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ABSTRACT

We have considered the problem of determining the time trajectories of the joint
variables of a mobile manipulator with many redundant degrees of freedom that will

• minimize the maximum value of the torque during a large scale motion by the manipulator.
To create a well defined problem, we will divide the problem into two components: path
planner and surveyor. The path planner will choose a path (between two points in
Cartesian space) that will minimize the maximum value of the torque along the path. The
input to the path planner is a network of path segments with the maximum value of the
torque on each segment. The surveyor will find the points in joint space that are local
minimums for the maximum value of the torque at each Cartesian position and define the
network of path segments. In this paper, our focus will be on the surveyor and not on the
path planner.

There is a large literature on algorithms for the solution of min-max problems.
However, our min-max problem has an extra constraint on the joint variables. We seek
a min-max at each Cartesian position rather than a global min-max. We have used the
Kuhn-Tucker conditions to derive necessary conditions for the solution of our min-max
problem. We find that the necessary conditions require that at one or more of the joints the
magnitude of the normalized torques will be equal to the min-max v,_ue.

We have explored the torque surfaces for two mobile rnanipulators: a planar
manipulator and the CESARm. The planar manipulator has three revolute joints. The
paths with three equal torques cover the workspace and satisfy the necessary conditions.

The CESARm is a manipulator with three joint angles controlling the height of the
arm. The paths with three equal torques have low values for the torque but they only cover
part of the workspace and do not join together. Paths with two equal torques cover the

. workspace and bridge between the disjoint path segments. We have evaluated the
necessary conditions for both the paths with three equal torques and the paths with two
equal torques. In most cases, the paths satisfy the necessary conditions.

d
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1. INTRODUCTION

tl

Consider a mobile manipulator with many redundant degrees of freedom. A

. mission for the mobile manipulator robot will be subdivided into a sequence of tasks.

During a task, the robot moves from an initial configuration to a final configuration while

minimizing an objective function. The objective function could have several components

including: obstacle avoidance, torque minimization, manipulability, and platform stability

(see [1], [2], and [3]). In this paper, we consider a large scale motion while minimizing a

single component of the objective function: the maximum value of the torque.

Manipulators consist of rigid links that are connected by joints. The joints can be

revolute or prismatic. The number of degrees of freedom of a manipulator is the number of

joint variables that must be specified to uniquely determine all of the parts of the machine.

If the three vector P is the location of a point on the manipulator (usually the position of the

end effector) in Cartesian space and 0 is the vector of joint variables:

P: f(o) (])

For the manipulator, the Jacobian [J] maps the joint velocities to Cartesianw,

velocities:

i_ = J(O) b (2)

where

8f(0)
J(0) - (3)

30

Furthermore, the transpose of the Jacobian maps the static Cartesian forces [F] from a load

at the end of the manipulator to the static joint torques [x] induced by the load:

I: = J(0)T F (4)

Let Q be the maximum of the magnitudes of the joint torques (xi) divided by a limit

for each joint (wi):

I



Q(0) = max I't il/wi (5)
i

Let A be the minimum value of Q(0) at each Cartesian position:
m

A =min Q(0) = rain max I'cil/ wi (6)
0 0 i

Our objective is to determine paths for the joint variables (0i) that will minimize Q(0)

during the motion of the mobile manipulator from an initial position (pi) to a final position

(Pf). Solving this min-max problem will resolve the redundancy for the joint variables.

In classical optimization theory, the methods that are used to minimize a function at

a point are different than the methods that are used to minimize a functional on a trajectory

from an initial position to a final position. At an unconstrained interior minimum of a

function of one variable, the derivative is equal to zero. For the most simple problem in the

calculus of variations, the objective is to find a function [x(t)] such that x(ti) = a, x(tf) = b,

and the functional [_] is a minimum, where:

tf
P

= /U(x(t),k(t),t) dt (7)
t_'

At every point on the trajectory, the variables must satisfy the Euler-Lagrange equation:

d _U bU
- 0 (8)

dt 3k bx

Only in the special case where the function U does not depend on k will the Euler-Lagrange

equation require that the function U be at its minimum for all points on the path from a to b.

We have not found any papers on min-max problems over a trajectory. However,

if there were a few isolated points on the trajectory with maximum torque, there would be

no need to minimize the torque at the other points. Thus, the rain-max criterion may not

constrain or determine most points on the path and the path may not be unique. For

example, suppose that you wanted to plan a path that would minimize the maximum ,

elevation during an automobile trip from Saint Louis, Missouri to Salt Lake City, Utah.



The maximum elevation would probably be in the Rocky Mountain states. Thus, the

criterion to minimize the maximum elevation during the trip would not give you any

" guidance as you traveled across the Great Plains states.

To create a well defined problem, we will divide the problem into two components:

' path planner and surveyor. The path planner that will choose a path between two points in

Cartesian space that will minimize the maximum value of the torque along the path. The

input to the path planner is a network of path segments with the maximum value of the

torque on each segment. The surveyor will explore the joint space and define the network

of path segments. In this paper, our focus is on the surveyor and not on the path planner.

Given a Cartesian position (P), we can solve the min-max problem. Conventional !
search techniques slowly solve min-max problems. The basic reason is that the

conventional search techniques assume that the function is differentiable and Q(0) is

usually not differentiable at the minimum. Many algorithms that solve min-max problems

have been developed (see Polak [4]).

In the next section, we will convert the min-max problem into a nonlinear

programming problem and use the Kuhn-Tucker conditions to derive necessary conditions

for the solution of the min-max problem. We shall find that the necessary conditions

require that at one or more of the joints the magnitude of the normalized torques will be

. equal to the min-max value. However, an isolated minimum may not be useful for a large

scale motion.

In the subsequent sections, we will explore continuous paths for the joint variables

that will minimize the maximum of the normalized torques during a large scale motion by

the mobile manipulator. In the third section, we will find min-max paths for a planar

manipulator. In the fourth section, we will explore min-max paths for the CESARm. The

final section will present our conclusions.



2, NECESSARY CONDITIONS FOR THE
MIN-MAX PROBLEM

There is a large literature on algorithms for the solution of rain-max problems. An

example is a recent paper by Polak [4]. However, our rain-max problem has an extra

constraint on the joint variables [Eq. (1)]. Consequently, the necessary conditions for our

rain-max problem are more general than for the standard problem. Polak calls a point that

satisfies the necessary conditions for the standard problem a Danskin point. Our conditions

will reduce to the conditions for the Danskin point when the extra constraint is removed.

We will convert our rain-max problem into a nonlinear programming problem and

use the Kuhn-Tucker conditions to derive necessary conditions for the solution of the

rain-max problem. To simplify our notation, we will define the functions Gi(0) by:

Gi(0) = I1;i[/wi (9)

Following Polak, we convert Eq. (6) from an unconstrained nondifferentiable optimization

problem to a constrained differentiable optimization problem:

h

Find 0 to minimize A subject to:

41

A > Gi(0) (10)

We introduce the nonnegative slack variables (ai):

oi = A- Gi(0) > 0 (11)

We assume that the position of the end effector is fixed:

f(0) = P* (12)

where P* is a constant. Define the Lagrangian (L) by:

L = -A + _ kk (fk (0) -- Pk)+ ,__.,[-ti(A- G i(0) - _i) (13)
k i



The Lagrangian depends on five variables (A, 0, _,,It, or). The first four variables

are unrestricted in sign while the last variable (c_)is nonnegative. The first order necessary
8,

conditions for the unrestricted variables require that all first order partial derivatives of L

with respect to the unrestricted variables must vanish. The Kuhn-Tucker conditions

provide the first order necessary conditions for the restricted variables. The first order

necessary conditions are:

_l.t i = 1 (14)
i

°_Gi(O')= _'k °_fk(O')y___, (15)
_0j k _0j

Iti >--0 (16)

Z_l,i_i(0*) = 0 (17) ,
i

We can use the first order necessary conditions to demonstrate that at the min-max

point (0") the magnitude of the normalized torques will be equal to tile rnin-max value (A)

at one or more of the joints. Since both I.tand a are nonnegative, every term on the left

side of Eq. (17) must be zero:

_l,i O'i = 0 (18)

Thus, whenever Iti is positive, the corresponding slack variable (cti) will be zero. At each

point where the slack variable is zero, the normalized torque (G i) is equal to the min-max

value (A). Equation (14) requires that at least one of the _ must be positive.

