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ABSTRACT

We have considered the problem of determining the time trajectories of the joint
variables of a mobile manipulator with many redundant degrees of freedom that will
minimize the maximum value of the torque during a large scale motion by the manipulator.
To create a well defined problem, we will divide the problem into two components: path
planner and surveyor. The path planner will choose a path (between two points in
Cartesian space) that will minimize the maximum value of the torque along the path. The
input to the path planner is a network of path segments with the maximum value of the
torque on each segment. The surveyor will find the points in joint space that are local
minimums for the maximum value of the torque at each Cartesian position and define the
network of path segments. In this paper, our focus will be on the surveyor and not on the
path planner.

There is a large literature on algorithms for the solution of min-max problems.
However, our min-max problem has an extra constraint on the joint variables. We seek
a min-max at each Cartesian position rather than a global min-max. We have used the
Kuhn-Tucker conditions to derive necessary conditions for the solution of our min-max
problem. We find that the necessary conditions require that at one or more of the joints the
magnitude of the normalized torques will be equal to the min-max value.

We have explored the torque surfaces for two mobile manipulators: a planar
manipulator and the CESARm. The planar manipulator has three revolute joints. The
paths with three equal torques cover the workspace and satisfy the necessary conditions.

The CESARm is a manipulator with three joint angles controlling the height of the
arm. The paths with three equal torques have low values for the torque but they only cover
part of the workspace and do not join together. Paths with two equal torques cover the
workspace and bridge between the disjoint path segments. We have evaluated the
necessary conditions for both the paths with three equal torques and the paths with two
equal torques. In most cases, the paths satisfy the necessary conditions.

ix




1. INTRODUCTION

Consider a mobile manipulator with many redundant degrees of freedom. A
mission for the mobile manipulator robot will be subdivided into a sequence of tasks.
During a task, the robot moves from an initial configuration to a final configuration while
minimizing an objective function. The objective function could have several components
including: obstacle avoidance, torque minimization, manipulability, and platform stability
(see [1], [2], and [3]). In this paper, we consider a large scale motion while minimizing a
single component of the objective function: the maximum value of the torque.

Manipulators consist of rigid links that are connected by joints. The joints can be
revolute or prismatic. The number of degrees of freedom of a manipulator is the number of
joint variables that must be specified to uniquely determine all of the parts of the machine.
If the three vector P is the location of a point on the manipulator (usually the position of the
end effector) in Cartesian space and 6 is the vector of joint variables:

P = f(0) (nH

For the manipulator, the Jacobian [J] maps the joint velocities to Cartesian

velocities:
P=1J0©) 6 @)
where
of(8)
J(O) =——= 3
0 6 (3)

Furthermore, the transpose of the Jacobian maps the static Cartesian forces [F] from a load
at the end of the manipulator to the static joint torques [t] induced by the load:

1=JO)TF 4)

Let Q be the maximum of the magnitudes of the joint torques (T;) divided by a limit

for each joint (w;):



Q) = max It 1/ w ©)

Let A be the minimum value of Q(0) at each Cartesian position:

A=min Q(8) = min max It;l/w; 6)
0 6 !

Our objective is to determine paths for the joint variables (8;) that will minimize Q(0)
during the motion of the mobile manipulator from an initial position (P!) to a final position
(Pf). Solving this min-max problem will resolve the redundancy for the joint variables.

In classical optimization theory, the methods that are used to minimize a function at
a point are different than the methods that are used to minimize a functional on a trajectory
from an initial position to a final position. At an unconstrained interior minimum of a
function of one variable, the derivative is equal to zero. For the most simple problem in the
calculus of variations, the objective is to find a function [x(t)] such that x(t;) = a, x(tf) = b,
and the functional [P] is a minimum, where:

if
d= JU(x(t),k(t),t) dt (7
ti
At every point on the trajectory, the variables must satisfy the Euler-Lagrange equation:

R 8)

Only in the special case where the function U does not depend on x will the Euler-Lagrange
equation require that the function U be at its minimum for all points on the path from a to b.

We have not found any papers on min-max problems over a trajectory. However,
if there were a few isolated points on the trajectory with maximum torque, there would be
no need to minimize the torque at the other points. Thus, the min-max criterion may not
constrain or determine most points on the path and the path may not be unique. For
example, suppose that you wanted to plan a path that would minimize the maximum
elevation during an automobile trip from Saint Louis, Missouri to Salt Lake City, Utah.




The maximum elevation would probably be in the Rocky Mountain states. Thus, the
criterion to minimize the maximum elevation during the trip would not give you any
guidance as you traveled across the Great Plains states.

To create a well defined problem, we will divide the problem into two components:
path planner and surveyor. The path planner that will choose a path between two points in
Cartesian space that will minimize the maximum value of the torque along the path. The
input to the path planner is a network of path segments with the maximum value of the
torque on each segment. The surveyor will explore the joint space and define the network
of path segments. In this paper, our focus is on the surveyor and not on the path planner.

Given a Cartesian position (P), we can solve the min-max problem. Conventional
search techniques slowly solve min-max problems. The basic reason is that the
conventional search techniques assume that the function is differentiable and Q(9) is
usually not differentiable at the minimum. Many algorithms that solve min-max problems
have been developed (see Polak [4]).

In the next section, we will convert the min-max problem into a nonlinear
programming problem and use the Kuhn-Tucker conditions to derive necessary conditions
for the solution of the min-max problem. We shall find that the necessary conditions
require that at one or more of the joints the magnitude of the normalized torques will be
equal to the min-max value. However, an isolated minimum may not be useful for a large
scale motion.

In the subsequent sections, we will explore continuous paths for the joint variables
that will minimize the maximum of the normalized torques during a large scale motion by
the mobile manipulator. In the third section, we will find min-max paths for a planar
manipulator. In the fourth section, we will explore min-max paths for the CESARm. The
final section will present our conclusions.




2. NECESSARY CONDITIONS FOR THE
MIN-MAX PROBLEM

There is a large literature on algorithms for the solution of min-max problems. An
example is a recent paper by Polak [4]. However, our min-max problem has an extra
constraint on the joint variables [Eq. (1)]. Consequently, the necessary conditions for our
min-max problem are more general than for the standard problem. Polak calls a point that
satisfies the necessary conditions for the standard problem a Danskin point. Our conditions
will reduce to the conditions for the Danskin point when the extra constraint is removed.

We will convert our min-max problem into a nonlinear programming problem and
use the Kuhn-Tucker conditions to derive necessary conditions for the solution of the
min-max problem. To simplify our notation, we will define the functions Gi(8) by:

Gi(8) = It;l / w; 9)

Following Polak, we convert Eq. (6) from an unconstrained nondifferentiable optimization
problem to a constrained differentiable optimization problem:

Find 0 to minimize A subject to:

A 2 Gi(6) (10)
We introduce the nonnegative slack variables (o;):
ci=A-Gi(0)20 (11)
We assume that the position of the end effector is fixed:
f(6) = P* (12)
where P* is a constant. Define the Lagrangian (L) by:

L=-A+ YA (£ (0)-P)+ T (A-G'(®)-0)) (13)
k i




The Lagrangian depends on five variables (A, 0, A, lt, ©). The first four variables
are unrestricted in sign while the last variable (6) is nonnegative. The first order necessary
conditions for the unrestricted variables require that all first order partial derivatives of L
with respect to the unrestricted variables must vanish. The Kuhn-Tucker conditions
provide the first order necessary conditions for the restricted variables. The first order
necessary conditions are:

=1 (14)
0G'(0") _ of . (8")

Hi 20 (16)

2H0;(87)=0 (17)

We can use the first order necessary conditions to demonstrate that at the min-max
point (6™) the magnitude of the normalized torques will be equal to the min-max value (A)
at one or more of the joints. Since both | and ¢ are nonnegative, every term on the left
side of Eq. (17) must be zero:

Hio; =0 (18)

Thus, whenever |; is positive, the corresponding slack variable (o;) will be zero. At each
point where the slack variable is zero, the normalized torque (G') is equal to the min-max
value (A). Equation (14) requires that at least one of the L; must be positive.

