

Conf 950402--2
SAND 94-3183 C

SYMPORIUM ON ADVANCED TECHNIQUES IN CATALYST PREPARATIONS
PRESENTED BEFORE THE DIVISION OF PETROLEUM CHEMISTRY, INC.
AMERICAN CHEMICAL SOCIETY
ANAHEIM, CA MEETING, APRIL 2-7, 1995

SYNTHESIS AND CHARACTERIZATION OF FE COLLOID CATALYSTS IN
INVERSE MICELLE SOLUTIONS

By

Anthony Martino, Matthew Stoker*, Michael Hicks*, Calvin H. Bartholomew*, Allen G. Sault, Jeffrey S. Kawola, Fuel Science Department, Sandia National Laboratories, Albuquerque, NM 87185-0710, *Department of Chemical Engineering, Brigham Young University, Provo, UT 84602

INTRODUCTION

Surfactant molecules, possessing a hydrophilic head group and a hydrophobic tail group, aggregate in various solvents to form structured solutions (1-3). In two component mixtures of surfactant and organic solvents (e.g., toluene and alkanes), surfactants aggregate to form inverse micelles. Here, the hydrophilic head groups shield themselves by forming a polar core, and the hydrophobic tails groups are free to move about in the surrounding oleic phase. We have studied the formation of Fe clusters in inverse micelles. Iron salts are solubilized within the polar interior of inverse micelles, and the addition of the reducing agent LiBH₄ initiates a chemical reduction to produce monodisperse, nanometer sized Fe based particles. The reaction sequence is sustained by material exchange between inverse micelles. The surfactant interface provides a spatial constraint on the reaction volume, and reactions carried out in these micro-heterogeneous solutions produce colloidal sized particles (10-100Å) stabilized in solution against flocculation by surfactant. We have characterized the clusters with respect to size with transmission electron microscopy (TEM) and with respect to chemical composition with Mossbauer spectroscopy, electron diffraction, and x-ray photoelectron spectroscopy (XPS).

Metal alkoxide reactions (4), the formation of polymer particles (5,6), and the formation of metal (7-12) and semiconductor (13-21) clusters are examples of chemical processes that have been carried out in structured surfactant solutions. The formation of ultra-small metal particles is of particular interest in the area of chemical catalysis. The clusters are high surface area, highly dispersed, unsupported materials. In addition, catalytic enhancement due to unique material properties (i.e. quantum size effects) is possible. Metal clusters prepared by a number of techniques have been studied as potential catalysts (22). Reactant adsorption and the reactivity in various processes depends strongly on particle size. The effect is not just a matter of surface area, but of a fundamental change

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

5P

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

in the material's properties as the number of metal atoms per cluster decreases. Pt, Pd, Rh, and Ir particles prepared via inverse micelle techniques (23) have been studied in the hydrogenation and isomerization of but-1-ene (24,25) and the hydrogenolysis and isomerization of hexanes (26). The activity of these catalysts increases when supported, and the selectivity of the colloidal sized particles is a function of the particle size. We are studying iron clusters as potential catalysts in hydrogenation reactions, Fischer-Tropsch synthesis, and coal liquefaction.

EXPERIMENTAL

Octane and toluene were purchased from Aldrich at 99.9+% purity. Surfactants used include didodecyldimethylammonium bromide (DDAB) from Kodak and butyl-ethylene glycol n-dodecyl ether ($C_{12}E_4$) from Nikkol. Metal salts used include iron(III) chloride hexahydrate from Aldrich and iron(II) tetrafluoroborate hexahydrate from Alfa Chemicals. Lithium borohydride in tetrahydrofuran (2M) was purchased from Aldrich.

Synthesis of Fe Based Colloids: Four different iron samples (FeI, FeII, FeIII, and FeIV) were prepared and studied (Table 1). The reactions and all chemical manipulations are carried out in a glove box under dry, oxygen-free conditions. The synthesis technique is general and specific samples differ only in the type and concentration of salts and surfactant added to the apolar solvents. First, the inverse micelle solutions are prepared by adding surfactant to the solvents (i.e. DDAB in toluene, $C_{12}E_4$ in octane). Then, the metal salts are introduced and the precursor salt solutions are mixed overnight on a stirring plate to assure complete solubilization. Transparent yellow Fe salt solutions are formed. 2M LiBH₄/THF solution is directly injected into the salt solutions under rapid stirring to initiate the reduction of iron. The reaction is run at a 3:1 molar ratio of $[BH_4^-]:[Fe^+]$. The reacted Fe solutions turn black. The colloids formed in solution are stabilized by surfactant indefinitely.