We can classify the sets of points that satisfy the necessary conditions based on the

number of the Iti that are positive. For Class 1, one of the Iti will be positive. For Class 2,

two of the _1.i will be positive. For Class n, n of the Iti will be positive. For Class 1, one
i¢

of the Gi(0) is larger than the others (Q(0) = Gk(0)) and the necessary conditions simplify

to the familiar conditions of classical optimization. If we let X= 0, Eq. (15) becomes:



o_3k(e) --0 (19)
c_j

• We can think of the Gi(0) as surfaces in parameter space. For Class 2, two of the

surfaces intersect at the min-max point (0"):

A = Q(0*) = Gk(0*) = Gin(0*) (20)

Near the min-max point, there will be a region (A) where Q(0) = Gk(0) and a region (B)

where Q(0) = Gin(0). If we ignore the end effector constraint (let _, = 0) and move from

region A through the min-max point to region B, Q(0) will decrease as we approach 0* and

increase as we move away from 0". Normally, Q(0) is not differentiable at the min-max

point. When Z,= 0, Eq. (15) is a generalization of classical optimization condition:

_t i igGi(0*) =0 (21)
ig0j

For the classical optimization condition [Eq. (19)], all of the partial derivatives of Q(0) are

, equal to zero. For the generalized condition [Eq. (21)], all of the partial derivatives of a

weighted avera_,e of the Gi(0) are equal to zero.

For Class n, n of the surfaces intersect at the min-max point. We will solve the

min-max problem by identifying all of the points in all of the classes. For Class 1, we will

find all of the points that satisfy the classical optimization condition [Eq.(19)]. For the

other classes, we will identify all of the points that are on the intersections of two or more

surfaces and test whether or not the necessary conditions are satisfied.

To find the global rain-max, we plot Q(0) vs P(0) for all of the points in all of the

classes that satisfy the necessary conditions. The global min-max at the point P(0) has the

lowest value for Q(0).

The surveyor will identify all of the type A paths (paths with continuous joint

variables that link points in the work space and satisfy the necessary conditions). If there

, are points in the workspace that cannot be linked by type A paths, the surveyor will identify

type B paths to bridge between the type A paths. The type B paths have continuous joint

,, variables, are members of one of the classes, link points in the work space, and may not

satisfy the necessary conditions.



Equation (15) is our generalization of the conditions for a Danskin point. If we ignore the

constraint [Eq. (12)], 2.= 0 and Eq. (15) reduces to Polak's condition [his Eq. (7)]. It is

useful to express Eq. (15) in matrix notation. Define the elements of the matrix A by:

lit

OGi(0) (22)
aij- _0j

Then Eq. (15) may be written:

AT _t = jT _L (23)

In Polak's unconstrained case, k = 0 and A must be singular. In our constrained case, A

can be singular or nonsingular.

We have demonstrated that the magnitude of the normalized torques will be equal to

the min-max value at one or more of the joints. In the examples that we will consider in

this paper, the best Class 3 and Class 2 paths will have lower values for the normalized

torques than any of the Class 1 paths. However, we can create a simple example where the
m

Class 1 paths are best. Consider a manipulator with stacked prismatic joints. The z

coordinate of the arm's tip (P) is given by:

Z = Z0 + X qi0i (24)
i

For this example, the components of J ale constants (Ji = qi) and the components of G are

constants (Gi = gi). Thus, the elements of the matrix A are zero (aij = 0). Assume that the

first component of G is the largest (gl > gi for i > 1). Then, Q = gl, _tl = 1, _ti = 0 for

i>l, Ol = 0, and oi > 0 for i > 1.



3. MIN-MAX PATHS FOR A PLANAR MANIPULATOR

We consider a mobile planar manipulator with three revolute joints (0i). The

• platform can move in the x direction. The manipulator can reach points in the (x,z) plane.

We assume that the platform will control the x coordinate of the arm's tip (P) [we recognize

that obstacles could prevent free motion of the platform in the x direction]. If the lengths of

the three links of the arm are (1, 1, and 0.5) meters, the z coordinate of P is given by:

z = sin _1 + sin _2 + 0.5 sin V3 (25)

where: V1 = 01, _2 = 01 + 02, and _3 = 01 + 02 + 03. The components of the Jacobian

al'e2

Jl = cos _1 + cos _2 + 0.5 cos _3 (26)

J2 = cos _1/2+ 0.5 cos _/3 (27)

J3 = 0.5 cos _1/3 (28)

If the force is directed downward (Fz - -1 newton), the joint torques are given by:

17i= - Ji (29)

We will assume that the weights for each joint are equal: wi = 1.

We have three joint angles controlling the height of the arm (z). Given a desired

change in height, we would like to determine paths for the joint angles that minimize the

maximum of the torque during the motion. In the last section, we demonstrated that at the

min-max point the magnitude of the torques will be equal to the min-max value at one or

more of the joints. We begin by exploring the Class 3 paths where the magnitudes of all

three torques are equal during the motion (subsequently, we will consider the Class 2 paths

- where two of the three torques are equal and the Class 1 paths). We distinguish four cases
in Table 1.

'it
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For each of the four cases, we can solve Eqs. (26) to (28) and determine two

conditions on the link angles (_g). For example when a:l =x2 =1:3, J1 = J2 = J3 and

subtracting Eq. (27) from Eq. (26) yields the first condition for the first case (cos _l = 0).

Each of the two conditions has two solutions. For the condition cos _gl = 0, the

two solutions are: _gl = + _ / 2. For the condition cos _l + cos _g2=0, the two solutions

are: _2 = it + _gl • Thus, each case has four subcases. We define the 16 subcases for the

planar manipulator in Table 2.

For each of the 16 subcases, we have defined the three link angles in terms of a

single parameter (¢). The last column in Table 2 expresses z as a function of _. By

relating the three link angles to 0, we have resolved the redundancy. Thus, Table 2

displays 16 ways to resolve the redundancy.

We will assume that z can have both positive and negative values (if z cannot have

negative values, we could raise the base of the manipulator by 2.5 meters). All of the

expressions for z have the form: z = a + b sin _. In some subcases, a = 0 and z will range

from -b to b as 0 ranges from - n / 2 to n / 2. In the subcases where a is not equal to zero,

there is another subcase where al = -a2 and bl = b2 (for example, subcases 1.2 and 1.4 and

subcases 2.2 and 2.3). Thus, all of the subcases exhibit symmetry between positive and

negative values of z.

Next, we will determine which of the 16 subcases satisfy the necessary conditions

[Eqs.(14), (15) and (16)]. We begin by determining the elements of the A matrix [see

Eq. (22)]. For the planar manipulator, the functions Gi(0) are given by: "'

Gi(0) = di Ji (30)

where the constants di = + 1 and the signs are chosen to make the Gi(0) nonnegative. We

define the functions Si(0) by:

$1(0) = sin _gl + sin _g2+ 0.5 sin _g3 (31)

$2(0) = sin _g2+ 0.5 sin _g3 (32)

$3(0) = 0.5 sin _g3 (33) •
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Table 1. Definition of the four cases with equal torque at three
joints for the planar manipulator.

Case Torque Signs First Condition Second Condition
II Ill I

1 x l = "u2 = x3 cos _1/1 = 0 cos _2 = 0t

2 1:1 = "1:2= -'1:3 cos II/1 = 0 cos I1/2 + cos 11/3= 0
iiii II I I

3 Zl = -1:2 = x3 cos II/1 + cos 1112= 0 cos I1/2 + cos 11/3= 0
i ii IIII ii

4 1:1= -1:2 = -'t3 cos V2 = 0 cos _1 + cos V3= 0

Table 2. Definition of the 16 subcases for the planar manipulator.