We can classify the sets of points that satisfy the necessary conditions based on the
number of the J; that are positive. For Class 1, one of the y; will be positive. For Class 2,
two of the p; will be positive. For Class n, n of the p; will be positive. For Class 1, one
of the Gi(8) is larger than the others (Q(8) = G(8)) and the necessary conditions simplify
to the familiar conditions of classical optimization. If we let A = 0, Eq. (15) becomes:




N (19)

J

k
3G*®) _,

We can think of the Gi(0) as surfaces in parameter space. For Class 2, two of the
surfaces intersect at the min-max point 0™y

A = Q(8%) = GK(8*) = G™(®™) (20)

Near the min-max point, there will be a region (A) where Q(6) = GX(6) and a region (B)
where Q(8) = G™(8). If we ignore the end effector constraint (let A = 0) and move from
region A through the min-max point to region B, Q(8) will decrease as we approach 6* and
increase as we move away from 0*. Normally, Q(6) is not differentiable at the min-max
point. When A = 0, Eq. (15) is a generalization of classical optimization condition:

9G'(8") _
;ui 00. =

]

0 (21

For the classical optimization condition [Eq. (19)], all of the partial derivatives of Q(6) are
equal to zero. For the generalized condition [Eq. (21)], all of the partial derivatives of a
weighted average of the Gi(8) are equal to zero.

For Class n, n of the surfaces intersect at the min-max point. We will solve the
min-max problem by identifying all of the points in all of the classes. For Class 1, we will
find all of the points that satisfy the classical optimization condition [Eq.(19)]. For the
other classes, we will identify all of the points that are on the intersections of two or more
surfaces and test whether or not the necessary conditions are satisfied.

To find the global min-max, we plot Q(6) vs P(8) for all of the points in all of the
classes that satisfy the necessary conditions. The global min-max at the point P(0) has the
lowest value for Q(6).

The surveyor will identify all of the type A paths (paths with continuous joint
variables that link points in the work space and satisfy the necessary conditions). If there
are points in the workspace that cannot be linked by type A paths, the surveyor will identify
type B paths to bridge between the type A paths. The type B paths have continuous joint
variables, are members of one of the classes, link points in the work space, and may not
satisfy the necessary conditions.




Equation (15) is our generalization of the conditions for a Danskin point. If we ignore the
constraint [Eq. (12)], A=0and Eq. (15) reduces to Polak's condition [his Eq. (7)]. Itis

useful to express Eq. (15) in matrix notation. Define the elements of the matrix A by:

aGi(0)
= 22
3j 36; (22)
Then Eq. (15) may be written:
ATpu =1Ta (23)

In Polak's unconstrained case, A = 0 and A must be singular. In our constrained case, A
can be singular or nonsingular.

We have demonstrated that the magnitude of the normalized torques will be equal to
the min-max value at one or more of the joints. In the examples that we will consider in
this paper, the best Class 3 and Class 2 paths will have lower values for the normalized
torques than any of the Class 1 paths. However, we can create a simple example where the
Class 1 paths are best. Consider a manipulator with stacked prismatic joints. The z
coordinate of the arm's tip (P) is given by:

z= Zo + Zqiei (24)

For this example, the components of J are constants (J; = q;) and the components of G are
constants (Gi = g;). Thus, the elements of the matrix A are zero (a; =0). Assume that the
first component of G is the largest (g; > g; fori > 1). Then, Q=gi, b1 = 1, t; = 0 for
i>l,01=0,and 5;>0fori>1.




3. MIN-MAX PATHS FOR A PLANAR MANIPULATOR

We consider a mobile planar manipulator with three revolute joints (8j). The
platform can move in the x direction. The manipulator can reach points in the (x,z) plane.
We assume that the platform will control the x coordinate of the arm's tip (P) [we recognize
that obstacles could prevent free motion of the platform in the x direction]. If the lengths of
the three links of the arm are (1, 1, and 0.5) meters, the z coordinate of P is given by:

z=sin Y + sin WYy + 0.5 sin 3 (25)

where: y; =0y, Y2 =0 + 07, and y3 = 0; + 6, + 63. The components of the Jacobian

are:
J1=cos y; + cos Yy + 0.5 cos y;3 (26)
Ja=cos yp + 0.5 cos y3 04))
J3=0.5cos y3 (28)

If the force is directed downward (F, = -1 newton), the joint torques are given by:

T=-J (29)

We will assume that the weights for each joint are equal: w; = 1.

We have three joint angles controlling the height of the arm (z). Given a desired
change in height, we would like to determine paths for the joint angles that minimize the
maximum of the torque during the motion. In the last section, we demonstrated that at the
min-max point the magnitude of the torques will be equal to the min-max value at one or
more of the joints. We begin by exploring the Class 3 paths where the magnitudes of all
three torques are equal during the motion (subsequently, we will consider the Class 2 paths
where two of the three torques are equal and the Class 1 paths). We distinguish four cases
in Table 1.
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For each of the four cases, we can solve Egs. (26) to (28) and determine two
conditions on the link angles (y). For example when T, =1;=13, J; =J2=1]3 and
subtracting Eq. (27) from Eq. (26) yields the first condition for the first case (cos y; = 0).

Each of the two conditions has two solutions. For the condition cos Wy =0, the
two solutions are: W) =+ n/2. For the condition cos Y + cos y»= 0, the two solutions
are: Yy =mxy,. Thus, each case has four subcases. We define the 16 subcases for the
planar manipulator in Table 2.

For each of the 16 subcases, we have defined the three link angles in terms of a
single parameter (¢). The last column in Table 2 expresses z as a function of ¢. By
relating the three link angles to ¢, we have resolved the redundancy. Thus, Table 2
displays 16 ways to resolve the redundancy.

We will assume that z can have both positive and negative values (if z cannot have
negative values, we could raise the base of the manipulator by 2.5 meters). All of the
expressions for z have the form: z=a+ bsin¢ . In some subcases, a =0 and z will range
from -b to b as ¢ ranges from - /2 to /2. In the subcases where a is not equal to zero,
there is another subcase where a; = -a; and b; = b, (for example, subcases 1.2 and 1.4 and
subcases 2.2 and 2.3). Thus, all of the subcases exhibit symmetry between positive and
negative values of z.

