PNL-10382

uc#Hoo

FINAL REPORT AND RECOMMENDATIONS OF THE
ESNET AUTHENTICATION PILOT PROJECT

. R. Johnson
. L. Athey®
. E. Engert®

January 1995

Prepared for
the U.S. Department of Energy
under Contract DE-AC06-76RLO 1830

Pacific Northwest Laboratory
Richland, Washington 99352

(a) Lawrence Livermore National Laboratory
Livermore, California

{b) Argonne National Laboratory
Argonne, Iilinois

{c) National Energy Research Supercomputer Center
Livermore, California

GUMENT IS UNLIMITED

qd(”,

-

#

e

m\&

DISTRIBUTION OF THIS DO

DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disciosed, or
represents that its use would not infringe privately owned
. rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States

Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.

SUMMARY

To conduct their work, U.S. Department of Energy (DOE) researchers require access to a wide range of
computing systems and information resources outside of their respective laboratories. Electronically
communicating with peers using the global Internet has become a necessity to effective collaboration with
university, industrial, and other government partners. DOE's Energy Sciences Network (ESnet) needs to be
engineered to facilitate this "collaboratory"” while ensuring the protection of government computing resources
from unauthorized use. Sensitive information and intellectual properties must be protected from unauthorized
disclosure, modification, or destruction. ‘

In August 1993, DOE funded four ESnet sites (Argonne National Laboratory, Lawrence Livermore National
Laboratory, the National Energy Research Supercomputer Center, and Pacific Northwest Laboratory) to begin
implementing and evaluating authenticated ESnet services using the advanced Kerberos Version 5. The purpose
of this project was to identify, understand, and resolve the technical, procedural, cultural, and policy issues
surrounding peer-to-peer authentication in an inter-organization internet. k

The investigators have concluded that, with certain conditions, Kerberos Version 5 is a suitable technology to
enable ESnet users to freely share resources and information without compromising the integrity of their systems
and data. The pilot project has demonstrated that Kerberos Version 5 is capable of supporting trusted third-party
authentication across an inter-organization internet and that Kerberos Version 5 would be practical to implement
across the ESnet community within the U.S. The investigators made several modifications to the Kerberos:
Version 5 system that are necessary for operation in the current Internet environment and have documented other
technical shortcomings that must be addressed before large-scale deployment is attempted. The investigators also
identified a number of administrative and implementation issues with recommended solutions or suggestions for
further action.

Although it is unclear which of several competing network authentication technologies will gain general long-
term acceptance, it is recommended that ESnet sites begin to deploy Kerberos Version 5 upon release of
production code by the Massachusetts Institute of Technology. Kerberos Version 5 can immediately and
effectively reduce exposure to a well-known and serious vulnerability that results from the transmission of clear-
text passwords across the network.

iii

ACKNOWLEDGMENTS

The authors wish to express their appreciation to the following individuals and organizations for their
contributions to the ESnet Authentication Pilot Project: Ted Ts'o and Jeff Schiller, Massachusetts Institute of
Technology; John Linn, Digital Equipment Corporation;® Cliff Neuman, University of Southern California; and
Glenn Machin and Bill Wrahe, Sandia National Laboratory.

(a) John Linn is currently employed by OpenVision Technologies.

Active Attack
Authentication
Authentication Path
Authenticator
Authorization

Cipher-text
Clear-text

Client

Credentials
Data Enéryption
Standard (DES)

Key Distribution
Center (KDC)

Passive Attack

Principal

GLOSSARY

An attempt to improperly modify data, gain authentication, or gain authorization by
inserting false packets into the data stream or by modifying packets transiting the data
stream. (See passive attacks and.replay attacks.)

Verifying the claimed identity of a principal.

A sequence of intermediate realms that are transited in the authentication process when
communicating from one realm to another.

A record containing information that can be shown to have been recently generated
using the session key known only by the client and server.

The process of determining whether a client may use a service, which objects the
client is allowed to access, and the type of access allowed for each object.

Encrypted text.
Unencrypted text.

A process that makes use of a network service on behalf of a user. Note that in some
cases a server may be a client of some other server (e.g., a print server may be a client
of a file server).

A ticket plus the secret session key necessary to successfully use that ticket in an
authentication exchange.

A secret-key encryption algorithm. ~

A network service that supplies tickets and temporary session keys or an instance of
that service or the host on which it runs. The KDC services both initial ticket and
ticket-granting ticket requests. The initial ticket portion is sometimes referred to as the
Authentication Server (or Service). The ticket-granting ticket portion is sometimes
referred to as the Ticket-Granting Server (or Service).

An attack on an authentication system that inserts no data into the stream but instead
relies on being able to passively monitor information being sent between other parties.
This information could be used at a later time in what appears to be a valid session.
(See active attack and replay attack)

A basic entity that participates in network authentication exchanges. A principal

usually represents a user or the instance of a network service on a particular host.
Each principal is uniquely named by its Principal 1dentifier.

vii

Public-Key
Cryptography

Realm -

Replay Attack

RSA Algorithm

Secret-Key
Cryptography

Server

Session Key

Ticket

Ticket-Granting
Ticket

An encryption system that uses different keys for encryption and decryption. The two
keys have an intrinsic mathematical relationship to each other. Also called
Asymmetric Cryptography. (See secret-key ¢ryptography.)

An autonomously administered Key Distribution Center (KDC) and the logical group
of clients and servers registered to that KDC. Each realm has a unique Realm Name.

An attack on an authentication system by recording and replaying previously sent valid
messages (or parts of messages). Any constant authentication information, such as a
password or electronically transmitted biometric data, can be recorded and used later to
forge messages that appear to be authentic.

A public-key encryption system named for its inventors: Rivest, Shamir, and Adleman.

An encryption system that uses the same key for encryption and decryption. Also
called Symmetric Cryptography. (See public-key cryptography.)

A particular principal that provides a resource (service) to network clients.

A temporary encryption key used between two principals, with a lifetime limited to the
duration of a single login "session."

A record that helps a client authenticate itself to a server. A Kerberos ticket contains
the client's identity, a session key, a timestamp, and other information, all encrypted
using the server's secret key. It only serves to authenticate a client when presented
along with a fresh Authenticator.

A ticket that a client uses to authenticate itself to a ticket-granting server. A Ticket-
Granting Ticket (TGT) to the local Ticket-Granting Server (TGS) is issued to the client
during the initial authentication to Kerberos. TGTs for remote Ticket-Granting Servers
may be issued to the client during cross-realm authentication.

viii

CONTENTS

SUMMARY e e e e R iii
ACKNOWLEDGMENT S . ..ttt e e ettt eeaes v
GLOSSARY P (P vii
1.0 INTRODUCTION 1
2.0 NETWORK AUTHENTICATION TUTORIAL i e et 3
2.1 THE KERBEROS AUTHENTICATION SYSTEM e .3

2.2 ALTERNATIVE AUTHENTICATION SYSTEMS e 5
2.2.1 OSF/DCE Security SEIViCettt et 5

2.2.2 Distributed Authentication Security Service i i 5

2.3 FUTURE OUTLOOK . . . it i e e e e e e e e s e e e e e 6
3.0 CROSS-REALM AUTHENTICATION e e e e e e e 7
3.1 SIMPLE CROSS-REALM AUTHENTICATION i 7

3.2 CROSS-REALM AUTHENTICATION USING HIERARCHICALKDCs 7

3.3 CONFIGURABLE AUTHENTICATION PATHS\ttt e e ee e 9

3.4 SCALABILITY OF CONFIGURABLE AUTHENTICATION PATHS 11

3.5 UNIVERSAL USER IDENTIFICATIONttt ettt e e e et e e e 11

4.0 APPLICATIONS . . . e e e e 13
4.1 BERKELEY ' COMMANDS . . . e e e e e e 13

42 TELNET AP e 13

4.3 FILE TRANSFER PROTOCOLttt ettt e e e e el 13
44 NCSA MOSAIC . .. e e e e e e e e e e 14

e - 1) {2 14

5.0 TRANSITION AND INTER-OPERABILITY ISSUES it e 15
5.1 KERBEROS VERSIONS 5 AND 4 i e e i e e e 15

5.2 KERBEROS VERSION 5 AND AFS e P 16

5.3 KERBEROS VERSION 5 AND OSF/DCE SECURITY SERVICE 17

6.0 TECHNICAL PROBLEMS AND LIMITATIONS . . oottt e e PR 19
6.1 VALIDATION OF THE AUTHENTICATION PATH e 19

6.2 PASSWORD GUESSING R PP 19

6.3 MANAGEMENT OF PASSWORD COMPROMISE i 20

6.4 LOG AND ERROR MESSAGES it e e e i e e e 20

6.5 USER- VERSUS SESSION-BASED CREDENTIAL CACHE S e 20

6.6 SYNCHRONIZATION OF KEY VERSION NUMBERS e 21

6.7 INTER-REALM KEY MANAGEMENT e e 21

6.8 RENEWING EXPIRED TICKETS i e i 21

6.9 ENCRYPTION ALGORITHMS e e e 22
6.10 ADMINISTRATION TOOLS o e et e e e 22

ix

6.11 KDC DATABASE PROPAGATION i 22

6.12 X-TERMINALS - . o o oo e e e e e e e e e e e 23

6.13 DOCUMENTATION . . o o oo e e e e e e e e e e e e e 23
7.0 ADMINISTRATIVE ISSUESovnvnenn.. S .. 25
80 CONCLUSIONS AND RECOMMENDATIONS . . .+« o\ e et ettt e 27
0.0 REFERENCES - - - o o oo oo 29
APPENDIX A - ESNET IMPLEMENTATION GUIDELINES FOR KERBEROS VERSION 5 Al
APPENDIX B - EXAMPLES OF "KERBERIZING" APPLICATIONSuvuaunenaearnnn. B.1

APPENDIX C - LLNL XDIR: A NETWORK-ORIENTED FILE MANAGER S Cl1

FIGURES

1 Kerberos Authentication Profocol e e 3

2 Cross-Realm Authentication ittt it i s e 7

3 Initial ESnet Pilot Realm Configuration 8

4 Problems of Realm-Name-Based Authentication Paths vt 9
TABLES

1 Comparison of Kerberos Version 4 and Kerberos Version 5 [4

xi

1.0 INTRODUCTION

To conduct their work, U.S. Department of
Energy (DOE) researchers require access to a wide
range of computing systems and information
resources outside of their respective laboratories.
Electronically communicating with peers using the
global Internet has become a necessity to effective
collaboration with university, industrial, and other
government partners. DOE's Energy Sciences
Network (ESnet) needs to be engineered to facilitate
this "collaboratory” while ensuring the protection of
government computing resources from unauthorized
use. Sensitive information and intellectual properties
must be protected from unauthorized disclosure,
modification, or destruction.

The vulnerability of information that is accessible
from or transmitted across the Internet is well-
documented (Stoll 1990; Bellovin 1992, 1993; CERT
1994; Cheswick and Bellovin 1994). Perhaps the
most significant threat is the capability of any
networked workstation to eavesdrop on network
traffic. This could lead to the capture and exploita-
tion of user authentication information. For example,
the rash of computer break-ins at some ESnet sites
during December 1993 occurred when perpetrators
used valid system passwords obtained by network
eavesdropping.)

Various mechanisms to reduce this type of threat
have been deVeloped, but the commonly used
techniques of network segmentation and one-time
passwords are user-obtrusive and become barriers not
only to unauthorized users but also to authorized
users.

One approach to unobtrusively protecting against
eavesdropping is the use of a network authentication
protocol, such as the Kerberos system developed at
the Massachusetts Institute of Technology (MIT).
This technology has been in use for 5 or more years
by a variety of government, educational, and
commercial institutions to authenticate user access to
computer and information resources within the
confines of a local area network managed by a single
organizational entity. However, the problem of

authentication between organizations on a wide area
network, such as ESnet, is just now being explored.

In March 1992, the ESnet Site Coordinating
Committee (ESCC) chartered a network authenti-
cation task force to "plan and conduct an Internet
authentication pilot project” in order to "identify,
understand and resolve the technical, procedural,
cultural and policy issues surrounding peer-to-peer
authentication in an inter-organization internet."

