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Numerical solution of partial differential equations requires appropriate 
meshes, efficient solvers and robust and reliable error estimates. Generation 
of high-quality meshes for complex engineering models is a non-trivial task. 
This task is made more difficult when the mesh has to be adapted to a problem 
solution. This article is focused on a synergistic approach to the mesh 
generation and mesh adaptation, where best properties of various mesh 
generation methods are combined to build efficiently simplicial meshes. 

First, the advancing front technique (AFT) is combined with the incremental 
Delaunay triangulation (DT) to build an initial mesh [1]. Second, the 
metric-based mesh adaptation (MBA) method [2] is employed to improve quality 
of the generated mesh and/or to adapt it to a problem solution. We demonstrate 
with numerical experiments that combination of all three methods is required 
for robust meshing of complex engineering models. 

The key to successful mesh generation is the high-quality of the triangles 
in the initial front. We use a black-box technique to improve surface meshes 
exported from an unattainable CAD system. The initial surface mesh is refined 
into a shape-regular triangulation which approximates the boundary with the 
same accuracy as the CAD mesh. The DT method adds robustness to the AFT. 
The resulting mesh is topologically correct but may contain a few slivers. 
The MBA uses seven local operations to modify the mesh topology. It improves 
significantly the mesh quality. 

The MBA method is also used to adapt the mesh to a problem solution to minimize 
computational resources required for solving the problem. The MBA has a solid 
theoretical background [2]. In the first two experiments, we consider the 
convection-diffusion and elasticity problems. We demonstrate the optimal 
reduction rate of the discretization error on a sequence of adaptive strongly 
anisotropic meshes. The key element of the MBA method is construction of a tensor 

metric from hierarchical edge-based error estimates. We conclude that the 
quasi-optimal mesh must be quasi-uniform in this metric. 

All numerical experiments are based on the publicly available Ani3D package [3], 
the collection of advanced numerical instruments. 
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Abstract 

We describe a synergistic approach, where best properties of various mesh genera­
tion methods are combined to build efficiently simplicial meshes. First, the advancing 
front technique is combined with the Oelaunay triangulation to build an initial mesh. 
Second, the metric-based mesh generation is employed to improve quality of this mesh 
and/or to adapt it to a problem solution. We describe relevant features of these meth­
ods and illustrate them with application examples involving robust mesh generation of 
complex engineering models and mesh adaptation for minimization of a discretization 
error. 

Keywords: advancing front technique, Oelaunay triangulation, mesh adaptation, ten­
sor metric, quasi-optimal mesh. 

1 Introduction 

Numerical solution of partial differential equations (POE) requires appropriate meshes, 
efficient solvers and robust and reliable en-or estimates. Generation of high-quality 
meshes for complex engineering models is a non-trivial task. This task is made more 
difficult when the mesh has to be adapted to a problem solution. This article is focused 
on a synergistic approach to the mesh generation and mesh adaptation. 

We present a few mesh generation methods that are part of the Ani30 package 
[1], the collection of advanced numerical instruments. The package implements the 
advancing front technique (AFT) and the Oelaunay triangulation to generate an ini­
tial mesh [2, 3] and the metric-based mesh re-generation [4, 5] to improve the mesh 
quality and to adapt it to a problem solution . The supporting utilities, implemented 
as independent libraries, include hierarchical uniform and local mesh refinement pre­
serving mesh quality [6, 7], metric recovery algorithms [4, 8] and Krylov subspace 



solvers with incomplete LU preconditioners [9, 10]. 

Describing the mesh generation methods, we put focus on how well they satisfy the 
following four requirements: (a) generation of meshes with high-quality elements; (b) 
efficiency of underlying algorithms; (c) robustness of the underlying algorithms; (d) 
adaptation to a problem solution. 

The AFT adds tetrahedra to the mesh by advancing the initial front inside the com­
putational domain. The user can control the local mesh size. The mesh size can be 
automatically adjusted by the AFT based on the initial front mesh size. The key to 
successful mesh generation is the high-quality of the triangles in the initial front. The 
Ani3D package uses a black-box technique to improve surface meshes exported from 
an unattainable CAD system. The initial surface mesh is refined into a shape-regular 
triangulation which approximates the boundary with the same accuracy as the CAD 
mesh (2, 11]. 

The AFT has low cost but may produce a small number of low-quality tetrahedra 
(slivers) and may leave small isolated parts (lacunas) of the computational domain 
unmeshed. The unmeshed lacunas are partitioned into tetrahedra by the incremental 
Delaunay triangulation (DT) algorithm [2, 12, 13, 14, 15]. The DT method adds ro­
bustness to the mesh generation. The resulting mesh is topologically correct but may 
contain a few slivers. This mesh is post-processed with the metric-based mesh re­
generation method. The same method is used to adapt the mesh to a problem solution. 

