt") is a candidate material for use as backfill around the waste packages and in the underground openings during and after the operational phase. It is anticipated that in response to the convergence of the mine openings, the crushed salt will compact sufficiently to serve as an effective component in WIPP seal systems. Desirable features of a long-term seal material will almost certainly be low permeability, and geochemical and mechanical compatibility with the surrounding, intact formation.

Consequently, a number of studies has been performed at Sandia National Laboratories (SNL) and elsewhere on the time-dependent compaction behavior of salt of varying degrees of purity, under both dry and wet conditions, and in hydrostatic and triaxial compression. The ultimate objectives of these test programs are to develop constitutive models for crushed salt that can predict fractional densities and permeabilities as a function of time under loading conditions anticipated at the WIPP.

A comprehensive review of all work on this topic is beyond the scope of this brief report, but reviews of much of the recent work have been given by Holcomb and Hannum (1982), Holcomb and Shields (1987), Holcomb and Zeuch (1988; 1990), and Zeuch (1989; 1990). The focus here is on testing done at SNL over roughly the last decade.

2.0 Test Specimens, Experimental Apparatus, and Procedures

Specimen materials and preparation, experimental apparatus, and procedures are virtually identical in all studies done at SNL. Details have been given by Holcomb and Hannum (1982), who developed the test technique, as well as Holcomb and Shields (1987), Holcomb and Zeuch (1988; 1990), and Zeuch et al. (1991); discussion here is restricted to a few brief, general remarks about experiments.

The crushed salt was strictly "mine run" material obtained from mine faces at the WIPP Site in several different batches. The salt was sieved to remove any particles that could not pass through a 0.96-cm mesh, but was not otherwise treated or modified. The resulting stock material was stored in plastic bags in the laboratory, taking no special precautions to control moisture content, which Holcomb and Shields (1987) have determined to be 0.19 wt%. Particle size distribution analyses done from time to time confirm that the distributions used in the various investigations are comparable (Holcomb and Hannum, 1982; Holcomb and Shields, 1987; Zeuch et al., 1991).

The salt was assembled into jacketed, cylindrical specimens. When assembling specimens, care was taken to ensure that no segregation occurred owing to particle size differences. Those experiments that were run under damp conditions were treated with brine during sample assembly, and procedures were used to ensure an even distribution of liquid (Holcomb and Shields, 1987). Experiments to be run under brine-saturated conditions (Zeuch et al., 1991) were similarly treated with 3.5 wt% brine during assembly, but were not saturated until they had been preconsolidated or "conditioned" (see below).

Experiments were performed in two similar triaxial test apparatuses developed by W. R. Wawersik. One apparatus has been described in detail, both as it is used in testing of intact rock (Wawersik, 1985) and in compaction experiments on crushed salt (Holcomb and Hannum, 1982; Holcomb and Shields, 1987; Zeuch et al., 1991). The apparatus is equipped with a combination dilatometer/intensifier for precision volume-change measurements, which makes it well suited to this type of experiment.

The tests were run at constant confining pressure, and the measured variable was sample volume change. Knowing the starting volume, V_o , and mass of the crushed salt, the starting fractional density, D_o , "instantaneous" volume and fractional density changes on loading (ΔV_q , and ΔD_q respectively), and time-dependent changes in volume and fractional density (ΔV_c and ΔD_c , respectively) can be calculated. Fractional density, D , is the ratio of the sample density to the density of dry, intact WIPP salt, 2.14 g cm^{-3} . Calculations treated the brine as completely free to escape from the pore space. By referring density measurements to that of intact WIPP salt, data more clearly reflect the approach of the samples to the density of the intact formation.

In a typical experiment, the sample was initially compacted ("conditioned") in the pressure vessel under manual control. The specimen was quickly raised to the desired test pressure and then held for approximately one minute. The sample was removed from the vessel and the "instantaneous," or quasistatic volume and fractional density changes, ΔV_q and ΔD_q , respectively, were determined by the immersion method.

At this point, specimens to be run under saturated conditions were saturated with brine insofar as possible. Specimens were then returned to the pressure vessel, rapidly repressurized to the test pressure, and the dilatometer/intensifier was turned on to measure the time-dependent volume change (ΔV_c). At this point, shear-consolidation specimens were loaded axially.

All experiments were run in the drained configuration. Nominally dry and damp specimens were vented through both top and bottom endcaps. In brine-saturated experiments, the lower endcap vent was plugged to prevent drainage of the brine from the specimen under the influence of gravity; however, brine was permitted to drain from the upper ported endcap into a graduated cylinder. The cylinder was capped to prevent evaporation of brine, and the amount of brine expelled was logged on a regular basis throughout the experiment.

3.0 Experimental Results

3.1 Nominally Dry Crushed WIPP Salt

Holcomb and Hannum (1982) conducted a series of quasistatic and creep compaction tests on nominally dry crushed WIPP salt. "Nominally dry" means that the salt contained no added water beyond the estimated 0.19 wt% that occurs naturally in the crushed salt from the WIPP Site. In the creep tests, samples were compressed hydrostatically at constant pressures ranging from 1.72 to 10.1 MPa and temperatures varying from 21 to 100°C. A typical test ran about 3×10^5 seconds (3.5 days). In the quasistatic tests, samples were hydrostatically compressed at steadily increasing pressures up to 21 MPa in about 8000 seconds (2.2 hours) over the same range of temperatures. The creep consolidation rates were found to be extremely low and seemed relatively insensitive to changes in stress and temperature.

The volumetric strain data were well fit by an empirical model,

$$\frac{\Delta V}{V_0} = \varepsilon_v = 2.303a \ln(t) + b, \quad (3.1)$$

where t is in seconds and a and b are empirical constants. Clearly, the equation is not valid for $t=0$, and in fact, the fit was poor in the first few hundred seconds of the test. To avoid both the poor fit and the singularity at $t=0$ a cut-off time of a few hundred seconds was used.