The task force first met in May 1992 at MIT to
review alternatives, define the scope and goals of the
pilot project, and outline the project plan. Jeff
Schiller, a principal developer of the MIT Kerberos
network authentication system, and John Linn from
the Digital Equipment Corporation Secure Systems
Group attended the meeting to brief the group on the
status and direction of network authentication

- technology. Discussed were Kerberos Versions 4

and 5, the Open Software Foundation (OSF)
Distributed Computing Environment (DCE) Security
Service, the draft Internet Engineering Task Force
(IETF) Distributed Authentication Security Service
submitted by Digital Equipment, and IETF work in
progress on a new Internet Authentication Service
(IETF-IAS). As described by Jeff Schiller, the new
IETF-1AS promised to resolve major deficiencies or

- weaknesses found in all of the other alternatives.

Based on the presentations by Schiller and Linn,
the task force concluded that the technology was in a
very rapid state of flux and that a decision to choose
a specific technical solution for an inter-site authenti-
cation pilot would be premature. The task force
recommended that sites should experiment individu-
ally with Kerberos Version 4 until early 1993 to gain
experience. At that point, the group would meet
again and review the situation.

By March 1993, the task force had concluded that
Kerberos Version 4 was not a viable solution for
internet authentication because of two deficiencies:
problematic key management requiring each site to
share a pair of secrets with each site and missing
support for simultaneous authentication to multiple

sites. Furthermore, IETF work on the new authenti-
cation standard had been stalled because of the
demise of Digital's Secure Systems Group, which
had been a principal sponsor of the IETF work.
However, developers at MIT had made considerable
progress stabilizing Kerberos Version 5.

In August 1993, DOE, Office of Energy
Research, funded four ESnet sites (Argonne National
Laboratory, Lawrence Livermore National Labora-
tory, the National Energy Research Supercomputer
Center, and Pacific Northwest Laboratory) to begin
implementing and evaluating authenticated ESnet
services using the advanced Kerberos Version 5
authentication system. The project was broken into
two phases. Phase I was to implement the baseline
authentication infrastructure to be used for further
study. Specific activities planned for Phase 1 were
the following.

+ Implementing a Kerberos Version 5 infrastructure
consisting of local Key Distribution Centers
(KDCs) at each of the four participating sites,
plus a "root" ESnet KDC to arbitrate inter-site
authentication requests. '

« Implementing Kerberos-authenticated versions of
the more commonly used network services, such
as telnet, FTP, and the Berkeley '' commands.

Phase II of the project was using this baseline
infrastructure to determine if Kerberos Version 5 was
a suitable technology to meet requirements of the
ESnet community. Specific activities planned for
Phase 1I were the following.

+ Investigating and recommending a strategy for
integrating Kerberos Version 5 with other
commonly used distributed security environments,
such as Kerberos Version 4, the Andrew File
System security mechanism, and the OSF/DCE
security service.

» Identifying and developing the procedures and
tools necessary for administering user accounts
and authentication services between ESnet sites.

- Evangelizing researchers at the participating sites
and assisting in "Kerberizing" one or more
distributed computing applications.

Implementing individual site and ESnet "root"
KDCs and testing intra-site authentication were
accomplished in late fiscal year 1993. However, it
was not until March 1994, following considerable
troubleshooting of the beta software distributed by
MIT, that inter-site authentication was successfully
demonstrated across ESnet.

Inter-site authentication tests continued through
the remainder of the project with numerous "bug"
fixes being reported to the MIT developers for
incorporation into the publicly available release of
the software. An extension to the standard Kerberos
inter-realm path-finding mechanism was developed
by members of the project team to allow predefined
authentication paths between the ESnet KDC
hierarchy and other KDC hierarchies and to provide
greater flexibility in realm naming. MIT-distributed
versions of Kerberized Berkeley 'r' commands and
the telnet program have been ported to a variety of
operating systems. Other applications not distributed
by MIT, including FTP, NCSA Mosaic, and the
LLNL XDIR network file management program,
have been Kerberized as part of the pilot project.

This report presents the findings of the ESnet
Authentication Pilot Project. Section 2 of the report
contains a tutorial on network authentication. The
tutorial is helpful in understanding the issues
described later in the report. Sections 3 through 7
describe findings of the project in the following
areas:

» Section 3 - Cross-Realm Authentication

+ Section 4 - Applications

» Section 5 - Transition and Inter-Operability Issues
+ Section 6 - Technical Problems and Limitations

« Section 7 - Administration Issues.

Finally, conclusions and recommendations are
summarized in Section 8.

2.0 NETWORK AUTHENTICATION TUTORIAL

This section presents a tutorial on network
authentication using Kerberos as an example. The
tutorial helps in understanding the work and issues
that are described later in this report.

2.1 THE KERBEROS AUTHENTICATION
SYSTEM

Kerberos is a protocol and system that uses
electronic tickets to authenticate a client to a server
without the risk of exposing authentication secrets
(such as user passwords) to eavesdroppers. The
Kerberos authentication protocol, illustrated in
Figure 1, generally works as described below.

1. To obtain a ticket to a particular server, the client
first 'sends a message to the Authentication Server
(AS) requesting a ticket to the Ticket-Granting
Server (TGS). The AS and TGS functions are
typically collocated on a single system, which is
‘popularly referred to as a Key Distribution Center
(KDC).

2. The AS generates a temporary session key, which
is encrypted using the client's secret key (a one-
way hash of the client/user's password). The AS
also generates a ticket-granting ticket for the
client to present to the TGS. The ticket-granting
ticket, which contains the client's identity and a
copy of the session key, is encrypted using the
TGS's secret key (which is known only to the AS
and the TGS). The AS sends both of these
encrypted messages back to the client.

3. Using its secret key (a one-way hash of the user's
password which is computed by the client after
prompting the user for a password), the client
deciphers the session key sent by the AS. It then
sends- a message to the TGS requesting a ticket to
the target server. This request contains the name
of the target server, the ticket-granting ticket
received from the AS (which is already encrypted
in the TGS's secret key), and an authenticator
encrypted using the session key generated and
sent by the AS.

4. The TGS deciphers the ticket-granting ticket

using its own secret key. The TGS then uses the
session key contained in the ticket-granting ticket
to decipher the authenticator. Information
contained in the authenticator is used to validate
the request and to protect against replay attacks.
The TGS then generates a new session key for
the client and target server and incorporates this
into a ticket for the client to present to the target
server. This ticket is encrypted using the target
server's secret key, which is known only to the
TGS and the target server. The TGS also
encrypts the new client-target session key using
the session key that it already shares with the
client. Both of these encrypted messages are sent
back to the client. "

. The client forwards the ticket to the target server,

along with a new authenticator that is encrypted -
using the TGS-generated session key. The target
server deciphers the ticket using its secret key,
which is known only to itself and the TGS. The
session key contained in the ticket, which is now
shared by the client and target server, is used to
authenticate the client and may optionally be used
to authenticate the server. It may also be used to
encrypt further communication between the two
parties.

Figure 1. Kerberos Authentication Protocol

Once the client obtains a ticket-granting ticket

(steps 1 and 2), it can use it to obtain a ticket for as
many sérvers as needed without repeating this initial

authentication process and, conveniently, without the
user having to re-enter a password. Similarly, once
the client obtains a ticket for a particular server
(steps 3 and 4), it can use it to authenticate its access
to that server (step 5) as many times as necessary or
desired until the ticket expires.

~ The Kerberos protocol is designed to operate
across organizational boundaries. A client in one
organization can be authenticated to a server in
another. Each organization wanting to run a
Kerberos server establishes its own realm. The name
of the realm where a client is registered is part of the
client's name and can be used by the end-service to
decide whether to honor a request.

By establishing inter-realm keys, the adminis-
trators of two realms can allow a client that is
authenticated in the local realm to obtain tickets for
servers in the remote realm. The exchange of
inter-realm keys (a separate key is typically used for

each direction) registers the TGS of each realm as a
principal in the other realm. A client is then able to
obtain a ticket-granting ticket for the remote realm's
TGS from its local realm. Cross-realm authentica-
tion, the primary interest of the ESnet authentication
pilot, is described further in Section 3.

Kerberos was originally designed and imple-
mented as a part of the MIT Project Athena (Miller
et al. 1987; Steiner et al. 1988; Davis and Swick
1990). Versions 1 through 3 were experimental
protocols used internal to the project. Kerberos
Version 4 is publicly available from MIT and is
widely used for authentication within a variety of
organizations (Lunt 1990). Kerberos Version 5,
described in RFC 1510 (Kohl and Neuman 1993),
has evolved from Version 4 based on new
requirements and known limitations of the previous
version (Bellovin and Merritt 1990; Lunt 1990; Kohl
1991). A summary of the differences between
Kerberos Versions 4 and 5 is shown in Table 1.

Table 1. Comparison of Kerberos Version 4 and Kerberos Version 5

Kerberos Version 4 — Limitations
Digital Encryption Standard (DES) dependence limits export.
IP dependence prohibits use with other network protocols.
"Receiver make it right” byte ordering.

Principal naming restrictions.

Limited (~21 hour) ticket lifetime. No "batch" processing
support.

No authentication forwarding.

Flawed use of DES plain- and cipher-block-chaining (PCBC)
mode. :

Potentially flawed message digest.

Potentially weak timestamp-based authenticators and replay
detection.

Session key reuse creates replay vulnerability.
Cannot simultaneously authenticate to multiple realms.
O(n?) cross-realm key management problem.

Vulnerable to offline password-guessing attack.

Kerberos Version 5 — Improvements
Modular encryption code (DES independence).
Multiple network protocol/address support (IP independence).
ISO ASN.1 message encoding.

ASN.1 "GeneralString" principal name field (compromise to
resolving principal naming restrictions).

Unlimited ticket lifetimes. "Batch” support via "valid starting"
time.

Supports authentication forwarding.

Standard DES cipher-block-chaining (CBC) mode with
embedded message digest.

Alternative (and presumably correct) message digest routines.

Optional NONCE-based authenticators and replay detection.

Subsession key negotiation mechanism reduces vulnerability.
Supports simultaneous authentication to multipie realms.
KDC hierarchy reduces key management to O(log(n)).

Ticket format changes reduce (but do not eliminate)
vuinerability.

Not all previously documented problems and
limitations of the Kerberos protocol have been
resolved in the Version 5 specification. A few of the
more significant limitations include the following.

» The initial exchange between a user/client and the
AS is particularly subject to password-guessing
attacks. (Recall that a portion of the information
sent by the AS to the client is encrypted with a
hash of the user's password.)

« Even with inter-reaim authentication protocol
improvements which greatly reduce the magnitude
of the key management problem, secure
distribution of secret keys between sites remains
problematic. :

» Inter-realm navigation issues are likewise
unresolved. The specification is noncommittal,
and the MIT reference implementation is based
on an inflexible realm-naming convention that
assumes the existence of a global KDC hierarchy
having a single trusted "root" for ubiquitous
cross-realm authentication.

These well-known limitations, along with
additional problems and limitations with the MIT
reference code used during the pilot (beta 5.4.2), are
described further in Section 6.

2.2 ALTERNATIVE AUTHENTICATION
SYSTEMS

Kerberos is by far the most well-known and
widely deployed network authentication system, but
it is not the only one. Two noteworthy alternatives
to the Kerberos authentication system are discussed
in this section.

2.2.1 OSF/DCE Security Service

The authentication component of the Open
Software Foundation's DCE Security Service (OSF
1993) is based on an early alpha release of Kerberos
Version 5. This service conforms to the basic
Kerberos Version 5 protocol specification and thus
shares the same weaknesses as Kerberos.

Although they share a common lineage, DCE
authentication and Kerberos Version 5 do not support
identical functioha]ity, and so they do not inter-
operate in all aspects. Furthermore, as the two
systems have developed independently, minor
incompatibilities have naturally resuited. Inter-
operability of Kerberos Version 5 and the DCE -
Security Service is described further in Section 5.

2.2.2 Distributed Authentication Security Service

The Distributed Authentication Security Service
(DASS) provides a comparable service to Kerberos,
but it differs in its use of both public-key and secret-
key cryptography whereas Kerberos uses secret-key
exclusively.

DASS was developed by Digital Equipment
Corporation and submitted as an Internet RFC
(Kaufman 1993). A partial reference implementation
known as SPX (Tardo and Alagappan 1991) is
available in the public domain.

Like Kerberos Version 5, DASS incorporates
hierarchically organized KDCs to reduce cross-realm
key management to an O(log(n)) problem. As an
improvement over Kerberos, though, DASS uses
public-key cryptography to entirely eliminate the
need to exchange secret keys between sites. '

Another advantage of the using public-key
cryptography in DASS is the reduced vulnerability to
offline attack. And, unlike Kerberos, intrusion of the
KDC by a perpetrator does not necessitate issuance
of new user passwords.