The mesh adaptation technology [5, 16, \7, 18] allows the user to minimize com­
putational resources in solving systems of PDEs. The described methods have solid 
theoretical background developed in [8, 19]. In these papers we developed analysis 
of quasi-optimal meshes rrunimizing V-norm of the gradient of the PI-interpolation 
error, where p > O. We demonstrated theoretically and numerically that the discretiza­
tion error is proportional to N-1(d, where N is the number of simplexes and d is the 
space dimension. The adapted meshes generated in Section 3.1 are quasi-optimal 
for the L2-norm of gradient of the finite element (FE) discretization error. The key 
element of this technology is construction of a tensor metric from edge-based error 
estimates. A posteriori hierarchical error estimators [20] due to Deufthard, Leinen 
and Yserentant are used to obtain the edge-based errors. A different mesh adaptation 
based on similar a posteriori error estimates is considered in (21]. 

We demonstrate the power of mesh adaptation with a two-dimensional convection­
diffusion problem and a three-dimensional elasticity problem. We illustrate with nu­
merical experiments that a posteriori error estimates provide reasonable bounds for the 
discretization error on strongly anisotropic meshes aligned with the problem solution. 
We also demonstrate importance of the MBA method in improving mesh quality in 
meshing of a complex engineering model. 

The paper outline is as follows. In Section 2, we describe key mesh generation 
methods implemented in the Ani3D package. In Section 3, we illustrate the perfor­
mance of these methods with three numerical experiments. The final remarks are in 
Section 4. 
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2 Mesh generation for solving PDEs 

Efficient solution of partial differential equations requires specially designed meshes. 
In this article, we address four requirements which are stated frequently in generation 
of computational meshes: 

Quality. A mesh generator must produce meshes with high-quality elements. 

Efficiency. The employed algorithms must be efficient and scale linearly or sublin­
early with the number of mesh elements. 

Robustness. The employed algorithms must be reliable and robust. 

Adaptivity. A mesh generator must produce meshes adapted to a problem solution. 

None of the existing mesh generation methods has been proved to satisfy all four 
requirements. Our strategy is based on synergy of various methods described below. 
This allows us to design a technology which satisfies these requirements. The tech­
nology is implemented in the publicly available package Ani3D [1]. 

2.1 Advancing front technique 

We employ the advancing front technique (AFT) for initial mesh generation. We 
define the initial front as a set of oriented triangular faces forming a closed confonnal 
surface mesh. The idea of the AFT is to construct new tetrahedra by advancing this 
front inside the computational domain. The front actually divides the domain into two 
parts: already meshed one and the remaining part. At each step, a new tetrahedron 
is constructed and the front is advanced. The AFT algorithm tenninates when the 
front becomes empty. Details of this algorithm are presented in [2]. Here, we discuss 
main features of the AFT and how it can be modified to comply with some of the 
requirements formulated above. 

Quality. By design, majority of tetrahedra produced by the AFT have high-quality 
in the Euclidean metric provided that the initial front consists of high-quality triangles. 
Let h6. denote the diameter of element 6 and lei denote the length of edge e. The AFT 
guarantees that for each edge e of each element 6, we have 

where positive constants Pi and P2 are independent of the mesh. Thus, the resulting 
mesh does not have small edges but may contain nearly flat tetrahedra (slivers). Addi­
tional checks prevent the AFT from generating elements with acute dihedral angles . 

A good surface mesh is the key to successful mesh generation . If the initial front 
contains low-quality triangles, we start with improving their quality. In [11], we in­
troduced a new technique for surface mesh modification which is implemented in the 
Ani3D package. The basic idea is to split the surface into several nearly flat polygons, 
and re-mesh them. In order to construct a nearly flat polygon, we fix a flatness crite­
rion, and use it to add triangles to the polygon. The criterion says that triangle T lies 
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Figure I: Left picture shows the surface mesh exported from a CAD system. Right 
picture shows the re-meshed surface mesh. 

nearly in plane P, if (a) an angle between the normals to T and P is small enough, 
and (b) the distance from T to P is also small. The user can control the degree of 
the admissible deviation. After the surface is split into several nearly flat polygons, 
they are re-meshed with high-quality meshes. In order to provide a conformal surface 
mesh we first re-mesh the interfaces between these polygons and then re-mesh their 
interior. The polygon is projected onto a plane, where the robust planar AFT is ap­
plied to produce a high-quality triangulation. The new mesh is projected back onto the 
original surface. Since the original polygon was nearly flat, a surface distortion caused 
by the projection will be insignificant. An example of surface mesh improvement is 
presented in Figure l. 

