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Numerical solution of partial differential equations requires appropriate
meshes, efficient solvers and robust and reliable error estimates. Generation
of high—quality meshes for complex engineering models is a non—-trivial task.
This task is made more difficult when the mesh has to be adapted to a problem
solution. This article is focused on a synergistic apprcach to the mesh
generation and mesh adaptation, where best properties of various mesh
generation methods are combined to build efficiently simplicial meshes.

First, the advancing front technique (AFT) is combined with the incremental
Delaunay triangulation (DT) to build an initial mesh [1l]. Second, the
metric—-based mesh adaptation (MBA) method [2] is employed to improve quality
of the generated mesh and/or to adapt it to a problem solution. We demonstrate
with numerical experiments that combination of all three methods is required
for robust meshing of complex engineering models.

The key to successful mesh generation is the high-quality of the triangles

in the initial front. We use a black-box technique to improve surface meshes
exported from an unattainable CAD system. The initial surface mesh is refined
into a shape-regular triangulation which approximates the boundary with the
same accuracy as the CAD mesh. The DT method adds robustness to the AFT.

The resulting mesh is topologically correct but may contain a few slivers.
The MBA uses seven local operations to modify the mesh topology. It improves
significantly the mesh quality.

The MBA method is also used to adapt the mesh to a problem solution to minimize
computational resources required for solving the problem. The MBA has a solid
theoretical background [2]. In the first two experiments, we consider the
convection-diffusion and elasticity problems. We demonstrate the optimal
reduction rate of the discretization error on a sequence of adaptive strongly
anisotropic meshes. The key element of the MBA method is construction of a tensor

metric from hierarchical edge-based error estimates. We conclude that the
guasi-optimal mesh must be quasi-uniform in this metric.

All numerical experiments are based on the publicly available Ani3D package [3],
the collection of advanced numerical instruments.
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Abstract

We describe a synergistic approach, where best properties of various mesh genera-
tion methods are combined to build efficiently simplicial meshes. First, the advancing
front technique is combined with the Delaunay triangulation to build an initial mesh.
Second, the metric-based mesh generation is employed to improve quality of this mesh
and/or to adapt it to a problem solution. We describe relevant features of these meth-
ods and illustrate them with application examples involving robust mesh generation of
complex engineering models and mesh adaptation for minimization of a discretization
error.

Keywords: advancing front technique, Delaunay triangulation, mesh adaptation, ten-
sor metric, quasi-optimal mesh.

1 Introduction

Numerical solution of partial differential equations (PDE) requires appropriate meshes,
efficient solvers and robust and reliable error estimates. Generation of high-quality
meshes for complex engineering models is a non-trivial task. This task is made more
difficult when the mesh has to be adapted to a problem solution. This article is focused
on a synergistic approach to the mesh generation and mesh adaptation.

We present a few mesh generation methods that are part of the Ani3D package
[1], the collection of advanced numerical instruments. The package implements the
advancing front technique (AFT) and the Delaunay triangulation to generate an ini-
tial mesh [2, 3] and the metric-based mesh re-generation [4, 5] to improve the mesh
quality and to adapt it to a problem solution. The supporting utilities, implemented
as independent libraries, include hierarchical uniform and local mesh refinement pre-
serving mesh quality [6, 7], metric recovery algorithms [4, 8] and Krylov subspace




solvers with incomplete LU preconditioners [9, 10].

Describing the mesh generation methods, we put focus on how well they satisfy the
following four requirements: (a) generation of meshes with high-quality elements; (b)
efficiency of underlying algorithms; (c) robustness of the underlying algorithms; (d)
adaptation to a problem solution.

The AFT adds tetrahedra to the mesh by advancing the initial front inside the com-
putational domain. The user can control the local mesh size. The mesh size can be
automatically adjusted by the AFT based on the initial front mesh size. The key to
successful mesh generation is the high-quality of the triangles in the initial front. The
Ani3D package uses a black-box technique to improve surface meshes exported from
an unattainable CAD system. The initial surface mesh is refined into a shape-regular
triangulation which approximates the boundary with the same accuracy as the CAD
mesh [2, 11].