Further manipulation of the iron in DDAB/toluene solutions produces iron powders. When approximately 15 vol. % methanol is added to the colloidal solution, the surfactant is washed from the colloid surface, and the particles aggregate. A black precipitate forms below a clear and transparent solution after several hours. The precipitate is separated from the solution by centrifugation and washed with methanol. The process is repeated two or three times, and the powder is finally dried (FeIII). We have re-coated the particles with poly(vinylpyrrolidone) (MW = 40,000) by adding the polymer to an iron powder and methanol mixture. The particles remain in solution for days without the presence of surfactant. Removing the methanol produces Fe particles embedded in PVP powder (FeIV). Replacing surfactant with polymer allows us to control the ratio of

stabilizing agent to metal, remove the relatively volatile surfactant for x-ray photoelectron spectroscopy studies, and protect the particles from oxidation during air exposure.

Characterization of the Colloids: Particle size and composition in the colloidal solutions are characterized with transmission electron microscopy (TEM) and electron diffraction. These tests are performed with a Joel 1200EX electron microscope. The colloidal solutions are applied directly on a holey carbon grid, and the solution is wicked away by adsorbent towels under the grid leaving the particles on the grid. Transfer of the particle coated grid into the microscope briefly exposes the sample to air.

Mossbauer spectroscopy is used to determine the composition of the iron in the PVP coated iron powders (FeIV). The Mossbauer Spectrometer (Austin Science) and its operation are described in detail elsewhere (27). The spectra are obtained using a 60 mCi⁵⁷Co in palladium foil source and computer fitted to Lorentzian lines with a least-squares optimization procedure. The spectra are corrected during the collection procedure to remove the curved background of instrumental origin, and resonant absorption areas are found from integration of the background curvature-corrected spectra. With the use of an absolute laser velocity calibrator it is possible to measure isomer shifts to within an absolute accuracy of +/-0.005 mm/s. A particle embedded polymer powder was tested under four conditions: at room temperature without air exposure, at room temperature after air exposure, at -183°C, and at -183°C with an applied magnetic field of 11kGauss.

X-ray photoelectron spectroscopy (XPS) is used to determine the composition of the iron particles in solution (FeI), as powders (FeIII), and as powders re-dispersed with PVP in methanol (FeIV). To prepare samples of the surfactant stabilized iron particles suitable for XPS analysis, the surfactant/particle solution is evaporated to concentrate the particles and a drop of the resulting solution is placed on a Ta foil and allowed to evaporate completely overnight. For analysis of the washed iron powders, the particles are re-dispersed in methanol and a drop of the dispersed solution is placed on a Ta foil and again allowed to dry. Finally, for the particles embedded in PVP, the PVP matrix is dissolved in methanol and a drop of the resulting solution placed on a Ta foil and the methanol evaporated to form a PVP film. All samples are prepared and mounted on a sample holder inside a dry, oxygen free glove box. As with microscopy, transfer of the sample to the XPS chamber requires brief exposure to air. XPS is performed using Al K_α radiation, and an analyzer resolution of 1 eV.

Complexometric experiments were used to determine the extent of reaction of the iron salts upon reduction. 1, 10 phenanthroline forms a complex with ionic Fe²⁺ species that has a distinctive maximum at 530 nm. The peak is followed before and after reaction with UV-visible spectrophotometry (Hewlett-Packard 8452A diode array

spectrophotometer) by adding 1, 10 phenanthroline to the Fe salt precursor solutions and reacted Fe colloid solutions. The quantity and nature of the Fe^{2+} species present is determined. Two salt solutions were studied: $FeCl_3$ and $Fe(BF_4)_2$ in 10 wt. % $C_{12}E_4$ / octane.

Finally, BET surface area analysis of the methanol washed iron powder was carried out with a Quantachrome Autosorb-6 surface analysis apparatus.

RESULTS

Transmission electron micrographs show that the product of the reaction is highly dispersed nanometer sized particles of uniform size and shape (Figure 1). The number average diameter by TEM is 1.5 ± 0.2 nm (FeI). Fe particle size as determined by TEM shows no discernible trend and is roughly constant in the ranges of 0.001M - 0.01M $FeCl_3$ salt concentration and 1-10 wt. % DDAB in toluene. In this range, the average particle diameter is 2.4 nm. The methanol extracted Fe powder characterized by TEM and BET surface analysis consist of agglomerated particles (FeIII). Large agglomeration structures approximately 100 nm in size are observed. These structures consist of the ultra small particles (approximately 2 nm in diameter) flocculated together. Multi-point BET analysis gives a surface area of $156 \text{ m}^2/\text{gm}$ for this sample. The degree of re-dispersion upon addition of PVP has not been determined. As the particles are stable in solution for only a couple of days with PVP, it is likely that the degree of dispersion is not as great as after the original reaction in the presence of surfactant.