Efficiency. The major advantage of the AFT is its low cost. For quasi-uniform 
tetrahedral meshes, the cost of the AFT is roughly IVlog(Hj h), where IV is the total 
number of constructed tetrahedra, H is the characteristic size of the computational 
domain, and h is the mesh size. The logarithmic complexity is achieved by using an 
octree-based search tree for searching faces in the three-dimensional space. In each 
vertex of the tree, we keep a list of front triangles assigned to the vertex . This data 
structure allows us to perform efficiently basic operations of the AFT. 

Consider, for example, one of the main operations in the AFT, an intersection check 
between a tetrahedron 6. and the current front. Let Be:. be its circumscribed sphere 
of radius Re:. and BT be the sphere centered at the barycenter of the front triangle T 
with the radius RT equal to the maximum distance from the barycenter to the veltices 
of T. If T intersects with 6., then BT intersects with Be:. and the distance dT between 
centers of the two spheres is less than RT + Re:.. The octree structure allows us to 
find quickly all triangles T satisfying dT ~ RT + Re:.. The cost of this search is 
proportional to (log lv1 + K), where M is the total number of triangles in the octree, 
and K is the number of triangles satisfying the search conditions. 

Robustness. The major drawback of the AFT is lack of robustness. It may fail 
to construct a mesh for the entire computational domain. The unmeshed volume is 
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Figure 2: A cut through meshes generated with constant (left) and non-constant (right) 
mesh size functions. 

usually less than 1 % of the domain volume. Since only the intersection tests depend 
heavily on the arithmetic precision, we use a fail-safe intersection test to increase 
robustness. It may wrongly report non-intersecting triangles as intersecting due to 
round-off issues. However, it will never report actually intersecting triangles as non­
intersecting ones. Thus, we slightly narrow the possibility for front advance, but we 
will always have a valid conformal mesh at the end. 

Adaptivity. The AFT algorithm implemented in the Ani3D package allows the user 
to provide a size function h(x) to control the local size of mesh elements (see Figure 2 
for two examples of h(x ). The size function can be defined on the basis of a posteriori 
error estimates. It must be bounded from below to avoid an infinite refinement loop. 

Summarizing, the AFT complies with the scalability and the adaptivity require­
ments. However, it may produce a small number of low-quality tetrahedra and may 
leave some lacunas of the computational domain unmeshed. Next step is to employ 
more sophisticated mesh generation methods in order to split the unmeshed lacunas 
into tetrahedra. 

2.2 Delaunay triangulation 

If the AFT fails to mesh the entire domain, we launch the Delaunay triangulation 
(DT) method to mesh the remaining lacunas and to preserve their boundary faces. 
The general idea of this method has been proposed in [13]. Here, we discuss main 
features of the DT method and its necessary modifications. 

Quality. By design, the DT method tends to produce high-quality tetrahedra pro­
vided that the mesh vertices are appropriately placed. In exact arithmetic, the DT 
methods works for arbitrary fronts [13] but may create slivers. The appearance of 
slivers is usually induced by irregular distribution of mesh nodes at the boundaries of 
lacunas. 
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Figure 3: Main steps of the DT method: a) initial front; b) DT mesh of a convex hull; 
c) refined mesh after intersection with the front; d) restored geometry of the mesh; e) 
intersection points are shifted inside lacunas; f) final mesh. 

Efficiency. Using Figure 3, we describe basic steps in the modified DT method 
implemented in the Ani3D package (see [2] for more details). First, we take points 
from the front left by the AFT and apply the conventional incremental algorithm [12] 
(Figure 3b). This gives two different meshes with the same sets of vertices: the DT 
mesh of a convex hull and the triangular surface mesh on lacunas boundary. Second, 
we intersect the DT mesh with the surface mesh (Figure 3c), and remove tetrahedra 
lying outside the lacunas (Figure 3d). Note that the surface of the modified DT mesh 
may no longer match the original surface mesh of the lacunas, due to the intersection 
points. Third, the intersection points are removed from the surface by shifting them 
inside the lacunas (Figure 3e). The boundary conformity is restored by filling the 
surface dents with tetrahedra (Figure 3f). 

All these operations scale linearly with the number of nodes at the boundary of 
lacuna. Moreover, in all our experiments, the DT method produced less than 5% of 
tetrahedra, which allows us to neglect its contribution to the total mesh generation 
time. 