Unfortunately, the benefits of using public-key
cryptography come with a price. Public-key
cryptography is 2 to 3 orders of magnitude more
computational intensive than secret-key, resulting in
considerably slower performance of DASS when
compared to Kerberos. '

Widespread acceptance of DASS as an alternative
to Kerberos is highly unlikely because of the
performance limitations of its extensively public-key-
based protocol and its lack of inter-operability with
either Kerberos or the DCE Security Service.

2.3 FUTURE OUTLOOK

The U.S. Department of Defense (DOD),
Advanced Research Projects Agency (ARPA), has
recently funded specification of a follow-on protocol
to Kerberos Version 5 (presumably Version 6).

Early reports are that the project will seek to resolve
the realm navigation issue, possibly through an
extension of the Internet Domain Name Service. The
project will also seek a solution to the inter-realm
key management problem, possibly using public-key
cryptography as was done in the DASS. (The
performance hit of public-key cryptography may be
acceptable during the initial authentication of a
client/user to the KDC or when first authenticating to
another realm, given the advantages noted
previously.)

Several OSF contributors are actively working to
reduce the vulnerability of the DCE Security Service
to password-guessing attacks. Methods proposed to
date include third-party preauthentication (Pato
1993), and two-factor authentication using token
cards (Kotanchik 1994) or smart cards (Merckling
and Anderson 1994). Similar work to reduce the
vulnerability of Kerberos is also in progress.

‘It is reasonable to expect that Kerberos and the
OSF authentication protocols, given their common
roots, could converge over time. Adopting Kerberos
Version 5 as the near-term ESnet authentication
standard is low risk and will actually provide a
controlled migration path to the DCE Security
Service if and when OSF/DCE becomes widely
accepted.

3.0 CROSS-REALM AUTHENTICATION

Kerberos has been extensively deployed and used
for authentication within a single realm. Its func-
tionality and limitations for single-realm authentica-
tion have been documented elsewhere (Bellovin and
Merritt 1990; Davis and Swick 1990; Lunt 1990). In
contrast, the principal objective of the ESnet pilot
was to demonstrate and assess cross-realm authenti-
cation in an inter-organization internet. This section
describes the experiences and findings of the pilot in
implementing and testing cross-realm authentication.
It assumes that the reader is familiar with Kerberos
or has read the protocol description in Section 2.1.

3.1 SIMPLE CROSS-REALM
AUTHENTICATION

A client of a local realm can obtain a ticket for a
server in a remote realm if the two realms have
exchanged inter-realm keys. The client in the local
realm uses its ticket-granting ticket (TGT) for the
local realm to request a TGT for the remote realm.
It then uses this new TGT to obtain a service ticket
from the remote KDC. '

Both KDCs define a principal of the form:

krbtgt/<remote-realm>@<local- realm>

having the same key and key version number. On
the <local-realm> KDC, it is used much like a
server principal to issue a service ticket. On the
<remote-realms> KDC, it is used much like an
entry in the service table; it holds the key to be used
to authenticate the request.

For cross-realm authentication in the other
direction, both KDCs define a principal of the form:

krbtgt/<local-realm>@<remote-realm>

_ having the same key. This key does not have to be
the same as the one used in the other direction.

The administrators of the two realms need to
coordinate the keys for these principals in their own
KDC. The simplest method is to use the kadmin
program (see Appendix A) to add the principal and
generate a key using a password that has been
exchanged through a secure channel.

3.2 CROSS-REALM AUTHENTICATION
USING HIERARCHICAL KDCs

A realm can share keys with any number of other
realms. Using the simple cross-realm authentication
method used in Kerberos Version 4 and described
above would require secure exchange and manage-
ment of O(n?) key pairs between 'n' realms.® Key
management using this method becomes problematic
as the number of realms increases beyond a handful
and becomes impossible in a national or global
Internet. ‘In the case of ESnet, nearly 1000 secret
keys would need to be generated, securely
transmitted, and periodically updated between the 32
current ESnet sites.

In Kerberos Version 5, just as a client can use a
TGT for the local realm to obtain a TGT for a

remote realm, it can use a remote TGT to get a TGT
for yet another remote realm (see Figure 2). '

Remote Remote
/ TGS 1 TGS 2
3 /
Remote
Client 7 P\ Server

Figure 2. Cross-Realm Authentication

Qs
2N

— |35
- o——

0

(a) Correctly, n*(n-1)/2 key pairs; ~n?* for large values of 'n".

The Kerberos Version 5 specification, RFC 1510
(Kohl and Neuman 1993), states, "Realms are
typically organized hierarchically. Each realm shares
a key with its parent and a different key with each
child." Having a single central, or root, KDC that
shares keys with all the other KDCs reduces the
number of keys from O(n?) key pairs to 'n' key pairs.
Hierarchies of greater depth result in O(log(n)) key
pairs. For ESnet, the number of secret keys that
must be generated and securely exchanged is reduced
from nearly 1000 to a mere 64.

The sequence of realms used in the authentication
process is referred to as the authentication path. But
how does a client determine the authentication path
to a service in a remote realm? The Kerberos
Version 5 speciﬂbation states that "inter-operability
across realm boundaries requires agreement on how
realm names are to be assigned, and what informa-
tion they imply." The current MIT Kerberos
implementation uses a realm-naming convention
patterned after the Internet Domain Name Service
(DNS) to define a hierarchical authentication path.

For the ESnet pilot, the researchers initially chose
realm names that would allow use of the MIT
Kerberos method for defining the authentication path
based on this hierarchical-naming convention
(Figure 3). ES.NET was chosen as the top level, and
it shared keys with four children: ANL.ES.NET,
LLNL.ES.NET, NERSC.ES.NET, and PNL.ES.NET.
At Argonne National Laboratory (ANL) two
additional realms were defined for testing:

ANL.ES.NET

LLNL.ES.NET

ONE.ANL.ES.NET and TWO.ANL.ES.NET. Each
KDC and realm were administered by its own
organization.

The Kerberos krb5_walk_realm tree
routine returns a list of realms to be used for the
authentication path that is based on the client and
server realm names. For example, a client in the
realm LLNL.ES.NET wants to connect to a server in
TWO.ANL.ES.NET. Calling the krb5_walk_
realm tree routine with the client and server
reaim names returns the following list, which
represents the credentials needed to get a ticket-
granting ticket for the server's realm:

krbtgt/LLNL.ES.NET@LLNL.ES.NET
krbtgt/ES.NET@LLNL.ES.NET
krbtgt/ANL.ES.NET@ES.NET
krbtgt/TWO.ANL.ES.NET@ANL.ES.NET

The client then checks its credentials cache to see
if it has any of these. It should at least have the
first, which was obtained during its initial exchange
with the AS and TGS. It may also have others
because of previous requests being cached. The
client then contacts the KDC of the realm "closest"
to the server and for which it has a ticket-granting
ticket. The contacted KDC generates the same list
and will check its database to see if it can return
either the next ticket-granting ticket requested by the
client or one "closer" to the server. The client will
then use the returned ticket-granting ticket to get the
next ticket-granting ticket from the next KDC.

PNL.ES.NET

NERSC.ES.NET

Figure 3. Initial ESnet Pilot Realm Configuration

Note that not all of the realms on the returned
authentication path need to be involved. If a KDC
along the path shares a key with a realm "closer" to
the server, it can return a ticket for that realm. Each
KDC uses the krb5_walk_realm_tree routine
to 'generate.the hierarchical authentication path and to
check if it shares a key with a realm on the list that
is closer to the server's realm. Needless to say, its
realm must be on the list, and it must share a key
with the next realm on the list if cross-realm
authentication is to succeed. The transited path is
defined as the list of the realms that were actually
used to obtain the current ticket. '

In one of the tests, a key was shared between
ANL.ES.NET and PNL.ES.NET. A client at
ONE.ANL.ES.NET wanting to connect to a server at
PNL.ES.NET would generate the following list of
credentials:

krbtgt /ONE.ANL.ES .NET@ONE.ANL.ES.NET
krbtgt /ANL.ES.NET@ONE.ANL.ES.NET
krbtgt/ES.NET@ANL.ES.NET

krbtgt /PNL.ES.NET@ES.NET

The client would then start to contact the KDCs and
- the ANL.ES.NET KDC would return the following:

krbtgt/PNL.ES.NET@ANL.ES .NET

because it is "closer" to the server. This would
avoid the ES.NET KDC.

ANL.GOV LLNL.GOV

3.3 CONFIGURABLE AUTHENTICATION

- PATHS

Using realm names to define the authentication
path allows for each client, KDC, and server to
generate the same path. However, it also imposes an
unrealistic constraint on the choice of realm names.
All of the member organizations in the project are
members of ESnet, but they are also members of

- other organizations. It is not realistic to impose the

ES.NET name on each of their realm names.

A more acceptable choice for realm names is to
use the well-established Internet domain names.
Argonne National Laboratory wants to use a realm of
ANL.GOV and the National Energy Research
Supercomputer Center wants to use a realm of
NERSC.GOV. But, to cross-realm authenticate
between these two realms requires either shared keys
between the two realms or shared keys with a parent
realm of GOV. In the first case, as the number of
organizations grows, it falls back to the O key
management problem, which is what the researchers
are trying to avoid. In the second case, who would
run the GOV realm? What about PNL.GOV
contacting the BATTELLE.ORG realm? Who would
run the GOV and ORG realms? How would these
two realms be connected (see Figure 4)?

This problem was resolved by modifying the
standard MIT krb5_walk_realm_tree routine.
The modifications allow parts of the hierarchical
authentication path to be changed based on informa-
tion stored in an additional configuration file.

BATTELLE.ORG

Figure 4. Problems of Realm-Name-Based Authentication Paths

9

The Kerberos specification (RFC 1510) allows for
this by stating "If a hierarchical organization is not
used, it may be necessary to consult some database
in order to construct an authentication path between
realms." The principal intent of the modification
- was to allow organizations to use their domain
names for realms and contact parent KDCs, such as
ES.NET, when authenticating with other ES.NET
member organizations. The modified routine still
allows hierarchical naming of subrealms within the
organizations and falls back to the hierarchical
authentication path if entries are not found in the
configuration file.

The krb5_walk_realm_tree routine
converts the realm hierarchy into an authentication
path. It is called by both the client and the KDC
when they need to get the authentication path.
Modifications were made to this routine to allow
parts of the hierarchical authentication path to be
changed based on information stored in a
configuration file. The configuration file, called
krb.capaths, contains pairs of realm names,
optionally followed by a list of up to five other
realm names defining an authentication path between
the pair of realms. Each pair of realm names and its
list of other realms are on a separate line in the file.

The modified krb5_walk_realm_ tree
routine first generates a candidate authentication path
list based on the hierarchical realm names. It then
begins to scan the krb. capaths configuration file
for alternate paths. If the pair of realm names
contained on a line in the configuration file is found
in the candidate authentication path list, the scan
stops and the candidate list is modified by 1) deleting
any realms that appear between the two matched
realms and 2) inserting any realms listed in the
configuration file for the matched pair. New realms
are inserted in the correct order depending on which
of the pair of realm names is "closer" to the server.
Finally, the candidate authentication path list is
converted into the list of principals and returned.
Only one pass is made through the configuration file.

For example, ANL.GOV, LLNL.GOV,
NERSC.GOV, and PNL.GOYV all cross-authenticate
by sharing keys with ES.NET. ANL.GOV also
cross-authenticates directly with UCHICAGO.EDU,

10

and with FNAL.GOV via HEP.NET. The
krb.capath files for two of the realms, ESNET
and ANL.GOV, would look like the following:

ES.NET
ANL.GOV LLNL.GOV ES.NET
ANL.GOV NERSC.GOV ES.NET
ANL.GOV PNL.GOV ES.NET
ANL . GOV ~ ES.NET
LLNL. GOV NERSC.GOV ES.NET
LLNL.GOV PNL.GOV ES.NET
LLNL.GOV ES.NET
NERSC.GOV PNL.GOV ES.NET
NERSC.GOV ES.NET
PNL.GOV ES.NET

ANL.GOV
ANL.GOV LLNL.GOV ES.NET
ANL.GOV NERSC.GOV ES.NET
ANL.GOV PNL.GOV ES.NET
ANL.GOV ES.NET
ANL.GOV UCHICAGO.EDU
ANL.GOV FNAL.GOV HEP.NET

Although these files may seem to add a greater
degree of complexity, realms only need to define the
entries that they need. They also need the realm's
KDCs listed in the kxrb. conf files. Subrealms of .
these realms may use the same krb. capaths files.

