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DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States

Government or any agency thereof.
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ABSTRACT

The Workshop on Developing Safe Software was held July 22-23, 1992, at the Hotel del Coronado, San Diego,
California. The purpose of the workshop was to have four world experts discuss among themselves software safety
issues which are of interest to the U.S. Nuclear Regulatory Commission. These issues concern the development of
software systems for use in nuclear power plant protection systems. The workshop comprised four sessions.
Wednesday morning, July 22, consisted of presentations from each of the four panel members. On Wednesday
afternoon, the panel members went through a list of possible software development techniques and commented on
them. The Thursday morning, July 23, session consisted of an extended discussion among the panel members and
the observers from the NRC. A final session on Thursday afternoon consisted of a discussion among the NRC
observers as to what was learned from the workshop.
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EXECUTIVE SUMMARY

The Workshop on Developing Safe Software was held July 22-23, 1992, at the Hotel del Coronado, San Diego,
California. The purpose of the workshop was to have four world experts discuss among themselves software safety
issues which are of interest to the U.S. Nuclear Regulatory Commission (NRC). These issues concern the
development of software systems for use in nuclear power plant protection systems. The workshop comprised four
sessions. Wednesday morning, July 22, consisted of presentations from each of the four panel members. On
Wednesday afternoon, the panel members went through a list of possible software development techniques and
commented on them, The Thursday morning, July 23, session consisted of an extended discussion among the panel
members and the observers from the NRC. A final session on Thursday afternoon consisted of a discussion among
the NRC observers as to what was learned from the workshop.

The workshop was organized by the Lawrence Livermore National Laboratory (LLNL), Fission Energy and Systems
Safety Program. The workshop moderator was Denise Cartledge of LLNL. The discussions were not recorded;
instead, running notes were taken on a computer and continuously displayed at the front of the room. In this manner,
errors in the notes could be noticed and corrected as they occurred. The note taker was Dr. Lloyd Williams, Software
Engineering Research.

The panel members were:
Mr. Ricky Butler, NASA, Langley, Virginia
Dr. Nancy Leveson, University of California, Irvine, California
Dr. Bev Littlewood, City University, London, England
Dr. John Rushby, Stanford Research Institute, Palo Alto, California

Observers from the Nuclear Regulatory Commission were:
Mr. Leo Beltracchi, Office of Nuclear Regulatory Research
Mr. John Gallagher, Office of Nuclear Reactor Regulation
M. Joe Joyce, Office of Nuclear Reactor Regulation
Mr. Hulbert Li, Office of Nuclear Reactor Regulation

Observers from the Lawrence Livermore National Laboratory were:
Dr. Dennis Lawrence, Fission Energy and Systems Safety Program
Dr. Greg Suski, Fission Energy and Systems Safety Program
Dr. Robert Wyman, Fission Energy and Systems Safety Program
Dr. Lin Zucconi, Fission Energy and Systems Safety Program

The following report was written from the notes taken at the workshop and was reviewed by the panel members and
observers for comment. It consists of the discussion notes and comments, and incorporates corrections by the panel
members and observers. When there were disagreements among panel members, these disagreements are indicated
in this report as appropriate. To facilitate a free and open discussion, it was agreed that comments other than the
opening talks would not be attributed to specific individuals.

In an analysis of the workshop by the LLNL and NRC observers, a number of general conclusions were drawn as to
the overall beliefs and recommendations of the panel members. These conclusions are summarized in the following
numbered list, and represent the opinions of the LLNL and NRC observers, not necessarily those of any particular
panel member.

1. General Conclusions

a Software safety requires a comprehensive approach, using more than one technique. This may include testing,
formal development methods (including proofs of correctness), expert judgment and other factors.

b. Safety and reliability are different, and both are important in reactor protection systems. It is not possible to
just reduce the safety problem to standard correctness or reliability problems because safety is concerned with
the consequences of system operation, not whether it meets its specifications (which may be incorrect).

¢. Software safety begins with a hazard analysis, which must be carried out at the system level. Software safety
is a part of system safety.
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d. The designer needs to present a well-constructed argument as to why the system is correct, reliable and safe.
2. Conclusion on Diversity

a Diversity can be of value against common-mode failures, but needs to be implemented correctly. Diversity
should be introduced early in the design, at the highest level possible. Diversity, for example, could be
achieved by using a software-based system and a parallel hardware-based system to satisfy the same
requirement. In particular, n-version programming is not particularly useful,

3. Conclusion on Complexity

a There are two aspects of software complexity: functional and structural. The former is much more important
to safety concerns than the latter, but the latter is emphasized by computer scientists because it appears easier
to measure. Complexity is a problem because it may decrease the understanding of the software system.

4. Conclusions on Reliability and Testing

a Testing cannot be used to demonstrate the reliability of software beyond 10 failures per demand. Reactor
protection software either must not require higher reliability than this, or the improvement in reliability must
be derived using a method other than testing.

b. Reliability is designed into a system and analyzed using bottom-up techniques. Safety is designed into a
system and analyzed using top-down techniques.

¢ Reliability must be quantified to have any meaning. This is a difficult problem, but failure to calculate
reliability frequently leads to excessive optimism about the safety and reliability of a system.

d. Failure data should be collected on systems during actual operation, and then be analyzed. This is the only
way the software community will eventually know what works and what doesn’t,

5. Conclusions on Failure Modes

a Formal methods are based on mathematics, such as predicate calculus, recursive function theory,
programming language semantics and discrete mathematics. They vary according to the degree of rigor and
coverage. Many forms of scrutiny are valuable even though they fall short of formal methods.

b. Formal verification includes the following properties: specification of the system using languages based on
mathematical logic, rigorous specification of desired properties as well as implementation details, and
mathematical proof that the implementation meets the desired properties.

¢. The use of formal methods provides many benefits beyond correctness proofs. Formal methods make it
possible to challenge or test software requircments, to expose assumptions, to manage the change process
more reliably, to help keep system designs simple and to provide powertul tools for handling complexity
where it is necessary. The biggest advantage to formal methods may be the intellectual rigor required, which
can greatly increase one’s understanding of the software.
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Section 1. Wednesday Morning

WORKSHOP ON DEVELOPING SAFE SOFTWARE

1 WEDNESDAY MORNING
PREPARED TALKS

The session opened with remarks by John Gallagher on
the purpose of the workshop. Presentations by Nancy
Leveson, Bev Littlewood, Ricky Butler and John
Rushby followed, in that order. The main points of
these presentations are given next. There was
considerable interaction among the presenters, both
during the workshop and during reviews of a draft of
this report. In the description given here, comments
from panel members are labeled “discussion” or
“comment.”

The discussions reported here contain many technical
terms which are not defined in this report. The reader is
assumed to be familiar with the general terminology
used in discussions and writings about high reliability
and safety-critical software systems. Another report is
available which contains background information on
software reliability and software safety.2

1.1 Talk by John Gallagher

The purpose of the workshop was to provide the
Nuclear Regulatory Commission (NRC) with expert
opinions on what methods and techniques are available
to software developers that can improve the safety of
software systems contained in nuclear reactor
protection systems. The primary concerns are how the
developer can avoid errors, find errors and mitigate the
consequences of errors.

The NRC issues plant design licenses using a process
known informally as One Step Licensing. Once a
design is approved, it may be applied to constructing
plants in various locations. The reactor vendor must

1, Perform a defense-in-depth analysis, preferably
using NUREG 04933, and analytically demonstrate
adequate diversity for each event evaluated in the
accident analysis section of the Safety Analysis
Report (SAR) for each postulated common-mode
failure,

2. Provide diversity where problems are identified
within the digital protection systems. The developer
may use a non-safety system to accomplish this.

2 J. Dennis Lawrence,, “Software Reliability and Safety in Nuclear
Reactor Protection Systems: Interim Report,” Lawrence Livermore
National Laboratory (1992), in prep.

3ap Defense-in-Depth and Diversity Assessment of the RESAR-
414 Integrated Protection System,” NUREG-0493, Division of
Systems Safety, Office of Nuclear Reactor Regulation, U.S. Nuclear
Regulatory Commission (March 1979).

3. Provide a hardwired non-computer-based manually
operated actuation system as back-up for the
computer-based protection system.

Currently the NRC is considering adopting an EPRI
document?, as the frame of reference for the
establishment of design acceptance criteria.

NRC regulations should be tied directly to activities
considered to be “good software engineering practice”
to avoid charges of being capricious.

1.2 Talk by Nancy Leveson

There are two extreme positions with respect to the risk
of technological systems.

1. Risk is a technological problem that can be solved
by technological fixes and probabilistic analysis.
This position is too optimistic. Accidents almost
always have non-technological components; €.8.,
management mistakes. In some accidents, for
example the Challenger accident, potentially
effective technological risk reduction procedures
were made ineffective by non-technological factors.
History shows that attempts to attack safety
problems using technology alone will usually fail
and that probabilistic risk assessment often ignores
the most important factors in real accidents.

2. Technological fixes to problems of risk are
impossible and probabilistic risk assessment is
useless. This position, espoused by people like
Charles Perrow?, is too pessimistic. There are many
things that can be done to make engineered systems
safer.

The answer lies somewhere in-between. Safety is a

complex problem for which there is no simple

technological solution. Managerial and social issues
may be just as important in causing and preventing
accidents. These factors cannot be measured
probabilistically, but they need to be considered.