The AFT has low cost but may produce a small number of low-quality tetrahedra
(slivers) and may leave small isolated parts (lacunas) of the computational domain
unmeshed. The unmeshed lacunas are partitioned into tetrahedra by the incremental
Delaunay triangulation (DT) algorithm [2, 12, 13, 14, 15]. The DT method adds ro-
bustness to the mesh generation. The resulting mesh is topologically correct but may
contain a few slivers. This mesh is post-processed with the metric-based mesh re-
generation method. The same method is used to adapt the mesh to a problem solution.

The mesh adaptation technology [5, 16, 17, 18] allows the user to minimize com-
putational resources in solving systems of PDEs. The described methods have solid
theoretical background developed in [8, 19]. In these papers we developed analysis
of quasi-optimal meshes minimizing LP-norm of the gradient of the P;-interpolation
error, where p > 0. We demonstrated theoretically and numerically that the discretiza-
tion error is proportional to N~%/4, where N is the number of simplexes and d is the
space dimension. The adapted meshes generated in Section 3.1 are quasi-optimal
for the L?-norm of gradient of the finite element (FE) discretization error. The key
element of this technology is construction of a tensor metric from edge-based error
estimates. A posteriori hierarchical error estimators [20] due to Deuflhard, Leinen
and Yserentant are used to obtain the edge-based errors. A different mesh adaptation
based on similar a posteriori error estimates is considered in [21].

We demonstrate the power of mesh adaptation with a two-dimensional convection-
diffusion problem and a three-dimensional elasticity problem. We illustrate with nu-
merical experiments that a posteriori error estimates provide reasonable bounds for the
discretization error on strongly anisotropic meshes aligned with the problem solution.
We also demonstrate importance of the MBA method in improving mesh quality in
meshing of a complex engineering model.

The paper outline is as follows. In Section 2, we describe key mesh generation
methods implemented in the Ani3D package. In Section 3, we illustrate the perfor-
mance of these methods with three numerical experiments. The final remarks are in
Section 4.



2 Mesh generation for solving PDEs

Efficient solution of partial differential equations requires specially designed meshes.
In this article, we address four requirements which are stated frequently in generation
of computational meshes:

Quality. A mesh generator must produce meshes with high-quality elements.

Efficiency. The employed algorithms must be efficient and scale linearly or sublin-
early with the number of mesh elements.

Robustness. The employed algorithms must be reliable and robust.
Adaptivity. A mesh generator must produce meshes adapted to a problem solution.

None of the existing mesh generation methods has been proved to satisfy all four
requirements. Our strategy is based on synergy of various methods described below.
This allows us to design a technology which satisfies these requirements. The tech-
nology is implemented in the publicly available package Ani3D [1].

2.1 Advancing front technique

We employ the advancing front technique (AFT) for initial mesh generation. We
define the initial front as a set of oriented triangular faces forming a closed conformal
surface mesh. The idea of the AFT is to construct new tetrahedra by advancing this
front inside the computational domain. The front actually divides the domain into two
parts: already meshed one and the remaining part. At each step, a new tetrahedron
is constructed and the front is advanced. The AFT algorithm terminates when the
front becomes empty. Details of this algorithm are presented in [2]. Here, we discuss
main features of the AFT and how it can be modified to comply with some of the
requirements formulated above.

Quality. By design, majority of tetrahedra produced by the AFT have high-quality
in the Euclidean metric provided that the initial front consists of high-quality triangles.
Let ha denote the diameter of element A and |e| denote the length of edge e. The AFT
guarantees that for each edge e of each element A, we have

prha < le| < peha,

where positive constants p; and p, are independent of the mesh. Thus, the resulting
mesh does not have small edges but may contain nearly flat tetrahedra (slivers). Addi-
tional checks prevent the AFT from generating elements with acute dihedral angles.