Currently a krb. capaths file is needed by
both the clients and the KDCs. Each only needs a
subset of the possible authentication paths in which it
is invoived. The client's krb. capaths file only
needs to define paths to the realms listed in the
krb.realms file that cannot be derived using
hierarchial names. The KDC's kxb. capaths file
only needs to define paths to the realms its clients
might want to access and that cannot be derived
from the hierarchical names.

The Configurable Authorization Path enhance-
ment developed as part of the pilot has been
submitted to MIT for possible inclusion into the
publicly available distribution of Kerberos Version 5.

3.4 SCALABILITY OF CONFIGURABLE
.AUTHENTICATION PATHS

The Configurable Authentication Path

. modification to Kerberos that was described in the
previous section can easily accommodate the current
ESnet configuration of 32 sites, even if those
organizations have subrealms of their own. It can
even accommodate, for instance, the addition of a
DOE.GOV "root" realm serving a few other DOE
realms and sharing inter-realm keys with ES.NET.
But, as the number of realms grows, the need for
each intermediate KDC to have an entry in the
krb.capaths for every authentication path
increases as O(n?). : :

With additional changes to the client routines, the
need for any kxb.capaths file for the interme-
diate KDC's could be eliminated. These changes
would be in krb5_get_cred_ from kdc and
would eliminate much of the other "short cut" code
that attempts to determine whether the KDC has a
- direct path to the server's realm. The '
krb5 _get cred_ from_kdc routine could be
modified to query each KDC along the way for a
ticket-granting ticket to the next realm, rather than
query each KDC for a ticket-granting ticket to the
server's realm. Thus, only the client needs to know
the authentication path to the server.

Consider, for example, a DOE.GOV realm acting
as the parent to the ES.NET and other groups of
. realms. Under the present Configurable Authenti-
cation Path implementation, if a new realm is added
under ES.NET, the krb. capaths files would need
updating on the DOE.GOV and ES.NET KDCs and
all site KDCs that intend to authenticate with the
new realm. In the revised implementation described
above, these KDCs would not need updating. Most
client krb.realms and krb.capaths files
would not need updating either. Only the files of
those clients that need access to the new realm
would need updating.

Improved scalability using the techniques
described here is achievable today. The ideal, long-
term solution to the Kerberos inter-realm key and
table management scalability problem is using public
keys for cross-realm authentication. Each client's

11

KDC would use a name service to find the server's
KDC's public key and address and could contact the
server's KDC directly. It is understood that this is a
design goal for Kerberos Version 6.

3.5 UNIVERSAL USER IDENTIFICATION

The ability to cross-authenticate defines by its
nature the universal user identification,
<user>@<realm>. Because the user name is
unique within the realm and the realm names are
derived from the unique DNS domain names, the
combination is also unique. This user identification
is currently usable in the .k5login file and can be
used in AFS access control lists.

With the universal user identification in place,
users only need a Kerberos principal in their home
realm. Users do not need to be registered as a
principal in other Kerberos realms but will still need
authorization to access servers in other realms (i.e.,
login accounts must be established for the user).

4.0 APPLICATIONS

Applications (clients) and the programs providing
service to them (servers) can be modified to use
Kerberos for the initial authentication of users and to
ensure the integrity and privacy of ongoing
communications. ‘The Kerberos libraries provide an
API for each of these functions.

To do initial user authentication, a client must
obtain the appropriate ticket and send it to the server.
After establishing a network connection to a server,
the client initializes the Kerberos package, obtains an
appropriate ticket from the TGS, and sends the ticket
to the server. This is accomplished with three library
calls to get and check the ticket and two library calls
to actually send the ticket. The client may optionally
verify that a valid ticket is available using one other
library call. All of this requires less than 100 lines
of 'C' code and also requires that the client be loaded
with the Kerberos libraries.

The server must also perform the appropriate
Kerberos initialization and then receive the ticket.
The ticket is then validated and the principal name
mapped to a local user name (if necessary). Access
to the local user’s account is also checked. This also
requires less than 100 lines of code and requires that
the server be loaded with the Kerberos libraries.

The Kerberos libraries also provide routines for
ensuring message integrity and/or privacy. With the
use of appropriate calls, data may be transferred
between the client and server with a cryptographic
checksum or may be transferred encrypted. '

Examples of "Kerberized" applications are
described in the following sections. Appendix B
describes in greater detail the modifications made to
the File Transfer Protocol (FTP) and NCSA Mosaic.

4.1 BERKELEY 'r' COMMANDS

Kerberized versions of the Berkeley 't commands
are distributed with the current MIT release of
Kerberos Version 5. The client and server versions
of these commands attempt to authenticate the user

13

either within the local realm or by using the cross-
realm mechanism.

The Berkeley 'r' commands, which come bundled
with nearly all UNIX-based operating systems, have
well-known vulnerabilities. The Kerberized versions
of the 'r' commands eliminate the need of a
.rhosts file, providing instead an authenticated
login session by using the .k5login principal
configuration file. A feature of the Kerberized 'r'
commands is to fall back to the non-Kerberized
version of the command when Kerberos authentica-
tion fails. This feature can be disabled by specifying
appropriate configuration options to the daemon's
reference within the /etc/inetd. conf file or to
the service reference in the /etc/services file.

4.2 TELNET

Kerberized versions of the telnet client and
server programs are distributed with the current
release of MIT Kerberos Version 5. Unlike the
Kerberized 'r' commands, which fall back on the
non-Kerberized version when Kerberos authentication
fails, telnet attempts to negotiate an authentication
method (and possibly an encryption method) during
the initial handshake with the server. Work is in
progress to standardize how Kerberos and other
authentication and encryption options should be
handled by telnet (Borman 1993a, 1993b).

4.3 FILE TRANSFER PROTOCOL

The current MIT release of Kerberos Version 5
does not include a Kerberized FTP client program or
server daemon. After a number of FTP
implementations were reviewed, it was determined
that adding Kerberos functionality to the Berkeley
FTP would provide the greatest flexibility.

On the surface, it appears that adding telnet-like
option negotiation to allow Kerberos authentication
would be the preferred implementation path. Work

- is in progress to define how Kerberos and other

authentication and encryption options should be
handied by FTP (Lunt 1994), but the draft protocol
has not been implemented to our knowledge.

While reviewing FTP implementations, the
researchers discovered that telnet-like option
negotiation commands are often ignored even though
they are accepted by most FTP daemons. Because
one of the main goals was to maintain as much inter-
operability as possible with existing FTP clients and
servers, the researchers implemented Kerberos '
authentication in FTP using a new command, TKT.
Details on the modifications made are included in
Appendix B.

4.4 NCSA MOSAIC

The NCSA Mosaic client and httpd server
daemon were both modified during the pilot to allow
HTTP requests to use Kerberos Version 5
authentication. The Mosaic client was also modified
to use Kerberos authentication when transferring files
using FTP. See Appendix B for details.

4.5 XDIR

The LLNL XDIR network file manager uses FTP
daemons to transfer files. A Kerberized version of
XDIR has been implemented and made available to
scientists working with the pilot for multi-realm data
transfers. A description of XDIR can be found in
Appendix C.

14

One of the goals of the ESnet authentication pilot
project was to investigate and recommend a strategy
for integrating Kerberos Version 5 with other
commonly used distributed security environments.
The following sections describe the issues, options,
and solutions that were explored for inter-operability
with Kerberos Version 4, the Andrew File System
(AFS), and the OSF/DCE Security Service.

5.1 KERBEROS VERSIONS 5 AND 4

When inter-operability between Kerberos
Versions 5 and 4 is desired, three separate arcas
must be considered: the KDC, the server, and the
client.

The Kerberos Version 5 KDC is capable of
issuing both Version 5 and Version 4 tickets. In this
mode, there is a single realm and each user and
service has a single principal in the database. User
entries must be added with Version 4 keys, and the
PREAUTH flag must be off for any user or service
principal that may authenticate using Version 4.
(Because all Kerberos Version 4 requests for ticket-
granting tickets are made in clear-text, they will fail
if PREAUTH is on for the principal.)

Alternatively two separate KDCs can operate and
appear as a single realm. An example of this is
using the AFS kaserver as a Kerberos Version 4
KDC for current AFS users and having a Version 5
KDC that has a principal for the afs@<realm>.
This allows Kerberos Version 5 users to obtain a
Version 4 credential for AFS, converting the
credentials into AFS tokens. The afs@<realm>
entries in both KDCs must have the same key and
key version number for this to work.

Servers may offer both Kerberos Version 5 and 4
services. This can be done by installing separate
daemons for the different versions, each having a
unique port number. Alternatively a single daemon

can be designed to service requests for both versions.

An example of the later method is the rlogind
daemon provided with the MIT release. When

15

5.0 TRANSITION AND INTER-OPERABILITY ISSUES

compiled with the Kerberos Version 4 compatibility
option, the daemon examines the version number of
the request and takes the correct action.

In either case, the Kerberos Version 4 and
Version 5 routines use their own krb. conf and
krb.realms files. Since the format of these files
is the same, it may be possible to share the same
files using symbolic links. On the other hand, the
srvtab files have different formats and cannot be
shared. For example, the principal used for rlogin
in Version 4 is rcmd. <hostname>@<realm>
where <hostname> is not qualified. In Version 5,
the principal is host/<hostname>@<realm>
where <hostname> is the fully qualified domain
name of the host.

At the client end, separate programs for each
version of Kerberos may be built, or a single client
program may be designed to negotiate with the
server which version of Kerberos to use. An
example of the former is rlogin. The Kerberized
telnet program, on the other hand, has the
capability of negotiating with the telnetd on the
server which version of Kerberos to use, if any, and
which encryption method to use for the session.
Thus, one version of telnet can be used with any
type of server. In either case, the appropriate
krb.conf and krb.realms files are consulted.

At times, it may be necessary for a client to
convert a Kerberos Version 5 credential into a
Version 4 credential. The AFS aklog program is
an example of this. Conversion of a credential
requires that the ticket be deciphered, converted, and
re-encrypted. This cannot be done by the client
because it requires knowledge of the secret key of
some principal other than itself. Instead, the client
program calls the krb524 library routines to contact
a server daemon (normally running on the Kerberos
Version 5 KDC), which completes the conversion on
behalf of the client.

During the pilot, the Kerberos Version 4 clients
bundled with Solaris 2.x were successfully used with
a Kerberos Version 5 server, which had KDC

backward compatibility turned on. The krb524
routines and server daemon were used to obtain
Kerberos Version 4 tickets that were given an initial
Kerberos Version 5 ticket-granting ticket.

A problem was discovered with the Kerberos
Version 5 replay detection mechanism while using
NFS on a 64-node Meiko running Sol2. All requests
to the KDC are placed in a replay cache along with
the response. If a duplicate request is received
within 1 second, the previous response is sent with
no other processing taking place. A Kerberos
Version 5 request contains the network addresses that
may use the resultant tickets. For a Version 4
request, these network addresses are not in the
request; they are determined by the address that the
request was sent from. Thus, if a Kerberos
Version 4 request arrives from one address for a
ticket for service/<machine>@<realms> and
another Version 4 request for the same ticket from a
different address arrives within 1 second, it is
determined to be a replay and the previous response
is sent. Because the response has an incorrect
address in the ticket for the second requestor, the
ticket does not work. This can be solved either by
disabling replay detection for Kerberos Version 4
requests or by keeping Version 4 requestor addresses
in the replay cache.

When migrating from Kerberos Version 4 to
Kerberos Version 5, administrators may want to
convert the existing Version 4 database rather than
create a new database. Sandia National Laboratory
has included a utility in its Kerberos Version 5
(beta 2) release that attempts to accomplish this task.
Unfortunately, this utility is not complete. With
minor customizing, it can be used so long as the
realm name being used with Kerberos Version 5 is
the same as that used by Kerberos Version 4. If the
realm name is changed, it is not possible to convert a
Kerberos Version 4 database to a Kerberos Version 5
database. When a database is converted, clients must
use the Kerberos Version 4 key-to-string '
translation to obtain the DES key used to-decipher
the ticket-granting ticket. '

16

5.2 KERBEROS VERSION 5 AND AFS

AFS uses Kerberos Version 4 for its authenti-
cation. The klog command is used to authenticate
and obtain a token. This token is then used with
every file request to the AFS servers. The token is
essentially a Kerberos Version 4 ticket. AFS also
has a cross-realm authentication capability that
allows foreign principals to be used on access control
lists as <user>@<cells.

MIT wrote a program called aklog, which uses
a Kerberos Version 4 protocol to obtain a credential
for afs@<realm>. It then converts this credential
to a token and uses the AFS routines to store it.