Robustness. In the DT method, round-off errors may lead to wrong edge-to-face 
intersection, and also may result in degenerated elements after point movements. In­
tersection problems are mainly due to badly shaped front left after the AFT method. 
However, tedious implementation resolves these problems robustly, at least from the 
practical standpoint. 

Adaptivity. Since the nodes at the boundaries of lacunas are given, the DT method 
does not provide enough j~exibility of the tetrahedral partition in lacunas to be adapted 
to a problem solution. Fortunately, the DT method is used only in very small parts of 
the domain; therefore, we can neglect local violation of adaptation criteria. 

Summarizing, the DT method adds robustness to the AFT. The resulting mesh still 
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may have a small number of slivers which are the low-quality tetrahedra. Next step is 
to employ the robust mesh re-generator to remove these slivers. 

2.3 Metric-based mesh re-generation and adaptation 

We improve the mesh quality using a sequence of local changes of mesh topology. The 
local topological operations provide a robust way to adapt the mesh to the problem 
solution and to gain additional accuracy for the same number of mesh elements. The 
general idea of the metric-based adaptation (MBA) is described in [4, 22]. Here, we 
discuss main features of the MBA and derive a tensor metric for minimizing the energy 
norm of the finite element discretization error. 

Quality. Let Q(6) be a quality of tetrahedron 6. We define this quality as a 
function depending on the tetrahedron shape and given metric such that 

o :::; Q(6) :::; 1. 

The higher value of Q(6) corresponds to a more shape-regular element and Q(6) = 
1 corresponds to an equilateral tetrahedron. The mesh quality Q(Dh ) is defined as 
the quality of the worst element in the mesh . By design, the MBA increases the 
mesh quality after each local change of the mesh topology. The mesh always remains 
conformal, and the method terminates when Q(D,,} reaches a user-specified threshold. 
The MBA produces a mesh which is quasi-uniform in a user-defined metric . We use 
the Euclidean metric to remove slivers. For a stronger mesh adaptation, we use full 
(possibly anisotropic) tensor metrics. 

Let 911 be the space tensor metric. To define a particular tetrahedron quality, we 
recalJ definitions of the volume of 6 and the total length of its edges in the metric 911 
that are denoted by 1619)1 and 18619)1, respectively : 

1619)1 = 1 Vdet (911(x)) dx , 
6 

18619Jl = 2..:(911ek, ek) 1/2, 
k=l 

where ek is a vector representation of the tetrahedron edge ek. The orientation of ek 
is not important for the quality definition. In the Ani3D package, we set 

where f(a) is a smooth positive function with the only maximum at a = 1 and f (a) 
tends to zero when a ---) 0 or when a ---) 00. The parameter h. is the size of the 
targeted uniform mesh in metric 911. Note that other mesh qualities can be also used, 
see for example [23, 24]. 

Efficiency. Complete mesh re-generation may require 5-15 sweeps of the MBA 
operations through the mesh, which makes it rather costly. Practical experience shows 
that meshes with up to one million nodes may be processed successfully on a Pc. In 
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VI 

Figure 4: Generalized edge-based swapping: replacement of edge Vl - V2 by triangu­
lated polygon V3 - V4 - V5 - V 6 - V7 . 

many cases, it is sufficient to focus the work only on low-quality elements and a few 
layers of their neighbors . The Ani30 package allows to freeze selected elements. 

Robustness. Local changes of the mesh topology is the key to the method robust­
ness. The package Ani30 has seven local topological operations including edge-face 
swapping, generalized edge-faces swapping, node deletion, node insertion, edge col­
lapse, and node movement. Most of the operations are well-known in the meshing 
community. The less popular is the generalized edge-face swapping operation that 
provides additional topological flexibility. Basic idea of this operation is shown in 
Figure 4: removal of the edge Vl - V2 results in a possibly non-convex polyhedron 
which is split into tetrahedra by triangulating non-flat polygon V3 - V4 - V5 - V6 - V7. 

This operation improves mesh quality in cases where no other operation can do it [25] . 

Adaptivity. Ability to adapt the mesh to a problem solution is the key feature of 
the MBA. The adapted mesh is quasi-uniform in a tensor metric 9J1 recovered from a 
discrete solution. In order to generate the 9J1-quasi-uniform mesh, we use Algorithm I . 
For a steady-state problem, generation of a mesh adapted to a solution requires to solve 
the POE a few times, at least twice, to generate a proper metric. For a time-dependent 
problem, solution from a previous time step can be used to generate a metric. 