A good surface mesh is the key to successful mesh generation. If the initial front
contains low-quality triangles, we start with improving their quality. In [11], we in-
troduced a new technique for surface mesh modification which is implemented in the
Ani3D package. The basic idea is to split the surface into several nearly flat polygons,
and re-mesh them. In order to construct a nearly flat polygon, we fix a flatness crite-
rion, and use it to add triangles to the polygon. The criterion says that triangle T lies
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Figure I: Left picture shows the surface mesh exported from a CAD system. Right
picture shows the re-meshed surface mesh.

nearly in plane P, if (a) an angle between the normals to 7" and P is small enough,
and (b) the distance from 7 to P is also small. The user can control the degree of
the admissible deviation. After the surface is split into several nearly flat polygons,
they are re-meshed with high-quality meshes. In order to provide a conformal surface
mesh we first re-mesh the interfaces between these polygons and then re-mesh their
interior. The polygon is projected onto a plane, where the robust planar AFT is ap-
plied to produce a high-quality triangulation. The new mesh is projected back onto the
original surface. Since the original polygon was nearly flat, a surface distortion caused
by the projection will be insignificant. An example of surface mesh improvement is
presented in Figure 1.

Efficiency. The major advantage of the AFT is its low cost. For quasi-uniform
tetrahedral meshes, the cost of the AFT is roughly N log(H/h), where N is the total
number of constructed tetrahedra, H is the characteristic size of the computational
domain, and h is the mesh size. The logarithmic complexity is achieved by using an
octree-based search tree for searching faces in the three-dimensional space. In each
vertex of the tree, we keep a list of front triangles assigned to the vertex. This data
structure allows us to perform efficiently basic operations of the AFT.

Consider, for example, one of the main operations in the AFT, an intersection check
between a tetrahedron A and the current front. Let Ba be its circumscribed sphere
of radius R and By be the sphere centered at the barycenter of the front triangle 7'
with the radius Ry equal to the maximum distance from the barycenter to the vertices
of T. If T intersects with A, then By intersects with B and the distance dr between
centers of the two spheres is less than Ry + Ra. The octree structure allows us to
find quickly all triangles 7" satisfying dr < Ry + Ra. The cost of this search is
proportional to (log M + K'), where M is the total number of triangles in the octree,
and K is the number of triangles satisfying the search conditions.

Robustness. The major drawback of the AFT is lack of robustness. It may fail
to construct a mesh for the entire computational domain. The unmeshed volume is



Figure 2: A cut through meshes generated with constant (left) and non-constant (right)
mesh size functions.

usually less than 1% of the domain volume. Since only the intersection tests depend
heavily on the arithmetic precision, we use a fail-safe intersection test to increase
robustness. It may wrongly report non-intersecting triangles as intersecting due to
round-off issues. However, it will never report actually intersecting triangles as non-
intersecting ones. Thus, we slightly narrow the possibility for front advance, but we
will always have a valid conformal mesh at the end.

Adaptiviry. The AFT algorithm implemented in the Ani3D package allows the user
to provide a size function k(z) to control the local size of mesh elements (see Figure 2
for two examples of h(x)). The size function can be defined on the basis of a posteriori
error estimates. It must be bounded from below to avoid an infinite refinement loop.

Summarizing, the AFT complies with the scalability and the adaptivity require-
ments. However, it may produce a small number of low-quality tetrahedra and may
leave some lacunas of the computational domain unmeshed. Next step is to employ
more sophisticated mesh generation methods in order to split the unmeshed lacunas
into tetrahedra.

2.2 Delaunay triangulation

If the AFT fails to mesh the entire domain, we launch the Delaunay triangulation
(DT) method to mesh the remaining lacunas and to preserve their boundary faces.
The general idea of this method has been proposed in [13]. Here, we discuss main
features of the DT method and its necessary modifications.

Quality. By design, the DT method tends to produce high-quality tetrahedra pro-
vided that the mesh vertices are appropriately placed. In exact arithmetic, the DT
methods works for arbitrary fronts [13] but may create slivers. The appearance of
slivers is usually induced by irregular distribution of mesh nodes at the boundaries of
lacunas.




Figure 3: Main steps of the DT method: a) initial front; b) DT mesh of a convex hull;
¢) refined mesh after intersection with the front; d) restored geometry of the mesh; e)
intersection points are shifted inside lacunas; f) final mesh.