Next, we will determine which of the 16 subcases satisfy the necessary conditions
[Egs.(14), (15) and (16)]. We begin by determining the elements of the A matrix [see
Eq. (22)]. For the planar manipulator, the functions Gi(8) are given by:

Gi(0) =d; Jj (30)

where the constants d; = £ 1 and the signs are chosen to make the Gi(8) nonnegative. We

define the functions S;(0) by:

S1(8) = sin Wy + sin Yy + 0.5 sin 3 31

S7(8) = sin Yy + 0.5 sin ;3 (32)

S5(6) = 0.5 sin 3 (33)



Table 1.
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Definition of the four cases with

joints for the planar manipulator.

equal torque at three

Case Torque Signs First Condition Second Condition
1 T1=T2=T3 cosy) =0 cosyr =0
2 TI=T2=-T% cosyy =0 cos Y2 + cos Y3=0
3 TI=-T0=T3 cos Y1 +cos yr=0 cos Y2 + cos y3=0
4 T =-T0=-T3 cos Y =0 cos Y1 +cos y3=0
Table 2. Definition of the 16 subcases for the planar manipulator.
Subcase Y1 Y2 Y3 = f(¢)
1.1 n/2 -m/2 0 1 sing
1.2 m/2 m/2 0 243 sin¢
1.3 -m/2 n/2 0 2 sino
1.4 -m/2 -m/2 0 -2+ sin¢
2.1 /2 T+ 0 0 1-7 sin¢
2.2 n/2 m-0 0 1+3 sin¢
2.3 -m/2 -0 0 -1+3 sin¢
2.4 -m/2 T+0 0 -1-3 sin¢
3.1 ) TT+0 o 1 sing
3.2 ¢ n-6 ) 2 sin¢
3.3 6 n-0 - 5 sin 6
3.4 o n+o -0 -% sin ¢
4.1 m-¢ -1/2 o -1+3 sin¢
4.2 -6 n/2 0 1+3 sin¢
4.3 m+0 n/2 ¢ I-2 sin¢
4.4 n+o -/2 o -1-3sin¢
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Using the S;, the A matrix is:

d;S; d2S; d3S3
AT=-[d152 d2S; d3S3 } (34)
d;S3 dyS; diS3
Our goal is to find the p; that satisfy Eq. (23). We will first solve for an
intermediate vector (1):
ni=-{/ A (35)
Using the 1;, Eq. (23) is:
diSin+d,Som+d3Ssms=1; (36)
d;Somp+dSama+di3Sanz=1J; (37
d; S3my +d2S3n2+d3Sanz=1J3 (38)

Subtracting Eq. (37) from Eq. (36) and subtracting Eq. (38) from Eq. (37), Egs. (36) to
(38) may be written in triangular form:

din=ctn y (39
diny+dame=ctn y, (40)
dini+dynz+d3nz=ctn y; 41)

The constants d; = £ 1 and their signs are chosen to make the Gi(0) nonnegative.
Expressions for the three link angles (y;) are given in Table 2 (as functions of the
parameter ¢). Given values for the d; and the y;, Egs. (39) to (41) can be solved for the
1;. The values of d; and n; are displayed in Table 3 for the 16 subcases.

Our goal is to find the p; that satisfy the first order necessary conditions [Eqgs. (14)
to (16)]. We have introduced the intermediate vector (1) and solved Eq. (15) to find the
values of 1; displayed in Table 3. We can choose the normalization factor (A) to insure that
Eq. (14) is satisfied:
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A==1/Yn; (42)

pi=-A*m, @3

The remaining condition is that the ; must not be negative [Eq. (16)]. The corresponding
condition on the m; is that they must all have the same sign. In 13 of the 16 subcases in
Table 3, the 1; have the same signs. Thus, the p; satisfy the necessary conditions for 13 of
the 16 subcases.

Table 3. Evaluation of the necessary conditions for the 16 subcases.

Subcase d, d& dj N1 N2 n3 Satisfy?
1.1 +1 1 +1 ] +1 0 0 ctn ¢ Yes
1.2 +1 1 +1 ] +1 0 0 ctn ¢ Yes
1.3 +1 1 +1 ] +1 0 0 ctn ¢ Yes
1.4 +1 § +1 ] +1 0 0 ctn ¢ Yes
2.1 - 1 -1 + 1 0 -ctn ¢ 0 Yes
2.2 -1 ) -1 ] +1 0 ctn ¢ 2ctn ¢ Yes
2.3 - 1 -1 + 1 0 ctn ¢ 2ctn ¢ Yes
2.4 -1 -1 ] +1 0 -ctn ¢ 0 Yes
3.1 +1 1 -1 1 +1 ctn ¢ 0 0 Yes
3.2 +1 ] -1 ] +1 ctn ¢ 2ctn ¢ 2ctn o Yes
3.3 +1 1 -1 1] +1 ctn ¢ 2ctn¢ 0 Yes
3.4 + 1 -1 +1 ctn ¢ 0 -2ctnéd No
4.1 -1 | +1 ] +1 ctn ¢ ctn ¢ ctn ¢ Yes
4.2 -1 P +1 ] +1 ctn ¢ ctn ¢ ctn ¢ Yes
4.3 -1 +1 ] +1 -ctn ¢ -ctn ¢ ctn ¢ No
4.4 -1 +1 ] +1 -ctn ¢ -ctn ¢ ctn ¢ No
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We will examine plots of maximum torque (Q) versus height (z) for the four cases.
We will not consider the three subcases that do not satisfy the necessary contions.
Furthermore, subcase 1.3 will not be considered bacause it is so similar to subcase 1.1 (in
1.1 the first joint is up, while in 1.3 the first joint is down).

The three subcases of case 1 are displayed in Fig. 1. All three subcases have the
same range (one meter). For each subcase, the torque increases from zero to a maximum
and the decreases to zero as the manipulator moves through its range. Each subcase has a
different value of z at its midpoint (0.0 for subcase 1.1, 2.0 for subcase 1.2, and -2.0 for
subcase 1.4).

The four subcases of case 2 are displayed in Fig. 2. Two of the subcases have a
one meter range while the other two have a three meter range. For each subcase, the torque
increases from zero to a maximum and then decreases to zero as the manipulator moves
through its range (the maximum values for the torque for all 13 subcases are identical). For
two of the subcases, the midpoint of the range is 1.0 and for the other two the midpoint is
-1.0. If we added subcases 2.1 and 2.4 to Fig. 1, we would find that the new subcases fill
the gaps in Fig. 1 and we would have five disjoint options for covering the total five meter
range. Subcases 2.2 and 2.3 cover the same five meter range and overlap near 0.0.

The three subcases of case 3 are displayed in Fig. 3. Each of the subcases has a
different range (one, three, and five meters). The midpoint of the range is 0.0 for all three
subcases. Subcase 3.1 covers the same range as Subcase 1.1. The two subcases of case 4
are displayed in Fig. 4. The two subcases have the same workspace as subcases 2.2 and
2.3.

We have found three groups of subcases {(1.1, 1.3, 3.1), (2.2, 4.2), (2.3,
4.1)}that have identical values for Q in identical workspaces. However, the values of the
link angles are not identical within these groups. If we were considcring the more general
problem of avoiding obstacles while minimizing the maximum torque, one member of the
group might be better than the others.

We began with 13 subcases that satisfied the necessary conditions. We have found
five configurations with a one meter workspace, three configurations with a three meter
workspace, and one configuration with a five meter workspace. Which of the options
(summarized in Fig. 5) should we use to move from an initial value of z to a final value?

All but one of the options (subcase 1.1) has a portion of the workspace where it is
superior to any of the other options. For example, subcase 3.2 is best near the upper and
lower limits of the workspace. Subcase 1.2 is best for a small interval beyond z = 1.5
meters. Subcases 2.2 and 2.3 are better than subcase 1.1 on the middle interval
[-0.5, 0.5].
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Fig. 1. Maximum torque (Q) versus height (z) for three subcases of
case 1. The units of torque are newton meters and the units of height are
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A path planner for the manipulator could choose the option that was best for each
task. If the planner wanted to choose a single option that was occasionally best and always
close to the torque minimum, it could choose subcase 3.2.

We conclude this section by considering Class 2 paths that have equal torque
magnitudes at two of the three joints and the Class 1 paths. We distinguish six cases in
Table 4. When the torques are equal at two of the joints, we can derive one constraint on
the link angles (y;) and could express the three link angles in terms of two parameters.
However, we will assume that z is constant and express the three link angles in terms of
one parameter.