The commonly used method of combining
Kerberos Version 5 with AFS is using the Kerberos
Version 5 KDC to return a Version 4 ticket-granting
ticket and then using aklog to get the Version 4
credential for afs@<realms>. This has some
drawbacks, including having to use the Kerberos
Version 4 kinit and having to cache the Version 4
credentials. More important, it will not work with
forwarded Kerberos Version 5 credentials or as part
of the kadmin client and server programs.

For the pilot project, modifications were made to
the aklog program to use the Kerberos Version 5
protocols, including using forwarded credentials to
obtain a Version 5 credential. The krb524 routine
is used to convert the Version 5 credential for
afs@<realms> to a Version 4 credential. This is
then converted to an AFS token.

The krb524 routines require a krb5244
daemon running on a machine that has access to the
key of the server that generated the Kerberos
Version 5 credential. The daemon is usually run on
the machine with the KDC and has access to the
Kerberos database.

The modifications to aklog were done using the
krb425 routines and library, which present the
Kerberos Version 4 API but use the Version 5
protocols. krb425 was designed as a conversion
aid. Having demonstrated that it is possible to use
forwarded credentials to obtain an AFS token,
aklog should be remodified to use the Kerberos

_Version 5 API directly, thus eliminating the krb425

routines and producing clearer error messages.

A modification was also made to the
kdb5_edit program to allow a key and key
version number to be set directly in the Kerberos
Version 5 database. This is used to set the key of
the afs@<realms> principal to be the same key and
key version number that are used by the AFS
servers. This modification should be rewritten as a
separate subcommand of the kdb5_edit and
kadmin programs.

Inter-operability with AFS requires the Kerberos
Version 5 realm name to match the AFS cell name.
AFS converts the upper-case realm name to a lower-
case cell name. Because AFS cells typically follow
the domain name convention, this is another reason
for using the domain name as the realm name as
suggested in Section 3.3. :

In summary, the modified aklog program is
used to obtain a Kerberos Version 5 credential for
afs@<realm> using the Version 5 protocols,
including cross-realm authentication. The Version 5
credential is then converted to a Version 4 credential
with the assistance of the krb524d daemon. The
Version 4 credential is then converted to an AFS
token and stored using AFS routines.

5.3 KERBEROS VERSION 5 AND OSF/DCE
SECURITY SERVICE

The authentication component of the DCE
Security Service typically communicates with clients
using DCE remote procedure calls (RPCs), but it is
also capable of handling standard Kerberos requests
and responding appropriately. Clients of Kerberos
Version 5 can authenticate and get service tickets
using a DCE Security Server in the same manner
they would with a Kerberos Version 5 server,
provided that the DCE authentication database
contains the appropriate principals with the correct
keys. This concept was successfully tested during
the pilot with a reference version of the DCE
Security Server and several different Kerberos
Version 5 clients. No modifications were made to
the clients for this to work.

17

Conversely, a Kerberos Version 5 server cannot
support a DCE client because it does not communi-
cate using DCE RPCs. Also, the DCE Security
Service supports authorization using Privilege
Attribute Certificates (PACs). The Kerberos
Version 5 server does not support authorization using
PACs. The Kerberos Version 5 server could
communicate with an adjunct server to handle
authorization using PACs, but no such server
currently exists.

Another aspect limiting inter-operability is the
incompatibility of the DCE Security Service and
Kerberos Version 5 server administration tools. The
DCE Security Service mechanism for remote
administration uses DCE RPCs while Kerberos
Version 5 administration uses Sun RPCs.

Finally, the MIT Kerberos Version 5 API is not
officially supported in the DCE. DCE exports its
own DCE Security-specific API. DCE support for '
the Generic Security Service API (Linn 1993a,
1993b, and 1994; Wray 1993) would be necessary if
compile-time portability is a requirement.

6.0 TECHNICAL PROBLEMS AND LIMITATIONS

The following sections document a number of
technical problems and limitations that still exist in
Kerberos Version 5. Potential solutions to most of
the shortcomings are also identified.

Some of the problems, such as the vulnerability
of Kerberos to off-line password-guessing attacks,
are well-known and previously documented. They
are mentioned again in this report because of their
importance in making an informed decision
concerning the acceptability of Kerberos as an ESnet
network authentication solution. Other problems,
such as missing validation of the authentication path,
are serious vulnerabilities that have been introduced
as a result of new Kerberos functionality added in
“Version 5. As far as the researchers know, they
have not been formally documented previously.
Finally, this section discusses a number of items,
such as deficient KDC administration tools, which
-are implementation issues specific to the MIT
reference code used during the pilot (beta 5.4.2) and
not to the basic Kerberos Version 5 protocols.

6.1 VALIDATION OF THE
AUTHENTICATION PATH

The list of all realms that were involved in the
authentication process is called the transited path.
As each KDC grants a ticket-granting ticket based on
a cross-realm request, it adds the realm name of the
remote realm to the transited path. The client's and
server's realms are not included in the transited path
field because they are implied. The transited field
for authentication within a single realm or across two
realms will thus be null. Only when there is a third
realm involved is anything listed. .

The Kerberos specification (RFC 1510) states "It
is important for the end-service to know which
realms were transited when deciding how much faith
to place in the authentication process.” The release
of Kerberos used during the pilot project (beta 5.4.2)
did not check the transited field in any of the
applications. The implication of this is that unscru-
pulous KDC administrators could obtain and exploit

19

tickets disguised as principals in any realm, not just
their own.

For example, realms A, B, and C all share inter-
realm keys with D. Seeking to access a service in
realm C, the unscrupulous administrator of realm A
could create a fraudulent ticket request that contains
the identifier of a-principal in realm B. This request
is processed in turn by the administrator's own KDC
(which has been configured to accept the request
from the client masquerading as a principal in realm
B); the KDC in realm D (which trusts A and thus
provides a ticket-granting ticket to realm C); and the
KDC in realm C (which accepts the ticket-granting
ticket generated by D and returns the requested ticket
to the masquerading client). Because the service in
C is not checking the transited path field, it will
accept the ticket, even though the transited path field
would unexpectedly contain realm A.

It would appear that if the end-service or the end-
service's KDC used the krb5_walk_realm tree
routine to obtain the expected authentication path, it
could use this to validate the transited path. This
means that only realms listed in the authentication
path should appear in the transited path. In the
preceding example, realm A would appear in the
transited path, having been placed there by D. If the
client was really in B and authenticating to C, then A
should not be in the authentication path, and the
request should be refused.®)

6.2 PASSWORD GUESSING

The Kerberos specification (RFC 1510) admits
that the protocol is subject to offline password-
guessing attacks. Good password management is the
only effective protection against this threat. The
Kerberos KDC should be enhanced to enforce site-
specific policies for password expiration, length, and

(a) Since the conclusion of the pilot, MIT has added code to beta
release 5.4.3 that implements transit path validation using the
method suggested here.

composition. Composition policy could include
pattern checks, dictionary checks, or machine
generation.

6.3 MANAGEMENT OF PASSWORD
COMPROMISE

If a user's password has been compromised (i.e.,
become known to some other party either by
exposure of the password or by being guessed by
some password-cracking program), the password can
be easily changed in the KDC so that any future
authentication requests using the compromised
password are disallowed. However, it is also
essential to invalidate any requests based on a ticket
(or ticket-granting ticket) that may have been
previously granted using the compromised password.

One of the features of Kerberos Version 5 is the
ability to issue tickets that must be revalidated by the
KDC before they can be used at a later time. This
allows the KDC to check a "hot-list" of stolen or
suspect tickets so that their use can be disallowed.
The "hot-list" mechanism has not yet been
implemented in the MIT beta release of Kerberos
Version 5.

Cross-realm authentication further complicates the
password compromise problem. For example, if a
user obtains a ticket-granting ticket for a remote
realm, changing the password on the local realm or
adding an entry to a hot-list on the local realm does
not stop the use of the remote ticket-granting ticket
in the remote realm. A mechanism is needed to
notify other KDCs to add these tickets to their own
hot-lists. There are two possible choices: either
notify all other KDCs or notify only those KDCs that
have been issued the suspect ticket-granting tickets.
The former may become unmanageable as the
number of realms grows. The latter requires logging
of cross-realm ticket-granting ticket requests and
processing of the log to find KDCs that need to be
contacted.

Without support for hot-lists and without cross-
realm updating of hot-lists, advanced Kerberos
Version 5 features, such as renewable tickets, are
rendered useless. Tickets will always be valid for

20

the full lifetime, because even if the KDC is
contacted, it will renew the ticket because it has no
reason not to.

6.4 LOG AND ERROR MESSAGES

The messages produced by the KDC and server
applications are inadequate for auditing and, in-
particular, searching for usage patterns that could
help identify possible stolen tickets or compromised
passwords.

Users tend to follow selected patterns, logging on
from the same machines and using the same sets of
servers. If passwords are compromised or tickets
stolen, the usage pattern will most likely change.
Requests for new ticket-granting tickets will come
from different locations. Requests for tickets to
servers that are not typically accessed may appear.

The messages produced by the KDC and servers
must be generated with the above usage in mind and
must be logged so that the information is easily
processed in order to find unauthorized use patterns.
One such logging scheme is-having all the
appropriate messages logged in the syslog of the
KDC.

Cross-realm authentication complicates this, -
because remote KDCs will be issuing tickets and
logging the requests in their own syslog. The
remote KDC should send audit trail information to
the user's local KDC for all requests it makes on
behalf of the remote user. This would allow the
local administrator to review the logs on the local
KDC for all suspicious activity.

Kerberos Version 5 can function without these
changes, but it is very difficult to identify and trace
unauthorized use because many separate logs must
be reviewed.

6.5 USER- VERSUS SESSION-BASED
CREDENTIAL CACHE

Credentials are cached by default in
/tmp/krb5_<uid> where <uid> is the user's

identification number. The file is owned by the user.

The environment variable KRB5CCNAME can be set
to point to an alternate location.

As applications start to take advantage of the

. forwardable, proxiable, and postdated ticket features
of Kerberos Version 5, they must be able to use. the
KRBSCCNAME environment variable to set the
location of the cache on a session-by-session basis.
Both the Berkeley 'r' commands and telnet can
forward credentials to be cached on the server.
However, they currently do not set the environment
variable and thus share the cache with all the user's
processes, leading to problems if the user inadvert-
ently destroys the cache in one session while it is
still being used (or needed) by a different session. It
is particularly important for batch-processing systems
to use session caching because the user cannot
predict when processing will start and when it is safe
to destroy the cache.

Processes that start sessions for users, including
rlogind, telnetd, and'batch-processing systems,
should define a session-cache based on a unique
property of the session (such as the process
identifier) and should set the KRBSCCNAME
environment variable. They could then destroy the
session-cache upon completion of the session. Users
would still own the caches and could change the
environment variable to point at any of their caches
at their own risk.

6.6 SYNCHRONIZAT‘ON OF KEY VERSION
NUMBERS

When a principal is first defined, the key version
number is initialized to 1 and then incremented
whenever the key is changed. This can cause a
problem if one administrator makes a mistake when
changing an inter-reaim key and then corrects it by
changing it again. Each change will increment the
key version number. This will cause the key version
number to differ by one between the two KDCs, and
cross-realm authentication will fail.

The kdb5_edit and kadmin programs
currently distributed by MIT do not allow the key
version number to be set independently of the key

21

itself. If key version numbers become unsynchro-
nized, as in the preceding example, either the
administrator on the "lagging" side must change the
key again to increment the key version number or
both administrators must delete and add the principal
to reset the key version numbers. A better solution
would be modifying the kdb5_edit and kadmin

- programs to allow the administrator to directly set

the key version number.

6.7 INTER-REALM KEY MANAGEMENT

Even with the Version 5 improvements to the
inter-realm authentication protocols greatly reducing
the magnitude of the key-management problem,
secure distribution of secret keys between sites
remains problematic.

A manual method for exchanging inter-realm keys
was used during the pilot. During a face-to-face
meeting in Livermore, California, the ESnet KDC
administrator generated and personally delivered a
list of passwords for each of the site KDC
administrators. Numbered entries on this list were
then referenced via electronic mail or telephone to
change the keys as needed.

Although this seems clumsy, only the site KDC
administrators, not the users, were impacted. For a
modest ESnet authentication hierarchy of 32 sites or
less, this may be a workable near-term solution until
more automated methods can be implemented.

DOD/ARPA has recently funded specification of
a follow-on protocol to Kerberos Version 5
(presumably Version 6). Early reports are that the
project will seek to resolve the inter-realm key
management problem, possibly using public-key

cryptography.