Subcase _1 _2 _ff3 z = f(_)
I II I

: sin ¢_1.1 r_/2 -x/2 _b
i

1
1.2 re/2 7t/2 _ 2 +5 sin_

: sin1.3 -_:/2 re/2 _
*' IIII I I

1
1.4 -re/2 -_/2 _ -2+_ sin_

iii

• 1
" 2.1 _:/2 7z+_b ¢_ 1- 5 sin_

I

3
2.2 x/2 rc-¢_ _ 1 +5 sin_

i

3
2.3 -_/2 7t-_ _b - 1 +_ sin_

1
2.4 -x/2 _+_ _ -1-5 sin_

I I

I sin
I I I iii I I

5
3.2 ¢_ x- ¢ # : sin

ii i i|

3 3 0 7z-_ -¢p 3_sin_• 2

! sin _b3.4 _ 7_+_b -_b -_
I

3
4.1 _z-_ -_/2 ¢_ - 1 +_ sin_b

u i

3
4.2 _-_ x/2 qb 1 +5 sinO

II ,,._m.. i

1
4.3 _z+# _z/2 # 1-: sin#

1
" 4.4 x+_ -r_/2 _ 1-_ sin_
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Using the S i, the A matrix is:

E!s 1A T --- 1 82 d2 82 d3 $3 (34)
1 S3 d2S3 d3S3

Our goal is to find the _1,i that satisfy Eq. (23). We will first solve for an

intermediate vector (1)):

1]i -- - _1,i / _ (35)

Using the 1)i, Eq. (23) is:

dl Sl rll + d2$21)2+ d3$31)3= J1 (36)

dl 52111 + d2 $21)2+ d3 $3113= J2 (37)

dl 531'11 + d2 $31"12+ d3 $31)3 = J3 (38)

Subtracting Eq. (37) from Eq. (36) and subtracting Eq. (38) from Eq. (37), Eqs. (36) to

(38) may be written in triangular form: -

dl 1)1= ctn _1 (39)

dl vii + d21)2 = ctn tt/2 (40)

dl rl] + d2TI2 + d31]3 = ctn _1/3 (41)

The constants di = 2:1 and their signs are chosen to make the Gi(0) nonnegative.

Expressions for the three link angles (_i) are given in Table 2 (as functions of the

parameter t_). Given values for the di and the _i, Eqs. (39) to (41) can be solved for the

1)i. The values of di and rli are displayed in Table 3 for the 16 subcases.

Our goal is to find the _tithat satisfy the f'trst order necessary conditions [Eqs. (14)

to (16)]. We have introduced the intermediate vector (rl) and solved Eq. (15) to find the

values of 1)idisplayed in Table 3. We can choose the normalization factor (_,) to insure that ,,

Eq. (14) is satisfied:
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_ =-1 / Y_,tli (42)
i

Q,

. _ = - _.* rli (43)

The remaining condition is that the _l,i must not be negative [Eq. (16)]. The corresponding

condition on the 1]i is that they must all have the same sign. In 13 of the 16 subcases in

Table 3, the 1]ihave the same signs. Thus, the Pi satisfy the necessary conditions for 13 of

the 16 subcases.

Table 3. Evaluation of the necessary conditions for the 16 subcases.

,,, ,,,

Subcase dl d2 d3 111 112 TI3 Satisfy?
III I

1.1 + 1 + 1 + 1 0 0 ctn _b Yes
llill i [ II

1.2 + 1 + 1 + 1 0 0 ctn ¢ Yes
II II

. 1.3 + 1 + 1 + 1 0 0 ctn ¢ Yes
II I

1.4 + 1 + 1 + 1 0 0 ctn ¢ Yes
IIIII III

" 2.1 - 1 - 1 + 1 0 - ctn ¢ 0 Yes
I II I

2.2 - 1 - 1 + 1 0 ctn ¢ 2 ctn ¢ Yes
II I

2.3 - 1 - 1 + 1 0 ctn _ 2 ctn ¢ Yes
I II

2.4 - 1 - 1 + 1 0 - ctn _ 0 Yes
I I I I

3.1 + 1 - 1 + 1 ctn _ 0 0 Yes

3.2 + 1 - 1 + 1 ctn _b 2 ctn¢ 2 cm ¢ Yes
III

3.3 + 1 - 1 + 1 ctn ¢ 2 ctn ¢ 0 Yes
iii I

3.4 + 1 - 1 + 1 ctn¢ 0 -2ctn¢ No
ii IIll II 11

4.1 - 1 + 1 + 1 cm ¢ ctn ¢ ctn _ Yes
I

4.2 - 1 + 1 + 1 ctn _b ctn _b ctn ¢ Yes
I

4.3 - 1 + 1 + 1 -cm¢ -ctn¢ cm¢ No
i I IIlII

4.4 - 1 + 1 + 1 - ctn ¢ - ctn _ ctn ¢ No
ul ii
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We will examine plots of maximum torque (Q) versus height (z) for the four cases.

We will not consider the three subcases that do not satisfy the necessary contions.

Furthermore, subcase 1.3 will not be considered bacause it is so similar to subcase 1.1 (in

1.1 the f'trst joint is up, while in 1.3 the first joint is down).

The three subcases of case 1 are displayed in Fig. 1. All three subcases have the

same range (one meter). For each subcase, the torque increases from zero to a maximum

and the decreases to zero as the manipulator moves through its range. Each subcase has a

different value of z at its midpoint (0.0 for subcase 1.1, 2.0 for subcase 1.2, and -2.0 for

subcase 1.4).

The four subcases of case 2 are displayed in Fig. 2. Two of the subcases have a

one meter range while the other two have a three meter range. For each subcase, the torque

increases from zero to a maximum and then decreases to zero as the manipulator moves

through its range (the maximum values for the torque for all 13 subcases are identical). For

two of the subcases, the midpoint of the range is 1.0 and for the other two the midpoint is

-1.0. If we added subcases 2.1 and 2.4 to Fig. 1, we would find that the new subcases fill

the gaps in Fig. 1 and we would have five disjoint options for coveting the total five meter

range. Subcases 2.2 and 2.3 cover the same five meter range and overlap near 0.0.

The three subcases of case 3 are displayed in Fig. 3. Each of the subcases has a

different range (one, three, and five meters). The midpoint of the range is 0.0 for all three

subcases. Subcase 3.1 covers the same range as Subcase 1.1. The two subcases of case 4

are displayed in Fig. 4. The two subcases have the same workspace as subcases 2.2 and

2.3.

We have found three groups of subcases {(1.1, 1.3, 3.1), (2.2, 4.2), (2.3,

4.1)}that have identical values for Q in identical workspaces. However, the values of the

link angles are not identical within these groups. If we were considering the more general

problem of avoiding obstacles while minimizing the maximum torque, one member of the

group might be better than the others.

We began with 13 subcases that satisfied the necessary conditions. We have found

five configurations with a one meter workspace, three configurations with a three meter

workspace, and one configuration with a five meter workspace. Which of the options

(summarized in Fig. 5) should we use to move from an initial value of z to a final value?

All but one of the options (subcase 1.1) has a portion of the workspace where it is

superior to any of the other options. For example, subcase 3.2 is best near the upper and

lower limits of the workspace. Subcase 1.2 is best for a small interval beyond z = 1.5
meters. Subcases 2.2 and 2.3 are better than subcase 1.1 on the middle interval ,

[-0.5, 0.5].
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Z

Fig. 1. Maximum torque (Q) versus height (z) for three subcases of
case 1. The units of torque are newton meters and the units of height are
meters.
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Fig. 2. Maximum torque (Q) versus height (z) for four subcases of
case 2. The units of torque are newton meters and the units of height are
meters.
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Fig. 3. Maximum torque (Q) versus height (z) for three subcases of
case 3. The units of torque are newton meters and the units of height are
meters.
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Fig. 4. Maximum torque (Q) versus height (z) for two subcases of
case 4. The units of torque are newton meters and the units of height are
meters.
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A path planner for the manipulator could choose the option that was best for each

task. If the planner wanted to choose a single option that was occasionally best and always

close to the torque minimum, it could choose subcase 3.2.

We conclude this section by considering Class 2 paths that have equal torque
!

magnitudes at two of the three joints and the Class 1 paths. We distinguish six cases in

Table 4. When the torques are equal at two of the joints, we can derive one constraint on

the link angles (_i) and could express the three link angles in terms of two parameters.

However, we will assume that z is constant and express the three link angles in terms of

one parameter.

Table 4. Definition of the six cases with equal torque at two joints
for the planar manipulator.

Case Torque Signs Condition Solution

1 xl= x2 cos _1 = 0 _I =+_/2i

2 xl = - x2 cos _I + 2 cos _2 + cos _3 = 0
II

3 x,, = x3 cos _2 = 0 _2 = + _z/ 2
I

4 't2 = - x3 cos _2 + cos _3 = 0 _J3 = n + _2
iiii I I

5 'I71 = '1;3 COS _/1 + COS _q/2 = 0 _2 = n ----.I_/1

6 Xl = - 'I;3 COS _1 + COS _/2 + COS _3 = 0
h

In Table 4, we defined six cases with equal torque magnitudes at two joints, while

we defined four cases with equal torque magnitudes at three joints in Table 1. As we

consider all cases that have equal torques at two joints, we will find isolated points in the

three dimensional space of link angles where the torques are equal at three joints. Thus, as

we consider all of the points in link space that are in Case 1 in Table 4, we will find isolated

points that are in Cases 1 and 2 in Table 1. Similarly, Cases 3 and 4 in Table 1 are

examples of Case 2 in Table 4. To examine all of the cases in Table 1, we need to consider

Cases 1 and 2 in Table 4, or Cases 3 and 4, or Cases 5 and 6. Since we have a simple

analytical expression for the conditions on the link angles in Cases 3 and 4, we will focus

on Cases 3 and 4.