Table 4. Definition of the six cases with equal torque at two joints
for the planar manipulator.

Case Torque Signs Condition Solution
1 1= T2 cosy, =0 Yy =tm/2
2 T1=-1T cos Yy +2cos Ya+cosyy3=0
3 T,= T3 cos Yr=0 Yr=%m/2
4 Ty=-T3 cos Y +cos Y3 =0 V3 =nt\y;
5 1= T3 cos Yy +cos Y =0 Yy =nty,
6 T1=-T3 cos Yy + cos Yz +cos Y3 =0

In Table 4, we defined six cases with equal torque magnitudes at two joints, while
we defined four cases with equal torque magnitudes at three joints in Table 1. As we
consider all cases that have equal torques at two joints, we will find isolated points in the
three dimensional space of link angles where the torques are equal at three joints. Thus, as
we consider all of the points in link space that are in Case 1 in Table 4, we will find isolated
points that are in Cases 1 and 2 in Table 1. Similarly, Cases 3 and 4 in Table 1 are
examples of Case 2 in Table 4. To examine all of the cases in Table 1, we need to consider
Cases 1 and 2 in Table 4, or Cases 3 and 4, or Cases 5 and 6. Since we have a simple
analytical expression for the conditions on the link angles in Cases 3 and 4, we will focus
on Cases 3 and 4.

We will assume that z = 0.25. This point is in the workspace of 10 of the 16
Subcases listed in Table 2 (see Table 5). As the parameter k increases from 0 to 100, the
link angle y3 will increase from - /2 to /2. For Cases 3 and 4, the condition in Table
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4 will provide two solutions for y, when y3 is known. Given y3, s, and z, Eq. (25)
may yield two solutions for ;. Thus, for each value of the parameter k, we can determine
up ) four solutions for the link angles. We will use a mode variable with a range from 0 to
3 to identify the four solutions.

Table 5. The 10 subcases defined in Table 2 that can reach the
point z = (.25,

Subcase V) Y2 Y3 k Figure
1.1 n/2 -n/2 ¢ 66 7
1.3 -n/2 /2 ¢ 67 6
2.2 n/2 T-0 o 33 9
2.3 -1/2 T-0 ¢ 82 9
3.1 ¢ T+0 ¢ 67 8
3.2 ¢ n-0 o 53 9
3.3 ¢ n-0 -0 45 8
3.4 ) T+ 0 - 0 67 9
4.1 -0 -n/2 ¢ 81 7
4.2 -0 n/2 ¢ 33 6

In Case 3, 12 = 13. Thus, G2 = G3. G! and G? are plotted in Fig. 6 as a function
of the parameter k for Case 3 and mode 1. A is the minimum value of the maximum of the
Gi. In Fig. 6, there are two local minima at k = 33 and k = 67. At each local minima,
G! = G2 = G3. Hence, there are no local minima at which only two of the joint torques are
equal. At each local minima, we can determine the link angles and identify which of the 16
subcases in Table 2 has occurred. At k = 33, the subcase is 4.2 and the subcase is 1.3
when k = 67. We will identify the value of k and the figure number for each of the ten
subcases in Table 5.

G! and G? are plotted in Fig. 7 for Case 3 and mode 3. In Fig. 7, there is one local
minima at k =81 and a point where G! = G2 that is not a local minima at k = 66. At
k = 66, the subcase is 1.1 and the subcase is 4.1 when k = 81. Although subcase 1.1
satisfies the necessary conditions, we previously noted that it was never the best option for
any region of the workspace.
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Fig. 6. G! and G2 versus the parameter k for case 3 (G2 = G3) and
mode 1. The units of torque are newton meters.
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Fig. 7. G! and G2 versus the parameter k for case 3 (G2 = G3) and
mode 3. The units of torque are newton meters.
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In Case 4, T = - 73 and G2 = G3. G! and G2 are plotted in Fig. 8 for Case 4 and
mode 0. In Fig. 8, there are two local minima at k = 45 and k = 67. At k = 45, the
subcase is 3.3 and the subcase is 3.1 when k = 67.

G! and G2 are plotted in Fig. 9 for Case 4 and mode 2. In Fig. 9, there are four
points where G! = G2.  Three of the four points are local minima at k =33, k=53 and
k = 82. The point that is not a local minima is at k = 67. The subcases are: 2.2 at k =33,
3.2 at k =53, 3.4 at k =67, and 2.3 at k =82. In Table 3, we found that subcase 3.4 did
not satisfy the necessary conditions. In Fig. 9, we find that subcase 3.4 is not a .. _ul
minima.

By examining two modes of case 3 and two modes of case 4, we have been able to
identify all 10 of the subcases that can reach the point z = 0.25. In 8 of the 10 subcases,
we have found a local minima. All of the local minima occurred at points where the torques
were equal at all three joints. Thus, we were unable to find any local minima at which only
two of the joint torques were equal.

Finally, we shall consider the Class 1 paths. For Class 1, one of the G(8) is larger
than the others and it must satisfy the conditions of classical optimization [Eq. (19)]. The
elements of the A matrix are the partial derivatives of the Gi(8). If G! is largest, the
classical optimization conditions require that the first column of the AT matrix will be zero.
If G2 is largest, the second column of the AT matrix will be zero and if G3 is largest, the
third column will be zero. In all three cases, S3(0) = O [see Eq. (34)]. Thus, sin y3 =0
and cos Y3 =x 1. Consequently, G3 = 0.5 [see Eq. (28)] and Q(0) cannot be less than
0.5. None of the Class 1 paths can be better than the best Class 3 paths in Fig. 5.

The Class 3 paths span the workspace. The local minima for the Class 2 paths
occur when they become Class 3 paths. The minimum torque for the Class 1 paths is never
less than 0.5 newton meters (the maximum values for the torque on the Class 3 paths).
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4. MIN-MAX PATHS FOR CESARm

The CESARm is a manipulator with 7 degrees of freedom (including a 3 degree of
freedom spherical wrist) and a high capacity to weight ratio [5] (see Fig. 10). We assume
that the CESARm is mounted on a mobile platform. The platform can move in the x and y
directions. The manipulator can reach points in three dimensional (x,y,z) space. We
assume that the platform will control the x and y coordinate of the arm's tip (P) [we
recognize that obstacles could prevent free motion of the platform in the (x,y) plane]. We
will not consider the last three degrees of freedom that control the spherical wrist. Since
the first joint variable does not change the z coordinate of P, we will neglect it.

The z coordinate of P is given by:

z=s3c3D+cy H (44)

where s; = sin (0)), ¢j = cos (6;), and:

D (94) = a4 ¢4 + a3 (45)

H (84) = a4 54 -d3 (46)

and as, a4, and d1 are constants (a3 = 0.029 m, a5 = 0.508 m, and d3 = 0.635 m). The
compcenents of the Jacobian are:

.]2=C203D-52H (47)
J3=-5253D (48)
Ja=-agsyc384+a4CaC4 (49)

If the force is directed downward (F, = -1 newton), the joint torques are given by:
Ti=-1J (50)

We will assume that the weights for each joint are equal: w; = 1.

27
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Fig. 10. The seven degrees of freedom of the CESARm manipulator.
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We have three joint angles (85, 03, 84) controlling the height of the arm (z). Given
a desired change in height, we would like to determine paths for the joint angles that
minimize the maximum of the torque during the motion. In the second section, we
demonstrated that at the min-max point the magnitude of the torques will be equal to the
min-max value at onc or more of the joints. We begin by exploring the Class 3 paths
where the magnitudes of all three torques are equal during the motion (subsequently, we
will consider the Class 2 paths where two of the three torques are equal and the Class 1
paths). Define K3 to be the ratio of J and J3 and K4 to be the ratio of J3 and J4:

K3i=J/]3 6y
K4=1J3/14 (52)
Since K3 = %1 and K4 = £1, we can distinguish four cases. For the planar manipulator,
the four cases were distinct (see Table 1). For the CESARm, we will now show that the

four cases correspond to changes of variables (see Table 6).

