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We employed time-and space-resolved full-field magnetic transmission soft x-ray microscopy to
observe vortex-core gyrations in a pair of dipolar-coupled vortex-state Permalloy (Ni80Fe20) disks.
The 70 ps temporal and 20 nm spatial resolution of the microscope enabled us to simultaneously
measure vortex gyrations in both disks and to resolve the phases and amplitudes of both vortex-core
positions. We observed their correlation for a specific vortex-state configuration. This work provides a
robust and direct method of studying vortex gyrations in dipolar-coupled vortex oscillators. ©
2010 American Institute of Physics. [doi:10.1063/1.3517496]

Recently, vortex-core oscillations in micrometer-size (or less) magnetic elements have been
intensively studied for their promising application as microwave emission sources.

1–12
Vortex-

core oscillators provide high-power output and narrow linewidths. Most studies have focused on
electrical measurements using isolated single disks.

4,10–12
However, the need for high-power signals and

high packing density have spurred further studies, not only on coupled vortex-state disks but also on
multiple-disk arrays. In cases of sufficiently short distances between nearest neighboring disks,
dipolar interaction alters their dynamics.13–15

Thus,
the examination of the influence of dipolar interaction

on vortex oscillations is important. To characterize the interaction between individual elements a time-
and space-resolving measurement technique is mandatory.

Recent advances in time-resolved microscopy enable imaging of the spin dynamics of nanoscale
magnetic elements at a time resolution of less than 100 ps.

16,17
Time-resolved full field imaging is

required for simultaneous measurement of different local areas. In this letter, we chose a pair of
physically separated disks in order to resolve vortex gyrations in both disks, along with their
amplitude and phase relations. We report on an experimental observation of coupled vortex
gyrations in Permalloy (Py:Ni80Fe20) disks and the effect of dipolar interaction on each disk’s
gyration.

The two-disk system studied was prepared on a 100-nmthick silicon nitride membrane by electron-
beam lithography, thermal evaporation, and lift-off processing. Each Py disk has a diameter of
2R =2.4 tam and a thickness of L =50 nm. The disks are arranged in a pair with a center-to-
center distance of dint= 2.52 tam (see Fig. 1). In order to locally excite one vortex, a 1.5-Am-wide
and 75-nm-thick Cu strip covers the top of the right Py disk, as can be seen in Fig. 1. The vortex
eigenfrequency of around 157 ± 3 MHz in the isolated Py disks was measured on an array of Py
disk pairs of ident ical dimensions

18
using a broadband-ferromagnetic resonance setup.

15

Measurements of the dynamic evolution of vortex-core gyrations were carried out by full-field
magnetic transmission soft x-ray microscopy (MTXM) at beamline 6.1.2, Advanced Light Source (ALS),
Berkeley, CA, utilizing a stroboscopic pump-and-probe technique. The optical setup of the x-ray
microscope,

19
shown in Fig. 2, consists of the bending magnet source providing elliptically polarized soft

x rays, a monochromator and illuminating assembly (comprising the first Fresnel zone plate, the
condenser zone plate, and a pinhole close to the sample), a high resolution imaging objective lens,
the microzone plate, and a two-dimensional charge coupled device (CCD) detector. The spatial
resolution is mainly determined by the outermost zone width of the microzone plate. The temporal
resolution is set by the inherent pulsed time structure of the x-ray source, and is typically about 70 ps
in two-bunch mode operation of the ALS, where two electron bunches of 70 ps length are separated
by 328ns.

20,21
The magnetization contrasts of the Py disks in the present study were measured by

monitoring the spatial distribution of the local magnetizations through x-ray magnetic



FIG. 1. (Color online) Schematic illustration of two-disk system and its structural transmission soft x-ray
image.

FIG. 2. (Color online) Schematic of the full-field magnetic transmission soft x-ray microscope at
beamline 6.1.2, and an illustration of the stroboscopic pump-and-probe technique including the
arbitrary function generator (AFG) and the soft x-ray sensitive CCD camera.

circular dichroism (XMCD) at the Fe L3 absorption edge (here —707 eV). To be sensitive to the
in-plane component of the magnetization, the sample surface was positioned at 60° orientation to the
propagation direction of the incident x rays.

The clock signal of the synchrotron triggers an arbitrary function generator (Agilent, 81150A), which
launches particular pulses into a strip line. These pump pulses create local Oersted fields. Field pulses of
5 mT strength, 30 ns length, and 2.5 ns rise and fall time were stroboscopically applied along the x axis
on which the two disks were placed [see Fig. 1(a)]. The driving pulses were synchronized with x-ray
probe pulses to a frequency of —3 MHz. To measure the temporal evolution of the vortex excitations,
the pulses were delayed with respect to the x-ray probe pulse. The arrival time of the x-ray pulses at the
sample was monitored by a fast avalanche photodiode.

21
In order to obtain sufficient XMCD contrasts, ten

individual images of several million accumulated x-ray flashes measured at the identical time delay, were
integrated. The x-ray images were recorded at every 1.67 ns step.

Figure 3 shows the resultant plane-view data for both disks as measured after a perturbation of the
right disk by the pulse field. In the images, the structural contrast is normalized by an image obtained
under a static saturation field. The relatively bright region in the disks represents magnetizations that
point in the +x direction, whereas the relatively dark area corresponds to opposite-direction
magnetizations. Both disks’ initial configuration shows the same chirality of clockwise in-plane curling
magnetization, C1= C2 = −1. The core polarization can be determined from the sense of rotation of the 
cores after excitation.

1,5
The upward core in disk 1 gyrates counterclockwise, indicating p1 = +1,

whereas the downward core in disk 2 gyrates clockwise, corresponding to p2=−1 (see the top of each 
column in Fig. 3).

In the serial images, the core positions of both disks can be determined by the variations of the in-
plane curling magnetizations. The vortex-core oscillation around its center position in disk 1 (right disk) is
excited by the local field of the strip line at the beginning of perturbation. The vortex gyration in disk 2,
also shown in Fig. 3, is not excited by the local field, but is induced by the dipolar interaction with its neigh-



boring disk. Local fields produced through the Cu strip did not excite the neighboring disk, which is
proven by experimental confirmation with a reference sample that contained only the disk beside the
strip. Calculations also confirm that the local fields emanating from the strip line can be neglected at
the position of the left disk.

22
The core positions varying in time and in in-plane space over a relatively

large area are resolved in both disks. Correlations of the amplitudes and phases of both vortex-core
positions can be easily identified with reference to the serial images.

FIG. 3. (Color online) XMCD images of the dynamic evolution of vortex gyrotropic motions in both disks, and
corresponding vortex states represented by color and height of the surface: p1 = +1, p2=−1, and C1 = C2 =
−1. The dotted vertical and horizontal lines indicate the center position of each disk. 

According to the vortex-core positions that evolve over time, the x and y components are plotted as
functions of time in Fig. 4(a). The components provide information about the correlations of the core
orbit amplitudes and phases between the two gyrations. The x components in both disks show out-
of-phase oscillations, whereas the y components show in-phase ones, during the relaxation process
after the short pulse field is turned off. The amplitudes of both core oscillations decrease due to their
damping. The anti-phase relation along the x axis and the in-phase relation along the y axis reflect the
core polarizations and the chiralities of both disks. The initial motion of the vortex core under the strip
line is caused by the field pulse, and depending on the chirality the vortex core moves in the positive or
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