Alvin Weinberg(’ makes a convincing argument that
there are questions that can be asked of science, but
which cannot be answered by science. One of these

questions is the measurement of risk. Probabilistic

YA dvanced Light Water Reactor Utility Requirements Document,
Volume 11, ALWR Passive Plant, Chapter 10, Man-Machine
Interface Systems, Electric Power Research Institute, Palo Alto, CA
1990).
Charles Perrow, Normal Accidents: Living with High-Risk
Technologies, Basic Books (1984).
6 Alan Weinberg, “Science vs. Trans-Science,” Minerva, vol. 10
(1972), 209-222.
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Section 1. Wednesday Morning

assessments can be useful for many purposes. The
problem arises when we put too much faith in them
and ignore the many assumptions underlying them.
Ryder, one-time head of the British Health and Safety
Executive, wrote: “The numbers game in risk
assessment should only be played in private between
consenting adults as it is so easy to be
misinterpreted.” 7

Here are a few axioms about risk.

1. People tend to underestimate risk. As a result,
complacency may be the most important root cause
of accidents. This underestimation typically comes
about due to people attempting to calculate the
probability of an accident by assuming
independence and multiplying probabilities of
triggering events that are not really independent.
Most accidents in well-designed systems involve
two or more events of low probability occurring in
the worst possible combination. The Brown’s Ferry
fire is an example of this in the nuclear power
industry, but examples abound in nearly every type
of dangerous system. After the fact, independent
events often are found to have a common
precipitator.

Complacency about software is a common problem
today. The Therac-25 accidents have increased
awareness in the medical industry, but it may take
an accident in each industry to get people to pay
attention.

2. Upstream approaches to safety are the most
effective and least costly. Safety features should be
built into a system during development. This is not
done today in most software systems. It is better to
build in safety instead of adding on a protection
system. For example, one can protect against fire by
using smoke alarms and sprinklers, but then you are
limited by the reliability of the protection devices.
An alternative is to eliminate or minimize the
potential for fire; for example, by using fire
retardant materials or eliminating storage of
flammable materials. The answer is not necessarily
one or the other, but relying only on protection
systems boxes you into a corner where your only
choice is to try to achieve ultra-high reliability in
these devices.

In the nuclear industry, the over-emphasis on
protection systems has been accompanied by an
under-emphasis on the safety of the control
systems. Thus, software in protection systems is
classified as critical but usually that in control
systems is not. Accidents have occurred as a result
of this.

Building in safety is not necessarily more expensive
than adding protection devices. For years,
manufacturers refused to do anything about the

TE. A. Ryder, “The Control of Major Hazards: The Advisory
Committee’s Third and Final Report,” Transcript of Conference on
European Major Hazards, Oyes Scientific & Technical Services and
Authors, London (1984).
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problem of children dying from suffocation inside
refrigerators when they got locked in while playing.
The government finally required them to do
something, and magnetic latches were developed
that can be opened from inside; they turned out to
be less expensive than the older-style latches. An
inherently safe process will often be cheaper than a
hazardous one with many added-on protection
devices and overdesign.

3. Software alone is neither safe nor unsafe. As a
corollary, we cannot look at or measure software in
isolation and determine whether it is safe. For
example, in the Therac-25, a software flaw caused a
massive radiation overdose in patients. In the
Therac-20, the same software flaw resulted in
blown fuses, but did not cause an accident or
radiation overdose. 8 There are other examples of
software being reused in a different system from
that which it was developed and accidents or near-
accidents were the result. Safety is a system
problem. Individual components are not safe or
unsafe. Assighing a “safety” number to a
component is meaningless since the safety of the
system depends upon the system within which the
component is operating. A valve in a nuclear power
plant is not safe or unsafe by itself, but it may be
unsafe in certain plant designs. A reliability figure
for that valve (probability of it failing) is not a
safety figure for the valve. Even combining the
reliability figures for all the components does not
provide an estimate of safety since the problems
most often arise from the interface; i.e., the
behavior of the components individually is fine but
is unsafe when put together. This required more
than a simple ANDing of failure probabilities.
Reliability is a bottom-up technique; safety must be
top-down.

4. Software safety requires a comprehensive approach.
Hazards must be evaluated at the system level and
protection built-in at that level. The current trend to
removing hardware interlocks and replacing them
with a computer or controlling them with computers
is dangerous and has led to accidents. After the
hazards have been identified and protection
included in the design at the system level, hazards
must be traced to individual component behavior
(including software) and protection built in against
that particular unsafe behavior, if possible. Single
methods (such as diversity) are not adequate to
protect against accidents. The issue is how to put
the methods together and design a comprehensive
safety program.

The following are responses to questions posed by the

NRC:

¢ There are two aspects to software complexity:
functional and structural. Functional complexity is

8 Nancy G. Leveson and Clark S. Turner, “An Investigation of the
THERAC-25 Accidents,” UCI Technical Report # 92-108,
Information and Computer Science Dept., University of California,
Irvine (November 1992).



more important than structural complexity. The
latter is easier to measure and identify, and
therefore tends to get more emphasis, however.
Measuring one aspect of complexity may just
encourage designers to shift the complexity
elsewhere. For example, attempting to minimize
control flow complexity can result in an increase in
data-structure complexity. Reducing intra-module
complexity may require increasing inter-module
complexity. In both cases, the second alternative
may well be worse than the first. The real issue in
safety is functional complexity, not structural
complexity. From a system standpoint, complexity
is often introduced when computers are introduced.

Several new software standards have instituted
assignment of criticality to components and then
reduced the software development requirements
(e.g., amount and type of testing) for lower-
criticality components. This is not an effective
approach. First, criticality is usually assigned on the
basis of that component being able to cause an
accident by itself. Since accidents are nearly always
caused by the undesired behavior of two or more
components (most systems are designed such that a
single component cannot cause an accident), in
practice this has led to almost no software
components being declared as safety critical and to
an increased probability that a lower-criticality
component will cause an accident (since less care is
taken in their development). Second, there is no
evidence that any of the techniques mandated for
any of the levels can be reduced without reducing
drastically the reliability of the components. Most
of the assignment of software techniques to levels is
arbitrary and based on little or no scientific
evidence of their efficacy. The system safety
approach would instead be to identify system
hazards, evaluate them with respect to severity (and
perhaps likelihood, although this is very difficult
and inaccurate before the system is designed and
implemented), and then trace the hazards to the
components. Any components that can contribute to
unacceptable hazards are considered safety-critical,
whether it is believed that they can cause the hazard
alone or not.

MIL-STD-882B is a good example of a safety
standard,

With regard to formal methods: Leveson’s concern
is the validation of the formal specification. Writing
down the requirements in a formal language helps,
but the specification may still be wrong.
Specifications need to be formally validated as safe.

It is incorrect simply to reduce the safety problem
to a standard correctness or reliability problem.
Software that is “correct” (i.e., satisfies its
specification) and reliable may still be unsafe.
Accidents have occurred even when software did
not fail. Programmers must understand the system
and software hazards in order to build protection
into the software. Testers must perform special

Section 1. Wednesday Morning

safety and stress testing for robustness and safety.
Specifications need to be verified for safety as well
as correctness.

1.3 Talk by Bev Littlewood

If we cannot assure ourselves that we have developed
and built software to an ultra-high level of reliability,
then we shouldn’t build a system whose safety relies
solely upon an ultra-high level of software reliability.
There may be other ways of building systems to secure
the advantages of software without compromising the
safety of the overall system.

Two useful distinctions regarding failures are the
following.

1. Failures due to design faults versus failures due to
physical faults. This is not an issue of software
versus hardware. Software suffers only design
faults, but the problem is more severe due to the
extra complexity of the software.

2. Methods of achieving reliability versus methods of
assessing reliability.
Discussion: It was pointed out that safety and
reliability are different, and should not be confused
with one another. The distinction is important.
Overemphasis on quantifying reliability leads to
overloading, or ignoring things you can’t quantify. The
real villains are frequently uninformed managers. The
technical people don’t believe they can achieve 109
reliability, but nontechnical people frequently make
such claims. There are limits to what you can say with
numbers.

In response, it was stated that there are two issues here.
One is the difference between safety and reliability,
and the other concerns quantification. Reliability and
safety each involve stochastic processes of events, and
they are therefore very similar in terms of
quantification. The events themselves are clearly not
the same in the two cases, but the same mathematical
approaches and the same language (frequency of
failure, probability of failure on demand, and so forth)
can be used in both cases.

Littlewood does not see how overemphasis on
quantification leads to ignoring things that cannot be
quantified. On the contrary, it has been the stochastic
community that has been in the forefront of attempts to
warn of the limitations to our means to gain confidence
in system safety. In the United Kingdom, at least, the
“gung ho” approach has come from those who have
claimed that their (non-quantified) understanding was
sufficient to banish uncertainty.

Those with a skepticism about quantification often end
up placing a much greater confidence in systems than
they would if they thought about the very difficult
quantification issues arising from the nature of the
evidence upon which their judgments are based. The
whole point of some recent work is that the discipline
of quantification makes us much more pessimistic. The

NUREG/CP-0145

5 B
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reason is that the evidence that comes from sources
that are not usually regarded as suitable for arriving at
quantification of safety are in fact very much weaker
than is often realized.