6.8 RENEWING EXPIRED TICKETS

Kerberos Version 5 allows for ticket lifetimes to
be renewed. However, renewal requests are denied
if the ticket has expired, even if the renewable
lifetime has not expired. Because there is not an
easy way to be told that a ticket is about to expire, a

-mechanism to renew an expired but still renewable
ticket is highly desirable. This is especially needed
for batch-oriented systems that want to use Kerberos.

6.9 ENCRYPTION ALGORITHMS

Kerberos Version 5 comes from MIT with a DES
encryption library. DES, introduced in 1975, is the
current U.S. government standard for secret-key
encryption (NBS 1977). Although it was the subject
of controversy because its keys were characterized as
too small and other weaknesses were suspected, DES
has proved resistant to public attacks. Nevertheless,
DES is coming to the end of its useful life with its
key size and complexity being overtaken by
improvements in speed and cost of computers
(Landau 1994). With the arrival of more powerful
processors and massively parallel machines, it is
desirable to have other, more formidable encryption
libraries available, such as triple-DES.

The Kerberos Version 5 specification (RFC 1510)
is designed to allow the encryption algorithms to be
changed, but it is still difficult to accomplish this
using the MIT reference code. Madifications to
Kerberos Version 5 to handle multiple or different
encryption libraries in a manner similar to that used
for credential caches is highly desirable.

Because strong cryptography for confidentiality
purposes has the potential to interfere with foreign
intelligence gathering, the U.S. government restricts
export of encryption software. These restrictions
apply to the DES libraries included in the MIT
release of Kerberos Version 5. It is paradoxical that
U.S. government restrictions on the export of
cryptographic software hampers its ability to protect
its own information and resources.

Alternatives to DES that might be considered for
use by ESnet are the RC2 and RC4 variable-key-size
encryption algorithms. Through an agreement
between the Software Publishers Association and the
U.S. government, export approval is simpler and
quicker for products using RC2 and RC4. However,
to qualify for quick approval, the product must limit
key sizes to 40 bits. Limiting the key length
effectively weakens the strength of the cipher by a

22

factor of 2'° relative to DES, but techniques are
available to help confound attacks. RC2 and RC4
are proprietary algorithms of RSA Data Security,
Inc., and would need to be licensed for ESnet use.
A waiver to use an encryption algorithm other than
the U.S. government standard DES may also need to
be obtained.

6.10 ADMINISTRATION TOOLS

Administering service tables using the tools
provided with the standard MIT distribution is
difficult, because either the server system adminis-
trators require access to the KDC or the site KDC
administrator must assume this burden. Also,
maintenance of service tables using the KDC
introduces the potential for exposing service keys
when the table is transferred from the KDC to the
server machine.

The ksrvutil program developed at Sandia
National Laboratory for Kerberos Version 5 (beta
release 2) allows a system administrator to maintain
the service table locally. Functions provided by
ksrvutil include addition, modification and
deletion of service keys, display of service table
entries, and translation of service tables from
Kerberos Version 4 to Version 5 and vice versa.
Because the program operates on the local system,
there is no need for access to the KDC to maintain
the service table, and the potential for exposing
service keys when transferring tables from the KDC .
to the server is eliminated.

The pilot project will submit an updated version
of the ksrvutil utility to MIT for inclusion in
their Kerberos Version 5 distribution. The updated
source will also be placed on the ESnet NIC so that

it will be available to ESnet sites before MIT

includes it in their distribution.

6.11 KDC DATABASE PROPAGATION

The current MIT implementation for propagating
the KDC database to slave servers is brute-force
database copy. This should be redesigned to support
the enterprise-wide and high-availability

-environments that exist within the ESnet. Further-
more, updates to slave servers should happen in a
timely manner to provide adequate service to users
of the system.

6.12 X-TERMINALS

X-Terminals present another problem in that they
currently do not have built-in Kerberos support.
When users initiate a telnet session using an
X-Terminal, their passwords are sent over the
network in clear-text. This can be remedied by the
X-Terminal vendors, because most can download the
software to the terminal and they could add Kerberos
support to their software.

This problem also applies to most X-Terminal
emulators, which run on personal computers (e.g.,
IBM/compatible PCs and Macintosh). Users may not
be aware of how their passwords are handled by
these devices and/or systems. This can lead to
compromised passwords. ‘

6.13 DOCUMENTATION

The documentation included in the MIT Kerberos
Version S software distribution is incomplete or
inadequate in some areas. The build procedure is
adequately documented, and there are man pages for
many of the tools. Documentation is still needed for
the following:

» KDC creation and initial operation
» configuration file formats
'« Kerberos Version 5 API Library.

The man page files are also missing for the
following executable files, which are installed by the
build procedure:

gss-client rlogin
gss-server rsh
krlogind sim_client
krshd sim_server
login.krb5 uuclient
movemail uuserver
rcp v4kadmind

23

7.0 ADMINISTRATIVE ISSUES

Solving the technical aspects of cross-realm
authentication is only half the battle. Trust relation-
ships between site KDCs can be programmed, but

inter-site authentication will still rely on establishing -

trust relationships between the organizations and
people who manage those KDCs.

Cross-realm authentication could potentially
weaken security at some sites. For example, Pacific
Northwest Laboratory (PNL) protects all dial-up
access using the Security Dynamics SecurID
token-card system. Such physical port protection of
dial-up access to network-connected systems is
specifically required in PNL's computer security
policy. If PNL allows cross-realm authentication
access from a site that does not have a similar dial-
up protection system in place, PNL increases its
exposure and violates its own policy. This paradox
~ may be true for other differences in computer
security policies that may exist between sites, such as
differences in host password expiration, length, and
composition.

Minimum computer security standards that are
based on DOE policy, Internet site security
guidelines (Holbrook and Reynolds 1991), and good
management practices should be established for sites
participating in cross-realm authentication. Particular
attention must be given to the protection of KDCs.

A KDC, if compromised, could be used to exploit
not only the local site but other sites within the
cross-realm environment of the ESnet.

Periodic security audits of site KDCs should be

conducted, preferably with the assistance of an

" independent reviewer, to minimize risk and build
trust between sites. Computer Incident Advisory
Capability (CIAC) staff, for instance, could be
contracted by the site KDC administrator to assist
with an audit of the local KDC. CIAC staff located
at Lawrence Livermore National Laboratory could
also assist with review of the ESnet root KDC(s).
Audits are intended to identify any potential security
holes within the KDC. The audits should ensure the
following.

25

» Remote login access and file transfer access to
the KDC are disabled.

+ The number of persons having logical or physical
access to the KDC is minimized.

+ The KDC master password is a minimum of 11
characters in length, is machine-generated, and is
changed monthly.

- Principal passwords are a minimum of 8
characters in length and are changed at least
quarterly.

« Log reports are generated and reviewed daily by
the site KDC administrator.

+ A KDC disaster recovery plan is in place.
+ A KDC break-in recovery plan is in place.

Additional work is needed to establish written
standards for managing site KDCs. Additional work
is also needed to develop a "Memorandum of
Understanding” template to document mutual
agreements between sites to manage KDCs to the
established standards. These standards should be
developed cooperatively by ESnet and site
management, affirmed by the ESnet Site
Coordinating Committee, and approved by the ESnet
Steering Committee.

The investigators have concluded that, with
certain conditions, Kerberos Version 5 is a suitable
technology to enable ESnet users to freely share
resources and information without compromising the
integrity of their systems and data. The pilot project
demonstrated that Kerberos Version 5 is capable of
supporting trusted third-party authentication across an
inter-organization internet and that Version 5 would
be practical to implement across the ESnet
community within the U.S. The investigators have
made necessary modifications to the Kerberos
Version 5 system in order to operate in the current
Internet environment and have documented other
technical shortcomings that must be addressed before
attempting large-scale deployment. A number of
administrative and implementation issues have been
identified, along with recommended solutions or
suggestions for further action.

Although it is unclear which of several competing
network authentication technologies will gain
ubiquitous long-term acceptance, it is recommended
that ESnet sites begin to deploy Kerberos Version 5
upon release of production code by MIT. Kerberos
Version 5 can immediately and effectively reduce
exposure to well-known and serious vulnerabilities
that result from the transmission of clear-text
passwords across the network. The system can be
implemented with very little impact to users. The
system is inter-operable with currently used network
applications, such as the Berkeley 'r' commands,
telnet, and FTP. Long-term risks appear to be
minimal because the principal competing tech-
nologies are also based on Kerberos Version 5.

Finally, it is reccommended that DOE support the
following work.

+ Assist MIT researchers in completing develop-
ment and testing of Kerberos Version 5, ensuring
that modifications necessary for large-scale
deployment across ESnet are incorporated.

« Establish minimum site security requirements for
participation in an ESnet authentication service,

8.0 CONCLUSIONS AND RECOMMENDATIONS

including standards for managing individual site
Kerberos services.

Provide consultation to other ESnet sites that
implement Kerberos, documenting lessons learned
as new sites are added, and coordinating ESnet
cross-realm configuration.

Initiate a consortium of interested educational,
commercial, and government organizations to
promote the inclusion of Kerberos authentication
in distributed applications and operating systems.
Microsoft, Novell, and Oracle have expressed
interest in participating in such a consortium but
are unwilling to initiate its formation. Organizing
an open meeting in cooperation with MIT may be
sufficient to "break the ice."

9.0 REFERENCES

Bellovin, S. M. 1993. "Packets Found on an Internet." ACM Computer Communications Review, 23(3):26-31.

Bellovin, S. M., and Michael Merritt. 1990. "Limitations of the Kerberos Authentication System." ACM
Computer Communications Review, 20(5):119-132.

Bellovin, S. M. 1992. "There Be Dragons." In Proceedings of the 3rd Usenix UNIX Security Symposium,
Baltimore, Maryland. '

Borman, D. 1993a. "Telnet Authentication Option." RFC-1409,.DDN Network Information Center.

Borman, D. 1993b. "Telnet Authentication: Kerberos Version 4." RFC-1411, DDN Network Information
Center. : '

Cheswick, W. R., and S. M. Bellovin. 1994. "An Evening with Berferd." Chapter 10 in Firewalls & Internet
Security. Addison-Wesley, Reading, Massachusetts.

Computer Emergency Response Team (CERT). 1994. Ongoing Network Monitoring Attacks. CERT Advisory
CA-94:01. Camegie-Mellon University, Pittsburgh, Pennsylvania.

Davis, D., and R. Swick. 1990. Workstation Services and Kerberos Authentication at Project Athena. Technical
Memorandum TM-424, MIT Laboratory for Computer Science, Cambridge, Massachusetts.

Holbrook, P., and J. Reynolds. 1991. "Site Security Handbook." RFC-1244, DDN Network Information Center.

Kaufman, C. 1993. "Distributed Authentication Security Service (DASS)." RFC-1507, DDN Network
Information Center. ‘

Kohl, J. T. 1991. "The Evolution of the Kerberos Authentication Service." Presented at the Spring 1991
EurOpen Conference, Tromsg, Norway.

Kohl, J. T., and B. C. Neuman. 1993. "The Kerberos Network Authentication Service (V5)." RFC-1510, DDN
Network Information Center.

Kotanchik, J. 1994. "Kerberos and Two-Factor Authentication." DCE RFC-59.0, Open Software Foundation.
Landau, S. 1994. "Crypto Policy Perspectives." Communications of the ACM, 37(8):115

Linn, J. 1993a. "Common Authentication Technology Overview." RFC-1511, DDN Network Information
Center.

Linn, J. 1993b. "Generic Security Service Application Program Interface." RFC-1508, DDN Network
Information Center.

Linn, J. 1994. "The Kerberos Version 5 GSS-API Mechanism." Internet Draft® available via anonymous FTP
from: nic.es.net:/pub/internet-drafts/draft-ietf-cat-kerbsgss-01.txt

Lunt, S. J. 1990. "Experiences with Kerberos." In Proceedings of the 2nd Usenix UNLX Security Symposium,
Portland, Oregon.

Lunt, S. J. 1994. "FTP Security Extensions.” Internet Draft® available via anonymous FTP from:
nic.es.net:/pub/internet-drafts/draft-ietf-cat-ftpsec-05.txt

Merckling, R., and A. Anderson. 1994. "DCE Smart Card Integration." DCE RFC-57.1, Open Software
Foundation.

Miller, S. P., B. C. Neuman, J. I. Schiller, and J. H. Saltzer. 1987. Section E.2.1: Kerberos Authentication and
Authorization System. MIT Project Athena, Cambridge, Massachusetts.