Using the relationship,

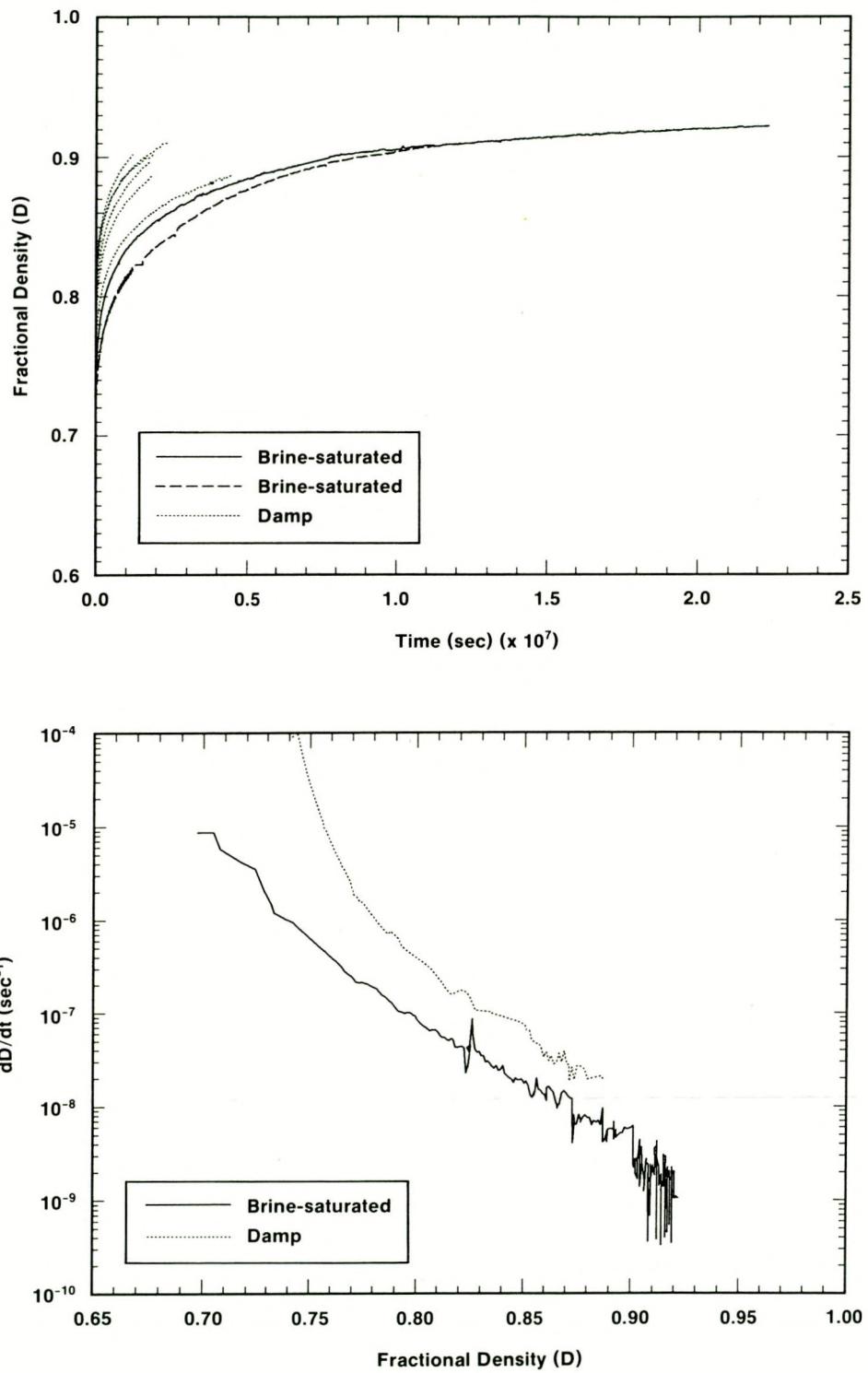
$$D = \frac{D_0}{1 + \varepsilon_v},$$

Equation 3.1 can be recast in terms of fractional density and differentiated with respect to time, finding that the densification rate decays as t^{-1} :

$$\dot{D} = \frac{-2.303aD_0}{t(1 + 2.303a \ln(t) + b)^2}. \quad (3.2)$$

Based on extrapolation of their empirical model for consolidation, Holcomb and Hannum (1982) concluded that unacceptably long times were required to attain the low

porosity necessary for the backfill to have a permeability approaching that of the surrounding formation, $\leq 10^{-8}$ darcies (Nowak et al., 1988).


3.2 Damp Crushed WIPP Salt

The bedded evaporites of the Salado Formation contain both inter- and intragranular brine inclusions comprising 0.1-1 wt% of the rock (Nowak et al., 1988). Thus, influx of small quantities of brine into the mine openings is inevitable (Nowak et al., 1988), and the crushed salt backfill will be damp, not dry. Holcomb and Shields (1987) evaluated the influence of the addition of small amounts of water (0.5 to 3 wt%) on the compaction rate of crushed WIPP salt under hydrostatic pressures. All experiments were done at $20 \pm 0.5^\circ\text{C}$ and pressures of 1.72 or 3.45 MPa. The tests ran for durations up to 4.5×10^{-6} seconds (52 days). Representative plots of fractional density versus time, and densification rate versus fractional density, are shown in Figures 3.1a and 3.1b.