Mossbauer spectroscopy completed on the particle embedded polymer powder indicates the presence of three different forms of iron (FeIV). The spectrum for the powder at 21°C before exposure to air (Figure 2) is fit with two doublets and a singlet (corresponding Mossbauer parameters are found in Table 2). We assign the first doublet to the presence of fine superparamagnetic particles of FeB, the second doublet to the presence of $Fe(II)BO_x$, and the singlet to the presence of superparamagnetic Fe metal. On the basis of spectral areas, the iron phases are present at 60, 10, and 30 mole %, respectively with the species order listed above. The mole percentages are based on equal recoil-free fractions of each phase, and this assumption is only approximately correct in the case of small clusters. There is no discernible change in the spectra or fit after the sample is exposed to air. The iron is apparently protected from oxidation by the polymer. The spectrum of the sample at -183°C after exposure to air is quite different from the room temperature spectrum (Figure 3). It appears that the two large peaks in the room temperature spectrum have broadened. The broadened spectrum is fit with a sextet and two doublets (Table 3). The sextet has a magnetic hyperfine splitting of 128 kOe and an isomer

shift of 0.35 mm/sec consistent with the presence of superparamagnetic FeB. When a magnetic field is applied to the sample, the spectrum is further broadened.

Selected area electron diffraction (FeII) and XPS (FeI, FeII, FeIV) give complementary results. Diffraction patterns of particles deposited on the microscope grid are consistent with the presence of α -Fe. The electron diffraction results do not indicate the presence of any crystalline iron oxides, borides, or borates. A diffraction pattern consistent with the presence of crystalline B_2O_3 as a reaction by-product is also detected. XPS of *in-situ* colloids in solution, methanol washed powders, and particle embedded polymer powders detects an undetermined Fe^{2+} species only.

Complexometric experiments indicate that the reaction is complete upon the addition of $LiBH_4$. In the $Fe(BF_4)_2$ precursor solutions, the Fe^{2+} species complexes with 1,10 phenanthroline, and the distinctive peak is observed at 530 nm. The peak is non-existent in $Fe(BF_4)_2$ samples after the addition of $LiBH_4$ indicating the reaction goes to completion. In $FeCl_3$ precursor solutions, no complex is formed with the Fe^{3+} species. After reaction, a slight peak at 530 nm is detected indicating some conversion of Fe^{3+} to Fe^{2+} but too little to quantify.

DISCUSSION

Introduction of $LiBH_4$ to iron salt containing inverse micelle solutions causes immediate reduction of the salt to form nanometer sized, highly dispersed particles of equal size and shape. $LiBH_4$ enters the surfactant-oil solution and is solubilized within the inverse micelle structure. The reaction is initiated and is sustained through material exchange between inverse micelles. After the particle growth has equilibrated, the surfactant stabilizes the particles and prevents flocculation and precipitation. The final particle size of nanometer sized clusters formed in inverse micelles depends on a complicated nucleation and growth process (28). Inverse micelles effect this process primarily in two ways: (1) diffusion of the reacting nucleation sites and ions is governed by exchange rates between micelles and (2) the critical nucleation size depends inherently on the size of the inverse micelles. Size dependence of metal borides, CdS , and $CdSe$ clusters produced in inverse micelles has been discussed previously (12-21). The Fe particles synthesized in DDAB/toluene mixtures showed no size dependence by TEM on the salt to surfactant concentration ratio within the range studied.

Mossbauer spectroscopy, electron diffraction, and XPS results indicate three products are formed by the reduction of iron salts with $LiBH_4$ in inverse micelle solutions. Mossbauer spectroscopy detects three phases: FeB , $Fe(II)BO_x$, and metallic Fe in approximate mole percentages of 60%, 10%, and 30%, respectively. Mossbauer results at

low temperatures and in the presence of a magnetic field further support the presence of FeB. The spectral broadening is consistent with longer magnetic relaxation times in a superparamagnetic species, and the sextet has a hyperfine field consistent with FeB. In the limit of a sufficiently large magnetic field or at sufficiently low temperatures, the spectrum would resolve into six lines.