National Bureau of Standards (NBS). 1977. "Data Encryption Standard." Federal Information Processing
Standards Publication 46. Government Printing Office, Washington, D.C.

Open Software Foundation (OSF). 1993. "Authentication.” Chapter 40 in OSF DCE Application Development
Guide, Part 6: DCE Security Service. Prentice Hall, Englewood Cliffs, New Jersey.

Pato, J. 1993. "Using Pre-Authentication to Avoid Password Guessing Attacks." DCE RFC-26.0, Open
Software Foundation.

Steiner, J., C. Neuman, and J. 1. Schiller. 1988. "Kerberos: An Authentication Service for Open Network
Systems." In Usenix Conference Proceedings, pp. 191-202. February 1988, Dallas, Texas.

Stoll, C. 1990. The Cuckoo’s~ Egg: Tracking a Spy Through the Maze of Computer Espionage, Pocket Books,
New York, New York.

Tardo, J. J,, and K. Alagappan. 1991. "SPX: Global Authentication Using Public Key Certificates.” In
Proceedings of the 1991 Symposium on Research in Security & Privacy, pp. 232-244. 1EEE Computer Society.
Los Amitos, California.

Wray, J. 1993. "Generic Security Service Application Program Interface: C-bindings." RFC-1509, DDN
~ Network Information Center.

(@) Internet Drafts are working documents of the Internet Engineering Task Force (IETF), its Areas, and its Working Groups. Internet Drafts
are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time.

30

APPENDIX A

ESNET IMPLEMENTATION GUIDELINES FOR KERBEROS VERSION 5

APPENDIX A

ESNET IMPLEMENTATION GUIDELINES FOR KERBEROS VERSION 5§

A.1 HARDWARE AND SOFTWARE REQUIREMENTS

The capacity requirements for a site KDC system are, of course, dependent upon the size and activity of the
site's distributed computing environment. A typical KDC machine within the ESnet, however, should be on the
- order of a SPARCstation 5 with 32MB memory. 1GB of available disk space is adequate for several thousand
principals in the KDC database. Slave servers should have similar configurations. The KDC should include
local file backup facilities.

Slave KDC servers can be used to increase reliability and availability of authentication services. However,
KDC database propagation in the current MIT release of Kerberos Version 5 is a brute-force, database copy
approach that can be cumbersome to administer.

Intrusion of a KDC is catastrophic; all services that trust the KDC are subject to misuse until the intrusion is
detected and tickets revoked, and all user passwords must be reissued. Hence, the KDC machine must be set up
and configured in a very secure manner (this also applies to any KDC slave servers). Some guidelihes to follow
are listed below. ‘

« Place the machine in a secure area, such as a locked cabinet within a computer center that has limited
physical access.

. Disable network access other than what is required for Kerberos. This includes disabling telnet,
rlogin, rsh, rcp, and rcmd

« Limit user account access to the machine.

+ Where possible, use machine-generated passwords at least 11 characters long for KDC user accounts and the
KDC master passwords.

« Limit the functionality of the machine to serving only Kerberos and similar sensitive applications.

A.2 INSTALLING THE KERBEROS SOFTWARE

The ESnet Kerberos Version 5 distribution, which the pilot group has been working with, is the same as the
MIT distribution with only a few modifications. These modifications have been supplied to MIT for inclusion in
their distribution. To install the ESnet distribution, obtain the README file via anonymous FTP from
nic.es.net:/pub/public-domain/kerberos5/README. The README file explains the steps
required to download, install, and configure the ESnet Kerberos distribution.

Al

A.3 CONFIGURING THE SITE KDC

This section presents some basic guidelines and steps for ESnet site KDC administrators to follow when
configuring their KDCs. Administrators should also refer to the documentation included in the Kerberos
Version 5 software distribution.

A.3.1 Choosing a Realm Name

The choice of realm names can have an impact on cross-realm authentication and inter-operability with AFS
and previous versions of Kerberos. ESnet sites should use their DNS domain name(s) for their realm name(s)
where possible. This is consistent with previous ESnet recommendations for naming of AFS cells and ensures
that realm names are unique. With the proper choice of realm names, your Universal Login ID is your Kerberos
principal, <user>@<realm>. This can be used with the .kSlogin file and with AFS cross-realm
authentication. i

Realm names should be registered with the ESnet coordinator by sending electronic mail to
k5admin@es .net. Include the following information in the body of the message:

* site name

* realm name

* KDC host name

* KDC administrator contact (full name and telephone number).

Example:

Argonne National Laboratory
ANL.GOV

douglas.ctd.anl.gov

Doug Engert, (708)252-5444

Registering realm names with the ESnet coordinator will ensure that your site is included in the global ESnet
configuration files.

A.J3.2 Creating the KDC
To create the KDC for your site, perform the following steps.

1. After installing the Kerberos Version 5 software, change directory into the root directory where Kerberos
Version 5 was installed.

2. Obtain all the configuration files for ESnet via anonymous FTP from the
nic.es.net:/pub/public-domain/kerberos5/config-£files directory. These configuration

files are required to create the initial KDC database file.

3. Once the configuration files are transferred, your realm name must be inserted as the first entry in the
krb.conft file above all other entries.

4. Change directory into the admin directory under the root directory where Kerberos Version 5 was installed.

A2

5. Execute the kdb5_create command and provide the master password. The master password should be

machine-generated and at least 11 characters in length. This password must be remembered in order to

modify the database.

. Add the following lines to the /etc/services file:

kerbeross 88 /udp kerberosV krb5_ kdc # Kerberos VS5 server
kerberosS 88/tcp kerberosV krb5 kdc # Kerberos V5 server
kerberos_admin 89/udp kerberos-adm krb5 kadmind # Kerberos V5 admin
kerberos_admin 89/tcp kerberos-adm krb5_kadmind # Kerberos V5 admin
kerberos 750/udp kdc kerberos4 # Kerberos V4 server
kerberos 750/tcp kdc kerberos4 # Kerberos V4 server
kerberos master 751/udp # Kerberos V5 master
kerberos_master 751/tcp # Kerberos V5 master
kerberos-sec 758 /udp # Kerberos V5

kerberos-sec 758/tcp # Kerberos V5

Note: The exact contents of this file are site-dependent.

7. Start the Kerberos Version 5 server by executing krb5kdc & command located in the sbin directory of
the root directory where Kerberos Version 5 was installed.

A.3.3 Stashing the KDC Password

If you want the Kerberos KDC server to automatically start when the KDC machine reboots, the KDC master
password must be stored (stashed) on the system in a protected file. This can be done by executing the
kdb5_stash command located in the root directory where Kerberos Version 5 was instalied. The master
password will be stored in the /.k5.REALM-NAME file.

~A.3.4 Modifying the KDC Database

Maintaining the KDC database (adding, modifying, and deleting principals) can be done directly on the KDC
server using the kdb5_edit utility. However, using kdb5_edit is difficult, because login access to the KDC
machine must be done only from the system console to preserve security and KDC integrity.

An alternative to using kdb5_edit is the kadmin tool. kadmin communicates with the kadmind
daemon, which runs on the KDC machine and can be used from any of the workstations within the KDC's realm
to modify the KDC database.

For administrators to use kadmin, they must add a principal of the form <user>/admin@<realm> into
the KDC database, where <user> is the user name to use from the remote workstation and <realm> is the
realm name of the KDC to update (the local reaim is the default). Also, the kadmind process must be running
on the KDC to interface with the kadmin utility. '

To initiate the connection from a workstation, type kadmin -n <user>/admin and provide the password
for the <user>/admin principal. For example:

/krb5/bin/kadmin -n fred/admin
Password for fred/admin@pnl.gov:

The kadmin tool accepts the following commands (among others):

A3

add <principals> Add a principal to the KDC.

del <principals> Remove a principal from the KDC.

ing <principals Display the configurable attributes assigned to the principal.
mod <principals Modify one or more of the attributes assigned to the principal.
cpw <principals> Change the password (key) for a principal.

Some common forms of <principals include the following:

<users A user principal.
host/<machine-name> A server principal.
krbtgt/<realm-a>@<realm-b> An inter-realm principal.

The following example shows how to use kadmin to grant the "joe" principal the capability to forward tickets.
1. Initiate kadmin for administrator "fred."

/krb5/bin/kadmin -n fred/admin
Password for fred/admine@pnl.gov:

2. Inquire the current attribute settings for "joe." Note the NOFOR attribute, which indicates that "joe" cannot
forward tickets.

Command (add, cpw, del, ing, mod, addrnd, cpwrnd, addv4, cpwv4, q): ing joe
. Principal: joe@pnl.gov

Maximum Ticket Lifetime (MTL) = 86400 (seconds)

Maximum Renewal Lifetime (MRL) = 604800 (seconds)

Principal Key Version (PKV) = 3

Principal Expiration Date (PED): 2037/12/30:16:00:00

Last Modification Date (LMD): 1994/11/17:21:19:15

Principal Attributes (PA): POST NOFOR TGT REN PROXY DUPSKEY UNLOCKED SVR
Principal Salt Type (PST) = Version 5 Normal

3. Use the mod command to change the NOFOR attribute to FOR. Typing a "?" at the Attribute: prompt
will display the configurable attributes.

Command (add, cpw, del, ing, mod, addrnd, cpwrnd, addv4, cpwv4, g) : mod joe
Parameter Type to be Modified (vno, attr, or g): attr

Attribute: ?

vValid Responses are:

post/nopost - Allow/Disallow postdating
forward/noforward - Allow/Disallow forwarding
tgt/notgt - Allow/Disallow initial tickets

ren/noren - Allow/Disallow renewable tickets
proxy/noproxy - Allow/Disallow proxiable tickets
dskey/nodskey - Allow/Disallow Duplicate Session Keys
lock/unlock - Lock/Unlock client

svr/nosvr - Allow/Disallow Use of Principal as Server
g - Quit from setting attributes.

Attribute: forward

A4

4. An inquire of the current attribute settings for "joe" now shows the FOR attribute indicating that "joe" can
forward tickets. :

Command (add, cpw, del, ing, mod, addrnd, cpwrnd, addv4, ‘cpwv4, q): ing joe

Principal: joe@pnl.gov

Maximum Ticket Lifetime (MTL) = 86400 (seconds)
Maximum Renewal Lifetime (MRL) = 604800 (seconds)
Principal Key Version (PKV) = 3 ‘

Principal Expiration Date (PED): 2037/12/30:16:00:00

Last Modification Date (LMD): 1994/11/17:21:19:33

Principal Attributes (Pp) : POST FOR TGT REN PROXY DUPSKEY UNLOCKED SVR
Principal Salt Type (PST) = Version 5 Normal

A5

APPENDIX B

EXAMPLES OF "KERBERIZING" APPLICATIONS

APPENDIX B

EXAMPLES OF "KERBERIZING" APPLICATIONS

The following sections describe the modifications made by the researchers to add Kerberos Version 5
authentication to File Transfer Protocol (FTP) and NCSA Mosaic.

B.1 File Transj‘er Protocol

Kerberos authentication in FTP was implemented using a new protocol command, TKT. The Berkeley ftp
client program and ftpd server daemon were modified to process the new command.

‘B.1.1 Changes to £tp

The changes involve only two routines: the user () command routine in cmds . c and the login ()
routine in ftp.c. Two new routines were added to ftp.c: get_k5cred (), and send_k5cred ().

Code was inserted into user {) and login () so that, following a successful FTP USER command, either a
Kerberos ticket or a password can be sent. The code first invokes get_kScred (), which checks to see if
client credentials exist. If client credentials exist, a TKT command is sent to the server daemon. If no client
credentials exist, no TKT command is issued and the normal login proceeds with an appropriate PASS command.
Similarly, if the TKT command does not result in a CONTINUE reply from the server, it is assumed that the
ftpd daemon is not Kerberized and the normal login proceeds with an appropriate PASS command. If, on the
other hand, the TKT command is accepted by the server, send_kScred () is invoked. send_k5cred()
invokes the Kerberos sendauth library routine and returns the reply message received from the server usmg
the Kerberos getreply () routine. If send kScred() returns COMPLETE, the user () or login ()
routine returns a success status of 1. Otherwise, an error message is issued and a failure status of 0 is returned.

Anonymous FTP access is allowed using thé current convention of specifying ftp or anonymous in the
USER command.

B.1.2 Changes to £tpd

The changes involve only two source files: ftpemd.y (a TKT command was added) and ftpd.c (the
tkt () routine was added).