Efficiency. Using Figure 3, we describe basic steps in the modified DT method
implemented in the Ani3D package (see [2] for more details). First, we take points
from the front left by the AFT and apply the conventional incremental algorithm [12]
(Figure 3b). This gives two different meshes with the same sets of vertices: the DT
mesh of a convex hull and the triangular surface mesh on lacunas boundary. Second,
we intersect the DT mesh with the surface mesh (Figure 3c), and remove tetrahedra
lying outside the lacunas (Figure 3d). Note that the surface of the modified DT mesh
may no longer match the original surface mesh of the lacunas, due to the intersection
points. Third, the intersection points are removed from the surface by shifting them
inside the lacunas (Figure 3e). The boundary conformity is restored by filling the
surface dents with tetrahedra (Figure 3f).

All these operations scale linearly with the number of nodes at the boundary of
lacuna. Moreover, in all our experiments, the DT method produced less than 5% of
tetrahedra, which allows us to neglect its contribution to the total mesh generation
time.

Robustness. In the DT method, round-off errors may lead to wrong edge-to-face
intersection, and also may result in degenerated elements after point movements. In-
tersection problems are mainly due to badly shaped front left after the AFT method.
However, tedious implementation resolves these problems robustly, at least from the
practical standpoint.

Adaptivity. Since the nodes at the boundaries of lacunas are given, the DT method
does not provide enough flexibility of the tetrahedral partition in lacunas to be adapted
to a problem solution. Fortunately, the DT method is used only in very small parts of
the domain; therefore, we can neglect local violation of adaptation criteria.

Summarizing, the DT method adds robustness to the AFT. The resulting mesh still




may have a small number of slivers which are the low-quality tetrahedra. Next step is
to employ the robust mesh re-generator to remove these slivers.

2.3 Metric-based mesh re-generation and adaptation

We improve the mesh quality using a sequence of local changes of mesh topology. The
local topological operations provide a robust way to adapt the mesh to the problem
solution and to gain additional accuracy for the same number of mesh elements. The
general idea of the metric-based adaptation (MBA) is described in [4, 22]. Here, we
discuss main features of the MBA and derive a tensor metric for minimizing the energy
norm of the finite element discretization error.

Quality. Let Q(A) be a quality of tetrahedron A. We define this quality as a
function depending on the tetrahedron shape and given metric such that

0<Q(A) < 1.

The higher value of Q(A) corresponds to a more shape-regular element and Q(A) =
1 corresponds to an equilateral tetrahedron. The mesh quality Q(€2;,) is defined as
the quality of the worst element in the mesh. By design, the MBA increases the
mesh quality after each local change of the mesh topology. The mesh always remains
conformal, and the method terminates when Q(£2;,) reaches a user-specified threshold.
The MBA produces a mesh which is quasi-uniform in a user-defined metric. We use
the Euclidean metric to remove slivers. For a stronger mesh adaptation, we use full
(possibly anisotropic) tensor metrics.

Let 9t be the space tensor metric. To define a particular tetrahedron quality, we
recall definitions of the volume of A and the total length of its edges in the metric 90t
that are denoted by [A|oy and [0A oy, respectively:

6
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where ¢, is a vector representation of the tetrahedron edge ex. The orientation of e,
is not important for the quality definition. In the Ani3D package, we set

gz Al (1980
@A) = 64\/§|5‘&|§ﬂf ( 6h. ) '

where f(a) is a smooth positive function with the only maximum at ¢ = 1 and f(a)
tends to zero when ¢ — 0 or when @ — oo. The parameter h, is the size of the
targeted uniform mesh in metric 1. Note that other mesh qualities can be also used,
see for example [23, 24].

Efficiency. Complete mesh re-generation may require 5-15 sweeps of the MBA
operations through the mesh, which makes it rather costly. Practical experience shows
that meshes with up to one million nodes may be processed successfully on a PC. In
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Figure 4: Generalized edge-based swapping: replacement of edge v; — v, by triangu-
lated polygon v3 — vy — vs — v — V5.

many cases, it is sufficient to focus the work only on low-quality elements and a few
layers of their neighbors. The Ani3D package allows to freeze selected elements.