Electron diffraction gives strong evidence for the presence of α -Fe, and is consistent with the Mossbauer results showing the presence of metallic Fe. The FeB phase is not detected by diffraction because of relatively weak scattering. It is unlikely that the manipulation of the colloids in solution (tested in electron diffraction) to produce the particles in PVP (tested in Mossbauer) results in the formation of FeB and $\text{Fe(II)}\text{BO}_x$. Further Mossbauer experiments are planned, however, on particles not manipulated with methanol and PVP.

XPS of *in-situ* colloids in solution, methanol washed powders, and particle embedded polymer powders detects an undetermined Fe^{2+} species. XPS examines only the particles that protrude above the PVP surface as the Fe 2p photoelectrons can only escape from within 3-4 nm of the PVP film surface. The protruding particles are not protected from oxidation upon exposure to air, and the XPS detected phase is likely a mixture of oxidized FeB and α -Fe. The B 1s XPS spectrum confirms the presence of oxidized boron, but does not show any evidence for borides. Metallic iron detected by electron diffraction even though the samples are exposed to air is not detected by XPS. As XPS surveys only particle surfaces, perhaps an oxidized shell surrounds a small core of Fe^0 species (FeB and/or α -Fe).

This work is supported by the U.S. Department of Energy under contract DE-AC04-94AL85000.

LITERATURE CITED

- (1) Langevin, D., Accounts of Chemical Research, 21, 255 (1988)
- (2) Fendler, J.H., Chem. Rev., 87, 877 (1987)
- (3) Henglein, A., Chem. Rev., 89, 1861 (1989)
- (4) Jean, J.H. and Ring, T.A., Colloids and Surfaces, 29, 273 (1988)
- (5) Paleos, C.M., Chemical Society Reviews, 14, 45
- (6) Perez-Luna, V.H., Puig, J.E., Castano, V.M., Rodriguez, B.E., Murthy, A.K., and Kaler, E.W., Langmuir, 6, 1040 (1990)
- (7) Barnickel, P. and Wokaun, A., Molecular Physics, 69, 1 (1990)
- (8) Gobe, M, Kon-No, K., Kandori, K. and Kitahara, A., Journal of Colloid and Interface Science, 93, 293 (1983)
- (9) Kurihara, K., Kizling, J., Stenius, P., and Fendler, J.H., J. Am. Chem. Soc., 105, 2574 (1983)
- (10) Nagy, J.B., Gourgue, A. and Derouane, F.G., Preparation of Catalysts III, eds. Grange, P., Jacobs, P.A., Elsevier Science Publishers, 193 (1983)
- (11) Torigoe, K. and Esumi, K., Langmuir, 8, 59 (1992)

- (12) Nagy, J.B., *Colloids and Surfaces*, 35, 210 (1989)
- (13) Lianos, P. and Thomas, J.K., *Journal of Colloid and Interface Science*, 117, 505 (1987)
- (14) Lianos, P. and Thomas, J.K., *Chemical Physics Letters*, 125, 299 (1986)
- (15) Modes, S. and Lianos, P., *J. Phys. Chem.*, 93, 5854 (1989)
- (16) Petit, C. and Pileni, M.P., *J. Phys. Chem.*, 92, 2282 (1988)
- (17) Petit, C., Lixon, P. and Pileni, M.P., *J. Phys. Chem.*, 94, 1598 (1990)
- (18) Motte, L., Petit, C., Boulanger, L., Lixon, P. and Pileni, M.P., *Langmuir*, 8, 1049 (1992)
- (19) Pileni, M.P., Motte, L. and Petit, C., *Chem. Mater.*, 4, 338 (1992)
- (20) Robinson, B.H., Towey, T.F., Zourab, S., Visser, A.J.W.G. and van Hoek, A., *Colloids and Surfaces*, 61, 175 (1991)
- (21) Towey, T.F., Khan-Lodhi, A. and Robinson, B.H., *J. Chem. Soc. Faraday Trans.*, 86, 3757 (1990)
- (22) Moskovits, M., *Annu. Rev. Phys. Chem.*, 42, 465 (1991)
- (23) Boutonnet, M., Kizling, J., Stenius, P. and Maire, G., *Colloids and Surfaces*, 5, 209 (1982)
- (24) Boutonnet, M., Kizling, J., Touroude, R., Maire, G. and Stenius, P., *Applied Catalysis*, 20, 163 (1986)
- (25) Boutonnet, M., Kizling, J., Mintsa-Eya, V., Choplin, A., Touroude, R., Maire, G. and Stenius, P., *Journal of Catalysis*, 103, 95 (1987)
- (26) Boutonnet, M., Kizling, J., Touroude, R., Maire, G. and Stenius, P., *Catalysis Letters*, 9, 347 (1991)
- (27) Neubauer, L.R., Ph. D. Dissertation, Brigham Young University, (1986)
- (28) Steigerwald, M.L. and Brus, L.E., *Annu. Rev. Mater. Sci.*, 19, 471 (1989)