Algorithm 1 Adaptive mesh generation for a steady-state POE 

I : Generate an initial mesh 0,h , solve the POE, and compute the metric 9J1. 
2: loop 
3: Generate a new 9J1-quasi-uniform mesh 0,h with the prescribed number of 

elements. 
4: Solve the POE and recompute the metric 9J1. 
5: If 0,h is 9J1-quasi-uniform, then exit the loop. 
6: end loop 

The corner stone of the adaptation technique is the design of a tensor metric which 
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controls the mesh properties. The conventional approach is based on the recovery of 
the discrete Hessian of the problem solution [4,5 , 22]. In [8, 19,26,27], we developed 
the new approach applicable to approximate solution of a PDE, for example, to the 
minimization of the finite element discretization error. 

Let'U be a continuous function and 'Uh be the piecewise linear finite-element solu­
tion on mesh Dh . First, we find an approximation of the discretization error E = 'U - 'Uh 

on every mesh edge. Then, we derive a metric 9J1 that allows us to minimize the energy 
norm of the discretization error. These steps are described in the next two subsections . 

2.3.1 Hierarchical error estimates 

We search for approximation of the discretization error using the hierarchical enrich­
ment of the primary continuous piecewise linear finite element basis [20]: 

E ~ E h = L 'Yk bk, 
edges ek 

where bk is the bubble function associated with the k-th edge of the mesh. 

(I) 

The straightforward and the most expensive method for calculating the coefficients 
'Yk is based on the solution of a larger finite element problem. If the primary finite 
element method results in the algebraic problem ALLUi = FL , the enriched method 
requires to solve 

where subscripts Land Q stand for linear and quadratic terms. If an approximate 
solution Ui of the primary problem is known, the following algebraic problem for the 
error has to be solved: 

(2) 

The entries of vector D Q are the sought coefficients 'Yk in Equation (I). Since the 
exact solution of Equation (2) is too expensive, we make additional approximation. 
Analysis of spectral properties of finite element matrices performed in [20] for elliptic 
problems and quasi-uniform meshes suggests to estimate coefficients 'Yk by solving 
the reduced algebraic problem with the sparse and well-conditioned matrix A QQ : 

(3) 

The entries of vector DQ are the approximations of coefficients 'Yk in Equation (1). 
The numerical analysis performed in [27] shows that the reduced problem provides 
accurate estimates of the coefficients 'Yk on strongly anisotropic meshes aligned with 
the solution. 
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2.3.2 Derivation of metric and adaptive loop 

Consider a tetrahedron 6 with six edges ek and six associated coefficients "tk. The 
L 2 -norm of the gradient of Ch is given by 

6 

II'VChlli2(f'» = II L "tk'Vbklli2(f'» = 161(IIll" ,), 
k=l 

where, is the vector with 6 components "tk and IIll is the 6 x 6 symmetric positive 
definite matrix with entries IIllk,l = 161-1 if'> 'Vbk . 'Vb[ dx. This error is only a number; 
therefore, it does not provide any directional information. To recover this information, 
we split this error into 6 edge-based error estimates O'k 2: 0 such that 

6 

II'Vchlli2(f'» = 161 L O'k, 

6 

Ctk = Ilk I (IIll" ,) (L h'kl) -1. (4) 
k=l k=l 

The six numbers Ctk are sufficient to define six entries of a constant metric tensor 
9J1f'>. Let us consider the quadratic function 

1 6 

V2 = -2" L Ctkbk 

k=l 

and denote its Hessian by 5)2. If det(5)2) 01- 0, we set 9J1f'> = 15)21, where 15)21 is 
the spectral module of 5)2. Otherwise, we increase slightly the largest Ctk so that the 
modified function V2 has a non-singular Hessian. In practice, increase by 1 % was 
sufficient in all numerical experiments. 

The derived metric 9J1f'> connects the gradient error from Equation (4) with geom­
etry of element 6. The following estimate is proved in [8, 19]: 

(5) 

The error equidistIibution principle and bounds in Equation (5) suggest to balance 
9J1f'> -volumes and 9J1f'> -perimeters. We define the global space metric 9J1 as the piece­
wise constant metric with values 9J1f'>. A mesh Dh with N(Dh ) elements satisfying 

3 1 
16 19)]", '" 186 19)]", '" N(D

h
) IDhl9Jl 

is 9J1-quasi-uniform and is shown numerically to provide the asymptotically optimal 
rate of error reduction: 

II'VChIIL2(O) '" N(Dhr1/3. 

Analysis of two-dimensional problems gives different asymptotics, N(Dht1/2, see 
for example [8, 19]. 