Holcomb and Shields (1987) observed that the data for damp salt could also be fitted by a relationship in the form of Equation 3.1. However, compared to experiments on nominally dry salt, those on damp salt exhibited greater instantaneous fractional density changes upon loading, and densification rates greater by more than an order of magnitude at comparable times. Differences in densification mechanisms will be discussed later in this report. As stated, varying quantities of brine were added to these experiments, yet no differences in the magnitude of the effect were detected even at the lowest amount added, 0.5 wt%.

Using their empirical model, Holcomb and Shields (1987) concluded that the backfill would offer little resistance to closure of the disposal rooms. Subsequent modeling work supports this contention (Sjaardema and Krieg, 1987).

Finally, Holcomb and Shields (1987) performed one long-term hydrostatic compression test involving a series of pressure steps ranging from 0.34 to 6.90 MPa. Argon gas permeability measurements were taken at various fractional densities. Over the range from $D=0.90$ to 0.95, the permeability decayed rapidly from approximately 4.5×10^{-5} darcies to 1×10^{-8} darcies.

TRI-6341-151-0

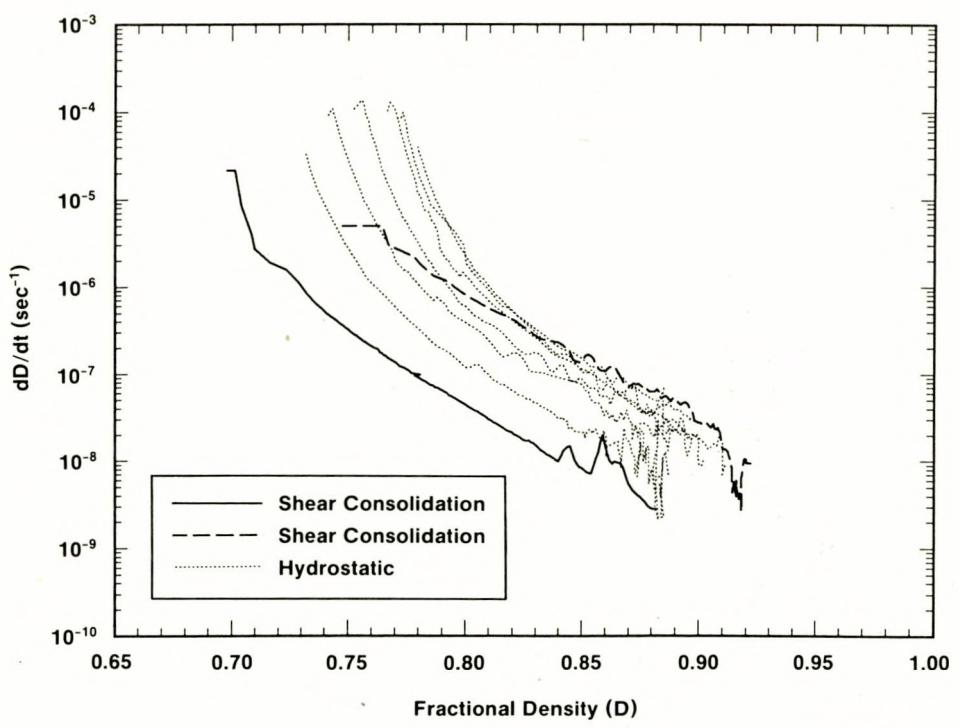
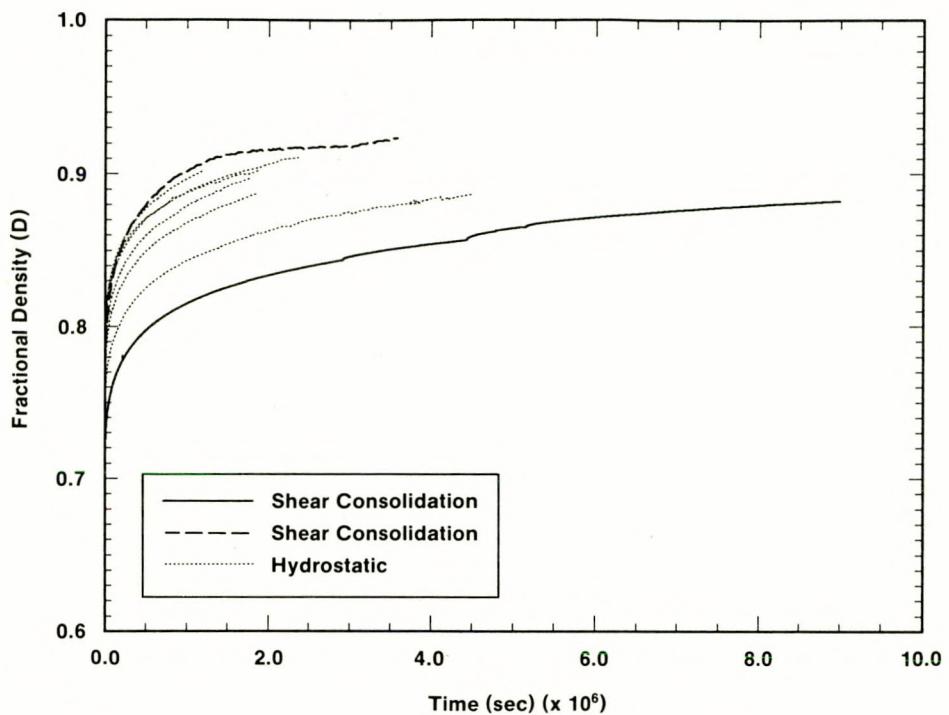
Figure 3.1. (a) Fractional density-time and (b) densification rate-fractional density plots for compaction experiments on brine-saturated and "damp" crushed rock salt.