Software requirements specifications frequently state
ridiculously high reliability numbers with no
justification. We must then address the question of
whether or not we can build systems that meet such
required reliability levels. How can we convince
ourselves that the required reliability has been achieved
where software is involved?

Here are some examples of the “nature and extent of
our dependence upon computers.”

1. A320 flight control has a stated requirement of 109
failures per hour. Similarly for 747-400, 777, etc.

2. Sizewell B reactor protection requires 104
probability of failure upon demand.

3. Air traffic control requires 3 seconds downtime per
year.

4. Chemical plants such as THORP have risks
comparable to those in nuclear power plants.

5. Robotics (such as surgical assistance) have
surprisingly modest reliability requirements.

6. Railway signaling and control require 1012
probability of failure per hour.

Why do we need to express safety and reliability
requirements in terms of probability?

1. There is an inherent uncertainty about the failure
behavior of a system. This arises from the
unpredictable nature of the operational environment
and the observer’s incomplete knowledge of
possible system behavior.

2. Informally, we need to have sufficient confidence
that the system will fail sufficiently infrequently,
Alternately, for a one-shot system, we need to have
confidence that the system will fail with sufficiently
low probability.

Direct observation of operational behavior is not going
to give assurance of ultra-high reliability.

1. One problem is the representativeness of input
cases. How can you guarantee that the input
observed actually matches the “real” input?

2. Another problem is the law of diminishing returns
(plus issues such as “are your fixes fallible?"). After
a while, additional testing yields little additional
information about the reliability of the system, so is
no longer practical.

Software reliability growth techniques are not
applicable to ultra-reliability.

What parts of the software development process
contribute to the reliability of the software product?
There have been experiments in n-version
programming which have shown that it results in some
improvement, but not as much as naive theory, based
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on false assumptions of independence, might suggest.
There is no empirical evidence for the efficacy of
formal methods. To obtain ultra-reliable systems, we
will need a composition of evidence from disparate
sources—proof, statistics, judgment, etc.

This is a key positive point. It relates to “obtaining
confidence” in ultra-high reliability, which can be
termed the assessment problem, rather than “obtaining
the reliability.”

Discussion: It was pointed out that obtaining
confidence requires Baysian prior belief. We can’t
quantify 10 failures per hour. We can quantify 103
failures per hour and give arguments as to why we
think the actual probability is higher. This amounts to
engineering judgment, which is quite valuable when
based on actual knowledge and understanding. On the
other hand, when we look at such judgments
quantitatively, they’re surprisingly bad. We shouldn’t
trust judgments too much—we need 1o formalize them.
Consider what the lack of experience on the part of an
engineering group may produce when asked to exercise
their engineering judgment. Each generation of safety
system developers builds only one system, so they
don’t gain the experience needed upon which to base
engineering judgment.

In further discussion, it was stated that you can’t
separate a control system from its context. This implies
that you should keep the requirements simple.
Conflicting requirements, such as performance and
economics, lead to complex systems. Finally, the
reliability of control systems, interpreted narrowly, is
not the central issue. The central issue is the reliability
of the entire system.

In a later response, a panel member stated that the
point of this discussion is not clear. The last sentence
of the preceding comment is true, but it is not clear
how it follows from the first part of the comment. Are
we talking about reactors here? That is, are we talking
about a system design where there is one system for
everyday control and a second protection system for
safety when the control system allows the reactor to get
into a dangerous state.

People tend to err in two different ways. In the first
place, they tend to be far too optimistic. For example,
they may be too optimistic about the reliability of a
system they have built. Secondly, they are far too
optimistic about their own propensity to err; they will
tell you (and believe it strongly) that their belief in the
correctmess of their judgment is greater than is
warranted by the facts. There is a nice example in some
work by Henrion and Fischhoff? about the errors made
by physicists over the last century in measurements of
constants such as the velocity of light, the charge on
the electron, etc. In all cases, it was interesting that not
only were they quite spectacularly wrong when

M. Henrion, B. Fischhoff, “Assessing uncertainty in physical
constants,” American J. of Physics, vol. 54, 9 (1986), 791-798.



compared against present knowledge, but their
confidence was misplaced; their confidence intervals
for the true value (taking account of their own
judgments of error) often did not contain the modern
value.

Here is a list of areas where technical work is required.
I am pessimistic about the outcome.

1. Real statistical evidence for the relationship
between processes and product attributes.

2. Formal quantification of expert judgment,
combination of expert judgments, calibration, etc.

3. Composition of evidence from disparate sources,
such as proof, statistics, judgment, and others.

4. Quantitative theory to replace the present
qualitative “claim limits.”

5. Better probabilistic modeling of “structured”
software. Diversity, fault-tolerance, voters, failure
clustering, etc.

6. Accelerated testing.

7. Better data; experiments, case studies and
mandatory reporting requirements for safety-critical
systems in operational use.

8. Standards: better scientific basis, studies of
efficacy, and so forth.

In actual practice, safety systems are not isolated from
other systems, and they should be.

How can we tell what using a formal method has
delivered to you? We lack empirical evidence of this.

Requirements for critical systems should involve
probability-based requirements for subsystems,
including software. For each critical system, it must be
demonstrated that the required level of reliability has
been achieved. Critical systems with requirements that
cannot be validated should not be certified for use, and
should not be built.

Some applications appear to need reliability levels that
are orders of magnitude higher than we presently can
assure. In some cases, the required level will never be
achievable. By proper system design, however, we
may not need such high levels. For example,

1. Use provable safety kernels with “add-on” goodies.

2. Reuse of software with high assured reliability from
long operational use.

1.4 Talk by Ricky Butler

Avionics safety systems are different from process
control safety systems because you can’t have a
separate shut-down system in an airplane. The control
system has to fly the plane. Here, we are talking about
ultra-high reliability in the 109 area.

Earlier airplanes had a mechanical linkage from pilot
to control surfaces. Then there was a change to
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hydraulic linkages. Now military aircraft us¢ electronic
linkages. Commercial aircraft are going that way now.

NASA Langley has a research project on “design for
validation” (DFV) 10, The driving factor of this
philosophy is the need to produce a credible reliability
number. DFV has the following components:

1. The system must be designed so that a complete
and accurate reliability model can be constructed.
All parameters that cannot be deduced must be
measurable in feasible time under test.

2. The reliability model does not include transitions
representing design faults; analytical arguments
must be presented to show that design faults cannot
cause system failure.

3. The reliability model must be shown analytically to
be accurate with respect to the system
implementation.

4. Design tradeoffs are made in favor of designs that
minimize the number of parameters that must be
measured, and that simplify the analytic arguments.

The DFV philosophy is to design so that there is no
single-point failure. This is demonstrated by a formal
proof. Analysis is then used to avoid the need for fault-
injection experiments. The DFV philosophy rules out
digital design diversity as a means of primary
assurance of safety because its efficacy cannot be
demonstrated. The independence assumption is
fundamental to reliability modeling of fault tolerant
strategies.

Discussion: It was pointed out that the difficulty is to
ensure that there are no common physical failure
modes. The reliability analysis should be done as if
there were independence in the arrival of physical
faults in electrically-isolated channels. Everything
should be done to eliminate common-mode failures.
This strategy is justifiable for physical failures but not
for design errors.

Empirical evidence shows that even low reliability
systems do not exhibit independence of the
manifestation of design error in multi-version software
/ hardware. This does not say that design diversity
shouldn’t be used. It only says that the numbers that
can be obtained using models that assume independent
error manifestations in the multiple versions shouldn’t
be relied upon.

Discussion: The problem is not solved by using
different programming languages. Languages are not
the source of failure, the failure is due to the difficulty
of the problem. The independence assumption can
never be shown to hold for ultra-reliable software.
Verifying independence requires running the system
for centuries. If the goal is more modest—say, 104—
there are some ways to quantify independence.

10 Sally C. Johnson and Ricky W. Butler, “Design for validation,”
IEEE Acrospace and Electronic Systems J., vol. 7, 1 (January 1992),
38-43.

NUREG/CP-0145



Section 1. Wednesday Morning

However, if “diversity” means having diverse failure
modes, this can’t be guaranteed for software. For
example, the use of threshold voting increases
complexity and could lead to errors. Deciding how to
set thresholds is very difficult. There may be diversity
in hardware, software and time, as is being done in the
Boeing 777. This system uses nine-fold redundancy:
three asynchronous channels, each channel with three
lanes that utilize dissimilar hardware and software. The
amount of complexity here is staggering.

Diversity is not free. Using diversity requires a trade-
off of complexity in the voting algorithm. The question
is: what risk do you add with diversity? Diversity
management can itself become the major source of
failure.

Regarding design diversity, it is not possible to
extrapolate from a low reliability system to a high
reliability system. Measuring coincident errors in
systems with diverse designs will give at best (due to

testing time limitations) 10"4. If the goal is 10 or 105,

then a lot of time must be spent testing. Note that in
software, exact match voting similar to what can be
done with hardware is not possible. Software must use
some sort of threshold voter. This will add the
complexity of the voter into the reliability equation.

Controlled experiments can be done to get evidence on
use/payoff of formal methods but this wiil only help in
the low reliability regime. The alternative is the basic
understanding gained, which increases confidence in
the system.

A control system should have predictable,
deterministic timing properties. Fault tolerance
overhead should be a small fraction of total system
overhead.

Simplicity: The fault-tolerance and redundancy
management portions of the system should be
transparent to the applications programmers. The
delivered system should require very little (or no)
maintenance. This reduces costs and increases safety.
Many failures are maintenance-induced, especially
unplanned maintenance at marginal facilities.