In practice, Algorithm I converges faster when the metric is continuous. To define 
a continuous metric at nodes of Dh , we use the method of shifts. For every node Vi 

in Dh , we define the superelement ai as the union of all tetrahedra sharing Vi. Then, 
9J1(v.J is defined as one of the metrics in ai with the largest determinant. Thus, the 
method of shifts always chooses the worst metric in the superelement. 
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3 Application examples 

The methods described above can be applied for solving two-dimensional boundary 
value problems [28]. The essential simplification is that the DT method is no longer 
needed: no lacunas are left by the two-dimensional AFf method. 

In the following subsections, we consider three different applications of the mesh 
generators described above. In the first application, the MBA is used to generate a 
quasi-optimal mesh minimizing the energy-norm of the discretization error. In the 
second application, we MBA is used to generate a quasi-optimal mesh minimizing 
the maximum norm of the discretization error. In the third application, synergy of all 
three mesh generation methods allows us to build a high-quality mesh for a complex 
engineering model. 

3.1 2D convection-diffusion problem 

Let D be the unit square. We consider the following boundary value problem: 

-div (lI \7u - vu) 
u 

f 
Uo 

in D, 
on aD, 

where 1/ = 10-2 and v = (2, 3)Y. The right-hand side and the Dirichlet boundary data 
are calculated using the exact solution proposed in [29] : 

( (2(X -l))) ( (3(Y-l))) u(x, y) = x - exp 1I y2 - exp 1I . 

The viscosity coefficient 1I characterizes thickness of the boundary layer in the top­
right comer of D. 

Figure 5 compares the piecewise linear (P1) FE solutions on quasi-uniform and 
adaptive meshes with roughly 4000 elements. Solution on the quasi-uniform mesh 
exhibits numerical instabilities that can be eliminated using the SUPG technique. 
Still, the boundary layer will not be well resolved . The adaptive strategy allows us 
to solve the problem without using the SUPG technique by relocating mesh points 
to the boundary layers and stretching the near-boundary triangles. The maximal ra­
tio of radii of superscribed to inscribed circles in the stretched triangles reaches 293. 
It takes 6 iterations of Algorithm 1 to reduce the initial discretization error to a 5% 
neighborhood of the final error. Solution of Equation (3) requires only 2-3 iterations. 

Table 1 shows the error reduction on the sequence of quasi-optimal meshes. The ex­
pected half-order convergence rate is observed. Moreover, the hierarchical a posteriori 
error estimator II\7ch IIL2(fl) is in the good agreement with the true error II\7cIIL2(fl) . 

3.2 3D elasticity problem 

Let D be the union of two parallelepipeds rotated about z-axis (see Figure 6). The 
barycenter of D has coordinates (0,0,0) . We use the AFf to build a coarse mesh with 
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Figure 5: Right panel shows computational meshes with roughly 4000 triangles. Left 
panel shows solution isolines. Top row corresponds to the mesh generated by the 
AFT. Bottom row correspond to the mesh generated by the MBA on the 6th adaptive 
iteration of Algorithm 1. 

N II ,7Eh ll £2 (fl) II \7 £ II L2(fl) 

16000 9.57e-2 5.40e-2 
64000 5.12e-2 3.01e-2 

256000 2.6ge-2 1.65e-2 

rate 0.46 0.43 

Table 1: The error estimates and the true discretization errors . 

1177 vertices and 4317 tetrahedra. Then, we employ another suppOlting utility of the 
Ani3D package to refine uniformly this mesh. The final mesh has 7307 vertices, 5096 
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Figure 6: Displacement on the initial mesh (left) and the adaptive mesh after four 
loops of Algorithm 1. 

surface triangles and 34536 tetrahedra. 

We consider the following boundary value problem for displacement u: 

divf.,tVu + (f.,t + ,\)Vdivu 
u 

° in i D, 
Uo on r, 

where f.,t and .\ are the Lame coefficients, and r is the union of two opposite square 
faces parallel to plane x - y. The Neumann boundary condition is imposed on the 
remaining boundary. We set f.,t = 3, .\ = 1, and Uo = (0 , 0, z f. The Dirichlet 
boundary conditions pull the faces in opposite directions. This is a trivial model of a 
stress analysis. 

Our goal is to adapt the mesh in such a way to control the maximum norm of the 
discretization error in the displacement. We assume that the discretization error can 
be controlled by the interpolation error, so that the conventional Hessian-based metric 
can be employed. After four adaptive loops of Algorithm 1, we obtain the mesh shown 
on the right in Figure 6. The mesh has 7352 points, 4518 triangular faces and 34709 
tetrahedra. The MBA relocates mesh vertices in regions where potential tearing up of 
the model may occur. 