3.3 Brine-Saturated Crushed WIPP Salt

Both observations and calculations indicate that the total influx of brine into the underground openings will be small. It is expected that by the time the crushed salt backfill is fully reconsolidated (≈ 100 years), only 1.2 wt% of the rock mass will consist of trapped brine (Nowak et al., 1988); this is not much greater than the original brine content of the intact formation. Nevertheless, concerns exist that large quantities of brine might somehow unexpectedly saturate the backfill during the early stages of consolidation and prevent the attainment of final densities approaching those of the intact formation. Even though such a "worst-case" scenario is thought to be extremely unlikely (Nowak et al., 1988), Zeuch et al. (1991) have undertaken an experimental investigation of the effects of high degrees of brine-saturation on the consolidation rates of crushed WIPP salt under hydrostatic compression.

Tests were conducted at $20 \pm 0.5^\circ\text{C}$ under nominally drained conditions and at pressures of 1.72, 3.45, 6.90 and 10.34 MPa, comparable to those used by Holcomb and Shields (1987). The experiments ran for up to 11 months. Plots of fractional density versus time and densification rate versus fractional density for the 3.45 MPa experiments are shown in Figures 3.1a and 3.1b for direct comparison with the results of Holcomb and Shields (1987) for damp salt. It should be noted that at the higher pressures in this test series, fractional densities in excess of 0.95 have been reached.

Results to date suggest that the brine-saturated specimens compact somewhat more slowly than damp specimens at all fractional densities. However, the differences are less than an order of magnitude, with no indications that the brine-saturated tests stop densifying altogether. Microstructural studies on the brine-saturated specimens have not been done yet, but we believe that the slower consolidation rates are attributable to increasing inability of brine to escape from the specimens owing to the "pinching off" and isolation of previously connected pores, resulting in entrapment of brine.



3.4 Shear-Consolidation Experiments

Numerical simulations of disposal-room/backfill interactions indicate that the backfill will be subjected to small shear stresses during compaction, principally in the corners of the drifts (Sjaardema and Krieg, 1987). Shear stresses are generally believed to enhance the compaction of granular or porous media (Zeuch et al., 1991); nevertheless, the concern arises that these shear stresses may somehow impede consolidation rates of crushed salt. Zeuch et al. (1991) have completed two preliminary shear-consolidation experiments on damp crushed WIPP salt. The experiments were done at $20 \pm 0.5^\circ\text{C}$, mean stresses,

$$\sigma_m = \frac{\sigma_1 + 2\sigma_3}{3} \quad ,$$

of 3.45 MPa, and stress differences, ($\sigma_1 - \sigma_3$), of 0.69 MPa, to facilitate direct comparison with the results of Holcomb and Shields (1987).

The results of the two experiments bracket Holcomb and Shield's (1987) hydrostatic compaction experiments at 3.45 MPa on damp salt, as shown in Figures 3.2a and 3.2b. Based on these results, small shear stresses have little effect on the consolidation rate, positive or negative.

TRI-6341-152-0

Figure 3.2. (a) Fractional density-time and (b) densification rate-fractional density plots for shear-consolidation and hydrostatic compaction experiments on "damp" crushed rock salt.

4.0 Modeling of Crushed Salt Consolidation

Long-term prediction of the behavior of crushed salt backfill under repository conditions necessarily involves extrapolation of experimental data beyond time spans accessible in the laboratory. Such extrapolations can only be done with confidence if the underlying micromechanisms of consolidation are understood; predictions based on purely empirical formulae such as Equations (3.1) and (3.2) are of doubtful value beyond the laboratory time scale. Whether in the laboratory or in situ, the problem of crushed salt consolidation is fundamentally identical to the materials fabrication process of isostatic hot-pressing, in which ceramic or metallic powders are subjected simultaneously to heat and hydrostatic pressure to manufacture finished or near-finished components approaching theoretical density. Owing to its industrial importance, a great deal is known about the micromechanisms contributing to densification.

Zeuch (1989; 1990) combined what is known about the deformation and creep micromechanisms of dry, *pure* sodium chloride (NaCl) with a comprehensive, multimechanism model for hot-pressing, to isolate the micromechanisms likely to contribute to consolidation of *dry*, crushed WIPP salt under repository conditions. Zeuch (1989; 1990) showed that under those conditions, only time-independent plasticity by dislocation movement and time-dependent dislocation creep were likely to contribute to densification in the absence of brine; diffusional mechanisms were unlikely to contribute to compaction.

Based on this result, Zeuch (1989; 1990) combined the well-documented dislocation creep model for WIPP salt (Wawersik and Zeuch, 1986) with the hot-pressing model to develop a densification model for WIPP salt. The model assumed that the only compaction mechanisms were instantaneous (time-independent) plastic deformation by dislocation movement and time-dependent dislocation creep. The quasistatic compaction data of Holcomb and Hannum (1982) were used to estimate/constrain the single material constant required for the model. Zeuch (1989; 1990) showed that the model described the time-dependent portions of Holcomb and Hannum's (1982) compaction data reasonably well, although the instantaneous densification that occurred upon loading was not well described. Specifically, it was typically underestimated. Using these results, Zeuch (1989; 1990) nevertheless generated *densification mechanism maps* for dry WIPP salt. Despite the sluggish consolidation rates in the laboratory, the results indicated that under rapid (instantaneous) loading, dry crushed salt could consolidate to fractional densities of about 0.95 in about 30 years at pressures comparable to lithostatic at the WIPP (approximately 15 MPa).

