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Abstract

There exists a need to develop a method to:-

locate underground voids, or caches. In the past,
ground penetrating radar (GPR) operating in the
time domain mode has been used. In this paper,
we turn our attention to stepped frequency radar,
capable of making frequency domain reflection
coefficient measurements. We then apply the
inverse Chirp-Z transform (ICZT) to this data,
generating a time domain response. The scenario
under consideration is that of an airborne radar
passing over the surface of the earth. The radar
is directed toward the surface and is capable of
measuring the reflection coefficient, seen looking
toward the earth, as a function of frequency. The

frequency domain-data in this work is simulated -

and is generated from a transmission line model
of the problem. Using the ICZT we convert this
frequency domain data to the time domain. Once
in the time domain, reflections due to
discontinuities appear at times indicating their
relative distance from the source. The discon-
tinuities occurring beyond the surface of the earth
could be indicative of underground structures.
The ICZT allows a person to zoom in on the
time span of interest by specifying the starting
time, the time resolution, and the number of time
steps.

1. Introduction

Ground penetrating radar has been in use for
many years. At the Idaho National Engineering
Laboratory, GPR has been used in locating
underground pipe, and in trying to locate
buried waste.  Recently, there has been
increased interest in trying to locate
underground voids or caches.

Traditional GPR operates in an impulse mode.
It transmits a series of pulses and after each
pulse, it watches for the returned signal. The
timing of this returned signal gives an indication
of the depth of the objects causing the
reflections.

For this work, we began by studying impulse
GPR. The thought of making measurements in
the frequency domain, rather than the time
domain as in the case of the traditional GPR,
led us to decide to investigate the use of a
stepped frequency radar rather than an impulse
radar. Other researchers have also studied
stepped frequency radar.[1,2]

The problem we considered was that of an

aircraft flying over the earth with a radar
looking down toward the surface. The

MASTER

DISTRIEUTION OF THIS DOCUMENT IS UNLIMITED



DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.



DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed hercin do not necessarily state or
reflect those of the United States Government or any agency thereof.




operating frequency range of the radar is such
that the electromagnetic waves will penetrate the
earth sufficiently deep to reflect from A e
underground discontinuities. In addition, the
radar is capable of measuring the ratio of the
reflected signal to that of the transmitted signal and its propagation constant 7y is
(i.e., the reflection coefficient).

Y = joyue

This problem is modeled as a series of

transmission lines with impedances, propagation where j = y=1, v is the radian frequency, p is

chargcteristics, and. le.ngth's dependept upon the the permeability, and ¢ is permittivity
medium. A transmission line model is equivalent

to normal incidence of the electromagnetic po=p -’

energy. Using this transmission line model, we - a

calculate the reflection coefficient as a function of and

frequency. This frequency domain data is then

converted to the time domain. e = € - je"

The problem described, and the model, are\
illustrated in Figure 1, in which the transmission

line L, represents the transmission path from the had the same characteristics as transmission

aircraft to the surface of the earth. The e 1, And finally, the soil is lossy enough
characteristic ~impedance and propagation that the earth beneath the void is considered
constant will be that of free space. Transmission infinite in extent. This allows us to set the load
line L, represents the soil from the surface of the impedance, Z,, equal to the impedance of the
earth to the ceiling of the underground cache. Its soil.

characteristic impedance Z is

For transmission line L; we considered that the
void was filled with air so this transmission line
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Figure 1. Tlustration showing the scenario studied and the transmission line model used for analysis.




To calculate the input impedance of the network,
we make multiple use of the transmission line
impedance transformation equation shown below.

g oz ZtZitah (nl)
m "1z +Z tah (y,L)

The reflection coefficient of this network is then
calculated by

=_..__Z""_Z° zZ = |2
Zin +Za ’ ° €

For an example, we chose a medium dry soil with
a relative dielectric constant of 15 and a
conductivity of

o = 4.624(1077)xf18%¢ |
f in MHz
125 MHz < f < 10 GHz
We placed the aircraft at an altitude of 4000 feet.
A 10-foot deep void was placed 20 feet below the
surface of the earth. Using the model described,

the reflection coefficient was calculated and is
shown in Figure 2.