3.3 Gear model 

The Ani3D package can be interfaced with the OpenCASCADE CAD kernel , which 
natively supports BREP, STEP and IGES file formats. We consider the STEP model 
of the gear. It has 422 vertices, 636 curvilinear edges, and 217 curvilinear faces. 

We successfully completed generation of meshes with two different resolutions. 
For coarser resolution, the surface was meshed into a quasi-uniform mesh with 3530 
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method Q(Oh) NT 10-1 10-2 10- 3 10-4 10-5 

AFT 1.011 . 10-3 140442 139684 750 8 - -

AFT+DT 1.596 . 10-5 140723 139817 854 37 5 10 
AFT+DT+MBA 2.000.10- 1 156538 156538 - - - -

Table 2: Distribution of tetrahedra by their quality for the mesh with finer resolution. 

vertices and 7084 triangles (see Figure 7). For finer resolution, the surface was meshed 
into a quasi-uniform mesh with 19405 vertices and 38834 triangles. We did not ob­
serve any fundamental difference between the two meshes; therefore, the second one 
is not shown. 

Figure 7: Gear model and the initial surface mesh with 7084 triangles. 

The combination of the AFT and DT methods is used for volume meshing. At the 
first stage, we apply the AFT with quasi-uniform mesh size. For both resolutions, the 
AFT meshes only 99.96% of the volume. For the finer resolution, it constructs 140442 
tetrahedra and terminates leaving 352 triangles in the front. The worst element quality 
is equal to 1.011 . 10-3 . At the second stage, we apply the DT method in order to 
mesh the remaining palt. The minimal tetrahedra quality after both the AFT and DT 
methods is 1.596 . 10-5 . The mesh quality distribution is shown in Table 2. 

At the post-processing stage, we use the MBA, and the mesh quality is significantly 
improved. The minimal cell quality is now 2.0 . 10-1

. The final mesh has 38368 
vertices, 38834 boundary faces, and 156335 tetrahedra. 

Total time of mesh construction is 9 minutes and 33 seconds. Time distribution is 
as follows: sUlface meshing from CAD model is 8 minutes and 40 seconds, volume 
meshing with the AFT and DT is 41 seconds, and post-processing improvement is 12 
seconds. 

Similar behavior of the mesh generators was observed in constructing the mesh 
with the coarser resolution . The final quality of this mesh was 1.439 . 10-1

. In Figure 8 
we present a cross section of this mesh. 
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Figure 8: A cut through the volume mesh of a gear. The mesh has 6870 vertices, 7084 
boundary faces, and 22456 tetrahedra. 

4 Conclusion 

We presented a synergistic approach to generation of simplicial meshes and adaptive 
finite element solution of boundary value problems. The initial mesh generation em­
ploys robust combination of the advancing front technique and the Delaunay triangu­
lation. The metric based mesh re-generation method provides essential improvement 
of the mesh quality in complex engineering models. It also provides mesh adaptation 
to a problem solution and minimization of various norms of the discretization error. 

Acknowledgenlents 

This research was partly supported by the Russian Foundation for Basic Research 
through grants 08-01-00159,09-01-00115 and Contract from Russian Ministry of Ed­
ucation and Science P 1127. 

References 

[I] "Advanced Numerical Instruments 3D", www.sourceforce.netJprojects/ani3d. 
[2] A. Danilov, "Unstructured tetrahedral mesh generation technology", Computa­

tional Mathematics and Mathematical Physics, 50, 139-156,2010. 
[3] Y. Ito, A. Shih, B. Soni, "Reliable isotropic tetrahedral mesh generation based 

on an advancing front method", in "Proceedings of 13th International Meshing 
Roundtable", 95-106, 2004. 

[4] A. Agouzal, K. Lipnikov, Yu . Vassilevski , "Adaptive generation of quasi-optimal 
tetrahedral meshes", East-West Journal, 7, 223-244, 1999. 

[5] G. Buscaglia, E. Dari, "Anisotropic mesh optimization and its application in 
adaptivity", International Journal for Numerical Methods in Engineering, 40, 
4119-4136,1997. 

15 



[6] V. Chugunov, D . Svyatski, E. Tyrtyshnikov, Yu. Vassilevski, "Parallel iterative 
multilevel solution of mixed finite element systems for scalar equations", Con­
cun·ency Computation Practice and Experience, 18,501-518,2006. 

[7] M. Rivara, " Mesh refinement processes based on the generalized bisection of 
simplexes", SIAM Journal on Numerical Analysis, 21, 604-613,1984. 

