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Modeling Fracture in Cemented Granular Material

B.C. Trent ! and L.G. Margolin 2

Abstract

We have conducted an extensive study to determine the underlying physical processes
that govern inelastic behavior in brittle geologic materials. The distinct element
method has been used to perform many different numerical experiments to help
understand how permanent macroscopic deformations can be characterized in terms
of microscopic parameters, such as fracture of the binding material and the topology
of the granular matrix. In particular, we have constructed a distinct element model of
a cemented granular material which accounts for the elastic forces due to bonding
between pairs of spherical particles, and which allows for the possibility of
anisotropic damage to the bonds due to the growth of small brittle cracks within the
bonds. We then develop a general constitutive theory that estimates the effective
elastic moduli of a cemented granular material by applying statistical mechanical
averaging to a purely micromechanical model. In this paper, we use the numerical
model to validate the predictions of the theory for various prescribed patterns of
damage. Specifically, we impose several anisotropic patterns of damage on the
bonds of a randomly generated assembly of particles. We then do numerical
experiments, sending both p-waves and s-waves through samples and measuring the
wave velocities. The predictions of the theory for these velocities agree well with the
results of the numerical model for a variety of damage patterns. We discuss the
implications of our theory, as well as potential applications.

Introduction

Constitutive models for geologic materials have traditionally been built around
phenomenological models based on plasticity. These are relatively easy to implement
and can usually be modified to fit virtually any experimental data obtained in the
laboratory. Unfortunately, they are not based on physical mechanisms, so their
applicability to different classes of problems is quite limited. The issue of scale is
always a problem and strain rate dependencies usually add another layer of
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complexity, which compounds the difficulty of relating the model parameters to
anything physical. Our goal has been to develop a general constitutive model, which
is applicable to quasistatic and dynamic problems without regard to scale, and which
depends on parameters that can be measured directly in the laboratory. In order to
work toward this goal, it has been necessary to study in great detail the granular-level
mechanisms that govern macroscopic inelastic behavior in the aggregate solids of
interest. We have utilized the concept of a numerical laboratory to "observe" and
measure the mesoscale parameters which would not ordinarily be available in a
physical laboratory. The numerical tool used for the testbed is the distinct element
method. We have incorporated linear elastic fracture mechanics as a damage
mechanism within the interparticle bonding. Much of our early work was devoted to
refining the distinct element code and performing representative and realistic
calculations which are summarized below. More recently, our efforts have
concentrated on developing a constitutive model to be used in large-strain continuum
codes. The distinct element method was used to test the analytic model. These
results are discussed the later sections of the paper. This research has provided some
insight into the fundamental cause of inelastic behavior in cemented granular material
and outlines a framework for a new class of constitutive model to help solve complex
boundary value problems.

Back n

In this paper we continue our development and validation of a constitutive theory
for a cemented granular material at high strain rate. Our goal is to construct a model
that can reproduce the complex behavior of such materials and yet is simple enough to
use in large-scale numerical simulations of solid continuum dynamics. To ensure
proper scaling with the various physical parameters, we have based our model on a
microphysical description of a granular material rather than on macroscopic plasticity
[Margolin, 1984]. Furthermore, to validate our analysis and its assumptions, we
have constructed a numerical model based on the Discrete Element Method (DEM)
[Cundall, 1987].

Our microphysical description of a granular material is based on two premises.
First we assume that the elastic properties -- i.e., the effective elastic moduli -- of a
cemented granular material depend mostly on the elastic properties of the bonding
material and on the topology of the bonding, but are relatively independent of the
properties of the grains. Of course other properties of the material, such as bulk
density, may depend mostly on the grains. Second we assume that macroscopic
inelasticity in the response of a cemented granular material to loading under high
strain rate is mostly due to one microphysical process, the fracture of preexisting
bonds. By fracture, we mean the growth of small brittle cracks within the bonds that
weaken and eventually sever the bonds.