Here is a list of characteristics of formal verification.
1. Specification of the system using languages based
on mathematical logic.

2. Rigorous specification of desired properties as well
as implementation details.

3. Mathematical proof that the implementation meets
the desired abstract properties.

4. Use of semi-automatic theorem provers to ensure
the correctness of the proofs.

In principle, formal methods can accomplish the
equivalent of exhaustive testing.

Formal methods are based on mathematics.
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L. Consistently successful engineering of complex
computing systems will require the application of
mathematically based analysis analogous to the
structural analysis performed before a bridge or
airplane wing is built.

2. The mathematics for such analysis is logic, just as
calculus and ditferential equations are the
mathematical tools used in other engineering fields.

3. The mathematics of formal methods includes:
predicate calculus (first order logic), recursive
function theory, lambda calculus, programming
language semantics, and discrete mathematics
(number theory, abstract algebra).

There are several levels of formal methods.

1. Static code analysis, no semantic analysis.

2. Specification using mathematical logic or language
with a formal semantics; that is, meaning
expressible in logic.

3. Formal specification plus hand proofs.
4. Formal specification plus mechanical proofs.

European emphasis is on level 1, while US emphasis is
on level 3 (due to a large NASA investment). The
Europeans are ahead in the transfer of this technology
to industry, while the US is ahead in tools for formal
verification.

There are three basic approaches to achieving
reliability.

1. Testing—Tlots of it!

2. Software fault tolerance

3. Fault avoidance, by formal specification and
verification, automatic program synthesis and
reusable modules.

General conclusions:
1. Direct life testing of software is not feasible for the
ultra-reliable region.

2. Reliability growth models do not significantly
decrease the test time.,

3. The independence model cannot be assumed for
fauli-tolerant software.

4. No coincident-error model can be experimentally
validated for the ultra-reliable region.

1.5 Talk by John Rushby

Experience in the field is not transferred into new
projects. For example, the way to build space station
software was not leamned from the shuttle software.

Redundancy management can get out of control, and
can be the primary source of failure.



DO 178B 11 (draft 6) from RTCA for flight control
includes the following.

1. The level of reliability cannot be measured after
delivery (that is, by testing), so it must be assured
by means of an appropriate process.

Comment from another panel member: “I think it is
much worse—more dangerous—than this. My
paraphrase of the DO 178B approach would be ‘we
can’t measure, SO we are not going to try, but we
shall nevertheless claim 10-3 because we have used
good practice.’ It is dangerous, unscientific
rubbish.”

2. Use stress hazard analysis, with reviews by
independent teams.

3, There is malfunction, unintended function and loss
of function. These are different.

Comment from another panel member: True, but
these are merely events when we wish to evaluate
safety or reliability—albeit with differing severities.

4. Design methods include:
 Partitioning (fault containment)

« Protection (least recommended because it comes
late),

« Dissimilarity (should only be used to achieve
additional confidence after the primary
requirements).

5. Distinguish between review, which is a human
consensus activity, and analysis, which is a
repeatable method.

6. Fagan style inspections are very useful. The big win
is early in the life cycle. (JPL found that by doing
Fagan inspections they found one serious error in
every three pages of requirements documents. Two-
thirds of these were omissions. Code inspections
found one error per twenty pages, since the errors
were found earlier.)

There are dangers in using design diversity, such as n-
version programming and recovery blocks.

1. It creates an illusion of ultra-reliability. By
assuming independence, the advocates of software
fault-tolerance generate ultra-high estimates of
reliability.

2. As long as industry and certification agencies

believe that software fault-tolerance will solve the
problem, formal methods will not be pursued.

NASA accepts that the level of reliability they want
can’t be measured. Therefore, the emphasis is on the
development process.

Another panel member commented that this seems to
imply that the development process can deliver
something beyond what is measurable. If so, how

11 «goftware Considerations in Airborne Systems and Equipment
Certification,” DO-178B Draft 6.0, Proposed Revision to DO-178A,
Requirements and Technical Concepts for Aviation, Washington,
D.C., Working Paper (April 28, 1992).
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would we know that we had achieved the desired
reliability? This particular panel member stated that
this is the issue upon which “I might differ most
strongly from the others. It seems to me that we must
always evaluate, even if we only do this in terms of
‘engineering judgment’ or something similarly
informal. I just do not believe that we could come up
with convincing arguments for much stronger belief
than is represented by what comes from a more formal
measurement via, say, direct observation of failure
behavior. In any case, any claims to be able to do this
must be justified by those who make them; I would be
interested to hear how this could be done, even in
principle.”

The context for software evaluation is hazard analysis.
For the most critical software, very elaborate reviews
are employed. These increase scrutiny on the process.

Discussion: There is no scientific evidence that there is
a correlation between process and product. A hazard
cannot be identified with a specific software
component since hazards relate to the entire system.
The context for criticality is hazard analysis. For
example, one airplane had all of its failures in the
redundancy management portion of the software. You
should also look at Mil-Std 882B which takes a
different approach. :
Many forms of scrutiny are short of formal methods,
but are still valuable. DO 178B describes the
distinction between reviews and analysis.

Formal methods cannot be injected into a chaotic
Process.

Proof of correctness is the least valuable aspect of
formal methods.

Formal methods can help with validation by

1. Making it possible to challenge or test the
requirements by posing hypotheses and proving
theorems.

2. Exposing assumptions. Proving a theorem about a
specification requires assumptions; what are they?

3. Managing change more reliably. The machine can
help manage the process. Errors creep in with
change.

4. Encouraging simplicity because formal methods are
hard to use.

5. Providing powerful tools for handling complexity
where it is necessary.
Discussion: Not enough emphasis is placed on
validation of formal specifications. Formal methods
can win by helping to find errors or inconsistencies;
they can also lose since formal methods are less
understandable to domain experts. The value of formal
methods is the ability to do analysis (including
simulation). Note that there is no empirical evidence
for this, but the panel members believe it.
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Simulation isn’t that great because control systems are
too complex. There is also the problem of designing
test cases for the simulation which mimic the later
reality of the operational system.

One problem is how few people there are with
experience building these systems (for example, space
probes). Lots of mistakes, such as using too much
complexity, are made over and over again.

Controlled experiments (to demonstrate the
effectiveness of formal methods or other techniques)
are difficult and expensive. They might be do-able for
low (10%) reliability, but the results can’t be
extrapolated. Using formal methods increases the
understanding and therefore confidence in the system.
The danger is that use of formal methods becomes
more of a checklist and the benefits are not realized.

Another panel member commented that without
empirical evidence, such confidence in formal methods
may be misplaced. This was referred to as the “it has to
be right because I used mathematics” argument!

2 WEDNESDAY AFTERNOON
DISCUSSION

As part of the preparation for the workshop, the panel
members were sent a list of possible development
techniques, generated from a variety of sources and
presented with no assumption about their absolute or
relative value. The panel was asked to discuss which
techniques might be useful in preventing, detecting and
mitigating errors. The panel decided that this approach
was not useful to them, and that they should (instead)
just go through the list and comment on the items. In
many cases, little was said about an item since the
panel members merely assumed that everyone would
do it. In other cases, there was extensive discussion.
The notes here list the items discussed, with comments
on the discussion as appropriate. Lack of comments
here merely implies that the panel members had little
or nothing to say about an item. Inconsistencies in the
comments reflect disagreements among the panel
members.

Techniques are divided roughly into two areas,
Management Techniques and Technical Techniques.

2.1 Management Techniques
2.1.1 Configuration Management (CM)

This is a standard technique that should be used. CM is
a well-developed field, and there are several good tools
available. DO 178A and other standards are applicable.
Safety critical systems should not be highly
reconfigurable since we can’t certify the safety of
individual components independent of the system in
which they will be used. The developer must decide
when to redesign a system instead of modifying the
current system design.
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2.1.2 Verification and Validation (V&V)

The centifying agency should review all techniques (for
example, formal methods) in depth. If the agency
doesn’t have the expertise, then an independent V&V
team that does have the expertise should be used. The
verification team should be independent of the
development organization. If a new technique, such as
formal methods, is used by the development
organization, the organization will have to decide
which one(s) to use, and how to implement them. If the
development organization is not familiar with the new
method, there will be a technology transfer issue.
Finally, management needs good criteria for selecting
the new method.

2.1.3 Quality Assurance (QA)

QA needs to be more than just filling out checklists.
What are the QA criteria and guidelines for software,
especially safety critical software? Note that
developing software is different from manufacturing
hardware products, so the QA techniques will be
different. One question is where the dividing line
between V&V and QA falls? One way of looking at
this is to say that V&V is part of QA. Victor Basili
says that quality assurance and quality control are
different things. A final issue is distinguishing QA in
the abstract from QA in practice as it will apply to a
well defined, known effort, product or project.

2.1.4 Standards

Care needs to be exercised in choosing the standards to
be used since some standards are very lax. Since there
are lots of standards, this can be a difficult process.
Good standards state what must be done (and not
done), not how it must be done. The implementing
organization must specify the “how.” The choice of
standards must be approved by the regulatory body.
Examples of standards include: Mil-Std 882B, IEC-
88012, MoD-00-55 13, and MoD-00-56 14. Mil-Std
882B is a good choice because it says what must be
done, not how, and leaves it up to the developers to
convince the reviewer that they have complied with it.