Holcomb and Zeuch (1988; 1990) attributed the poor agreement between the observed instantaneous compaction in experiments (Holcomb and Hannum, 1982) and that predicted by Zeuch's (1989; 1990) model to a component of densification by brittle

processes (fracture and particle rearrangement) that is generally acknowledged to occur during hot-pressing, but which has not been realistically incorporated into any model at this time. Holcomb and Zeuch (1988; 1990) empirically included this effect and achieved a significantly better fit to the observations. Recently, Holcomb, Wawersik and Zeuch (in preparation) conducted acoustic emission (AE) experiments on compacting aggregates of both dry and damp crushed WIPP salt. Acoustic emissions were detected in the early stages of both types of experiments, but AE rates decayed rapidly with time. Vastly more acoustic emissions were detected in the damp experiment, indicating that much more fracturing occurred in the presence of water. This result is significant for three reasons: 1) it verifies the assertion that brittle processes contribute to densification in the early stages of compaction; 2) it explains why greater instantaneous densities were reached in the damp experiments of Holcomb and Shields (1987) than in the dry experiments of Holcomb and Hannum (1982); 3) it suggests that the presence of water facilitates fracturing in salt.

Densification of damp and brine-saturated crushed salt almost certainly occurs by fluid phase-enhanced, diffusional creep mechanisms. No detailed effort has yet been undertaken to extend the model of Zeuch (1989; 1990) and Holcomb and Zeuch (1988; 1990) to include these processes. However, Zeuch (1989; 1990) outlined how such an extension could be accomplished, assuming that densification is rate-limited by diffusional transport of matter in the fluid phase. A comparable approach has already been undertaken by Spiers and Schutjens (1990) for pure salt, with good agreement obtained between model and experiments. Of course, it will also be necessary to empirically incorporate brittle compaction mechanisms, as with dry salt.

5.0 Conclusions and Direction of Future Work

It has been demonstrated that under the conditions most likely to pertain to the repository, (damp), crushed WIPP salt will consolidate rapidly at pressures significantly lower than lithostatic pressure at the depth of the repository. Preliminary results indicate that at high fractional densities ($D \geq 0.95$) permeabilities approach that of the intact formation ($\leq 10^{-8}$ darcies).

The work by Zeuch et al. (1991) on the effects of brine-saturation and shear stress on consolidation of crushed WIPP salt is still in progress at SNL and at RE/SPEC, Inc., where brine-permeability measurements are also being done (Brodsky, 1990). It is expected that most of this work will be completed within a year of this writing. Results to date indicate that even though effects associated with brine-saturation may retard consolidation slightly, high fractional densities are attainable under drained conditions on the laboratory time scale, at hydrostatic pressures lower than lithostatic at the WIPP. The results of brine-permeability measurements are still preliminary and subject to revision, but indicate that at fractional densities in excess of 0.95, permeabilities are in the 10-100 nanodarcy range (Brodsky, 1991). Other results to date indicate that small shear stresses have little effect on consolidation rates of damp salt.

A viable model for compaction of dry crushed salt has been developed, and work on extension of the model to include the effects of moisture is in progress. There are several obvious directions for future work to go. First and most important, it is essential to investigate the consolidation mechanisms of damp and brine-saturated crushed salt. This investigation will entail microstructural studies and experiments to evaluate sensitivity of the densification rate to particle size, stress, and temperature. The results will be important in evaluating the existing model and revising it as needed. It would also be useful to test the model for consolidation of dry salt using temperature- and stress-changing experiments as outlined by Zeuch (1989; 1990).

6.0 References

Brodsky, N.S. 1990. *Activity Plan for Hydrostatic and Shear Consolidation Tests on WIPP Crushed Salt*. RSI/AP-018, rev. 1. Rapid City, SD: RE/SPEC, Inc.

Brodsky, N.S. 1991. *Monthly Progress Report for Sandia National Laboratories Contract No. 69-1725*, May 1 to May 31, 1991. Rapid City, SD: RE/SPEC, Inc.

Holcomb, D.J. and D.W. Hannum. 1982. *Consolidation of Crushed Salt Backfill Under Conditions Appropriate to the WIPP Facility*. SAND82-0630. Albuquerque, NM: Sandia National Laboratories.

Holcomb, D.J. and M.E.F. Shields. 1987. *Hydrostatic Creep of Crushed Salt With Added Water*. SAND87-1990. Albuquerque, NM: Sandia National Laboratories.

Holcomb, D.J. and D.H. Zeuch. 1988. *Consolidation of Crushed Rock Salt, Part I: Experimental Results for Dry Salt Analyzed Using a Hot-Pressing Model*. SAND88-1469. Albuquerque, NM: Sandia National Laboratories.

Holcomb, D.J. and D.H. Zeuch. 1990. "Modeling the Consolidation of a Porous Aggregate of Salt as Isostatic Hot-pressing." *Journal of Geophysical Research*, 95:15,6122.

Nowak, E.J., D.F. McTigue, and R. Beraun. 1988. *Brine Inflow to WIPP Disposal Rooms: Data, Modeling, and Assessment*. SAND88-0112. Albuquerque, NM: Sandia National Laboratories.

Sjaardema, G.D. and R.D. Krieg. 1987. *A Constitutive Model for the Consolidation of WIPP Salt and its Use in Analyses of Backfilled Shaft and Drift Configurations*. SAND87-1977. Albuquerque, NM: Sandia National Laboratories.

Spiers, C.J. and P.M.T.M. Schutjens. 1990. "Densification of Crystalline Aggregates by Fluid-Phase Diffusional Creep." *Deformation Processes in Minerals, Ceramics and Rocks*. Eds. D.J. Barber and P.G. Meredith. London: Unwin Hyman. pp. 334-353.

Wawersik, W.R. 1985. "Determination of Steady State Creep Rates and Activation Parameters for Rock Salt." *Measurement of Rock Properties at Elevated Pressures and Temperatures*. Eds. H.J. Pincus and E.R. Hoskins. Philadelphia: American Society for Testing and Materials. pp. 72-92.