The changes for the daemon are encapsulated in the new routine tkt (), which is invoked when a TKT
command is received. The tkt () routine attempts to do a recvauth and returns an appropriate error reply if
this fails. Next, it does the normal processing for setting the group identifier and user identifier for the indicated
user, fixing the login directory and guest privileges as needed. If any errors are encountered in this process, an
error return results (pw returned is NULL and effective uid is set to 0). Otherwise, an appropriate (guest or
user) reply is sent to the client, and the login is completed. '

B.1

B.2 NCSA Mosaic

The NCSA Mosaic client program and httpd server daemon were both modified to allow HTTP requests to
use Kerberos Version 5 authentication. The Mosaic client was also modified to use Kerberos authentication
when transferring files using FTP. '

B.2.1 Maoadifications for Authenticated FTP

The changes made to the Mosaic sources to interface with the Kerberized FTP daemon were minor. Besides
configuration changes encapsulated in the makefile, only one source file (HTFTP . c) was modified. The
changes are essentially the same as to the FTP client described previously, but they have the necessary
adjustments for the Mosaic structure. '

In the get connection routine, the parsing of the arg that contains the host URL string was extended to
keep a copy of the parsed host portion of the string (the string following "@") and to examine this string for a
port-specifier delimited by ":" from the rest of the host string. If a port specified is found, it is used in place of
the default IPPORT FTP constant.

After a successful USER command, either a Kerberos ticket or a password can be sent. The modified code
first checks to see if there are Kerberos credentials for the client. If so, a TKT command is issued, and if
accepted by the server, a sendauth is executed. If no credentials exist, no TKT command is issued and thé
normal login proceeds with an appropriate PASS command. If a sendauth is executed, the reply received
must indicate the authorization was COMPLETE or an error return is generated.

Anonymous FTP access is allowed using the current convention of specifying anonymous in the USER
command if no user name was provided in the URL or if the user name is £tp or anonymous.

B.2.2 Modifications for Authenticated HTTP

Changes were made to the NCSA httpd daemon program and Mosaic client to allow HTTP requests to use
Kerberos Version 5 authentication. '

The HTTP client (Mosaic, in this case) sends a request to httpd. This request contains a GET or PUT
command on the first line. This may be followed by additional lines containing optional directives. Examples of
optional directives include the Accept : directive, which tells the server what forms of documents the client can
accept, and the Authorization: directive, which tells the server what authentication to use. The Mosaic
client does not initially send an authorization directive, because it is only needed if the document to be accessed
is restricted through a .htaccess file. An initial request is sent without the authorization. Then, if necessary,
the server responds with a message that states authorization is required and what form of authorization is
expected. (Présumably, if the client already knew what type of authorization directive was expected, it could
send that information with the initial request. However, the NCSA Mosaic client does not do this.)

When the HTTP server (httpd, in this case) receives the command, it first checks out what kind of HTTP
authorization is required for the requested document and only looks for an authorization directive if it is needed.
If one is needed but not found, the server returns a reply indicating to the client what kind of authentication is
required, as specified by the AuthType directive in the .htaccess file. ‘

B.2

The client then continues the dialog by resending the original request, but this time including the required
authorization directive. The client uses the first reply from the server in order to determine what kind of
authorization directive to send. ;

Although one of the HTTP documents indicated that a Kerberos ticket might be sent as a parameter of the
Authorization: directive, it was instead decided to simply send the string KerberosVs. The sending of
the ticket is then managed by a call to the Kerberos Version 5 library routine sendauth ().

The Mosaic and httpd sources already had provisions for authentication methods other than basic user
name/password pairs, so the changes needed to implement Kerberos were relatively minor.

Changes to httpd

Two new routines were added and two routines were modified to allow Kerberos Version 5 authentication in
httpd. They are described below.

authenticate_krbs_ﬁser (need_local_user)

This routine executes a recvauth () to determine if the client/peer has a valid Kerberos ticket. If so, it
checks need local_user to determine whether or not a local user name is required, calling
get_local_krb5_http.user() asneeded. The routine returns 0 if no errors were detected and a
local user name, if needed, it is returned through the global variable user. Otherwise, an error message is
written to the error log file and a -1 is returned.

get_local_krb5_http_user(client, local_user)

This routine tries to convert the given client to a local user name using krb5_aname_to_localname ().
If this is successful, it also calls kxb5 kuserok () to verify that the returned local_user has granted
access to the client principal. The routine returns the local_user name and 0 if successful. Otherwise, it
prints an error message to the error_log file and a -1 is returned.

The auth_bong () routine was modified to issue an appropriate reply (an AUTH_REQUIRED message) to
the client when auth_type is KerberosVs.

The check auth () routine was modified to call the modified auth_bong () routine when authorization
is required but not received and to call the authenticate krb5 user () routine when the authorization
was provided in the client's request. If the authorization was received but invalid, auth_bong () is called to
tell the client that Kerberos authentication failed. Otherwise, if a local user name is required, the returned user is
processed as normal to validate that it occurs as one of the required users in the .htaccess file.

Changes to Mosaic

A new routine, send_ks_créd (), was added in ETTP.c. This routine uses the socket and host name
passed as arguments to contact httpd. If the host argument is bad, it outputs an error message and returns -1.
Otherwise, it invokes a sequence of Kerberos Version 5 library routines to obtain the client's credentials and to
call sendauth () to send those credentials to the server. If no errors occur, it returns 0. Otherwise, it outputs
an error message and returns the status of the failed Kerberos library routine.

B3

send_k5_cred () is called at the appropriate place in HTLoadHTTP () after this routine has sent a
request containing an Authorization: KerberosVs directive to the server, but before it tries to get the
server's reply. Because of the code structure of HTLoadHTTP (), it was necessary to introduce a new state
variable, trying with_auth, to determine if the logic for sending the HTTP request contains an
authorization directive. This state variable is used to ensure that the send_k5_cred () routine is only called
when a Kerberos Version 5 authorization directive was included in the request.

In HTAABrow. c, the HTAA composeAuth () routine was modified to return the appropriate (empty)
authorization string for Kerberos Version 5. This routine is called for all authentication schemes and constructs
the part of the Authorization: directive that follows the "type" of authorization to use (e.g., for basic
authentication, it contains the encoded user name and password). This routine was also modified to set a new
global state variable, current_scheme, which indicates what authentication scheme is being used and makes
it available to the HTLoadHTTP () routine. This was consistent with how other state information is

communicated among these routines.

B4

APPENDIX C

" LLNL XDIR: A NETWORK-ORIENTED FILE MANAGER

APPENDIX C

LLNL XDIR: A NETWORK-ORIENTED FILE MANAGER

Technology

LLNL XDIR answers the need to manage files in a heterogeneous network. It provides a graphical user
interface for file transfer and for direct manipulation of local and remote directories on UNIX (and a number of
non-UNIX) platforms. LLNL XDIR offers the ability to view information in four different formats, ranging
from long lists to tree structures. LLNL XDIR is based on UNIX, the C programming language, OSF/Motif, and
FTP; hence, LLNL XDIR is highly portable.

Applications

With LLNL XDIR, users can manage all of their files in a network. Specifically LLNL XDIR can be used to
browse directory structures, transfer files and directories, view local and remote files, delete files and directories,
rename files and directories, and search directories on one or more hosts for entries matching a specified pattern.

Project Description

LLNL XDIR was developed to manage files in a distributed heterogeneous environment. The program uses
the familiar folder-icon metaphor to simultaneously display any number of directories of any number of (local or
remote) hosts, with each directory being displayed in its own window. Several existing products are able to
manage files on a single system, but LLNL XDIR extends this capability to manage files on an entire network.

LLNL XDIR does not have a "main" window, as such, but instead consists of a number of windows, which
display the contents of a directory of the local or a remote host. Each of these "directory” windows has a
complete set of controls for setting modes and invoking operations. Several other windows are provided for
setting user preferences and displaying diagnostic information.

Features

LLNL XDIR offers elaborate directory-browsing functionality. Each directory can be viewed in several
different formats, ranging from long lists to tree structures. A number of mechanisms are provided to traverse
directory structures, including 1) double-click to. enter a directory, 2) a "go-to-parent directory" button, and 3) a
sophisticated history mechanism for easily re-entering previously visited directories.

LLNL XDIR provides a powerful file transfer capability using drag-and-drop. For the user, it is just as easy
to copy a file between two remote systems as it is to copy a file from the local host to itself. Files and
directories may be transferred either individually or in groups with just a few movements of the mouse.

One of LLNL XDIR's most powerful features is its ability to search directory structures for entry names that

match a specified pattern. The user is able to specify the range and depth of such searches. The search can be
restricted to a single subdirectory or can extend across machine boundaries.

C.1

With LLNL XDIR, the user is able to view local or remote files, using either the built-in viewer or any
combination of external viewers of the user's choosing (e.g., "emacs" or "xv").

LLNL XDIR's history mechanism makes it simple to establish a connection with a remote host. This and’
other features make it especially painless to connect to an anonymous FTP site.

A number of directory-manipulation features are provided for operating on selected entries. There are several
ways to select a group of directory entries to operate on, including toggling entries, sweeping out rectangular
areas, and selecting wildcards. Once entries are selected, the user is able to rename entries, delete entries
(including entire subdirectories), or move entries between directories that are in the same host. The user is also
able to create directories, both on local and remote hosts.

LLNL XDIR uses a history mechanism for automatically caching 1) wildcard expressions, 2) previously
visited directories, and 3) host names and user names used in connecting to remote hosts. The purpose of each
cache is to reduce the amount of typing and mouse movement. For example, when the user wants to apply a
wildcard expression to select directory entries to operate on, a list of recently referenced wildcard eXpressions for
that host will be presented to the user; the user can then double-click on an existing wildcard expression to apply
it. The caches are automatically preserved across LLNL XDIR sessions.

LLNL XDIR presents users with a graphical user interface for easily tailoring the program's behavior. Users
can specify options, such as whether they would like the delete operation to first pop up a verification dialog that
lists the entries to be deleted.

Finally, an extensive online help facility, much of which is contextual, is provided. However, experience has
shown that the user interface is so intuitive that the user rarely needs to access the help package.

Availability

Portability was a major concern during design and implementation. So that LLNL XDIR would be widely
available on a variety of platforms, industry standards were chosen for the operating system (UNIX), the
programming language (C), the window system (X Window), the file transfer protocol (FTP), and the "look and
feel" (OSF/Motif). As a result, LLNL XDIR can be ported to virtually any UNIX platform with minimal effort.
Just a few of the many systems LLNL XDIR is expected to run on include the following:

* Sun SPARCstation under SunOS and Solaris
* DECsystem 5830 under Ultrix

« DEC 4000/710 under OSF/1

« SGI workstation

« IBM RS6000

+ HP9000/730

« Meiko.

LLNL XDIR is copyrighted, and the University of California reserves all rights.
For more information about LLNL XDIR, contact Neale Smith, 510-422-0822, linixdir@linl.gov. To obtain

a license to commercialize LLNL XDIR, contact Lawrence Livermore National Laboratory's Technology
Transfer Office, P.O. Box 808, L-795, CA 94550.

C.2

Information

J. C. Cavallini

Office of Scientific Computing
ER-30 (GTN) '

U. S. Department of Energy
Washington, DC 20585

R. J. Aiken

Office of Scientific Computing
ER-30 (GTN)

U. S. Department of Energy
Washington, DC 20585

C. L. Athey

Lawrence Livermore National Laboratory
MSIN L-073

7000 East Avenue

Livermore, CA 94550

D. E. Engert

Argonne National Laboratory
9700 South Cass Ave.
Argonne, IL 60439

J. F. Leighton

National Energy Research Supercomputer
Center

MSIN L-561

P.O. Box 5509

Livermore, CA 94551

S. C. Loken

Lawrerice Berkeley Laboratory
MSIN 50B-2239

1 Cyclotron Road

Berkeley, CA 94720

Distr.1

DISTRIBUTION
No. of No. of
Copies Copies
QFFSITE
12 DOE/Office of Scientific and Technical

NSITE

10

PNL-10382
UC-900

J. E. Ramus

National Energy Research Supercomputer
Center '

MSIN L-560

P.O. Box 5509

Livermore, CA 94551

R. R. Whitney

Continuous Electron Beam Accelerator
Facility

MSIN 12H

12000 Jefferson Ave.

Newport News, VA 23606

Pacific Northwest L aboratory

J. D. Fluckiger

G. R. Johnson

J. P. Moore

S. C. Tollbom

Publishing Coordination
Technical Report Files (5)