One panel member did not feel that MoD-00-56 was an
example of a good standard. This member prefers the
system safety engineering approach to risk, as
contained in Mil-Std-882B. MoD-00-56 takes a more
reliability-oriented approach to risk. MoD-00-55 also is
limited in its proposed approaches to safety-critical
software.,

12 “Software for Computers in the Safety Systems of Nuclear Power
Stations,” IEC Publication 880, International Electrotechnical
Commuission (1986).

13 “The Procurement of Safety Critical Software in Defence
Equipment,” Interim Defence Standard 00-55, Ministry of Defence,
Glasgow (April §, 1991).

“Hazard Analysis and Safety Classification of the Computer and
Programmable Electronic System Elements of Defence Equipment,”
Interim Defence Standard 00-56, Ministry of Defence, Glasgow
(1989).



There are very few criteria available to use in choosing
between the various standards. It’s also difficult to.
measure compliance with a standard. Are certain
practices forbidden or is there a required demonstration
that certain criteria have been met? (This is the
difference between “what” and “how"” standards.)
Standards are often used as guidelines, with specific
implementations negotiated between the regulator and
the developer. How is it determined that the standards
are implemented with goodwill?

2.1.5 Project Management Plan

The only comment was “have one!”

2.1.6 Software Safety Plan

It needs to be an integral part of the system safety plan.
System safety plan writers often write a software
requirement which the software people haven’t bought
into, which can be a real problem.

2.1.7 Collection and Analysis of Metrics

Data should be collected on a development project; the
data to be collected should be predicated on the project
goals, Data collection should continue after the product
is in place. DOD requirements for data collection are
good, especially with respect to safety.

What is actually measured? What metrics demonstrate
that the Project Management Plan is actually being
followed?

There is a difference between product metrics and
process metrics. Metrics are needed to indicate whether
non-functional requirements are on schedule.

Complexity metrics (as they now exist) are mostly
“snake oil.”

The collection of data on an operational product cannot
be emphasized too much. It is a scandal that there are
no mandatory reporting requirements for voting errors
(vote-outs) in fault tolerant systems in civil avionics,
for example, It is known, for example, that vote-outs
have occurred in the A300 and A310 series, but there
are no trustworthy statistics.

Given the enormous expense of experiments, it is
unlikely that we are going to see many of them, so
collecting real-life data is the only way the community
is going to learn. Real-life data is also likely to be more
realistic than experiments would be.

2.1.8 Financial and Schedule Risk
Analysis

The use of formal methods requires that more time be
spent before code is generated; this in turn requires
management commitment. Risk analysis helps get
management aware of budget and resources need to
deal with risky issues. For example, formal methods
requires a significant commitment of funds up front.
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2.1.9 Documentation Plan

The primary comment was to have one! Project costs
are strongly dependent on the quality of the
documentation. How can a regulator distinguish
between a good faith effort and pro forma
documentation? There is a need to have a detailed
analysis to verify the documentation. Someone must
sign off on the analysis results. A final question is: how
is the degree of compliance measured?

2.2 Technical Techniques

2.2.1 Safety Analysis of the Software
System

The following examples were given in the methods
list:
FMEA, FMECA.
Fault Tree Analysis.
Event Tree Analysis.
Hazard Analysis, HAZOP.
Risk Analysis.
Probabilistic Risk Assessment.
Reliability Block Diagram.
Sneak Circuit Analysis.
Human Factors Analysis.

The need is to present a convincing argument that all
foreseeable problems have been covered. The safety
view is concemned only with hazards, while the
reliability view is concemed with all faults. FMEA and
FMECA apply to system architecture, and do not really
apply to software. The FMEA can specify what the
software can do to address system hazards and to
identify areas where software can contribute to or add
hazards. FMECA adds consequences to a FMEA.
These techniques are needed to tell what the software
needs to do to protect against hazards or what the
software can do to help recover from failures.

Fault Tree Analysis can be used on software. Sneak
Circuit Analysis is misapplied to software; don’t waste
the time. It is done by converting software into circuit
diagrams, and then looking for sneak circuits with
proprietary rules. Nothing real is found. It’s really
standard static source code analysis. There are much
better tools (for example MALPAS).

Human Factors Analysis is used to determine what
kinds of roles are reasonable to assign to people,
software, and non-computer hardware systems. How
are humans provided with information so that they are
not forced into errors? How is it shown that everything
has been considered?

It is easier to provide fault tolerance against identified
faults than to provide robustness for all possible faults.
The issue of adding complexity involves trying to
handle many identified faults versus building with
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overall robustness. An example of the latter is a robust
system architecture. A question is: how is it shown that
there is total coverage? Unsafe operation can occur
without a “failure.”

2.2.2 Requirements Analysis Techniques

The following examples were given in the methods
list:

Object Oriented Requirements Specification.

Data Flow Requirements Specification and
Analysis.

Requirements Tools—SADT, SREM, PSL/PSA,
etc.

Use of CASE Tools.
Requirements Safety Analysis.
Software Hazard Analysis.
Defense in Depth Analysis.

The techniques listed here express requirements in
terms of the mechanisms for achieving them, but they
have limitations. Specific techniques should not be
required. Formal methods are more sophisticated
because they allow specification in terms of properties
rather than mechanisms.

Regarding Defense in Depth Analysis: if the primary
system fails, what exists to serve as a backup? If the
control system is used as back-up, it is no longer non-
critical. In general, this may mean that a non-critical
system becomes a critical one.

Independence is a problem. If the control system gets
the system into a critical situation, what is the
probability that the shutdown system will not be able to
respond properly? This is a global system issue, not
just a software issue.

The issue of independence is a fundamental one
throughout this whole technical area. Whenever
independence cannot plausibly be assumed,
quantitative claims for reliability or safety cannot be
made. There are no good ways of reasoning about
dependence. Are there any ways the formalists can
help here? This is one of the most important research
problems associated with “evaluating” reliability and
safety.

2.2.3 Design Techniques

The following examples were given in the methods
list:

Semi-Formal Design—Data Flow Diagrams,
Warnier Diagrams, etc.

Real Time Design Techniques—Boeing-Hatley,
Ward-Mellor, DARTS, etc.

Object-Oriented Analysis and Design.
Formal Design Methods.
Use of CASE Tool.

10

Graphical Design Tools.
Tabular Design Tools.
Program Design Language.
Formal Design Review.
Use of Watchdog Timers.
n-Version Programming.
Recovery Blocks.

Design Safety Analysis.

The panel suggested some questions that need to be
asked about design techniques: Does the technique fit
the problem, and are the people who are using it
familiar with it? The question for the NRC is: why did
the developer choose the technique? Is the technique
helpful, is it necessary, is it sufficient? Some may be
helpful; none is sufficient.

Does the organization have the ability to use the
techniques chosen? Are the techniques chosen
sufticient to deliver the degree of safety and reliability
that is required? Do the techniques match the level of
risk we're willing to live with?

The problem is that there is very little hard scientific
evidence for the efficacy of any software engineering
methods or techniques. It is not likely that the last two
questions can actually be answered.

CASE tools are really just picture drawers at present.
Formal design reviews are helptul.

The principal requirement is that there must exist a
well constructed argument as to why the system is
correct and safe. The question is: which of these
techniques address this issue and which don’t? For
example, CASE doesn’t address the issue, but formal
design reviews do address it. Others (such as watchdog
timers) are specific techniques to address specific
problems.

Proponents of n-version programming have made
unjustified claims. The technique does not give
independence, but it seems to provide some benefit,
and other techniques on the list are probably subject to
the same criticisms. N-version programming is one of
several techniques that can be used, but it must be used
carefully and analyzed carefully. N-version
programming only protects against certain kinds of
errors What are easily tested for. In particular, it doesn’t
protect against requircments flaws, The problem is
achieving independence and knowing that it has been
achieved. There may be other ways of achieving
diversity, but they all have similar problems.

N-version programming can’t be applied to some
problems (for example, clock synchronization); some
parts of the program will be global across the
redundancy. Unfortunately, these are often the most
critical.



Formal methods help by making assumptions explicit
and by helping to direct the testing and validation
process. They are not complete solutions but they limit
and define the incompleteness.

The evidence for effectiveness of all of the techniques
listed is anecdotal.

2.2.4 Implementation Techniques

The following examples were given in the methods
list:

Language Choice. (Which?)

Mandating or Forbidding Certain Language
Statements. (Which?)

Coding Style.
Walkthroughs.

Code Inspection.
Formal Code Review.
Code Safety Analysis.

It is better to state a goal and require a convincing
argument that the goal has been achieved rather than
specifying how to the goal is to be achieved.

Some languages provide some protection from errors
(for example, strong typing) while others (for example,
the C language) are prone to certain kinds of errors.
Language choice is a secondary issue; the compiler is
more important!

Late lifecycle problems are well-understood and there
are techniques for dealing with them. Early lifecycle
problems are harder. The problem is that people put
more effort on late lifecycle problems because they
understand them better.

Synthesis (transformational implementation) is
practical for some domains. But it doesn’t solve the
whole problem because the errors are most often
introduced in the specifications, not the translation into
code.

There was an attempt in one case to get certification on
the language translator and then to omit certifying the
application program,

Regarding program synthesis: an error in the equations
is more likely than an error in the program synthesis
(translating detail design to code.)