Table 6. Four sets of joint angles that will reach each (Q,z) point.

Case K3 K4 02 03
1 + 1 + 1 0, 05
2 +1 -1 - 6 T - 03
3 -1 -1 0, - 03
4 -1 + 1 - 6, - (T~ 63)

If the sign of 83 is changed, the sign of s3 changes. Consequently, the signs of z,
J5, and J4 are unchanged, while the sign of J3 changes. Thus, the signs of both K3 and K4
change (case 3).

If the sign of 0, is changed and 03 is replaced by (w - 03), the signs of s; and c3
change. Consequently, the signs of z and J4 are unchanged, while the signs of J», and J3
change. Thus, the sign of K4 changes (case 2).

If the sign of 0, is changed and 65 is replaced by -(n - 83), the signs of sy, s3, and
c3 change. Consequently, the signs of z, J3, and J4 are unchanged, while the sign of J;
changes. Thus, the sign of K3 changes (case 4).
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Since the four cases are not distinct, we assume that K3 = K4 = 1. We have two
equations in three unknowns. For each pair of equations, we can solve for T, = tan 6,:

Ty=c3D/(H-5s3D) (53)

Ty=a4c4/ (a3¢354-53D) (54)

We can eliminate 6, and obtain a single equation relating 63 and 6:

agcq(H-s3D)=c3D(agc384-53D) (55)

Using a step size of 2 degrees, we allow 84 to sweep its allowable range (from -55
degrees to 45 degrees). At each step, 04 is known and we use a search technique (Brent's
method. See Press [6]) to find all of the values of 63 that satisfy Eq. (55) (when 04 is
known, we have replaced a two parameter (8, and 83) search of a function that does not
have a continuous derivative [Eq. (6)] by a one parameter search of a function with a
continuous derivative). The results are displayed in Fig. 11.

As 04 increases from -55 degrees, there are no solutions of Eq. (55) until 64
reaches -9 degrees. When 04 = -9 degrees, there are two solutions with positive z:
(z,Q) = (0.73, 0.30) and (z,Q) = (0.67, 0.33). The two solutions with negative z
correspond to an increase in 62 by 180 degrees. When z is positive (or negative), we can
separate the paths in Fig. 11 into two distinct paths that have continuous values of the joint
variables: upper and lower. The upper path begins at (z,Q) = (0.67, 0.33) and extends to
point B [(z,Q) = (0.17, 0.24)]. The lower path begins at (z,Q) = (0.73, 0.30) and extends
to point A [(z,Q) = (0.29, 0.27). The maximum value of Q on the upper path is 0.37,
while all of the values on the lower path are less than 0.30. The left ends of the two paths
(when z is positive) occur when 04 is at its upper limit (45 degrees).

Our goal is to determine continuous paths for the joint variables that will minimize
Q during a large scale vertical motion by the mobile manipulator. Although the upper path
has a greater range in z and a lower values for Q at its left end, the lower path is more
attractive for large scale motions because it has a smaller maximum value for Q. In the
remainder of this section, we will consider both of the equal paths: upper and lower.
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Fig. 11. Maximum torque (Q) versus height (z) for paths with three
equal torques. The units of torque are newton meters and the units of
height are meters.




32

The two segments of the equal paths are the only Class 3 solutions and they cannot
reach all of the workspace for the CESARm. To cover all of the workspace, we will use
Class 2 solutions. To define the workspace of the CESARm, we will introduce two new
variables (R and ot) and derive a new expression for the z coordinate of the CESARm. We
express the variables c3 D and H in polar coordinates:

c3D=Rsina (56)
H=Rcosa 57
where:
R%= (c; D)? + H? (58)
tana=c3 D/H (59)

Using Egs. (56) and (57), Eq. (44) may be written:

z=R cos(07 - o) (60)

As 05 increases from o to o + 7, z will decrease from R to -R. Thus, R defines the reach
for the CESARm. For fixed values of 84 (D and H), the maximum value of R will occur
whenci3=x1land 3=0o0rm.

In Fig. 12, values of Q are plotted for three cases as 0, increases from o to o + 7.
For the cases in Fig. 12, 83 = 0 and 84 = -55 degrees, -5 degrees, and 45 degrees. The
maximum value of the reach occurs when 84 = -55 degrees and R = 1.10 meters. The case
when 04 = -55 degrees has very high values for Q when z = 0. The case when 64 = 45
degrees has much lower values for Q in the neighborhood of z = 0. For the cases in
Fig. 12, a good strategy for moving through the workspace would be to move from the
maximum reach posture (84 = -55 degrees) to the minimum reach posture (84 = 45
degrees) and back to the maximum reach posture as the elevation of the CESARm moves
from 1.10 meters to -1.10 meters.
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In each of the three cases displayed in Fig. 12, the plots of Q vs z have local
minima. The local minima are Class 2 solutions that occur when the maximum torque
switches from one joint to another. Since 63 =0, J3 = 0 [see Eq. (48)]. Thus, the local
minima always occur when G2%(0) = G46) or Jo=x1J4. For each value of 64 there
are two values of 6, (and two values of z) for which G2(6) = G4(8). In Fig. 12, the
solutions with positive values of z have lower values than the solutions with negative
values of z.

The branch with the lower values is plotted in Fig. 13 (and labeled Long). The
lower path from Fig. 11 is plotted in Fig. 13 (and labeled Equal). The Long path has a
greater range than the Equal path. Furthermore, the Long path has lower values for Q for
values of z that are greater than the value at which the two curves cross (although the
curves cross in Fig. 13, the joint angles are not equal. 8 = (110, 0, 15) for Long and
0 = (-121, -140, 5) for Equal). The Equal path has lower values for Q for values of z that
are less than the value at which the two curves cross.

By exploring Class 2 paths, we have found a continuous path that could reach
larger values of z than the Class 3 Equal path. Next, we will seek Class 2 paths that can
bridge between the two segments of the Long path or the four segments of the Equal path.

A bridge path must be continuous in joint space. For each point in a plot of Q and
z, there are four sets of joint angles that will reach the point. Consider the surface of Q as a
function of 8, and 6;. We will keep 94 constant (84 = 45 degrees). From Table 6, we
find the surface is symmetrical about the 8; axis [since Q(82, ~83) = Q(6,, 83), the surface
is symmetrical about the line where 83 = 0 (the 0, axis)]. Since the surface is symmetrical,
we will assume that the values of 03 lie between 0 and . The surface is not symmetrical
about the 03 axis [Q(-02, T—03) = Q(02, 03). We will assume that the values of 03 lie
between -7t and . Thus, there will be two sets of joint angles that will reach each (Q,z)
point The set with positive values for 8, will be called set one, while the set with negative
values for 8, will be called set two.