Wawersik, W.R. and D.H. Zeuch. 1986. "Modeling and Mechanistic Interpretation of Creep of Rock Salt Below 200°C." *Tectonophysics*, 121:125-152.

Zeuch, D.H. 1989. *Isostatic Hot-Pressing Mechanism Maps for Pure and Natural Sodium Chloride: Applications to Nuclear Waste Isolation in Bedded and Domal Salt Formations.* SAND88-2207. Albuquerque, NM: Sandia National Laboratories.

Zeuch, D.H. 1990. "Isostatic Hot-pressing Mechanism Maps for Pure and Natural Sodium Chloride: Applications to Nuclear Waste Isolation in Bedded and Domal Salt Formations." *International Journal of Rock Mechanics, Mineral Science, and Geomechanics.* Abstract. 27:505-524.

Zeuch, D.H., D.J. Zimmerer, and M.E.F. Shields. 1991. *Interim Report on the Effects of Brine-Saturation and Shear Stress on the Consolidation of Crushed, Natural Rock Salt from the Waste Isolation Pilot Plant (WIPP).* SAND91-0105. Albuquerque, NM: Sandia National Laboratories.

NUCLEAR WASTE TECHNOLOGY (6340)

Federal Agencies

U.S. Department of Energy, (5)
Office of Civilian Radioactive Waste Management
Attn: Deputy Director, RW-2
Associate Director, RW-10
Office of Program Administration and Resources Management
Associate Director, RW-20
Office of Facilities Siting and Development
Associate Director, RW-30
Office of Systems Integration and Regulations
Associate Director, RW-40
Office of External Relations and Policy
Forrestal Building
Washington, DC 20585

U.S. Department of Energy (4)
WIPP Project Integration Office
Attn: W.J. Arthur III
L.W. Gage
P.J. Higgins
D.A. Olona
P.O. Box 5400
Albuquerque, NM 87115-5400

U.S. Department of Energy
Attn: National Atomic Museum Library
Albuquerque Operations Office
P.O. Box 5400
Albuquerque, NM 87185-5400

U.S. Department of Energy (4)
WIPP Project Site Office (Carlsbad)
Attn: V. Daub
J.A. Mewhinney
P.O. Box 3090
Carlsbad, NM 88221

U.S. Department of Energy
Research & Waste Management Division
Attn: Director
P.O. Box E
Oak Ridge, TN 37831

U.S. Department of Energy
Waste Management Division
Attn: R.F. Guercia
P.O. Box 550
Richland, WA 99352

U.S. Department of Energy
Attn: E. Young
Room E-178
GAO/RCED/GTN
Washington, DC 20545

U.S. Department of Energy (6)
Office of Environmental Restoration and Waste Management
Attn: J. Lytle, EM30
M. Frei, EM-34 (3)
M. Duff, EM-34
C. Frank, EM-50
Washington, DC 20585

U.S. Department of Energy (3)
Office of Environment, Safety and Health
Attn: R. Pelletier, EH-231
K. Taimi, EH-232
C. Borgstrom, EH-25
Washington, DC 20585

U.S. Department of Energy (2)
Idaho Operations Office
Fuel Processing and Waste Management Division
785 DOE Place
Idaho Falls, ID 83402

U.S. Department of Energy
Savannah River Operations Office
Defense Waste Processing Facility Project Office
Attn: W.D. Pearson
P.O. Box A
Aiken, SC 29802

U.S. Environmental Protection Agency (2)
Office of Radiation Programs (ANR-460)
Attn: R. Guimond
Washington, DC 20460

U.S. Geological Survey
Conservation Division
Attn: W. Melton
P.O. Box 1857
Roswell, NM 88201

U.S. Geological Survey (2)
Water Resources Division
Attn: K. Peters
Suite 200
4501 Indian School, NE
Albuquerque, NM 87110

U.S. Nuclear Regulatory Commission
(4)
Attn: J. Bunting, HLEN 4H3 OWFN
R. Ballard, HLGP 4H3 OWFN
J. Philip
NRC Library
Mail Stop 623SS
Washington, DC 20555

Boards

Defense Nuclear Facilities Safety
Board
Attn: D. Winters
Suite 700
625 Indiana Ave., NW
Washington, DC 20004

U.S. Department of Energy
Advisory Committee on Nuclear
Facility Safety
Attn: M.E. Langston, AC21
Washington, DC 20585

Nuclear Waste Technical Review Board
(2)
Attn: D.A. Deere
S.J.S. Parry
Suite 910
1100 Wilson Blvd.
Arlington, VA 22209-2297

Advisory Committee on Nuclear Waste
Nuclear Regulatory Commission
Attn: R. Major
7920 Norfolk Avenue
Bethesda, MD 20814

State Agencies

Environmental Evaluation Group (3)
Attn: Library
Suite F-2
7007 Wyoming, NE
Albuquerque, NM 87109

NM Bureau of Mines and Mineral
Resources (2)
Attn: F.E. Kottolowski, Director
J. Hawley
Socorro, NM 87801

NM Department of Energy & Minerals
Attn: Librarian
P.O. Box 2770
Santa Fe, NM 87501

NM Environment Department (5)
Secretary of the Environment
Attn: J. Espinosa
1190 St. Francis Drive
Santa Fe, NM 87503-0968

NM Environment Department (2)
WIPP Project Site
Attn: P. McCausland
P.O. Box 3090
Carlsbad, NM 88221

Laboratories/Corporations

Battelle Pacific Northwest
Laboratories (5)
Attn: D.J. Bradley, K6-24
J. Relyea, H4-54
R.E. Westerman, P8-37
H.C. Burkholder, P7-41
L. Pederson, K6-47
Battelle Boulevard
Richland, WA 99352