We will assume that z = 0.25. This point is in the workspace of 10 of the 16

Subcases listed in Table 2 (see Table 5). As the parameter k increases from 0 to 100, the "

link angle _3 will increase from - _: / 2 to n / 2. For Cases 3 and 4, the condition in Table
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4 will provide two solutions for _1/2when _3 is known. Given _1/3,_1/2,and z, Eq. (25)

may yield two solutions for _l. Thus, for each value of the parameter k, we can determine
i

up t_ four solutions for the link angles. We will use a mode variable with a range from 0 to

3 to identify the four solutions.u

Table 5. The 10 subcases defined in Table 2 that can reach the
_,_int z = 0.25.
m i i i i,i

Subcase _1 _2 V3 k Figure
I

1.1 _/2 -_/2 0 66 7
I mill

1.3 -7t/2 _/2 0 67 6
iiiii I I nl

2.2 re/2 x-0 ¢ 33 9
I

2.3 -_/2 _-t_ 0 82 9
Ill II Ill Ill

3.1 _ _+0 ¢ 67 8 .
I I

3.2 ¢ x-¢ _ 53 9
IIIIII I

3.3 ¢ _-0 -¢ 45 8
11 III I I ii

3.4 ¢ 7t+¢ -¢ 67 9
III I ii

. 4.1 _-¢ -n/2 ¢ 81 7
I

4.2 _-¢ x/2 ¢ 33 6,,,,

In Case 3, x2 = x3. Thus, G2 = G3. G z and G2 are plotted in Fig. 6 as a function

of the parameter k for Case 3 and mode 1. A is the minimum value of the maximum of the

Gi. In Fig. 6, there are two local minima at k - 33 and k = 67. At each local minima,

G 1 = G2 = G3. Hence, there are no local minima at which only two of the joint torques are

equal. At each local minima, we can determine the link angles and identify which of the 16

subcases in Table 2 has occurred. At k = 33, the subcase is 4.2 and the subcase is 1.3

when k = 67. We will identify the value of k and the figure number for each of the ten
subcases in Table 5.

G 1and G2 are plotted in Fig. 7 for Case 3 and mode 3. In Fig. 7, there is one local

minima at k = 81 and a point where G1 = G2 that is not a local minima at k = 66. At

• k = 66, the subcase is 1.1 and the subcase is 4.1 when k = 81. Although subcase 1.1

satisfies the necessary conditions, we previously noted that it was never the best option for

any region of the workspace.
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1.0

z = 0.25 mode= 1

0.0
0 20 40 60 80

k

Fig. 6. G1 and G2versus the parameter k for case 3 (G2 =G 3) and
mode 1. The units of torque are newton meters.
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0.8 ] z = 0.25 mode= 3

" 0.2

0.0
60 70 80 90 100

k

Fig. 7. G1 and G2versus the parameter k for case 3 (G2 = G3) and
mode 3. The units of torque are newton meters.
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In Case 4, '_2-" - '_3and G2 = G3. G 1 and G2 are plotted in Fig. 8 for Case 4 and

mode 0. In Fig. 8, there are two local minima at k = 45 and k = 67. At k = 45, the

subcase is 3.3 and the subcase is 3.1 when k = 67.

G 1 and G2 are plotted in Fig. 9 for Case 4 and mode 2. In Fig. 9, there are four

points where G l = G2. Three of the four points are local minima at k = 33, k = 53 and

k = 82. The point that is not a local minima is at k = 67. The subcases are: 2.2 at k =33,

3.2 at k =53, 3.4 at k =67, and 2.3 at k =82. In Table 3, we found that subcase 3.4 did

not satisfy the necessary conditions. In Fig. 9, we find that subcase 3.4 is not a ...,.al

minima.

By examining two modes of case 3 and two modes of case 4, we have been able to

identify all 10 of the subcases that can reach the point z = 0.25. In 8 of the 10 subcases,

we have found a local minima. All of the local minima occurred at points where the torques

were equal at all three joints. Thus, we were unable to find any local minima at which only

two of the joint torques were equal.

Finally, we shall consider the Class 1 paths. For Class 1, one of the Gi(0) is larger

than the others and it must satisfy the conditions of classical optimization [Eq. (19)]. The

elements of the A matrix are the partial derivatives of the Gi(0). If G1 is largest, the

classical optimization conditions require that the first column of the ATmatrix will be zero.

If G2 is largest, the second column of the AT matrix will be zero and if G3 is largest, the

third column will be zero. In all three cases, $3(0) = 0 [see Eq. (34)]. Thus, sin _1/3= 0

and cos _g3 = + 1. Consequently, G3 = 0.5 [see Eq. (28)] and Q(0) cannot be less than

0.5. None of the Class 1 paths can be better than the best Class 3 paths in Fig. 5.

The Class 3 paths span the workspace. The local minima for the Class 2 paths

occur when they become Class 3 paths. The minimum torque for the Class 1 paths is never

less than 0.5 newton meters (the maximum values for the torque on the Class 3 paths).
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1,0

z - 0.25 mode- 0

0.8 _ GI
G2

0.0
0 20 40 60 80 100

k

Fig. 8. G1 and G 2 versus the parameter k for case 4 (G 2 = G 3) and
mode 0. The units of torque are newton meters.
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0.6

z = 0.25 mode= 2

0.5

0.4

0

O" 0.3

0 - G1I--

0.2 = G2

0.1

0.0 , • , • , " , " ' "' ....
30 40 50 60 70 80 90

k

Fig. 9. G 1 and G2versus the parameter k for case 4 (G2 = G3) and
mode 2. The units of torque are newton meters.



4. MIN-MAX PATHS FOR CESARm

The CESARm is a manipulator with 7 degrees of freedom (including a 3 degree of

freedom spherical wrist) and a high capacity to weight ratio [5] (see Fig. 10). We assume

that the CESARm is mounted on a mobile platform. The platform can move in the x and y

directions. The manipulator can reach points in three dimensional (x,y,z) space. We I

assume that the platform will control the x and y coordinate of the arm's tip (P) [we

recognize that obstacles could prevent free motion of the platform in the (x,y) plane]. We

will not consider the last three degrees of freedom that control the spherical wrist. Since

the first joint variable does not change the z coordinate of P, we will neglect it.

The z coordinate of P is given by:

z = S2 C3 D + c2 H (44)

where si = sin (0i), ci = cos (0i), and:

D (04) = a4 c 4 + a3 (45)

H (04) = a4 $4 - d3 (46)

and a3, an, and d3 are constants (a3 = 0.029 m, an = 0.508 m, and d 3= 0.635 m). The

components of the Jacobian are:

J2 = c2 c3 D - s2 H (47)

J3 = - s2 $3 D (48)

J4 = - a4 $2 c3 s4 + a4 c2 c4 (49)

If the force is directed downward (Fz = -1 newton), the joint torques are given by:

'l;i = " Ji (50)
q

We will assume that the weights for each joint are equal: wi = 1.

27



e



29

We have three joint angles (02, 03, 04) controlling the height of the arm (z). Given

a desired change in height, we would like to determine paths for the joint angles that

• minimize the maximum of the torque during the motion. In the second section, we

demonstrated that at the min-max point the magnitude of the torques will be equal to the

min-max value at one or more of the joints. We begin by exploring the Class 3 paths

where the magnitudes of all three torques are equal during the motion (subsequently, we

will consider the Class 2 paths where two of the three torques are equal and the Class 1

paths). Define K3 to be the ratio of J2 and J3 and K4 to be the ratio of J3 and J4:

K3=J2/J3 (51)

K4=J3/J4 (52)

Since K3 = +1 and K4 = +1, we can distinguish four cases. For the planar manipulator,

the four cases were distinct (see Table 1). For the CESARm, we will now show that the

four cases correspond to changes of variables (see Table 6).

Table 6. Four sets of joint angles that will reach each (Q,z) point.