It is important to distinguish between trying to find
problems in a program and evaluating (showing the
goodness of) the program.

Continue the reliability analysis into the early
operating stage. Continue review analysis until there is
enough data and the right kind of data.

2.2.5 Testing Techniques

The following examples were given in the methods
list:
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Static Code Analysis.

Dynamic Code Analysis.

White Box Testing.

Black Box Testing.

Stress Testing.

Symbolic Execution.

Statistical Testing.

Do it! (Testing.)
All of the listed techniques except statistical testing are
aimed at improving the product. Statistical testing is
aimed at finding out those coding errors which cause
problems in actual usage. There is some evidence that
statistical testing does help in assessing reliability, at
least in the 104 range. Statistical testing augmented

with formal arguments may be convincing of high
reliability.

The problem is that there are no rigorous ways of
doing statistical testing. The combination of logical
and probabilistic information remains an unsolved
problem.

It is very difficult to use tests to simulate real-life
situations. Fixing errors resets the statistical
assumptions. It would be a good idea to collect data
during operation, perhaps with a provisional license.

Statistical testing should be done even it only delivers
the 10 number, but combine it with other techniques.

2.2.6 Formal Reviews and Walkthroughs

There was little discussion of this. Fagan inspections
were somewhat endorsed.

2.2.7 Proof of Correctness

It is difticult to do this on code. Other techniques for
code are effective and the bigger win with formal
methods is in the early stages of the lifecycle. Apply
proof of correctness to judiciously chosen pieces.

2.2.8 Modeling

There are two types of model. Finite state models
combined with animation or simulation are useful early
in the lifecycle. Reliability models are different, and
have a different purpose.

The foundations of reliability models (especially
Markov models) need to be scrutinized carefully.
Published comparisons on existing modeling codes
may not be reliable.

For modest reliability, reliability growth models are
often useful.

Various reliability modeling tools exist, but many of
them are not useful. A consensus of the panel members
was that comparisons in the literature have been self-
serving. Their judgment is not to use modeling tools
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blindly but to look into each one carefully and
understand how it works and what its limitations are.

One question that must be resolved in practice is when
to move from a reliability growth model, in which
errors are corrected, to a straight reliability model,
which permits no more repairs.

3 THURSDAY MORNING
QUESTION-ANSWER SESSION

This session consisted of questions from the observers
and responses from the panel members, plus a few
comments from the observers. This portion of the
workshop report lists the questions and the various
responses. Many of the questions resulted in a wide-
ranging discussion, and there were disagreements
among the panel members on answers to questions. We
attempted to capture all this in these notes.

3.1 Common-Mode Failure

Is there a technique to analyze for common-mode
failure? How can you mitigate the effects of common -
mode failures?

* How does a common-mode failure differ from other
problems (for example, “bugs™)?

* To be able to demonstrate diversity, you need to
show that two components perform different
functions—this is as hard as proofs.

¢ The real problem is having the same conceptual
error in two components that are supposed to be
different.

* If you have the same code in different channels, you
have a common mode. One solution is to not put
everything in software. Even with different code (n-
version programming) the failure modes are not
completely independent. The issue is not software
versus hardware. What is needed is some alternative
means that is conceptually very different from the
software solution. It may be that implementing in
hardware is a way out, but it is because of the
incidental benefit you get from being forced to
think of a novel solution that can be implemented in
hardware.

¢ Is there a “structured analysis” technique? No. The
only way to handle the problem is to perform
verification. (Another panel member doesn’t see
how verification tells us anything about common
modes.) Introducing diversity late in the lifecycle is
not effective. It is better to get it in as early as
possible. For example, diversity can be added by
using different designs rather than different
implementations.

* One problem is that you can use different designs
but then they may end up on the same type of
processor with the same operating system.

* If you have a complex software system with a
simpler hardware secondary system, you might be
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able to prove the correctness of the secondary
system. Then you could postulate that the failure
modes are independent because the secondary
system has been proven correct and will fail only
for hardware reasons.

* Inn-version programming, even when the
programmers implement different algorithms to
solve the same problem, they tend to make mistakes
handling the same ditficult inputs (e.g., handling
boundary conditions).

e If you do a complete formal approach and prove
everything, then you have a proven correct program
and don’t need redundancy. But even then you can’t
rule out a specification error.

+ The only way to get a handle on assurance with
respect to common-mode failure is with correctness
proofs. Also diversity will be most effective if
diversity is at the highest level.

* Suppose you use functional diversity but then use
identical microprocessors with same operating
system? What is the effect?

= Can you achieve diversity by putting it in both
hardware and software?

¢ The ultimate level of defense is the operator.

» Anissue is the situation in which hardware has
some software or microcode in it which could be an
unknown.

= Itis not clear how to assess the true effectiveness of
various ways of implementing diversity.

* Convincing, complete logical arguments are needed
for the correctness of applications of PLCs and
PLAs, no matter what the implementations. These
are merely computers and are likely to suffer from
all the problems we have been discussing. At the
very least, we should be reluctant to accept any
arguments that say that there is no need to worry
about software.

3.2 Hardware Backup to Protect
against Software Errors

Is it fair to conclude that having some hardware backup
to protect against common software errors is good?

* Having hardware backup is better but there can still
be errors.

* The issue is simple backup, not hardware backup.
The point is that the backup should be sufficiently
simple that its correctness can be reasoned about. It
is possible this could be done in software if it were
simple enough.

* You also have to look at functional complexity.

= There are no measures of functional complexity.
The point is that we want intellectual control.
Maybe we can simplify the software system and
reduce the number of states. Building to a higher
level abstraction may reduce the complexity. By



using a higher level of abstraction, the number of
states is reduced.

» Use deterministic rather than non-deterministic
methods. For example, interrupts versus polling
comes down to reducing the number of states. Use a
state model—we can get control of a design when
we can build a deterministic state model and can
understand it.

» Complexity is related to the depth of the theorems
that prove the correctness.

« From the view of regulators, a zero or one measure
of safety is needed. That is, the system is either safe
or it is not. Another panel member disagreed that
the issue is so black and white.

« There is no handle on functional complexity.

3.3 Hardware versus Software

Is hardware simpler and easier to understand than
software?

» It may be easier to understand or verify hardware
than software.

+ Hardware is not any easier to understand if the
functionality is of the same extensiveness in the two
cases. Isn’t this all a problem of complexity rather
than hardware versus software?

+ Using hardware to back up software may be
problematic due to the translation from hardware
(the current system) to software and then back to
hardware.

 If you're going for diversity, make it as diverse as
possible. Hardware is different from software.

+ The distinction between hardware and software is
fuzzy (cf., PLCs). The diversity may not be as great
since the problems are still intellectual
(programming).

¢ There is a spectrum from hardware only to a
mixture of hardware and software, with PLCs in
between,

» The key is having a way to verify it.

» There may be some advantage to using a PLA or
PLC but the advantage is not in just using it. The
advantage would be if you could construct a more
straightforward argument for correctness of the
design if a PLA or PLC is used. What you should
look for is convincing and complete logical
arguments for correctness. There are no shortcuts—
you have to pay the price of understanding it.

3.4 Certification of Programmers

Should programmers be certified?

« This is a political impossibility. You should have
someone like a professional engineer (PE) to sign
off on the project and accept responsibility for its
safety.
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3.5 Verifying Non-Safety Software

Should you be as thorough in verifying the non-safety
software as you are in verifying the safety software?

« Historically, it has been possible to separate safety
and non-safety systems. At present it's more
difficult because the control system may have a role
in responding to safety events.

» You’ve got to expand your viewpoint. Correctness
is not the only criteria, and if you buy off-the-shelf
software, you have to perform a full safety analysis
since safety is a system property.

+ The Ontario Hydro Darlington plant shutdown
software was designed so that even if there were
still residual errors of certain types that caused the
software not to provide an answer or if there were
certain types of control flow errors in the code that
caused it not to execute all the necessary routines,
the protection system would still shut down the
plant.

» You need to quantify the problem. You don’t need
the system to be completely safe, but it has to be
“safe enough”.

» There is no way to answer the question of whether
something is “safe enough.” This is not a question
that can be answered using mathematics or science.
It is dangerous to pretend you can quantify
something when it cannot be quantified.

3.6 Numerical Rating of Software

Numbers are important for finding out precisely what
is known. They can be used for relative rankings.
Hardware was easier to quantify. Does anybody
believe that you can do better than 104 with software?

« The number depends on the context (how many test
cases). For reactors, 104 is probably on the
boundary of what you can measure. You may be
able to achieve better but it will be hard to
demonstrate.

« Even if we get empirical data in the 103 and 10
region, getting 10-7 and extrapolating to 109 and
higher is unrealistic. We can’t get better numbers.

« There is still controversy about whether numbers
which are meaningful or accurate can be obtained
for software.

3.7 Extrapolation from Measured
Numbers

Can you extrapolate from numbers such as 10 to
numbers such as 10°?

» Extrapolation may be possible in the low reliability
region but is dangerous for high-reliability.

» We just don’t know about the high-reliability
region—the types of errors may be different.
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3.8 Guidelines on Hardware Versus
Software Versus People

Can you offer any guidelines for hardware versus
software versus people?

One aspect is functional complexity versus
structural complexity. Aspects of complexity
include understanding, and the number of failure
modes. Hardware may be simpler because it has
fewer failure modes. Deterministic systems may
bave fewer states and be easier to understand.
Polling systems may have fewer states. It’s good to
have control over the states that the system can take
and be able to understand thein.