Savannah River Laboratory (6)
Attn: N. Bibler
E.L. Albenisius
M.J. Plodinec
G.G. Wicks
C. Jantzen
J.A. Stone
Aiken, SC 29801

INTERA Inc. (3)
Attn: G.E. Grisak
J.F. Pickens
A. Haug
Suite 300
6850 Austin Center Blvd.
Austin, TX 78731

INTERA Inc.
Attn: W. Stensrud
P.O. Box 2123
Carlsbad, NM 88221

IT Corporation (2)
Attn: R.F. McKinney
J. Myers
Regional Office - Suite 700
5301 Central, NE
Albuquerque, NM 87108

IT Corporation (2)
Attn: D.E. Deal
P.O. Box 2078
Carlsbad, NM 88221

Los Alamos Scientific Laboratory
Attn: B. Erdal, CNC-11
P.O. Box 1663
Los Alamos, NM 87544

RE/SPEC, Inc. (4)
Attn: W. Coons
Suite 300
4775 Indian School, NE
Albuquerque, NM 87110-3927

RE/SPEC, Inc. (7)
Attn: A.F. Fossum
G. Callahan
T. Pfeifle
J.L. Ratigan
P.O. Box 725
Rapid City, SD 57709

Southwest Research Institute (4)
Center for Nuclear Waste
Regulatory Analysis
Attn: P.K. Nair
6220 Culebra Road
San Antonio, TX 78228-0510

SAIC
Attn: G. Dymmel
101 Convention Center Dr.
Las Vegas, NV 89109

SAIC
Attn: H.R. Pratt,
Senior Vice President
10260 Campus Point Drive
San Diego, CA 92121

SAIC
Attn: M.B. Gross
Asst. Vice President
Suite 1250
160 Spear Street
San Francisco, CA 94105

Systems, Science, and Software (2)
Attn: E. Peterson
Box 1620
La Jolla, CA 92038

Tech Reps Inc. (3)
Attn: J. Chapman
B. Jones
E. Lorusso
5000 Marble, NE
Albuquerque, NM 87110

Westinghouse Electric Corporation (7)
Attn: Library
L. Trego
W.P. Poirer
W.R. Chiquelin
V.F. Likar
D.J. Moak
R.F. Kehrman
P.O. Box 2078
Carlsbad, NM 88221

Weston Corporation
Attn: D. Lechel
Suite 1000
5301 Central, NE
Albuquerque, NM 87108

Universities

University of Arizona
Attn: J.G. McCray
Department of Nuclear Engineering
Tucson, AZ 85721

University of New Mexico
Geology Department
Attn: Library
Albuquerque, NM 87131

University of Nevada, Reno
Department of Mining Engineering
Attn: J.J.K. Daemen
Reno, NV 89557-0139

Pennsylvania State University
Materials Research Laboratory
Attn: D. Roy
University Park, PA 16802

Texas A&M University
Center of Tectonophysics
College Station, TX 77840

University of Washington
Attn: G.R. Heath
College of Ocean
and Fishery Sciences
583 Henderson Hall
Seattle, WA 98195

Individuals

D.W. Powers
Star Route Box 87
Anthony, TX 79821

Libraries

Thomas Brannigan Library
Attn: D. Dresp, Head Librarian
106 W. Hadley St.
Las Cruces, NM 88001

Hobbs Public Library
Attn: M. Lewis, Librarian
509 N. Ship Street
Hobbs, NM 88248

New Mexico State Library
Attn: N. McCallan
325 Don Gaspar
Santa Fe, NM 87503

New Mexico Tech
Martin Speere Memorial Library
Campus Street
Socorro, NM 87810

New Mexico Junior College
Pannell Library
Attn: R. Hill
Lovington Highway
Hobbs, NM 88240

WIPP Public Reading Room
Carlsbad Public Library
Attn: Director
101 S. Halagueno St.
Carlsbad, NM 88220

Government Publications Department
General Library
University of New Mexico
Albuquerque, NM 87131

The Secretary's Blue Ribbon Panel on WIPP

Dr. Thomas Bahr
New Mexico Water Resources Institute
New Mexico State University
Box 3167
Las Cruces, NM 88003-3167

Mr. Leonard Slosky
Slosky and Associates
Suite 1400
Bank Western Tower
1675 Broadway
Denver, CO 80202

Mr. Newal Squyres
Holland & Hart
P.O. Box 2527
Boise, ID 83701

Dr. Arthur Kubo
Vice President
BDM International, Inc.
7915 Jones Branch Drive
McLean, VA 22102

Mr. Robert Bishop
Nuclear Management Resources Council
1776 I Street, NW
Washington, DC 20006-2496

National Academy of Sciences, WIPP Panel

Dr. Charles Fairhurst, Chairman
Department of Civil and
Mineral Engineering
University of Minnesota
500 Pillsbury Dr., SE
Minneapolis, MN 55455-0220

Howard Adler
Oak Ridge Associated Universities
Medical Sciences Division
P.O. Box 117
Oak Ridge, TN 37831-0117

Dr. John O. Blomeke
3833 Sandy Shore Drive
Lenoir City, TN 37771-9803

Dr. John D. Bredehoeft
Western Region Hydrologist
Water Resources Division
U.S. Geological Survey (M/S 439)
345 Middlefield Road
Menlo Park, CA 94025

Dr. Fred M. Ernsberger
250 Old Mill Road
Pittsburgh, PA 15238

Dr. Rodney C. Ewing
Department of Geology
University of New Mexico
Albuquerque, NM 87131