Robustness. Local changes of the mesh topology is the key to the method robust-
ness. The package Ani3D has seven local topological operations including edge-face
swapping, generalized edge-faces swapping, node deletion, node insertion, edge col-
lapse, and node movement. Most of the operations are well-known in the meshing
community. The less popular is the generalized edge-face swapping operation that
provides additional topological flexibility. Basic idea of this operation is shown in
Figure 4: removal of the edge v; — v, results in a possibly non-convex polyhedron
which is split into tetrahedra by triangulating non-flat polygon v; — vy — v5 — vg — vy.
This operation improves mesh quality in cases where no other operation can do it [25].

Adaptivity. Ability to adapt the mesh to a problem solution is the key feature of
the MBA. The adapted mesh is quasi-uniform in a tensor metric 9t recovered from a
discrete solution. In order to generate the 91-quasi-uniform mesh, we use Algorithm 1.
For a steady-state problem, generation of a mesh adapted to a solution requires to solve
the PDE a few times, at least twice, to generate a proper metric. For a time-dependent
problem, solution from a previous time step can be used to generate a metric.

Algorithm 1 Adaptive mesh generation for a steady-state PDE

1: Generate an initial mesh €2, solve the PDE, and compute the metric 9.
2: loop
3: Generate a new 91-quasi-uniform mesh €2, with the prescribed number of

elements.
4: Solve the PDE and recompute the metric 971.

5: If €2y, is 9M-quasi-uniform, then exit the loop.
6: end loop

The corner stone of the adaptation technique is the design of a tensor metric which



controls the mesh properties. The conventional approach is based on the recovery of
the discrete Hessian of the problem solution [4, 5, 22]. In [8, 19, 26, 27], we developed
the new approach applicable to approximate solution of a PDE, for example, to the
minimization of the finite element discretization error.

Let « be a continuous function and uy, be the piecewise linear finite-element solu-
tion on mesh 2. First, we find an approximation of the discretization error £ = u—uy,
on every mesh edge. Then, we derive a metric 91 that allows us to minimize the energy
norm of the discretization error. These steps are described in the next two subsections.

2.3.1 Hierarchical error estimates

We search for approximation of the discretization error using the hierarchical enrich-
ment of the primary continuous piecewise linear finite element basis [20]:

EREp = Z Y b, (D

edges e,

where by is the bubble function associated with the k-th edge of the mesh.

The straightforward and the most expensive method for calculating the coefficients
v is based on the solution of a larger finite element problem. If the primary finite
element method results in the algebraic problem A, U; = F, the enriched method

A ; \ I | e \
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where subscripts L and () stand for linear and quadratic terms. If an approximate
solution U} of the primary problem is known, the following algebraic problem for the
error has to be solved:

[ A Arg ] [ Dy } _ { Fr— Ay Ug } 2)
Aqr Agq | | Dq Fo—AqUs |

The entries of vector Dg are the sought coefficients v, in Equation (1). Since the
exact solution of Equation (2) is too expensive, we make additional approximation.
Analysis of spectral properties of finite element matrices performed in [20] for elliptic
problems and quasi-uniform meshes suggests to estimate coefficients . by solving
the reduced algebraic problem with the sparse and well-conditioned matrix Agp:

Agq Do = Fo — AqU. 3)

The entries of vector f)Q are the approximations of coefficients 7 in Equation (1).
The numerical analysis performed in [27] shows that the reduced problem provides
accurate estimates of the coefficients ;. on strongly anisotropic meshes aligned with
the solution.



2.3.2 Derivation of metric and adaptive loop

Consider a tetrahedron A with six edges e, and six associated coefficients .. The
L*-norm of the gradient of , is given by

6
IVenllzaa = I D2 wVbillzza) = |AIBY, 7),
k=1
where 7y is the vector with 6 components ;. and B is the 6 x 6 symmetric positive
definite matrix with entries By, = [A|™" [, Vb - Vb, dz. This error is only a number;
therefore, it does not provide any directional information. To recover this information,
we split this error into 6 edge-based error estimates a;, > 0 such that
6
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The six numbers oy, are sufficient to define six entries of a constant metric tensor

M. Let us consider the quadratic function

1 6
Vg = —=— Z {Ikb;_-
2 k=1

and denote its Hessian by $,. If det(92) # 0, we set My = |H,|, where |Hs] is
the spectral module of §,. Otherwise, we increase slightly the largest oy so that the
modified function v, has a non-singular Hessian. In practice, increase by 1% was
sufficient in all numerical experiments.