To find Class 2 paths, we seek all values of the joint angles that have equal
magnitudes for two of the three torques. With 8, constant (64 = 45 degrees), we vary 6
from -180 degrees to 180 degrees. For each value of 83, we find all of the values for 63
that have equal magnitudes for two of the three torques. For each value of 65, there can be
as many as six values for 63 Jo=%1J3,J; =% 14, and J3 =+ J4. The six expressions for
03 are derived in the appendix). When two of the three torques have equal magnitudes
(Gi=GJ), the third torque (GX) can be larger or smaller than the two equal torques. We
restrict our attention to the case where the two equal torques are larger than the third torque
and consequently are on the Q surface.
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Fig. 13. Maximum torque (Q) versus height (z) for the Long path
and the Equal path. The units of torque are newton meters and the units of

height are meters.
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To discuss the paths on the Q surface, we will define the beginning and ending
points for the paths. In Fig. 11, we identified the four segments of the Equal path using
the letters A, B, C, and D. For each point on a bridge path, there will be two sets of joint
angles. At point A, the set with positive values for 6, will be called A, while the set with
negative values for 8, will be called A;. Our list of significant points on the bridge paths is
given in Table 7.

Fig. 14 is a network diagram showing the connections between the significant
points on the bridge paths that are defined in Table 7. Although all of the points are
displayed in the correct positions, the paths between the points are not the straight lines in
Fig. 14. We have previously discussed the points A, B, C, and D. The points E and F are
on the boundary between positive and negative values of 8, (recall that the angle 6, = 1 is
equal to the angle 6, = -m). The points G and H are the ends of the two segments of the
Long path. Furthermore, G and H are on the boundary between positive and negative
values of 63. The points J, K, L, and M are intermediate points on a bridge paths between
the four ends of the segments of the Equal path at which the torque attains its maximum
value (they are the summits on the paths).

In Fig. 14, there are two paths from A to D: AJC and CMD or ALB and BKD.
Both paths have the same maximum value for Q (at points J or K). Similarly, there are two
paths from B to C. The path from A to B via L has a lower value for Q than the path via J,
C, M, D, and K. The path from G to H passes through A and D.

For each point on the surface of Q in the Q-z plane, there are two sets of joint
angles with positive values for 83 ( and two sets of joint angles with negative values for
63) that will reach the point. The network diagram showing the bridge path connections in
the Q-6, plane is displayed in Fig. 15, while the network diagram in the Q-83 plane is
displayed in Fig. 16. In Fig. 15, the points with positive values for 8, have the subscript
one, while the points with negative values for 6, have the subscript two. The points E and
F are on the boundary between positive and negative values of 8,. In Fig. 16, we see that
all significant values of 83 have two points; the first with the subscript one and the second
with the subscript two. There is a path between the points E; and E; and between the
points Fy and F5. Thus, the points E and F provide paths between the subscript one points
and the subscript two points (paths between positive and negative values of 8;).

We have reviewed the connection network for the bridge paths. Next, we will learn
the topography of the Q surface by examining slices through the surface for various
positive values of 8. We begin with 8, = 0 (see Fig. 17). From Table 6, we expect the
figure to be symmetrical about 83 = 90 degrees [since, Q(83) = Q(nt - 03)]. From Fig. 15,
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we expect to see point F in this figure. Point F; is when G2 = G* at 22 degrees, while
point F, is when G2 = G4 at 158 degrees. Since Q is constant between Fy and F3, there is
no torque penalty in moving from F to F,. Point F is the trailhead for the path to positive
values of 85, while F; is the trailhead for the path to negative values of 6,.

Table 7. The joint angles at the significant points on the bridge paths.

Point z Q 0, 03
Ay 0.29 0.27 91 44
Az 0.29 0.27 91 136
B; 0.17 0.24 142 102
B, 0.17 0.24 ~142 78
C -0.17 0.24 38 78
CJZL -0.17 0.24 -38 102
D -0.29 0.27 89 136
D;;_L -0.29 0.27 -89 44
E, 0.28 0.36 180 158
E; 0.28 0.36 ~180 22
F, -0.28 0.36 0 22
F, —0.28 0.36 0 158
G, 0.36 0.32 84 0
G_2L 0.36 0.32 -84 180
H, -0.36 0.32 96 180
Hzl -0.36 0.32 =96 0
Iy 0.08 0.32 70 62
J_z 0.08 0.32 -70 118
K, -0.08 0.32 110 118
K» -0.08 0.32 -110 62
L 0.28 0.31 115 62
Lo 0.28 0.31 -115 118
M, -0.28 0.31 65 118

M —0.28 0.31 ~65 62
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Fig. 14. Network diagram for the Bridge paths. Maximum torque
(Q) versus height (z). The units of torque are newton meters and the units
of height are meters.
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The point C; is a Class 3 point where G2 = G3 = G* (see Fig. 18). There is only
one path from F, to C;. As 0, increases from 38 degrees after C), the trail forks and there
are two paths: Cy to Aj and C, to D,.

The point G is end of the Long path (see Fig. 19). In Fig. 19, 6, = 83.6 degrees,
G; is a local maxima of Q, and the local minima of Q occur at 63 = 51 degrees on the path
from C; to A and at 63 = 133 degrees on the path from C, to D;. In Fig. 19, there are six
points where Gi = Gi. The Q surface is symmetrical about 83 = 0 and G; is a trailhead for
entering the negative values of 83. In the network diagram (Fig. 14), the path leads from
G, to A;. However, there is not a torque penalty to immediately move from G to the path
from C;to A;.

In Fig. 20, 8, = 88.5 degrees and the point D is a Class 3 point. We followed the
path from C; to D;. As 05 increases, two paths leave D; one travels to H; and the other
travels to B;. Thus, a Class 3 point is the junction of three Class 2 paths. All four Class 3
points in Fig. 14 have this property. On the left side of Fig. 20, we see two Class 2 paths
approaching A;: the path from C; to A; and the path from Gt A;.

In Fig. 21, 8, = 91.5 degrees and the point A is a Class 3 point. As 0; increases,
the only path leaving A, travels to B;. On the right side of Fig. 21, we see two Class 2
paths leaving D,: the path from D to B, and the path from D to H;. In both Figs. 20 and
21, we see that there is a hill that prevents a low torque path directly from A, to D;.

In Fig. 22, 0, = 96.4 degrees and the point H, is end of the Long path. Since the
Q surface is symmetrical about 63 = 0, H; is a local maxima and a trailhead for entering the
negative values of 03. In Fig. 23, 8, = 116 degrees and the point L) has the maximum
torque on the path from A to B;.

In Fig. 24, 0, = 142 degrees and the point B, is a Class 3 point. As 0, increases,
the only path leaving B, travels to E;.

In Fig. 25, 8, = 180 degrees and we have reached point E, the gateway to negative
values of 8;. Like Fig. 17, Fig. 25 is symmetrical about 83 = 90 degrees. Point E; is at
158 degrees, while point E; is at 22 degrees. Since Q is constant between E; and E;, there
is no torque penalty in moving from E; to E,. Point E, is the trailhead for the path to
positive values of 6;, while E; is the trailhead for the path to negative values of 6,.