Table 1. Listing of the samples used in this study.

NAME	DESCRIPTION
FeI	0.01M FeCl_3 , 10 wt. % DDAB/toluene
FeII	0.01M $\text{Fe}(\text{BF}_4)_2$, 10 wt. % C_{12}E_4 /octane
FeIII	FeI powder from methanol washing
FeIV	0.03M FeCl_3 , 10 wt. % DDAB/toluene, re-dispersed with PVP and re-dried

Table 2. Mossbauer Parameters for FeIV (Figure 2). $T = 21^\circ\text{C}$, sample not exposed to air.

Assignment	Isomer Shift ^a (mm/sec)	Quadrupole Splitting (mm/sec)	Magnetic Hyperfine Splitting (kOe)	% Area
Doublet 1	0.450	0.27	----	60.4
Doublet 2	1.108	2.11	----	10.4
Singlet	-0.136	----	----	29.2

^arelative to iron

Table 3. Mossbauer Parameters for FeIV (Figure 3). $T = -183^\circ\text{C}$, sample exposed to air.

Assignment	Isomer Shift ^a (mm/sec)	Quadrupole Splitting (mm/sec)	Magnetic Hyperfine Splitting (kOe)	% Area
Sextet	0.98	0.065	94.0	43.5
Doublet	0.29	0.87	----	56.5

^arelative to iron

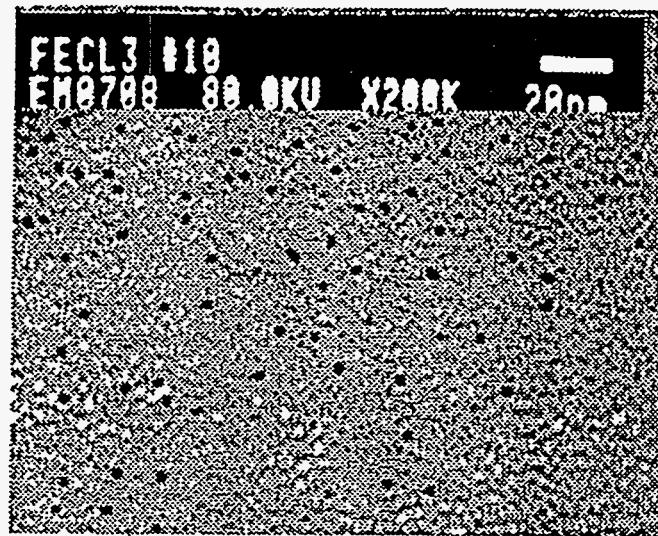


Figure 1. TEM of FeI particles. The number average diameter of the particles shown is 1.5 ± 0.2 nm.