Case K3 K4 02 03i

. 1 + 1 + 1 02 03i i

2 + 1 - 1 -02 _- 03

3 - 1 - 1 02 -03
i

4 -1 +1 -02 -(_-03)

If the sign of 03 is changed, the sign of s3 changes. Consequently, the signs of z,

J2, and J4 are unchanged, while the sign of J3 changes. Thus, the signs of both K3 and K4

change (case 3).

If the sign of 02 is changed and 03 is replaced by (_: - 03), the signs of s2 and c3

change. Consequently, the signs of z and J4 are unchanged, while the signs of J2, and J3

change. Thus, the sign of K4 changes (case 2).

If the sign of 02 is changed and 03 is replaced by -(_: - 03), the signs of s2, s3, and

c3 change. Consequently, the signs of z, J3, and J4 are unchanged, while the sign of J2

changes. Thus, the sign of K3 changes (case 4).
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Since the four cases are not distinct, we assume that K3 = K4 = 1. We have two

equations in three unknowns. For each pair of equations, we can solve for T2 = tan 02:
I

T2 = c3 D / (H - s3 D) (53)

T2 = a4 C4 [ (84 C3 S4 - S3 D) (54)

We can eliminate 02 and obtain a single equation relating 03 and 04:

1t4 C4 (H - s3 D) = c3 D (a4 c3 S4 - S3 D) (55)

Using a step size of 2 degrees, we allow 04 to sweep its allowable range (from -55

degrees to 45 degrees). At each step, 04 is known and we use a search technique (Brent's

method. See Press [6]) to find all of the values of 03 that satisfy Eq. (55) (when 04 is

known, we have replaced a two parameter (02 and 03) search of a function that does not

have a continuous derivative [Eq. (6)] by a one parameter search of a function with a

continuous derivative). The results are displayed in Fig. 11.

As 04 increases from -55 degrees, there are no solutions of Eq. (55) until 04

reaches -9 degrees. When 04 = -9 degrees, there are two solutions with positive z:

(z,Q) = (0.73, 0.30) and (z,Q) = (0.67, 0.33). The two solutions with negative z

correspond to an increase in 02 by 180 degrees. When z is positive (or negative), we can

separate the paths in Fig. 11 into two distinct paths that have continuous values of the joint

variables: upper and lower. The upper path begins at (z,Q) - (0.67, 0.33) and extends to

point B [(z,Q) = (0.17, 0.24)]. The lower path begins at (z,Q) = (0.73, 0.30) and extends

to point A [(z,Q) ---(0.29, 0.27). The maximum value of Q on the upper path is 0.37,

while all of the values on the lower path are less than 0.30. The left ends of the two paths

(when z is positive) occur when 04 is at its upper limit (45 degrees).

Our goal is to determine continuous paths for the joint variables that will minimize

Q during a large scale vertical motion by the mobile manipulator. Although the upper path

has a greater range in z and a lower values for Q at its left end, the lower path is more

attractive for large scale motions because it has a smaller maximum value for Q. In the

remainder of this section, we will consider both of the equal paths: upper and lower.
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Fig. II. Maximum torque (Q) versus height (z) for paths with three
equal torques• The units of torque are newton meters and the units of
height are meters•
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The two segments of the equal paths are the only Class 3 solutions and they cannot

reach all of the workspace for the CESARm. To cover all of the workspace, we will use

Class 2 solutions. To define the workspace of the CESARm, we will introduce two new

variables (R and t_) and derive a new expression for the z coordinate of the CESARm. We

express the variables c3 D and H in polar coordinates:

c3 D = R sin o_ (56)

H = R cos t_ (57)

where:

R2 = (c3 D)2 + H2 (58)

tan a = c3 D / H (59)

Using Eqs. (56) and (57), Eq. (44) may be written:

z = R COS(02 - 0_) (60)

As 02 increases from t_ to t_ + n, z will decrease from R to -R. Thus, R defines the reach

for the CESARm. For fixed values of 04 (D and H), the maximum value of R will occur

when c3 = + 1 and 03 = 0 or _.

In Fig. 12, values of Q are plotted for three cases as 02 increases from o_to t_ + n.

For the cases in Fig. 12, 03 = 0 and 04 - -55 degrees, -5 degrees, and 45 degrees. The

maximum value of the reach occurs when 04 = -55 degrees and R = 1.10 meters. The case

when 04 = -55 degrees has very high values for Q when z = 0. The case when 04 = 45

degrees has much lower values for Q in the neighborhood of z = 0. For the cases in

Fig. 12, a good strategy for moving through the workspace would be to move from the

maximum reach posture (04 = -55 degrees) to the minimum reach posture (04 = 45

degrees) and back to the maximum reach posture as the elevation of the CESARm moves

from 1.10 meters to -1.10 meters.
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Fig. 12. Maximum torque (Q) versus height (z) for three values of

04. The units of torque are newton meters and the units of height are
meters.
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In each of the three cases displayed in Fig. 12, the plots of Q vs z have local

minima. The local minima are Class 2 solutions that occur when the maximum torque

switches from one joint to another. Since 03 = 0, J3 = 0 [see Eq. (48)]. Thus, the local

minima always occur when G2(0)= G4(0) or J2 = + J4. For each value of 04 there

are two values of 02 (and two values of z) for which G2(0) = G4(0). In Fig. 12, the

solutions with positive values of z have lower values than the solutions with negative
values of z.

The branch with the lower values is plotted in Fig. 13 (and labeled Long). The

lower path from Fig. 11 is plotted in Fig. 13 (and labeled Equal). The Long path has a

greater range than the Equal path. Furthermore, the Long path has lower values for Q for

values of z that are greater than the value at which the two curves cross (although the

curves cross in Fig. 13, the joint angles are not equal. 0 = (110, 0, 15) for Long and

0 = (-121,-140, 5) for Equal). The Equal path has lower values for Q for values of z that

are less than the value at which the two curves cross.

By exploring Class 2 paths, we have found a continuous path that could reach

larger values of z than the Class 3 Equal path. Next, we will seek Class 2 paths that can

bridge between the two segments of the Long path or the four segments of the Equal path.

A bridge path must be continuous in joint space. For each point in a plot of Q and

z, there are four sets of joint angles that will reach the point. Consider the surface of Q as a

function of 02 and 03. We will keep 04 constant (04 = 45 degrees). From Table 6, we

find the surface is symmetrical about the 02 axis [since Q(02,-03) = Q(02, 03), the surface

is symmetrical aboult the line where 03 = 0 (the 02 axis)]. Since the surface is symmetrical,

we will assume that the values of 03 lie between 0 and n. The surface is not symmetrical

about the 03 axis [Q(-02, n-03) = Q(02, 03). We will assume that the values of 02 lie

between -n and n. Thus, there will be two sets of joint angles that will reach each (Q,z)

point The set with positive values for 02 will be called set one, while the set with negative

values for 02 will be called set two.

To find Class 2 paths, we seek all values of the joint angles that have equal

magnitudes for two of the three torques. With 04 constant (04 = 45 degrees), we vary 02

from - 180 degrees to 180 degrees. For each value of 02, we find all of the values for 03

that have equal magnitudes for two of the three torques. For each value of 02, there can be

as many as six values for 03 (J2 - + J3, J2 = 4- J4, and J3 = 4- J4. The six expressions for

03 are derived in the appendix). When two of the three torques have equal magnitudes

(G i = G.i), the third torque (Gk ) can be larger or smaller than the two equal torques. We

restrict our attention to the case where the two equal torques are larger than the third torque

and consequently are on the Q surface.
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Fig. 13. Maximum torque (Q) versus height (z) for the Long path
and the Equal path. The units of torque are newton meters and the units of
height are meters.
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To discuss the paths on the Q surface, we will define the beginning and ending

points for the paths. In Fig. 11, we identified the four segments of the Equal path using

the letters A, B, C, and D. For each point on a bridge path, there will be two sets of joint

angles. At point A, the set with positive values for 02 will be called A l, while the set with

negative values for 02 will be called A2. Our list of significant points on the bridge paths is

given in Table 7.

Fig. 14 is a network diagram showing the connections between the significant

points on the bridge paths that are defined in Table 7. Although all of the points are

displayed in the correct positions, the paths between the points are not the straight lines in

Fig. 14. We have previously discussed the points A, B, C, and D. The points E and F are

on the boundary between positive and negative values of 02 (recall that the angle 02 = _ is

equal to the angle 02 = -_). The points G and H are the ends of the two segments of the

Long path. Furthermore, G and H are on the boundary between positive and negative

values of 03. The points J, K, L, and M are intermediate points on a bridge paths between

the four ends of the segments of the Equal path at which the torque attains its maximum

value (they are the summits on the paths).