Reflection Coefficient
of the Transmission Line Model
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Figure 2. Reflection coefficient calculated from
the transmission line model in Figure 1.

II. Frequency to Time Transformation

A time domain plot of the reflection coefficient
data indicates when in time reflections
occurred. This can be seen by first looking at
the definition for the inverse Discrete Fourier
transform written as

1 N-1 J%"k
hn) = — Y H®e
N n=0 _

where n is the time index, k is the frequency
index, N is the number of data, H(k) is the
frequency -sequence, and h(n) is the time
sequence.

From linear systems theory we know that Y(k)
= H(k)*X(k) where X(k) is the Discrete
Fourier transform (DFT) of the input sequence,
Y(k) is the DFT of the output sequence, and
H(k) is the transfer function, the DFT of the
impulse response of the system. For an
impulse input signal, X(k) = 1so0 Y(k) = H(k).
Substituting Y(k) for H(k) in (8) then shows
that the results of taking IDFT of the output
frequency sequence will be the impulse
response of the system. Because we are
converting reflection coefficient data, the
impulse response will show when in time
reflections occurred. Even though we use the
IDFT above, the meaning of the time domain
response remains the same no matter what
technique we use to obtain it.

In order to achieve time domain plots with the
desired resolution and time span, it is necessary
to first develop relationships between them and
the frequencies used in the initial calculations.
From Fourier transform theory for a periodic
sequence, the fundamental period is given by
N*T where N is the number of samples and T
is the sample interval. The frequency
resolution or step size, £, is 1/(N*T).



When working in the frequency domain with a
stepped-frequency system, we can immediately
write fi., = f,./N where £, is the frequency
span, and N is the number of intervals. But from
above the frequency resolution is 1/(N*T) so
equating this with the expression for £, shows
that T = 1/f,, This means that the sample
interval in the time domain is equal to the inverse
of the frequency span in the frequency domain.
The result is that the total unaliased time
available in the time domain is given by 1/,
The time resolution in the time domain is given

by 1/

To determine the parameters of the stepped- )

frequency radar, one must first choose the time,
or spatial resolution, desired. Of course time and

distance are related by the velocity. Ignoring for

the moment that the velocity of propagation of
the electromagnetic wave will vary depending
upon the medium through which the wave travels
and just using c, we can choose a desired
distance resolution and calculate the required £,
and f,, based on N, the number of frequency
steps. The graph in Figure 3 represents this
relationship. In addition, this figure shows the
maximum unaliased range.

Select Distance Resolution
Determine F~span, F-step, and R~max
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Figure 3. Graph showing the relationship

betwe.en I m.aximum range, and the one-
way distance resolution.

Notice that absolute frequency is not specified.
For the problem under consideration, it is
necessary to select a frequency range that is
suitable. Soil is known to be lossy to hi
frequencies. In fact, most traditional GPRs
operate below 1 GHz. Based on a desired
resolution of 10 feet, which is the height of the
underground cache, Figure 3 provides the
following approximate specifications:

fep = 100 KHz
fpun = 50 MHz

After several trials, we chose the frequency
range of 100 MHz to 150 MHz with N = 500.

Using the reflection coefficient data in Figure 3,
we calculate the IDFT producing the plot
shown in Figure 4. The total time shown on
the axis is the unaliased time. Notice that most
of the response in the time domain occurs close
together. This is a result of the discontinuities
in the transmission line model occurring first at
4000 feet, then 20 feet beyond that, and then
10 feet beyond that. If one were to try to
expand this region in the time domain by
simply zooming in on the graph, one would

Inverse fourier Transform
of the Reflection Coefficient Data
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Figure 4. The time domain response calculated
using the inverse Fourier transform.




find that the resolution is poor because there
would only be a few points in that region. One
could perform the IDFT again but this time zero
padding the frequency data. This would result in
a time domain plot with finer resolution however,
the additional computation time could be
significant.