The derived metric 95 connects the gradient error from Equation (4) with geom-
etry of element A. The following estimate is proved in [8, 19]:

(0.3)72 | Aoy |A[57 < Venll2a) < 1A|ma |0A B, ()

The error equidistribution principle and bounds in Equation (5) suggest to balance
M a-volumes and 9N 4 -perimeters. We define the global space metric 91 as the piece-
wise constant metric with values 91, . A mesh 2, with N(€2,) elements satisfying

1
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is 91-quasi-uniform and is shown numerically to provide the asymptotically optimal

rate of error reduction:
[ Venl| 2y ~ N(Qm) 2.

Analysis of two-dimensional problems gives different asymptotics, N(£2;)
for example [8, 19].

“1/2 see

In practice, Algorithm 1 converges faster when the metric is continuous. To define
a continuous metric at nodes of {2, we use the method of shifts. For every node v;
in £;,, we define the superelement ¢; as the union of all tetrahedra sharing v;. Then,
M(v,) is defined as one of the metrics in o; with the largest determinant. Thus, the
method of shifts always chooses the worst metric in the superelement.

10




3 Application examples

The methods described above can be applied for solving two-dimensional boundary
value problems [28]. The essential simplification is that the DT method is no longer
needed: no lacunas are left by the two-dimensional AFT method.

In the following subsections, we consider three different applications of the mesh
generators described above. In the first application, the MBA is used to generate a
quasi-optimal mesh minimizing the energy-norm of the discretization error. In the
second application, we MBA is used to generate a quasi-optimal mesh minimizing
the maximum norm of the discretization error. In the third application, synergy of all
three mesh generation methods allows us to build a high-quality mesh for a complex
engineering model.

3.1 2D convection-diffusion problem

Let 2 be the unit square. We consider the following boundary value problem:

—diviwVu—vu) = f in Q,
u = up on 0%,

where v = 1072 and v = (2, 3)7. The right-hand side and the Dirichlet boundary data
are calculated using the exact solution proposed in [29]:

o= (-on(52)) (7 -on(2252))

The viscosity coefficient v characterizes thickness of the boundary layer in the top-
right corner of €.

Figure 5 compares the piecewise linear (P;) FE solutions on quasi-uniform and
adaptive meshes with roughly 4000 elements. Solution on the guasi-uniform mesh
exhibits numerical instabilities that can be eliminated using the SUPG technique.
Still, the boundary layer will not be well resolved. The adaptive strategy allows us
to solve the problem without using the SUPG technique by relocating mesh points
to the boundary layers and stretching the near-boundary triangles. The maximal ra-
tio of radii of superscribed to inscribed circles in the stretched triangles reaches 293.
It takes 6 iterations of Algorithm 1 to reduce the initial discretization error to a 5%
neighborhood of the final error. Solution of Equation (3) requires only 2-3 iterations.

Table 1 shows the error reduction on the sequence of quasi-optimal meshes. The ex-
pected half-order convergence rate is observed. Moreover, the hierarchical a posteriori
error estimator || Ve || 2 is in the good agreement with the true error | Ve||r2(q).
3.2 3D elasticity problem
Let € be the union of two parallelepipeds rotated about z-axis (see Figure 6). The

barycenter of 2 has coordinates (0, 0, 0). We use the AFT to build a coarse mesh with

L1




Figure 5: Right panel shows computational meshes with roughly 4000 triangles. Left
panel shows solution isolines. Top row corresponds to the mesh generated by the
AFT. Bottom row correspond to the mesh generated by the MBA on the 6th adaptive
iteration of Algorithm 1.

N [ Venllz2() Vel 2@
16000 9.57e-2 5.40e-2
64000 5.12¢-2 3.01e-2

256000 2.69%¢-2 1.65e-2

rate 0.46 0.43

Table 1: The error estimates and the true discretization errors.