B. John Garrick
Pickard, Lowe & Garrick, Inc.
Suite 400
4590 MacArthur Blvd.
Newport Beach, CA 92660-2027

Leonard F. Konikow
U.S. Geological Survey
431 National Center
Reston, VA 22092

Jeremiah O'Driscoll
Jody Incorporated
505 Valley Hill Drive
Atlanta, GA 30350

Dr. Christopher G. Whipple
Clement International
Suite 1380
160 Spear Street
San Francisco, CA 94105

Dr. Peter B. Myers
National Academy of Sciences
Committee on Radioactive
Waste Management
2101 Constitution Avenue
Washington, DC 20418

Dr. Geraldine Grube
Board on Radioactive
Waste Management
GF456
2101 Constitution Avenue
Washington, DC 20418

Foreign Addresses

Studiecentrum Voor Kernenergie
Centre D'Energie Nucleaire
Attn: Mr. A. Bonne
SCK/CEN
Boeretang 200
B-2400 Mol
BELGIUM

Atomic Energy of Canada, Ltd. (2)
Whitehell Research Estab.
Attn: Peter Haywood
John Tait
Pinewa, Manitoba, CANADA
ROE 1L0

Dr. D. K. Mukerjee
Ontario Hydro Research Lab.
800 Kipling Avenue
Toronto, Ontario, CANADA
M8Z 5S4

Mr. Francois Chenevier, Director (2)
ANDRA
Route du Panorama Robert Schumann
B.P.38
92266 Fontenay-aux-Roses Cedex
FRANCE

Mr. Jean-Pierre Olivier
OECD Nuclear Energy Agency
Division of Radiation Protection
and Waste Management
38, Boulevard Suchet
75016 Paris, FRANCE

Dr. C. J. Spiers
Institute for Earth Sciences
University of Utrecht
Budapestlaan 4
Postbus 80.021
3508 TA Utrecht, THE NETHERLANDS

Claude Sombret
Centre D'Etudes Nucleaires
De La Vallee Rhone
CEN/VALRHO
S.D.H.A. BP 171
30205 Bagnols-Sur-Ceze
FRANCE

Bundesministerium fur Forschung und
Technologie
Postfach 200 706
5300 Bonn 2
GERMANY

Gesellschaft fur Reaktorsicherheit
(GRS) (2)
Attn: B. Baltes
W. Muller
Schwertnergasse 1
D-5000 Cologne
GERMANY

Bundesanstalt fur Geowissenschaften
und Rohstoffe
Attn: Michael Langer
Postfach 510 153
3000 Hanover 51
GERMANY

Hahn-Meitner-Institut fur
Kernforschung
Attn: Werner Lutze
Glienicker Strasse 100
100 Berlin 39
GERMANY

Institut fur Tieflagerung (4)
Attn: K. Kuhn
Theodor-Heuss-Strasse 4
D-3300 Braunschweig
GERMANY

Kernforschung Karlsruhe
Attn: K. D. Closs
Postfach 3640
7500 Karlsruhe
GERMANY

Physikalisch-Technische Bundesanstalt
Attn: Peter Brenneke
Postfach 3345
D-3300 Braunschweig
GERMANY

D.R. Knowles
British Nuclear Fuels, plc
Risley, Warrington, Cheshire WA3 6AS
1002607 UNITED KINGDOM

AEA Technology
Attn: J.H. Rees
D5W/29 Culham Laboratory
Abington, Oxfordshire OX14 3DB
UNITED KINGDOM

AEA Technology
Attn: W.R. Rodwell
044/A31 Winfrith Technical Centre
Dorchester, Dorset DT2 8DH
UNITED KINGDOM

AEA Technology
Attn: J.E. Tinson
B4244 Harwell Laboratory
Didcot, Oxfordshire OX11 0RA
UNITED KINGDOM

Nationale Genossenschaft fur die
Lagerung Radioaktiver Abfalle
(NAGRA) (2)
Attn: S. Vomvoris
P. Zuidema
Hardstrasse 73
CH-5430 Wettingen
SWITZERLAND

Shingo Tashiro
Japan Atomic Energy Research
Institute
Tokai-Mura, Ibaraki-Ken
319-11 JAPAN

Netherlands Energy Research	9310	J.D. Plimpton
Foundation	9320	M.J. Navratil
ECN (2)	9325	L.J. Keck (2)
Attn: K.A. Duijves	9333	O. Burchett
L.H. Vons	9333	J.W. Mercer
3 Westerduinweg	9334	P.D. Seward
P.O. Box 1		
1755 ZG Petten, THE NETHERLANDS		

Svensk Karnbransleforsorjning AB
 Attn: Fred Karlsson
 Project KBS
 Karnbranslesakerhet
 Box 5864
 10248 Stockholm, SWEDEN

Sandia Internal

1510	J.C. Cummings
1514	J.G. Arguello
1514	H.S. Morgan
1550	C.W. Peterson
3141	S.A. Landenberger (5)
3145	Document Control (8) for DOE/OSTI
3151	G.C. Claycomb (3)
6000	D.L. Hartley
6232	W.R. Wawersik
6232	D.H. Zeuch (10)
6232	D.J. Holcomb
6233	J.L. Krumhansl
6300	T.O. Hunter
6310	T.E. Blejwas, Acting
6313	L.E. Shephard
6315	M.D. Siegel
6340	W.D. Weart
6340	S.Y. Pickering
6341	R.C. Lincoln
6341	Staff (9)
6341	Sandia WIPP Central Files (10)
6342	D.R. Anderson
6342	Staff (11)
6343	T.M. Schultheis
6343	Staff (2)
6344	E. Gorham
6344	Staff (10)
6345	A.R. Lappin
6345	Staff (9)
6346	J.R. Tillerson
6346	Staff (7)
6621	L.D. Tyler
8523-2	Central Technical Files
9300	J.E. Powell