An alternative to this approach is to use the
inverse Chirp-Z transform (ICZT). The Chirp-Z
transform is a generalization of the Z-transform.
Whereas the Z-transform is restricted to the unit
circle in the z-plane, the Chirp-Z has no such

restriction [3]. The Chirp-Z transform is defined

by
N-1

X@ =Y xmz™
n=0

z = AW—", K=01..M-1
W = W,e%
A

= A, e2%

M-1)0,
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where A, is the starting radius, 4, is the starting
angle, and ¢, is the angle step size. W, is the
parameter that determines if the contour spirals
in or out or if the radius stays constant as
frequency changes. If W, is greater than 1, the
contour spirals in. For W, less than 1 the
contour spirals out. If W, = 1 then the radius
is constant. In the case of Ag = Wy = 1,48, =
0, and ¢, = 2#/N, the Chirp-Z transform is
equal to the Z transform.

Any transform that converts data from the time
domain to the frequency domain has an inverse
transform to convert data from the frequency
domain to the time domain. This inverse
transform can be obtained (to within a scaling
factor) by taking the complex conjugate of the
transform-of the complex conjugate of the
frequency domain data. For the case of the
Chirp-Z, the inverse Chirp-Z transform (ICZT)

can be written, ICZT(X(K)) = [CZT(X(k)")]"-

It is not clear if this will work for the Chirp-Z
transform in general; however, it will work for
the Chirp-Z that operates on the unit circle.
This requires A, = W, = 1. It is by this
procedure that we calculated the ICZT in this
paper.

For the problem under consideration, we can
make use of the ICZT to transform the
frequency domain data to the time domain.
The goal is to be able to zoom in on the region
of interest. To do that we make use of the fact
that we know the distance to the earth and this
will correspond to the time to the first peak in
the time domain. Keeping in mind that the
reflection coefficient data represents the round-
trip travel of the electromagnetic wave, we can
calculate the time to the first peak by T, =

2L, /c,.

By converting this to a fraction of 2x, the total
unaliased time which is represented by a
complete path around the unit circle, we can
select the starting angle for the ICZT



transform. This is given by ty,, = 2L,/ Ty Where
T,,, is the unaliased time and is equal to N*T
with N and T defined previously. The angle step
size, ¢,, and the number of points, M, are chosen
to provide the view we’re interested in and were
selected as ¢, = -1/10000 and M = 501.

The ICZT is performed on the reflection
coefficient data in Figure 2. The resulting time
domain plot is shown in Figure 5, which shows
the two peaks indicating the discontinuities
caused by the ceiling and floor in the void.

inverse Chirp—Z Transfarm
of the Refiection Coefficient Data
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Figure 5. The time domain response calculated
using the inverse Chirp-Z transform.

Also notice that in the time domain there are
ripples.  These result from the use of the
rectangular window used in the frequency
domain. If we apply a different window to the
frequency data we can reduce these ripples.
Figure-6 shows. the time domain results after

inverse Chirp—Z Transform
of the Weighted Reflection Coefficient Data
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Figure 6. The time domain response of the
weighted reflection coefficient data.

performing the ICZT on the reflection
coefficient data weighted with a Hamming
window.

III. Conclusions

This work demonstrates the use of the inverse
Chirp-Z transform in processing frequency
domain reflection coefficient data to aid in the
detection of underground voids. The analysis is
performed on simulated data generated by
modeling the problem with transmission lines.

‘While no claims are being made about the idea

of the ICZT, or its use to convert frequency
domain reflection data to the time domain, the
application of this technique to the problem of
locating underground voids appears to be new.
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