In Fig. 14, there are two paths from A to D: AJC and CMD or ALB and BKD.

Both paths have the same maximum value for Q (at points J or K). Similarly, there are two

paths from B to C. The path from A to B via L has a lower value for Q than the path via J,

C, M, D, and K. The path from G to H passes through A and D.

For each point on the surface of Q in the Q-z plane, there are two sets of joint

angles with positive values for 03 ( and two sets of joint angles with negative values for

03) that will reach the point. The network diagram showing the bridge path connections in

the Q-02 plane is displayed in Fig. 15, while the network diagram in the Q-03 plane is

displayed in Fig. 16. In Fig. 15, the points with positive values for 02 have the subscript

one, while the points with negative values for 02 have the subscript two. The points E and

F are on the boundary between positive and negative values of 02. In Fig. 16, we see that

all significant values of 03 have two points; the first with the subscript one and the second
!

with the subscript two. There is a path between the points El and E2 and between the

points F1 and F2. Thus, the points E and F provide paths between the subscript one points

and the subscript two points (paths between positive and negative values of 02).

We have reviewed the connection network for the bridge paths. Next, we will learn

the topography of the Q surface by examining slices through the surface for various

positive values of 02. We begin with 02 = 0 (see Fig. 17). From Table 6, we expect the

figure to be symmetrical about 03 = 90 degrees [since, Q(03) = Q(n-03)]. From Fig. 15,
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we expect to see point F in this figure. Point F1 is when G 2 = G 4 at 22 degrees, while

point F2 is when G2 = G 4 at 158 degrees. Since Q is constant between F1 and F2, there is

° no torque penalty in moving from Fl to F2. Point F1 is the trailhead for the path to positive

values of 02, while F2 is the trailhead for the path to negative values of 02.

Table 7. The joint angles at the significant points on the bridge paths.
I I I IIIIII

Point z Q 02 03
I I I II I Ill I Ill II

A1 0.29 0.27 91 44
II I I I

A2 0.29 0.27 -91 136
| I III II

B_ 0.17 0.24 142 102
ilili Ill I IIII I

B2 0.17 0.24 -142 78

C1 -0.17 0.24 38 78
II II III I

C2 ..... , -0.17 0.24 -38 102

D1 -0.29 0.27 89 136
I II I I|

D2 -0.29 0.27 -89 44
II II I

E1 0.28 0.36 180 158
I1' I

" E2 0.28 0.36 -180 22
I

F1 -0.28 0.36 0 22
IIII I II I Illfl

F2 -0.28 0.36 0 158
III

G_ 0.36 0.32 84 0
IIII I I II II

G2 0.36 0.32 -84 180
I |1

H! -0.36 0.32 96 180
I I

H2 -0.36 0.32 -96 0
I I IIII

Jl 0.08 0.32 70 62
IIII I II I1| III I|1

J2 0.08 0.32 -70 118
I

K1 -0.08 0.32 110 118
II I |1

K2 -0.08 0.32 -110 62
|11 I II IIll| I

Ll 0.28 0.31 115 62
I I

L2 0.28 0.31 -115 118
• II III

M1 -0.28 0.31 65 118
I III I I III I

• ,_M2 -0.28 0.31 -65 . 62.
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Fig. 16. Network diagram for the Bridge paths. Maximum torque

(Q) versus angle (e3). The units of torque are newton meters and the units
of angle are degrees.
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Fig. 17. Maximum torque (Q) versus angle (03) when 02 = 0 and

04 - 45. The units of torque are newton meters and the units of angle are
degrees•
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The point Cl is a Class 3 point where G2 = G3 = G4 (see Fig. 18). There is only

one path from F1 to Cl. As 02 increases from 38 degrees after Cl, the trail forks and there

are two paths: C1 to A l and C! to DI.

The point Gl is end of the Long path (see Fig. 19). In Fig. 19, 02 = 83.6 degrees,

G j is a local maxima of Q, and the local minima of Q occur at 03 = 51 degrees on the path

from Cl to A! and at 03 = 133 degrees on the path from C1 to Dl. In Fig. 19, there are six

points where G i = GJ. The Q surface is symmetrical about 03 = 0 and G1 is a trailhead for

entering the negative values of 03. In the network diagram (Fig. 14), the path leads from

Gl to A1. However, there is not a torque penalty to immediately move from G1 to the path

from C1to A1.

In Fig. 20, 02 = 88.5 degrees and the point Dl is a Class 3 point. We followed the

path from C1 to Di. As 02 increases, two paths leave D l; one travels to H l and the other

travels to B I. Thus, a Class 3 point is the junction of three Class 2 paths. All four Class 3

points in Fig. 14 have this property. On the left side of Fig. 20, we see two Class 2 paths

approaching Al: the path from Cl to A1 and the path from Gl )n Al.

In Fig. 21, 02 = 91.5 degrees and the point A1 is a Class 3 point. As 02 increases,

the only path leaving A1 travels to Bl. On the right side of Fig. 21, we see two Class 2

paths leaving Dl: the path from Dl to Bl and the path from D1 to Hi. In both Figs. 20 and

21, we see that there is a hill that prevents a low torque path directly from A1 to D1.

In Fig. 22, 02 = 96.4 degrees and the point H1 is end of the Long path. Since the

Q surface is symmetrical about 03 = 0, H1 is a local maxima and a trailhead for entering the

negative values of 03. In Fig. 23, 02 = 116 degrees and the point L1 has the maximum

torque on the path from A1 to B l.

In Fig. 24, 02 = 142 degrees and the point B1 is a Class 3 point. As 02 increases,

the only path leaving B1 travels to El.

In Fig. 25, 02 = 180 degrees and we have reached point E, the gateway to negative

values of 02. Like Fig. 17, Fig. 25 is symmetrical about 03 = 90 degrees. Point El is at

158 degrees, while point E2 is at 22 degrees. Since Q is constant between El and E2, there

is no torque penalty in moving from El to E2. Point E! is the trailhead for the path to

positive values of 02, while E2 is the trailhead for the path to negative values of 02.

We have proven that at the min-max point the magnitude of the normalized torques

will be equal to the min-max value at one or more of the joints. We have assumed that the

paths with minimal torque will be Class 3 paths that have equal torque in all joints. To

extend the space of possible paths, we have considered Class 2 paths. To find paths, we

have ignored the position constraint [f(0) = P*]. We have found all Class 3 and Class 2

points and then examined their positions.
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Fig. 18. Maximum torque (Q) versus angle (03) when 02 = 38 and

04 = 45. The units of torque are newton meters and the units of angle are
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Fig. 20. Maximum torque (Q) versus angle (_33) when 02 = 88.5 and

04 = 4S. The units of torque are newton meters and the units of angle are
degrees•
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APPENDIX
iii

FORMULAS FOR TWO EQUAL TORQUES
S

With 04 constant, we vary 02 from -180 degrees to 180 degrees. For each

value of 02, we find all of the values for 03 that have equal magnitudes for two

of the three torques. For each value of 02, there can be as many as six values for

03 (J2 = +-J3, J2 = +-J4, and J3 -- +--J4.). In this appendix, we will derive formulas for the

six expressions for 03.
Assume that J2 = K J3 (where K - + 1.0). Then:

c2 c3 D - s2 H = - K s2 s3 D (A1)

Gathering the terms involving 03 on the left:

(c2 c3 + K s2 s3) D = s2 H (A2)

• Using the addition formula for cosine:

,, cos(03 - K 02) = s2 H / D (A3)

If Is2H / DI < 1.0, define _5by:

cos(k) = s2 H / D (A4)

Then the solution of Eq. (A3) is:

03 = K 02 + _i (A5)

Assume that J2 = K J4. Then:

c2 c3 D - s2 H = - K a4 s2 c3 s4+ K a4 c2 c4 (A6)

Gathering the terms involving 0 3 on the left:

65
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!