We have proven that at the min-max point the magnitude of the normalized torques
will be equal to the min-max value at one or more of the joints. We have assumed that the
paths with minimal torque will be Class 3 paths that have equal torque in all joints. To
extend the space of possible paths, we have considered Class 2 paths. To find paths, we
have ignored the position constraint [f(8) = P*]. We have found all Class 3 and Class 2
points and then examined their positions.
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APPENDIX

FORMULAS FOR TWO EQUAL TORQUES

With 04 constant, we vary 0; from -180 degrees to 180 degrees. For each
value of 6, we find all of the values for 03 that have equal magnitudes for two
of the three torques. For each value of 6, there can be as many as six values for
03 (Jo=xJ3,]Jp=%]4,andJ3 =% J4). In this appendix, we will derive formulas for the

six expressions for 03.
Assume that J; = K J3 (where K =% 1.0). Then:

cc3D-ssH=-Ksps3D (AlD)
Gathering the terms involving 683 on the left:
(cac3+Ksys3)D=sy H (A2)
Using the addition formula for cosine:
cos(0;-K60)=s,H/D (A3)
If Is; H/ DIl < 1.0, define 6 by:
cos(®)=s, H/D (A4)
Then the solution of Eq. (A3) is:
6:;=K0,+0 (A5)
Assume that J, = K J4. Then:
cac3D-soH=-Kagsycysg+Kagcocy (A6)

Gathering the terms involving 03 on the left:
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cs3(caD+Kagsysg) =soH+Kagcoey
Eq. (A7) may be written:
cos(03)=(spH+Kagcrcyg)/(co D+ Kagsysg)
Assume that J3 = K J4. Then:
-sp83D=-Kagsycisg+Kagcacy
Gathering the terms involving 63 on the left:
c3(Kagsysg)-s3(s2D)=Kagcacy
Define 8 and p by:
pcosd=Kags84
psind=s,D
Eq. (A10) may be written:
p(cicosd-s3sind)=Kascacy
Using the addition formula for cosine:
cos(B3-86)=Kagcaoca/p
If lag c3 c4 / pl < 1.0, define € by:
cos(e)=Kagcaca/p
Then the solution of Eq. (A14) is:

0;=0+¢

(A7)

(A8)

(A9)

(A10)

(Al1)

(Al2)

(A13)

(Al4)

(A15)

(A16)
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The sequence of figures (Figs. 17 to 25) provides us with an opportunity to
examine some of our assumptions. The figures display the surface of Q as a function of 6,
and 63;. In general, each local minima on the Q surface could be a Class 1, Class 2, or
Class 3 point. In Figs. 17 and 25, there is a interval where Q is constant . For the initial
and final points two torques are equal but for the interior values only one of the torques
(G4) is equal to Q. Although the derivative of G* with respect to 83 is zero in the interval,
the derivative with respect to 8; is not zero except at the point where 03 = 90 degrees. This
point is not a local minimum, it is a saddle point (minimum with respect to 63 and
maximum with respect to 8;). In all of the other figures, the minimum values of Q occur
when two or three torques are equal. Thus, there are no Class 1 points in the sequence of
figures.

Figurel4 is a network diagram that connects the significant points on the bridge
paths with straight lines. We will now display the actual shape of the bridge paths. We
begin with the equal bridge paths, the paths that connect the points A, B, C, and D. A
closeup of the equal bridge paths is given in Fig. 26. Figure 27 displays both the equal
paths (upper and lower) and the bridge paths. While there is a significant increase in torque
in moving from A to D, the maximum values are less than the unoptimized values in
Fig. 12.

The bridge for the long path begins at G, moves to A, and can take either of the two
paths from A to D. A closeup of the long bridge path via point C is displayed in Fig. 28.
Fig. 29 plots both segments of the long path and the bridge. The paths from G to A and
from H to D are very close to straight lines.

By exploring paths where the magnitudes of two or three of the torques are equal
during the motion, we have found three types of paths that are continuous in joint space:
Equal, Long, and Bridge . Next, we will determine which paths satisfy the necessary
conditions [Eqs.(14), (15) and (16)]. We begin by determining the elements of the A
matrix [see Eq. (22)]. For the CESARm (and the planar manipulator), the functions Gi(6)

are given by:
Gi(0)=d; J; (61)

where the constants d; = £ 1 and the signs are chosen to make the Gi(6) nonnegative. We
define the matrix (0) by:

_21(8) _ 9%(8)

Q; =
' 98; 98,96,

(62)
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The matrix €2 will be symmetric:

Qp=-spc3D-coH (63)
Qxn=-cys3D (64)

4 =-8452C4-843C2C384 (65)
Qi3=-s5¢3D (66)
34=245283 84 (67)
Qus=-2452C3C4-24C284 (68)

Using the matrix €2, the A matrix is:

d2Q32 d3Q23 dg Qo4
AT=[d;Q3; d3Q33 ds Qa4 (69)
d2 Q42 d3 Q43 dgsQag

Our goal is to find the y; that satisfy the first order necessary conditions [Eqgs. (14)
to (16)]. We will introduce the intermediate vector (1; = l;/ A) and solve Eq. (15) to find
the values of 1;. We can choose the normalization factor (A) to insure that Eq. (14) is
satisfied:

A=1/3, (70)
i

Hi=A*ny n

The remaining condition is that the j; must not be negative [Eq. (16)]. Thus, the p; satisfy
the necessary conditions if the %; all have the same sign.

Table 8 provides a summary of our evaluation of the necessary conditions for the
lower branch of the Equal path. The first six points do not satisfy the necessary conditions
while the last six points do satisfy the conditions. In Fig. 13, the initial section of the
lower branch of the Equal path is higher than the Long path. All points on the Long path
satisfy the necessary conditions (see Table 9).
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For the Bridge paths, 04 is constant and we will evaluate the necessary conditions
for both a function of all three joint variables and a function of the first two variables. We
present the results for the Bridge path from A to B in Table 10. The results for the path
from C to D are the same as the results in Table 10. Considering all three joint variables,
the Bridge path satisfies the necessary conditions for the first four points and fails the test
for the last two points. Thus, the Class 3 points B and C (the lowest points in Fig. 14) do
not satisfy the necessary conditions. Considering the first two joint variables, the Bridge
path satisfies the necessary conditions for the first three points and the last point while
failing the test for two intermediate points.

Table. 8. [Evaluation of the necessary conditions for the lower
branch of the Equal path.

n 04 z Q Satisfy?
1 -10 0.74 0.30 No
2 -5 0.72 0.29 No
3 0 0.69 0.29 No
4 5 0.66 0.29 No
5 10 0.61 0.29 No
6 15 0.58 0.29 No
7 20 0.53 0.29 Yes
8 25 0.49 0.29 Yes
9 30 0.43 0.29 Yes
10 35 0.39 0.29 Yes
11 40 0.34 0.28 Yes
12 45 0.29 0.27 Yes

Table 9. Evaluation of the necessary conditions for the Long path.

n 04 z Q Satisfy?
1 -55 1.09 0.11 Yes
2 -30 0.99 0.19 Yes
3 -5 0.82 0.25 Yes
4 20 0.62 0.30 Yes
5 45 0.36 0.32 Yes
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Table 10. Evaluation of the necessary conditions for the Bridge path
from A to B.

Satisfy?
n 02 A Q 3X3 2X2
| 91 0.29 0.27 Yes Yes
2 100 0.30 0.29 Yes Yes
3 110 0.29 0.31 Yes Yes
4 120 0.28 0.31 Yes No
5 130 0.24 0.29 No No
6 142 0.17 0.24 No Yes

For the Bridge path from A to C (see Table 11), the path satisfies the 3X3
necessary conditions for the first three points and fails the test for the last three points. The
path satisfies the 2X2 necessary conditions at all points. The results for the path from B to
D are the same as the results in Table 11.

Table 11. Evaluation of the necessary conditions for the Bridge path
from A to C.

Satisfy?
n 0, z Q 3X3 2X2
1 91 0.29 0.27 Yes Yes
2 80 0.17 0.31 Yes Yes
3 70 0.08 0.32 Yes Yes
4 60 -0.01 0.31 No Yes
5 50 -0.09 0.28 No Yes
6 38 -0.17 0.24 No Yes

The results for the Bridge path from A to G (and D to H) are summarized in
Table 12. The path satisfies both the 3X3 necessary conditions and the 2X2 necessary
conditions at all points. The path from B to E is evaluated in Table 13. The path does not
satisfy the 3X3 necessary conditions at any point except the last point. The path satisfies
the 2X2 necessary conditions at all points.