[8] A. Agouzal, K. Lipnikov, Yu. Vassilevski, "Hessian-free metric-based mesh 
adaptation via geometry of interpolation error", Computational Mathematics and 
Mathematical Physics, 50, 124-138,2010. 

[9] Y. Saad, "Iterative Methods for Sparse Linear Systems", PWS Publishing Co., 
Boston, 1996. 

[10] I. Kaporin, "High quality preconditioning of a general symmetric positive def­
inite matrix based on its utu + utr + rtu-decomposition", Numerical Linear 
Algebra with Applications,S, 483-509, 1998. 

[II] Yu. Vassilevski, A. Vershinin, A. Danilov, A. Plenkin, "Tetrahedral mesh gener­
ation in domains defined in CAD systems", in "Proceedings of the Institute of 
Numerical Mathematics", Moscow, 21-32, 2005. 

[12] P.-L. George, H. Borouchaki, "Delaunay triangulation and meshing. Application 
to finite elements", Hennes, 1998. 

[13] P.-L. George, H. Borouchaki, E. Sahel, "Ultimate robustness in meshing an arbi­
trary polyhedron", International Journal for Numerical Methods in Engineering, 
58, 1061-1089,2003. 

[14] H. Si, K. Gartner, 1. Fuhrmann "Boundary conforming Delaunay mesh genera­
tion", Computational Mathematics and Mathematical Physics, 50, 38-53, 20 I O. 

[15] Y. Yang, 1. Yong, J. Sun, "An algorithm for tetrahedral mesh generation based on 
conforming constrained Delaunay tetrahedralization", Computers & Graphics, 
29,606-615,2005. 

[16] T. Coupez, H. Digonnet, R. Ducloux, "Parallel meshing and remeshing", Ap­
plied Mathematical Modelling, 25, 153-175,2000. 

[17] L.A. Freitag, C. Ollivier-Gooch, 'Tetrahedral mesh improvement using swap­
ping and smoothing", International Journal for Numerical Methods in Engineer­
ing, 40, 3979-4002, 1997. 

[18] A. Loseille, F. Alauzet, "Optimal 3D highly anisotropic mesh adaptation based 
on the continuous mesh framework", in "Proceedings of 18th International 
Meshing Roundtable", B.CJark (Editor), Springer, 575-594, 2009. 

[19] A. Agouzal, Y. Vassilevski, "Minimization of gradient errors of piecewise linear 
interpolation on simplicial meshes", Computer Methods in Applied Mechanics 

and Engineering, in press, 20 I O. 
[20] P. Deuflhard, P. Leinen, H. Yserentant, "Concepts of an adaptive hierarchical 

finite element code", IMPACT, 1,3-35, 1989. 
[21] W.Z. Huang, L. Kamenski, J. Lang, "A new anisotropic mesh adaptation method 

based upon hierarchical a posteriori error estimates", Journal of Computational 

Physics, 229, 2179-2198, 2010. 
[22] Y. Vassilevski, K. Lipnikov, "Adaptive algorithm for generation of quasi-optimal 

meshes", Computational Mathematics and Mathematical Physics, 39, 1532-

16 



1551, 1999. 
[23] P.M. Knupp, "Algebraic mesh quality metrics for unstructured initial meshes", 

Finite Elements in Analysis and Design, 39, 217-241, 2003. 
[24] I. Sarrate, I. Palau, A. Huerta, "Numerical representation of the quality measures 

of triangles and triangular meshes", Communications in Numerical Methods in 
Engineering, 19,551-561,2003. 

[25] M.K. Misztal, I .A . Baerentzen, F. Anton, K. Erleben, "Tetrahedral mesh im­
provement using multi-face retriangulation", in "Proceedings of L8th Interna­
tional Meshing Roundtable", B.Clark (Editor), Springer, 539-555, 2009. 

[26] A. Agouzal, K. Lipnikov, Yu. Vassilevski, "Anisotropic mesh adaptation for so­
lution of finite element problems using hierarchical edge-based error estimates", 
in "Proceedings of L8th International Meshing Roundtable", B.Clark (Editor), 
Springer, 595-610, 2009. 

[27] A. Agouzal, K. Lipnikov, Y. Vassilevski, "On optimal convergence rate of finite 
element soLutions of boundary value problems on adaptive anisotropic meshes", 
Mathematics and Computers in Simulation, submitted, 20 I O. 

[28] "Advanced Numerical Instruments 2D", www.sourceforce.netiprojects/ani2d. 
[29] G. Manzini, A. Russo. "A finite volume method for advection-diffusion problems 

in convection-dominated regimes", Computer Methods in Applied Mechanics 
and Engineering, 197, 1242-L261, 2008. 

17 