Complexity is related to the intellectual content; to
the “depth of the theorem.” Complexity is related to
the size of the proof that you have to construct to
demonstrate correctness. Other measures are
worthless. (Side comment: is it really possible to
measure the “size” of a theorem?)

Structural complexity may be high but produce a
lower functional complexity. For example, you
might need to design a system with high structural
complexity in order to achieve low functional
complexity.

The only useful measure of complexity is a binary
one. It is either sufficiently simple that we can make
a plausible claim that it is completely correct, or it
is not and we are back dealing with uncertainty and
probability. If we do not have complete certainty in
correctness, nothing can be claimed from a purely
logical perspective, at least if we are interested in
evaluating how well the system will behave with
respect to safety or reliability.

You have to postulate a system that will work when
other parts have broken. This is why people want
diversity.

People want to correlate complexity with lines of
code. There is no such correlation.

You don’t have to evaluate all of the possible ways
a system can fail, and you probably can’t. Fault
trees work backward from the hazard and are beltter
than FMEA.

There was a discussion on the role of the control
system versus the protection system. A comment
was: the distinction has been blurred in some
nuclear plant protection (NPP) software, violating
basic engineering design principles. This may have
unfortunate consequences. We should not be
ignoring lessons learmned about engineering design
when we introduce computers.

In the nuclear area, at least in the United Kingdom,
there is no blurring between control and protection.
The protection and control roles seem to be clear
and the allocation of numerical requirements to
them in the overall safety case appears reasonable.
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On the other hand, it is not at all clear why control
is often not seen as safety-critical.

3.9 How Does Size Correlate with
Complexity?

There is still a perception that size correlates with
complexity. How do we deal with this?

It’s really a matter of semantics versus structure.

The real problem is the functional complexity and
we don’t have a handle on that at all.

There is no correlation between complexity metrics
and errors.

On the other hand, there are likely to be more errors
in large systems than in small ones.

In a crude sense, 100,000 lines of code (LOC) is
more complex than 100. However, just because one
system has more LOC than another does not imply
that its complexity is higher.

If you increase the size, you do increase the number
of problems that can occur; but small programs can
also be very complex. Small is not necessarily
better.

It comes down to an intellectual assessment.

There was a follow-on discussion of fault tolerance and

how it adds to complexity.
Adding fault tolerance may add errors.

Maybe the proper question is “can you provide an
intellectual argument that this is correct?”

There may be some merit to using complexity
measures in a qualitative fashion but don’t set
things up so that there is an incentive to minimize
size.

Numbers on error density are averages and are not
necessarily meaningful when applied to a particular
program—there is wide variation.

The application is the major influence on how many
errors you have and what kinds of errors.

The programmer has the biggest effect. There is a
factor greater than 25 between the ability of the best
and worst programmer.

This is not convincing. In the systems we are
discussing here, there will be no such thing as the
programuner. In design teams of any size, such
differences should average out.

You probably can’t certify programmers, but
someone in charge on the project should be
reviewed and have a certain level of experience.

3.10 Partitioning the Design

[ think I heard somcone say that it’s 0 or 1; if the
probability of being 0 is low, it’s 1. What about
partitioning the design?
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Can you really achieve a design like that?



o The Germans have thought about this. .

« This is really a discussion on the point that there is
aregion where you understand the program
completely (0), then you enter the realm of
probability, and ultimately, there comes a point
where you can’t say anything at all about the
program in a quantitative sense (1).

3.11 FMEA and Fault Tree .
Analysis

Are FMEA and fault tree analyses adequate?

o One panel member stated that he had never seen
FMEA applied to software and doesn’t know
whether it can be done. Doing a FMEA or FMECA
on software may not be realistic because of the
extremely large number of possible software
outputs and behaviors that would usually have to be
considered.

« Verilog claims to have a tool to do this.

3.12 Unintended Functions

What defenses should be considered against
unintended functions? How should they be addressed? .

« If you can identify the unintended functions that
you don’t want, there are techniques to address this .
problem; for example, software fault tree analysis.
It is not clear whether there are general techniques.
Formal methods allow you to prove certain
properties.

+ You could use a safety kernel approach. If you
build the kernel so that certain things can’t happen,
then it doesn’t matter what the other components
do. .

+ For Darlington, the AECB went through a lengthy
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High-level design, detailed design, and code with
proofs that each step conforms with the previous
step. This includes formal requirements
specification, design specification, proof that the
two specifications are equivalent, and proof that the
design is equivalent to the implementation. You
should have a detailed formal argument (fuil
mechanical proof) and journal-style summary.

You need to have both a proof with extensive detail
and some way of understanding the proof at a
higher level of abstraction. The proof needs to be
presented hierarchically and from different points of
view. You should avoid box loads of information.
The proof has to be hierarchical. You need data for
the entire system. The vendor must honor the intent
and the spirit of the regulation, not just the letter of
the regulation.

Even with complete mechanical verification, it
should be written up as journal-style proofs for
ordinary readers. The written proofs summarize
things for people to understand.

Have you ever seen anyone do that?

For an entire system, no. For critical subsystems,
yes.

Yes—and I've found errors in the journal-style
arguments!

You need to encourage the vendor to honor the
intent rather than the letter of the regulation. You
really need to understand why this thing works—all
the rest is really there to support this.

3.14 Testing

What about test? Should the regulator require testing?

The panel didn’t mean to imply that you shouldn’t
test, just that there wasn’t anything new to add here.

process to sign off that there were no unintended At this point, there was an elaboration on comments on
functions. criticality levels.

« Showing that there are no unintended functions is
very difficult —it’s essentially a two-way proof
between the code and the requirements.

« The notion of security kernel does not translate to
safety. In a secure kernel you want to make sure
that certain things never happen. Contrast this to a
safety system where you want to be sure that certain
things will happen.

« Security kernel ideas can be applied to safety.
Safety usually involves ensuring that certain things
can never happen; that is, that hazards don’t occur.

.

3.13 Convincing a Regulator That a
Design is Correct
What would you consider to be the requirements for a .

design, development, and test process to convince a
regulator that it is correct?

15

If a system component is of the highest criticality
level, then software that contributes to a failure of
that system must also be considered to be at that
level.

The usual approach is to develop a hazard list,
match it to components and then require the best
techniques for the most critical components. This
leads to redefining things in terms of reliability and
forgetting the hazards. Since ultra-high reliability is
impossible to achieve or guarantee for software, this
paints you into a comer where safety depends on
something that is impossible to do and your only
option is to produce perfect software. Most software
engineering techniques have never been shown to
be etfective enough to achieve perfection.

The usual method of verification is concerned with
showing that the code is consistent with the
specifications. If you wish to include unintended
functions, you also need to do the reverse.
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Another way is to show consistency between
requirements and safety constraints. Do the usual
verification between specifications, design, and
code; then verify the code against safety constraints,
This saves a lot of work.

A more general principle is don’t write standards
that prohibit good solutions.

Use a hazard list to identify software hazards, and
generate the list of constraints from this.

Show consistency between software requirements
and the constraints generated from the list of
hazards.

Use software hazards to control the design of the
software (for example, separation, encapsulation
kernel, safety kernel, design for fail-safe, ...).

From high-level design, generate and verify code or
module constraints.

“Verify” low-level design against code constraints;
then add assertions.

Starting with the mindset that the system has to be
correct leads to one set of choices. If you start with
a different mindset (safety), you get a different set
of choices. It does not need to be correct to be safe.

(from DO 178B) Start with a list of system hazards.
Assign a criticality level to pieces of code based
upon what they can affect. Various lists of
techniques exist associated with these levels (for
example formal specification, black box testing
techniques, white box testing techniques, etc.). The
highest level must be correct. After dealing with a
hazard initially at the system level then map to the
design and the code. Then forget about the hazards
because you’ve assigned a criticality level and set
of techniques to match. You don’t need to build test
cases on the basis of safety properties. Just work on
reliability.

There is also an opposite approach. Prove the
requirements are consistent with the safety
constraints. Then use the safety constraints to guide
the design of the software so that the software, even
though it may contain errors, will not contribute to
an accident. The software is, in essence, fail-safe.

Fault trees work backward from the hazard and are
better than FMEA.

If software must take safety action, then you have to
show that it will always perform when called upon
to do so. The Darlington system design was smart
in that it started “tripped”, for example in a safe
state. So they needed to show that no subroutine
would untrip one of these variables when it wasn’t
supposed to. They built a fault tree to see that it
would not trip when it wasn’t supposed to. They
found no such problem but did find 42 changes to
make that increased the safety of the code.
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The illustration below shows one way to view the
interactions among hazards, constraints and
software design elements.

3.15 Using a Safety Approach to
Improve the Reliability Numbers

If I do everything right and use this safety approach, do
I get from 104 t0 1057

Those are different numbers: one is reliability and
one is safety. It might increase your confidence but
it can’t give you a number,

Fault trees are a logical argument, and reliability
figures don’t address this question.

You can’t assign a reliability figure to the software
events that populate the fault tree. (There was a
great deal of disagreement on this point.)

Combining these kinds of information is tricky—for
example, the testing may give you 104 and the
safety analysis may tell you why it’s 104, One
panel member thought this was “combining apples
and oranges” and the result did not provide the
information needed.