Finally, we shall consider the Class 1 paths. For Class 1, one of the Gi(0) is larger
than the others and it must satisfy the conditions of classical optimization [Eq. (19)]. The
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elements of the A matrix are the partial derivatives of the Gi(8). If G2 is largest, the
classical optimization conditions require that the first column of the AT matrix will be zero.
If G3 is largest, the second column of the AT matrix will be zero and if G4 is largest, the
third column will be zero.

If the first column of the AT matrix is zero, then Q,3 will be zero:

c2s3D=0 (72)

D cannot be zero. (If D =0, 64 =+ 93 degrees. The allowable range for 64 is from -55
degrees to 45 degrees.) If Q21 is zero, then either ¢c; =0 or s3 = 0.

Table 12. Evaluation of the necessary conditions for the Bridge path
from A to G.

Satisfy?
n 0, z Q 3X3 2X2
1 91 0.29 0.27 Yes Yes
2 90 0.30 0.28 Yes Yes
3 89 0.31 0.28 Yes Yes
4 88 0.31 0.29 Yes Yes
5 87 0.32 0.29 Yes Yes
6 86 0.33 0.30 Yes Yes
7 85 0.34 0.31 Yes Yes
8 84 0.36 0.32 Yes Yes

Table 13. Evaluation of the necessary conditions for the Bridge path
from B to E.

Satisfy?
n 02 z Q 3X3 2X2
1 142 0.17 0.24 No Yes
2 150 0.17 0.25 No Yes
3 160 0.19 0.28 No Yes
4 170 0.22 0.31 No Yes
5 180 0.28 0.36 Yes Yes




60

For the first case, if c3=0 and Q3 =0 then ¢c3D=0. Since D cannot be zero,
c3=0. If c3 =0, c3 =0, and Q224 = 0, then c4 = 0. However, the points where c4 = 0 are
outside the allowable range for 84. Thus, there is not a Class 1 solution for this case.

For the other set of Class 1 solutions, s3 = 0. If Q4 is zero:

Ty=-¢c3Ty (73)

Given 04, Eq. (73) can be used to determine 8. For example, if 63 = 0 then 6; = -64 or
02 = - 04. There are four sets of solutions (two values of 8, when 63 = 0 and two
values of 6, when 03 = 1), For all four sets of solutions, G4 = a4 = 0.508 newton meters.
Thus, the minimum value of Q(0) cannot be less than 0.508. Hence, these four Class |
solutions have much higher values for Q(8) than the best Class 2 and Class 3 paths (see
Figs. 27 and 29).

If the second column of the AT matrix is zero, then Q,3 will be zero and either
¢y =0 ors3; =0. For the first case, if c =0 and Q33 =0thenc3=0. Ifc3=0,¢c3=0,
and Q34 =0, then s4 =0. At these points: G2 = 0.635, G3 = 0.537, and G4 = 0. Thus,
Q(08) = 0.635 newton meters and G3 is not the largest value. Thus, there is not a Class 1
solution for this case.

For the second case, if s3 =0 and €33 = 0 then s, = 0 and Q34 =0. Ifs3 =0 and
$2=0,G2=D, G3=0, and G4 =D - a3. Thus, Q(0) = D and G3 is not the largest value.
Thus, there is not a Class 1 solution for this case.

The third column of the AT matrix will be zero if s, =0 and sq = 0. For this
case: G2=c3D, G3 =0, and G4 = 0.508. If the magnitude of 03 is greater than 18.9
degrees, G* will be the largest of the Gi and Q(8) = 0.508 newton meters. Thus, this case
has a Class 1 solution.

The second case for which the third column of the AT matrix will be zero is when
s3 = 0 and Eq. (73) is satisfied. This is the same as the second case when the first column
of the AT matrix was zero.

We have examined all of the possible Class 1 solutions. In all cases, the minimum
value of Q(0) cannot be less than 0.508 newton meters. Hence, all Class 1 solutions have
much higher values for Q(0) than the best Class 2 and Class 3 paths (see Figs. 27 and 29).




5. CONCLUSIONS

We have considered the problem of determining the time trajectories of the joint
variables of a mobile manipulator with many redundant degrees of freedom that will
minimize the maximum value of the torque during a large scale motion by the manipulator.
To create a well defined problem, we have divided the problem into two components: path
planner and surveyor. The path planner chooses a path between two points in Cartesian
space that will minimize the maximum value of the torque along the path. The input to the
path planner is a network of path segments with the maximum value of the torque on each
segment. The surveyor explores the joint space, calculates the Cartesian position and
maximum torque, and defines the network of path segments. In this paper, our focus has
been on the surveyor and not on the path planner.

There is a large literature on algorithms for the solution of min-max problems.
However, our min-max problem has an extra constraint on the joint variables. We have
used the Kuhn-Tucker conditions to derive necessary conditions for the solution of our
min-max problem. We find that the necessary conditions require that at one or more of the
joints the magnitude of the normalized torques will be equal to the min-max value. We
have classified the sets of points that satisfy the necessary conditions based on the number
of the normalized torques t hat are equal to the min-max value. We have solved the
min-max problem by identifying all of the points in all of the classes.

Our surveyor is experienced and uses a rule of thumb: follow valleys. Valleys are
the intersections of two or more of the joint torque surfaces [Gi(8)]. Along the valleys, the
magnitudes of two or more of the joint torques will be equal. Valleys are good locations
for low torque paths. The surveyor has explored two examples: a planar manipulator and
the CESARm.

The mobile planar manipulator has three revolute joints. We began by exploring the
Class 3 paths. We defined four cases and 16 subcases. For each of the 16 subcases, we
have defined the three link angles in terms of a single parameter. By relating the three link
angles to the parameter, we have resolved the redundancy.

We have found that 13 of the 16 subcases satisfy the necessary conditions. Of the
13 subcases, there are five configurations with a one meter workspace, three configurations
with a three meter workspace, and one configuration with a five meter workspace. Given
an initial value for z and a final value, the path planner will choose one of the 13 options.
All but one of the options has a portion of the workspace where it is superior to any of the
other options. Thus, the Class 3 paths reach all parts of the workspace.
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We have explored Class 2 and Class 1 paths. We have surveyed Class 2 paths for
a constant value of z. By examining Class 2 paths, we have been able to identify all 10 of
the Class 3 subcases that can reach the point z = 0.25. In 8 of the 10 subcases, we have
found a local minima. All of the local minima for the Class 2 paths occurred at points
where the torques were equal at all three joints. Thus, we were unable to find any Class 2
local minima. All of the Class 1 solutions had higher values for the torque than the best
Class 3 paths.

The CESARm is a manipulator with 7 degrees of freedom that can reach points in
3D space. We assumed that the CESARm is mounted on a mobile platform that will
control the x and y coordinate of the arm's tip We have three joint angles controlling the
height of the arm (z). We explored the Class 3 paths. There are four ways that three
torques can be equal. For the planar manipulator, the four cases were distinct. For the
CESARmM, the four cases correspond to changes of variables. We found four segments for
the Class 3 paths. While the four segments have low values for the maximum torque, they
only cover part of the workspace and do not join together.

By exploring Class 2 paths, we have found paths that cover the workspace and
bridge between the disjoint Class 3 path segments. We have evaluated the necessary
conditions for both the Class 3 paths and the Class 2 paths. In most cases, the paths
satisfy the necessary conditions.

We have examined all of the possible Class 1 solutions. In all cases, the minimum
value of the torque cannot be less than 0.508 newton meters. Hence, all Class 1 solutions
have much higher values for the torque than the best Class 2 and Class 3 paths.