C 3 (C 2 D -t- K a4 $2 $4) = $2 H + K a4 c2 C4 (A7)

Eq. (A7) may be written: •

COS(03) = ($2 H + K a4 C2 C4) / (C2 D + K a4 $2 S4) (A8) °

Assume that J3 = K J4. Then:

- s2 s3D = - K a4 s2 C3 S4 + K a4 C2 C4 (A9)

Gathering the terms involving 03 on the left:

C3 (K a.4s2 S4) - S3 (S2 D) = K a4 C2 C4 (A10)

Define/5 and p by:

p cos/5 = K a4 s2 S4 (A11)

p sin/5 = s2 D (A12) ,

Eq. (A10) may be written:

p (c3cos/5 - s3sin/5) = K a4 c2 c4 (A13)

Using the addition formula for cosine:

cos(03 -/5) = K a4 c2 c4 / p (A14)

If la4 c2 c4 / pl < 1.0, define e by:

cos(E) = K a4 C2 C4 / p (A 15)

Then the solution ofEq. (AI4) is:

03 =/5+ e (A16) ,
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Fig. 24. Maximum torque (Q) versus angle (03) when 02 = 142 and

04 - 45. The units of torque are newton meters and the units of angle are
degrees.
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e2 --- 142

Fig. 24. Maximum torque (Q) versus angle (03) when 02 = 142 and

04 = 45. The units of torque are newton meters and the units of angle are
degrees.
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The sequence of figures (Figs. 17 to 25) provides us with an opportunity to

examine some of our assumptions. The figures display the surface of Q as a function of 02

° and 03. In general, each local minima on the Q surface could be a Class 1, Class 2, or

Class 3 point. In Figs. 17 and 25, there is a interval where Q is constant. For the initial

" and final points two torques are equal but for the interior values only one of the torques

(G4) is equal to Q. Although the derivative of G4 with respect to 03 is zero in the interval,

the derivative with respect to 02 is not zero except at the point where 03 = 90 degrees. This

point is not a local minimum, it is a saddle point (minimum with respect to 03 and

maximum with respect to 02). In all of the other figures, the minimum values of Q occur

when two or three torques are equal. Thus, there are no Class 1 points in the sequence of

figures.

Figurel4 is a network diagram that connects the significant points on the bridge

paths with straight lines. We will now display the actual shape of the bridge paths. We

begin with the equal bridge paths, the paths that connect the points A, B, C, and D. A

closeup of the equal bridge paths is given in Fig. 26. Figure 27 displays both the equal

paths (upper and lower) and the bridge paths. While there is a significant increase in torque

in moving from A to D, the maximum values are less than the unoptimized values in

Fig. 12.

- The bridge for the long path begins at G, moves to A, and can take either of the two

paths from A to D. A closeup of the long bridge path via point C is displayed in Fig. 28.

- Fig. 29 plots both segments of the long path and the bridge. The paths from G to A and

from H to D are very close to straight lines.

By exploring paths where the magnitudes of two or three of the torques are equal

during the motion, we have found three types of paths that are continuous in joint space:

Equal, Long, and Bridge. Next, we will determine which paths satisfy the necessary

conditions [Eqs.(14), (15) and (16)]. We begin by determining the elements of the A

matrix [see Eq. (22)]. For the CESARm (and the planar manipulator), the functions Gi(0)

are given by:

Gi(0) = di Ji (61)

where the constants di = -4-1 and the signs are chosen to make the Gi(0) nonnegative. We

, define the matrix fl(0) by:

" _"_ij- t_Ji(O._______)_ 02f(0) (62)
O0j 30_30j

..... ; ........................................... •................................ ,,............. _...... _ ................ _......
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Fig. 26. A cioseup of the Equal bridge paths. Maximum torque (Q)
versus height (z). The units of torque are newton meters and the units of
height are meters.
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Z

Fig. 27. The Equal paths and their bridge paths. Maximum torque
(Q) versus height (z). The units of torque are newton meters and the units
of height are meters.
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Fig. 29. The Long paths and their bridge paths. Maximum torque
(Q) versus height (z). The units of torque are newton meters and the units
of height are meters.
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The matrix f_ will be symmetric:

dl

_22 = - s2c3 D- c2 H (63)

_')23 --" C2 S3 D (64)

_')24 -- " a4 $2 c4 - 84 c2 c3 $4 (65)

_"_33 = " S2 C3 D (66)

_')34 -- 1t4 S2 S3 $4 (67)

_44 = - 1t4 S2 C3 C4 - a4 c2 $4 (68)

Using the matrix f_, the A matrix is:

E Jd2 _')22 d3 _"_23 d4 _"_24

AT = d2 _32 d3 _"_33 d4 _')34 (69)

d2 _')42 d3 _'_43 d4 _')44 "

Our goal is to find the gi that satisfy the first order necessary conditions [Eqs. (14) "

to (16)]. We will introduce the intermediate vector (rh = _ti/_) and solve Eq. (15) to find

the values of vii. We can choose the normalization factor (_,) to insure that Eq. (14) is

satisfied:

_, = 1 / Z 'l'li (70)
i

].l,i= _, * I"1i (71)

The remaining condition is that the _l,imust not be negative [Eq. (16)]. Thus, the _i satisfy

the necessary conditions if the Tliall have the same sign.

Table 8 provides a summary of our evaluation of the necessary conditions for the

lower branch of the Equal path. The first six points do not satisfy the necessary conditions #

while the last six points do satisfy the conditions. In Fig. 13, the initial section of the

lower branch of the Equal path is higher than the Long path. All points on the Long path °

satisfy the necessary conditions (see Table 9).
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For the Bridge paths, 04 is constant and we will evaluate the necessary conditions

for both a function of all three joint variables and a function of the first two variables. We

present the results for the Bridge path from A to B in Table 10. The results for the path

from C to D are the same as the results in Table I0. Considering all three joint variables,
,,J

the Bridge path satisfies the necessary conditions for the first four points and fails the test

for the last two points. Thus, the Class 3 points B and C (the lowest points in Fig. 14) do

not satisfy the necessary conditions. Considering the first two joint variables, the Bridge

path satisfies the necessary conditions for the first three points and the last point while

failing the test for two intermediate points.

Table. 8. Evaluation of the necessary conditions for the lower
branch of the Equal path.

.... n j 04 z ..... Q .... Satisfy?
1 -10 0.74 0.30 No

2 -5 0.72 0.29 No
,m,,,,,, , ,,, _

3 0 0.69 0.29 No

4 5 0.66 0.29 No
,,,, ,, ,,,=n ,,,

5 I0 0.61 0.29 No
,. ,., it ,, ,,. _

" 6 15 0.58 0.29 No
. ,, ,. • ,,,,, . ,,,.,. ,,, , ,,,

7 20 0.53 0.29 Yes
IN I IIII I I I III _ IW II III

8 25 0.49 0.29 Yes
iii ii i iiii _ ii iii ii

9 30 0.43 0.29 Yes
i i iiii ii ii i i ii i i iiiii i iii

10 35 0.39 0.29 Yes
i ii i illl ii ii i illlii i i h i i

11 40 0.34 0.28 Yes
i iii ii iiii i i iiiiiiiiii i i

12 45 0.29 0.27 Yes

Table 9. Evaluation of the necessary conditions for the Long path.

n , 04 z Q , Satisfy?
1 -55 1.09 0.11 Yes

... ,,, . ,, .........

2 -30 0.99 0.19 Yes
,m , ,,,m, .,. ,,

• 3 -5 0.82 0.25 Yes
ii ii1_ iHI I III I I I

4 20 0.62 0.30 Yes
,I

5 45 0.36 0.32 Yes
................
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Table I0. Evaluation of the necessary conditions for the Bridge path
from A to B.

Satisfy?

n , 02 z .... Q 3x3 . 2x2 J

1 91 0.29 0.27 Yes Yes

2 100 0.30 0.29 Yes Yes
ii ii

3 110 0.29 0.31 Yes Yes
iii i iii i ii i ii ii i ii iiii

4 120 0.28 0.31 Yes No
iiiii ill i i i

5 130 0.24 0.29 No No
i ii i iii ii i

6 142 0.17 0.24 No Yes

For the Bridge path from A to C (see Table 11), the path satisfies the 3X3

necessary conditions for the first three points and fails the test for the last three points. The

path satisfies the 2X2 necessary conditions at all points. The results for the path from B to

D are the same as the results in Table 11.

Table II. Evaluation of the necessary conditions for the Bridge path
from A to C.

Satisfy?

n 02 z Q 3X3 2X2

1 91 0.29 0.27 Yes Yes

2 80 0.17 0.31 Yes Yes

3 70 0.08 0.32 Yes Yes

4 60 -0.01 0.31 No Yes

5 50 -0.09 0.28 No Yes
,,, i ,,,i i, , ,,,, ,, , ,=, ,i

6 38 -0.17 0.24 No Yes
.......