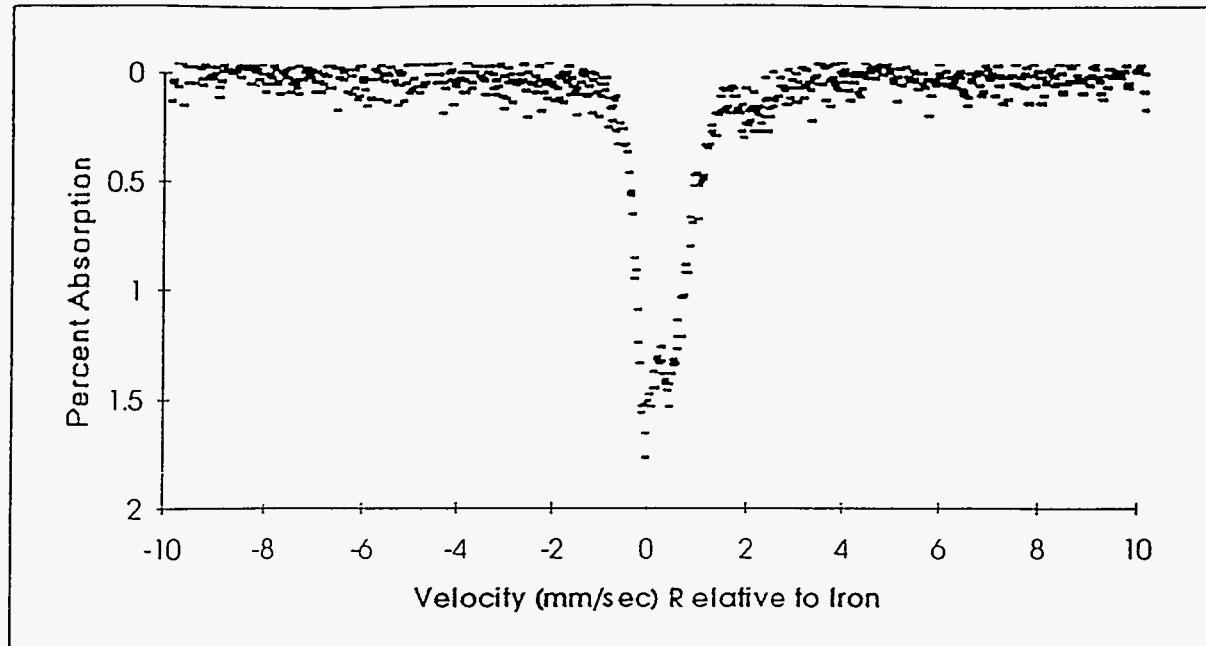


Figure 2. Mossbauer Spectrum of FeIV. $T = 21^\circ\text{C}$. Not exposed to air. Parameters listed in Table 2.

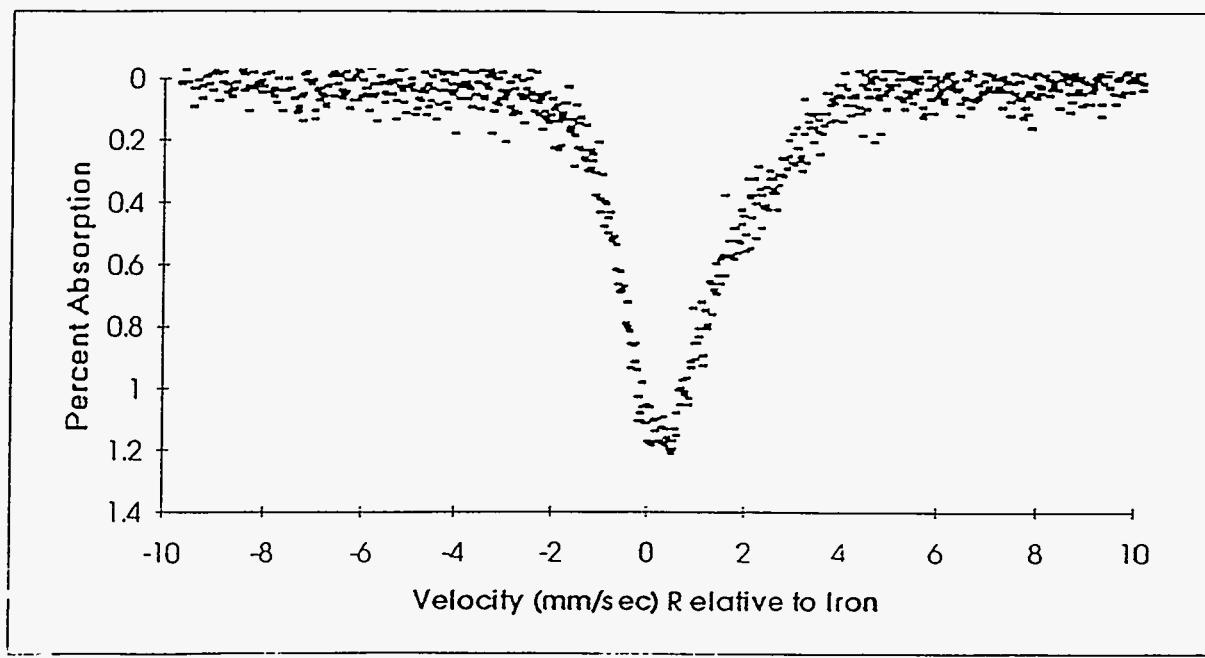


Figure 3. Mossbauer Spectrum of FeIV. $T = -183^\circ\text{C}$. Exposed to air. Parameters listed in Table 3.