All this safety analysis work just tells you why you
got to 104 in the first place. The point is that you
must rely on a combination of evidence that tells
you something new, but we still don’t know how
best to combine the different types of evidence or
how to tell or measure what such a combination
will get us. You can’t quantify the end result.

If you do reliability analysis and then safety
analysis and find no new problermns, it increases
your confidence.

If you tind problems, it may also increase your
confidence since they were different problems
found by different techniques.

The issue in both these cases is whether the
increased confidence is scientifically justified. This
is doubtful. It needs to be emphasized that there is
evidence that people tend to have their confidence
increased in circumstances where this is not really
justified. We must distinguish between expert
judgment and “factually, scientifically, informed”
expert judgment.

Using fault trees helps find errors because it forces
you to look at the code in a new way. Usually you
focus on what you want the software to do; with a
fault tree, you focus on what you don’s want it to
do.

One approach is to use multiple but complementary
techniques. This can increase your confidence, but
you can’t quantify the result.
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Show

Requirements consistency

Generate design

High-Level constraints, e.g.,
9 separation, safety

Design kernel, design for
fail-safe
Low-Level 'Verify' against
Design code const'ralnts,
add assertions
Code Software fault

tree analysis

Nancy Leveson’s Development Approach

3.16 Final Remarks

How about some last words of wisdom?

The panel began by asking the observers: what did
you all get from this? They then gave their own
assessments of the workshop. The first set of
remarks (preceded by ‘-’) are from the observers.
The second set (preceded by ‘*’) are from the panel
members.

A lot of the techniques are really good practice;
there is no big winner. This creates a problem
for the NRC since there are proposals on the
table that must be answered, and there are time
constraints on answering them.

A key point is agreeing to common standards
and negotiating the implementation. Can we win
the political battles that this will create? How
does the NRC get the authority it needs?

We need to augment our existing approach with
new tools. There was a consensus that it is
reasonable for the NRC to ask for and require
vendors to provide sufficient information to

convince the NRC staff that they have addressed
the common-mode failures. Levels of diversity
are also reasonable. Use manual backups. There
will be some debate on degree, but this is a good
path to follow. Also, looking at other tools and
techniques, for example formal methods, is
certainly very reasonable.

— There was a good discussion on hazards
analysis, and a good emphasis on intellectual
arguments even though it's hard to derive
regulatory policy. We need to do more thinking
on levels of defense. I like the idea of “don’t
prohibit other solutions.”

— We have to do a “competency assessment” of
vendors. The real value is: “do you understand
it?” What is a good competency audit? The
group’s position with respect to the intellectual
content of the software and the process of
building it was interesting.

« It's interesting that the people who build reactor
systems are not visible in the safety, reliability and
formal methods communities. They are not
involved in the intellectual debate. The ability and
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the exercise of making a formal argument or some
kind of rigorous argument is essential. It's a matter
of the vendor delivering not just the product but
also being able to say “this is what we did”” and
“this is why we did it this way, “

* The NRC should start any assessment with extreme
skepticism and put the burden of proof onto the
vendor.

* The avionics industry may have gone too far in that
the people who write the software also help write
the standards.

* How practical is it to require formal methods, and
will vendors actually use them? How will the NRC
know whether they’ve been used competently?
There is an essential need to do things
quantitatively. However there are inherent limits in
what we can do quantitatively. So we will have to
make decisions based on disparate evidence. (This
remark includes statistics and probability in formal
methods.)

* Measurements are needed. A point of disagreement
is whether we have them now. Be realistic about
using numbers just because you want numbers
when you need to factor in qualitative data. Don’t
do things in software that are simpler to do in
hardware. Be sure that who you hire is qualified and
not a “garage hacker.”

* In other engineering fields, you require evidence
rather than specific techniques; it depends on
what’s reasonable. You need someone to provide
the argument and someone o scrutinize it.

* The NRC should be skeptical about replacing
hardware with software, since it’s not always
advantageous. Not all formal methods are equal.
You will need to do an in-depth investigation of
formal methods to get a handle on this.

* The NRC will need to do things quantitatively, but
there are inherent limits that must be faced.

* We need measurements. Since you need to make
decisions now, qualitative judgments are better than
bad numbers. If someone can’t make a rational
argument for correctness, they shouldn’t be
building the software.

4 THURSDAY AFTERNOON
NRC/LLNL DISCUSSION

During a wrap-up session Thursday afternoon, the
NRC and LLNL observers discussed the results of the
workshop among themselves. This portion of the report
gives a summaty of that discussion. Most of this
discussion consisted of questions that will need to be
examined (based on the discussions in the workshop)
and actions that will need to be taken. Comments from
panelists who read a draft of this Report are included in
a few places.
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4.1 General Points

. We need to revisit defense-in-depth. We need
to look at the whole picture. As we move from analog
to digital systems, we may need to re-examine the
whole system and redo the hazards analysis.

. What do we think about hazards? Should they
be in the forefront? Do we believe what the panel is
telling us? Should we add in hazards analysis to the
NUREG 0493 analysis, based on what was leamed at
this workshop? What is being done today on retrofits
with respect to hazards?

4.2 Assessing Organizations

» Putting the vendor through more intellectual effort
will increase our confidence in his system. How
does one do a competency assessment? Can one put
together a protocol for competency assessment?

* The NRC needs to figure out what it needs in a
development organization before trying to measure
the organization’s competency.

* One possibility is to use the Software Engineering
Institute (SEI) maturity model as a model for
assessing organizations. Don’t try to use it directly
(since it was developed for a different objective—
cost containment), but as an approach. Could we
create a checklist of things to look for in
organizations?

A comment was added by a panel member during a
review of a draft of this report: “I am very skeptical
about this. It seems to me just yet more software
engineering snake-oil. As far as I can judge, it (the
SEI model) is only influential because the DoD
forces it on suppliers. There seems to be no real
empirical underpinning for the model.” Another
panelist said: “Arg! The SEI maturity model has
never been shown to be effective. At best it might
decrease cost, but will probably have little effect on
quality.”

* If we do this, we will need to give a vendor fair
warning of what the NRC will expect to see in an
assessment.

* Itis clear that the intellectual capability of the
vendor is of key importance.

* We have heard from the experts that it is necessary
1o be able to assess the intellectual products of the
development effort. We have concluded that in
order (o do this, we need to assess the development
process. We are aware that various assessment
methods exist—HP, SEI, JPL and others. Can these
be adapted to our needs? We need to decide how we
are to do the assessment.

Panel member: “I think it is fair to say that not a lot
of usable empirical evidence has come from these
studies. But a proper evaluation of the efficacy of
different methods and processes needs to be done.”
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4.3 Methodology

o+ We kept hearing three things regarding reliability

measurement; intellectual effort, formal methods
and testing.

The experts were assuming we understood the need
to do the standard things such as life cycle
processes, testing, and so forth. They were talking
about what is needed in addition for safety critical
systems.

Panel member: “Yes, this is an important point—I
think that ran through all the discussions.”

Remember the comments that the real benefit from
using formal methods is the impact it has on your
thinking process.

Based on the results of this workshop, formal
methods is an acceptable method for developing
safe software. The reason is that the intellectual
exercise increases knowledge of the software. The
panel members were uniform in recommending
formal methods. The problem is: What does this
mean? The full approach (with complete proofs of
correctness) is probably too much. Two questions
arise: (1) How do you actually apply formal
methods? (2) Are other methods equally applicable?

The panel members emphasized that safety is a
system issue. Diversity is essential because you
can't get better than 10~ reliability on individual
software components.

You can’t test beyond 104, If your design requires
more than this, reject the design. You need to start
with the hazard and figure out what probability of
system failure is acceptable for the system. Then
look at the system design and decide failure rates
for the different components. If one of these
components is software, and the required failure
rate is lower than 104 (say, 10), you can’tdo itin
practice. Redesign. If the required failure rate is
higher than 104 (say, 10°3), then this can be tested,
so the design is OK (from this standpoint).
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Section 4. Thursday Moming NRC/LLNL

All the experts agreed that hazard analysis is
needed. Where should it be done? Early in the
system design, since it is a system issue. We need to
address the identification of system hazards and the
use of system hazards to identify software hazards.
The concept of “software systems safety” rather
than just “software safety” is an important one.

Hazard analysis must be done both top-down and
bottom-up. The former addresses system hazards
that are dealt with by the software. The latter ensure
that software faults don’t impact system safety.

Functional complexity is more important that
structural complexity. The former is harder to
measure; the latter is easier to measure. (This does
not imply that measuring structural complexity is
necessarily easy.)

It was disappointing that there was no discussion of
requirements validation. It is clearly an important
area. There are techniques (such as simulation and
rapid prototyping) that address this. We need to
explore this further.

The difference in viewpoint between a safety or
hazards approach and a reliability approach is an
important one.

When assessing reliability, you are looking for what
the system will do. When assessing safety, you are
looking for what the system will not do.

Panel member: “One particular béte-noir of mine
got mentioned only briefly—that is the dearth of
real hard evidence from operational use of these
safety critical systems. I think it is scandalous that
there are not more mandatory reporting
requirements so that the community can learn about
what is really happening to systems in the field. For
example, I think someone said that there is no
requirement to report when the protection system
has been called upon to act, so long as it functions
OK. This is crazy! We badly need complete
reporting of all incidents.”

NUREG/CP-0145
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