The results for the Bridge path from A to G (and D to H) are summarized in

Table 12. The path satisfies both the 3X3 necessary conditions and the 2X2 necessar_

conditions at all points. The path from B to E is evaluated in Table 13. The path does not

satisfy the 3X3 necessary conditions at any point except the last point. The path satisfies

the 2X2 necessary conditions at all points.

Finally, we shall consider the Class 1 paths. For Class 1, one of the Gi(0) is larger

than the others and it must satisfy the conditions of classical optimization [Eq. (19)]. The
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elements of the A matrix are the partial derivatives of the Gi(0). If G2 is largest, the

classical optimization conditions require that the first column of the AT matrix will be zero.

" If G3 is largest, the second column of the AT matrix will be zero and if G4 is largest, the

third column will be zero.

If the ftrst column of the AT matrix is zero, then f_23will be zero:

c2s3D=0 (72)

D cannot be zero. (If D = 0, 04 = :!:93 degrees. The allowable range for 04 is from -55

degrees to 45 degrees.) If _23 is zero, then either c2 = 0 or s3= 0.

Table 12. Evaluation of the necessary conditions for the Bridge path
from A to G.

Satisfy?
, , i i

. n 02 z .... Q .... 3x3 .... 2x2
1 91 0.29 0.27 Yes Yes

i i i i[ ii ii im iii Ill I IIII I I I

2 90 0.30 0.28 Yes Yes
.1| i i I

3 89 0.31 0.28 Yes Yes
iiiii i iii iiiii iiiiiim i iii iiiii

O

4 88 0.31 0.29 Yes Yes
..... iii liraiiii i iiii ii

5 87 0.32 0.29 Yes Yes
i_ II . I iiiii i i i iiii ii I

6 86 0.33 0.30 Yes Yes
i

7 85 0.34 0.31 Yes Yes
iiii iiii i ii

8 84 0.36 0.32 Yes Yes
i

Table 13. Evaluation of the necessary conditions for the Bridge path
from B to E.

Satisfy?
............... 1.1,

n .... 02 z Q 3x3 2x2
1 142 o. 17 0.24 No Yes

1111 ill iii

2 150 0.17 0.25 No Yes
i iiii ii i iiii i i

o 3 160 0.19 0.28 No Yes
•lie Ill II I II I III

4 170 0.22 0.31 No Yes
i i i ill i

. 5 180 0.28 0.36 Yes Yes
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For the first case, if c2 - 0 and f122- 0 then c3 D = 0. Since D cannot be zero,

c3 =0. If c2 = 0, c3 =0, and f_24 = 0, then c4 = 0. However, the points where c4 = 0 are

outside the allowable range for 04. Thus, there is not a Class 1 solution for this ease.

For the other set of Class 1 solutions, s3 = 0. If _24 is zero:

T2 = -c3 T4 (73)

Given 04, Eq. (73) can be used to determine 02. For example, if 03 = 0 then 02 = -04 or

02 = r_ - 04. There are four sets of solutions (two values of 02 when 03 = 0 and two

values of 02 when 03 = x). For all four sets of solutions, G4 = a4 = 0.508 newton meters.

Thus, the minimum value of Q(0) cannot be less than 0.508. Hence, these four Class 1

solutions have much higher values for Q(0) than the best Class 2 and Class 3 paths (see

Figs. 27 and 29).

If the second column of the AT matrix is zero, then Q23 will be zero and either

c2 = 0 or s3 = 0. For the first case, if c2 = 0 and L"_33= 0 then c3 = 0. If c2 ---0, c3 = 0,

and L"_34= 0, then s4 = 0. At these points: G2 = 0.635, G3 = 0.537, and G4 = O. Thus,

Q(0) = 0.635 newton meters and G3 is not the largest value. Thus, there is not a Class 1

solution for this case. ,

For the second case, if s3 = 0 and L")33 = 0 then s2 = 0 and fl34 ---0. If s3 = 0 and

s2 = 0, G2 = D, G3 = 0, and G4 = D - a3. Thus, Q(0) = D and G3 is not the largest value.

Thus, there is not a Class 1 solution for this case.

The third column of the AT matrix will be zero if s2 -- 0 and s4 = 0. For this

case: G2 = c3 D, G3 = 0, and G4 = 0.508. If the magnitude of 03 is greater than 18.9

degrees, G4 will be the largest of the Gi and Q(0) = 0.508 newton meters. Thus, this case

has a Class 1 solution.

The second case for which the third column of the AT matrix will be zero is when

s3 = 0 and Eq. (73) is satisfied. This is the same as the second case when the first column

of the AT matrix was zero.

We have examined all of the possible Class 1 solutions. In all cases, the minimum

value of Q(0) cannot be less than 0.508 newton meters. Hence, all Class 1 solutions have

much higher values for Q(0) than the best Class 2 and Class 3 paths (see Figs. 27 and 29).



5. CONCLUSIONS

q#

We have considered the problem of determining the time trajectories of the joint

• variables of a mobile manipulator with many redundant degrees of freedom that will

minimize the maximum value of the torque during a large scale motion by the manipulator.

To create a well defined problem, we have divided the problem into two components: path

planner and surveyor. The path planner chooses a path between two points in Cartesian

space that will minimize the maximum value of the torque along the path. The input to the

path planner is a network of path segments with the maximum value of the torque on each

segment. The surveyor explores the joint space, calculates the Cartesian position and

maximum torque, and defines the network of path segments. In this paper, our focus has

been on the surveyor and not on the path planner.

There is a large literature on algorithms for the solution of min-max problems.

However, our min-max problem has an extra constraint on the joint variables. We have

used the Kuhn-Tucker conditions to derive necessary conditions for the solution of our

min-max problem. We find that the necessary conditions require that at one or more of the

joints the magnitude of the normalized torques will be equal to the min-max value. We

, have classified the sets of points that satisfy the necessary conditions based on the number

of the normalized torques t hat are equal to the min-max value. We have solved the

. min-max problem by identifying all of the points in all of the classes.

Our surveyor is experienced and uses a rule of thumb: follow valleys. Valleys are

the intersections of two or more of the joint torque surfaces [Gi(0)]. Along the valleys, the

magnitudes of two or more of the joint torques will be equal. Valleys are good locations

for low torque paths. The surveyor has explored two examples: a planar manipulator and
the CESARm.

The mobile planar manipulator has three revolute joints. We began by exploring the

Class 3 paths. We defined four cases and 16 subcases. For each of the 16 subcases, we

have defined the three link angles in terms of a single parameter. By relating the three link

angles to the parameter, we have resolved the redundancy.

We have found that 13 of the 16 subcases satisfy the necessary conditions. Of the

13 subcases, there are five configurations with a one meter workspace, three configurations

with a three meter workspace, and one configuration with a five meter workspace. Given.#

an initial value for z and a final value, the path planner will choose one of the 13 options.

, All but one of the options has a portion of the workspace where it is superior to any of the

other options. Thus, the Class 3 paths reach all parts of the workspace.
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We have explored Class 2 and Class 1 paths. We have surveyed Class 2 paths for

a constant value of z. By examining Class 2 paths, we have been able to identify all 10 of

the Class 3 subcases that can reach the point z = 0.25. In 8 of the 10 subcases, we have °

found a local minima. All of the local minima for the Class 2 paths occurred at points

where the torques were equal at all three joints. Thus, we were unable to find any Class 2 °

local minima. All of the Class 1 solutions had higher values for the torque than the best

Class 3 paths.

The CESARm is a manipulator with 7 degrees of freedom that can reach points in

3D space. We assumed that the CESARm is mounted on a mobile platform that will

control the x and y coordinate of the arm's tip We have three joint angles controlling the

height of the arm (z). We explored the Class 3 paths. There are four ways that three

torques can be equal. For the planar manipulator, the four cases were distinct. For the

CESARm, the four cases correspond to changes of variables. We found four segments for

the Class 3 paths. While the four segments have low values for the maximum torque, they

only cover part of the workspace and do not join together.

By exploring Class 2 paths, we have found paths that cover the workspace and

bridge between the disjoint Class 3 path segments. We have evaluated the necessary

conditions for both the Class 3 paths and the Class 2 paths. In most cases, the paths

satisfy the necessary conditions. °

We have examined all of the possible Class 1 solutions. In all cases, the minimum

value of the torque cannot be less than 0.508 newton meters. Hence, all Class 1 solutions ,,

have much higher values for the torque than the best Class 2 and Class 3 paths.
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