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D. C. Nguyen, S. J. Russell, R. L. Sheffield, E. I. Simakov, and N. A. Yampolsky,                    
LANL, Los Alamos, NM  87545, U.S.A. 

R. D. Ryne, LBNL, Berkeley, CA  94720, U.S.A.

Abstract 
The proposed Matter-Radiation Interactions in 

Extremes (MaRIE) facility at the Los Alamos National 
Laboratory will include a 50-keV X-Ray Free-Electron 
Laser (XFEL), a significant extension from planned and 
existing XFEL facilities. To prevent an unacceptably large 
energy spread arsing from energy diffusion, the electron 
beam energy should not exceed 20 GeV, which puts a 
significant constraint on the beam emittance. A 100-pC 
baseline design is presented along with advanced 
technology options to increase the photon flux and to 
decrease the spectral bandwidth through pre-bunching the 
electron beam. 

XFEL REQUIREMENTS 
The proposed Los Alamos MaRIE facility [1] consists 

of three experimental areas – the Multi-Probe Diagnostic 
Hall (MPDH), the Fission and Fusion Materials Facility 
(F3), and the Making, Measuring, and Modeling Materials 
Facility (M4).  MaRIE is intended to probe inside multi-
granular samples of condensed matter with sub-granular 
resolution to study what determines bulk performance 
properties, to enable moving from measuring materials 
properties to controlling them. MPDH will provide the 
first X-ray imaging capability at high energy and high 
repetition rate with simultaneous charged particle 
imaging, allowing dynamic measurements on the same 
sample.  F3 will provide unique in-situ diagnostics and 
irradiation environments. The M4 facility will provide 
comprehensive, integrated resources for materials 
synthesis and control. The accelerator systems for MaRIE 
include both the 800-MeV LANSCE proton accelerator 
with a power upgrade and a 50-keV photon-energy XFEL, 
which will service all three experimental areas.  
Approximately 1011 X-rays per pulse with relative X-ray 
bandwidths no larger than 10-4 are needed to meet the 
scientific requirements of these facilities.   

XFEL BASELINE DESIGN CONCEPT 
The baseline MaRIE XFEL concept uses the SLAC 

National Accelerator Center LCLS XFEL [2] design 
scaled to 20 GeV with electron bunch charges of 100 pC.  
Based on LCLS experimental data, a beam emittance of 
0.3 m and an energy spread of 1.5 10-4 are assumed.  
Single-wavelength GENESIS [3] scaling simulations of 
XFEL performance as a function of bunch energy spread 
and transverse emittance are shown in Fig. 1, where all 
simulations were for a 20-GeV, 3.4-kA beam and where 

the undulator strength is given by aw = 1.47.  To convert 
the vertical axis in Fig. 1, there are 3.7x1010 50-keV 
photons per GW and per nC of bunch charge, at a current 
of 3.4 kA. For example, a power of 10 GW leads to 
3.7x1010 50-keV photons for a 100-pC bunch (30 fsec). 
Strong focusing in the undulator was optimized for every 
set of beam parameters to maximize the photon flux.   
 

 

Figure 1: Time-independent GENESIS scaling 
simulations for the baseline MaRIE XFEL design. 

Based on these simulations, we define a baseline design 
for a 0.3-m, 100-pC bunch, with a 0.015% energy 
spread, which would produce 6x1010 longitudinally 
incoherent photons requiring an 80-m undulator. This 
operating point was chosen over using a 0.5-m 
emittance, 250-pC bunch (also consistent with beam 
measurements at LCLS), which would produce slightly 
more (8x1010) photons in a much longer 130-m undulator, 
partly because of the greater undulator length and partly 
because the transverse coherency drops significantly as 
the normalized transverse emittance exceeds  /rayx  

where and  are the usual relativistic factors [4].   
Increasing the transverse coherency further by dropping 
the emittance to 0.15 m (by using a bunch charge of 
25 pC which would have a bunch length of about 2 m) 
would reduce the photon flux too much. That short a 
bunch length may also introduce deleterious coherent 
synchrotron radiation (CSR) [5,6] effects not seen with 
the longer bunch lengths at LCLS (> 10 m).  Because of 
space constraints, the 20-GeV MaRIE baseline XFEL 
design requires an X-band accelerator, with an 
accelerating gradient of 50 MV/m (giving ~35 MV/m 
average real estate gradient). 
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