1177 vertices and 4317 tetrahedra. Then, we employ another supporting utility of the
Ani3D package to refine uniformly this mesh. The final mesh has 7307 vertices, 5096

12




Figure 6: Displacement on the initial mesh (left) and the adaptive mesh after four
loops of Algorithm 1.

surface triangles and 34536 tetrahedra.
We consider the following boundary value problem for displacement u:

divuVu + (p+ A)Vdivu = 0 ini Q,
u = ug on I,

where 1 and A are the Lame coefficients, and I' is the union of two opposite square
faces parallel to plane z — y. The Neumann boundary condition is imposed on the
remaining boundary. We set u = 3, A = 1, and uy = (0,0,2)7. The Dirichlet
boundary conditions pull the faces in opposite directions. This is a trivial model of a
stress analysis.

Our goal is to adapt the mesh in such a way to control the maximum norm of the
discretization error in the displacement. We assume that the discretization error can
be controlled by the interpolation error, so that the conventional Hessian-based metric
can be employed. After four adaptive loops of Algorithm 1, we obtain the mesh shown
on the right in Figure 6. The mesh has 7352 points, 4518 triangular faces and 34709
tetrahedra. The MBA relocates mesh vertices in regions where potential tearing up of
the model may occur.

3.3 Gear model

The Ani3D package can be interfaced with the OpenCASCADE CAD kernel, which
natively supports BREP, STEP and IGES file formats. We consider the STEP model
of the gear. It has 422 vertices, 636 curvilinear edges, and 217 curvilinear faces.

We successfully completed generation of meshes with two different resolutions.
For coarser resolution, the surface was meshed into a quasi-uniform mesh with 3530

13



method Q%) Nt 107 107 107¢ 107% 10
AFT 1.011-107% | 140442 | 139684 750 g — —
AFT+DT 1.596 - 107° | 140723 | 139817 854 37 5 10

AFT+DT+MBA | 2.000- 107! | 156538 | 156538 — — — —

Table 2: Distribution of tetrahedra by their quality for the mesh with finer resolution.

vertices and 7084 triangles (see Figure 7). For finer resolution, the surface was meshed
into a quasi-uniform mesh with 19405 vertices and 38834 triangles. We did not ob-
serve any fundamental difference between the two meshes; therefore, the second one
is not shown.

Figure 7: Gear model and the initial surface mesh with 7084 triangles.

The combination of the AFT and DT methods is used for volume meshing. At the
first stage, we apply the AFT with quasi-uniform mesh size. For both resolutions, the
AFT meshes only 99.96% of the volume. For the finer resolution, it constructs 140442
tetrahedra and terminates leaving 352 triangles in the front. The worst element quality
is equal to 1.011 - 1072, At the second stage, we apply the DT method in order to
mesh the remaining part. The minimal tetrahedra quality after both the AFT and DT
methods is 1.596 - 107°. The mesh quality distribution is shown in Table 2.

At the post-processing stage, we use the MBA, and the mesh quality is significantly
improved. The minimal cell quality is now 2.0 - 107, The final mesh has 38368
vertices, 38834 boundary faces, and 156335 tetrahedra.

Total time of mesh construction is 9 minutes and 33 seconds. Time distribution is
as follows: surface meshing from CAD model is 8 minutes and 40 seconds, volume
meshing with the AFT and DT is 41 seconds, and post-processing improvement is 12
seconds.

Similar behavior of the mesh generators was observed in constructing the mesh
with the coarser resolution. The final quality of this mesh was 1.439-107". In Figure 8
we present a cross section of this mesh.
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Figure 8: A cut through the volume mesh of a gear. The mesh has 6870 vertices, 7084
boundary faces, and 22456 tetrahedra.

4 Conclusion

We presented a synergistic approach to generation of simplicial meshes and adaptive
finite element solution of boundary value problems. The initial mesh generation em-
ploys robust combination of the advancing front technique and the Delaunay triangu-
lation. The metric based mesh re-generation method provides essential improvement
of the mesh guality in complex engineering models. It also provides mesh adaptation
to a problem solution and minimization of various norms of the discretization error.
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