We have formulated a computer model of a cemented granular material using the
Discrete Element Method [Trent, 1988; Trent and Margolin, 1992a] and based on the
premises of the preceding paragraph. In particular we modified the TRUBAL code
[Cundall, 1987] by adding elastic bonds between pairs of spherical particles whose
centers are closer than a specified distance. Although forces and moments may still
be produced by direct particle-particle contacts, the behavior of our simulated granular
material is actually dominated by the forces and moments produced by the stretching
or shearing of the bonds as the particles rotate and/or get closer or farther apart. In
addition, we have embedded tiny brittle cracks within each of the bonds. Such a
crack may grow when the stresses within the bond exceed a growth criterion
[Griffith, 1920]. The restoring force of a bond is found to be proportional to the
uncracked cross-sectional area, and so is reduced as the crack grows. In a general
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external stress field, the stress within a bond is a function of the bond orientation.
Thus most generally, the size of the embedded crack will be a function of the bond
orientation as well as the history of loading. Macroscopically, we refer to the general
property of anisotropic crack growth as damage.

Our DEM model represents a considerable simplification of a real cemented
granular material. In particular, one might question whether fracture within the bonds
(the only mechanism ihat we fiave provided for inelasticity) can reproduce the
complex behavior of real granular materials, which ranges from brittle to quasibrittle
to ductile. In previous work the model has been used to reproduce such qualitative
behavior as macroscopic fracture {Trent and Margolin, 1992a] as well as plasticity in
the collapse of hollow spheres [Trent, 1987]. On the other hand, the DEM model is
not suited for simulations of problems on length scales like tens and hundreds of
meters. This is because the number of grains represented would overwhelm today's
computers both in terms of CPU and memory requirements. Moreover, most of the
detailed output of such a calculation would be useless. Such problems are more
easily solved with continuum codes that contain a realistic constitutive law for the
behavior of granular materials.

The construction and implementation of such a realistic constitutive law is the
ultimate goal of our research. We begin this paper with a brief description of the
numerical model. Then we will review our theoretical approach, including previous
work we have done to validate the model in the case of isotropic damage. We also
discuss how the theory may be used to create a constitutive model, which emphasizes
the importance of being able to accurately treat anisotropic damage. Finally we
present results of an extensive numerical study of the effective elastic moduli of
material with prescribed damage patterns and compare these results with the
predictions of our theory.

The Numerical Model

The distinct element model TRUBAL assumes a system of spherical rigid
particles. We have constrained the motion for our study to only two dimensions. We
have modified this model by adding elastic bonds between cert~in pairs of particles
whose centers are closer than some specified distance. Within ach bond, we have
placed a two-dimensional Griffith crack, whose normal is oriented perpendicular to
the line joining the particle centers. The geometry of the bonding is described by
three dimensionless parameters -- a, B, and § -- that are illustrated in Fig. 1.

256R

Figure 1. The dimensionless parameters a,B, and 8 define the geometry
of bonded grains. In the middle of the bond is a vertical crack.
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The total bond width is a,the width of the Griffith crack is p, and 8 is the length of the
bond. Each of these parameters is nondimensionalized by the particle radius R.

Under loading, the particles are displaced relative to each other. The restoring
forces and moments that are applied to each bonded particle pair are based on analytic
equations developed for the three independent modes of deformation: simple tension
or compression in which the bonded particles move toward or away from each other;
rolling torsion in which the two particles rotate in opposite directions; and shearing
torsion in which both particles rotate in the same direction. The form of the restoring
stiffness for simple tension/compression is given, for example, in Eq. 1.

F | Au a acos(w) - 1) ' w= sin"'(a)

2N ( a=cos(w) ) | w=sin"'(B) M

where o, p and & (a = 1+ §) are defined in Fig. 1. The restoring force of the bond
on the particle is F and Au is the incremental stretching of the bond. The details of the
derigvations of the analytic expressions can be found in Trent [1987] and Trent
(1988].

A number of calculations have been performed where crack growth has
dominated the numerical results. These have included stress wave-induced surface
spall [Trent, 1986}, compaction (P-o conceptual model) of bonded particles in a
spherical geometry with a central void [Trent, 1986], and a study of initial flaw size
on macroscopic tensile strength [Trent and Margolin, 1992a]. Since the forces in the
bonding material are modeled explicitly, the stresses are easily calculated The
generalized criterion for crack growth in Eq. 2 has been incorporated into the code
[Margolin, 1984b].

o’ nTE
0»2 s
") T 1= ) ¢

2

where oy, is the normal stress in the bond, o is the shear stress in the bond, v is the
Poisson's ratio of the bonding material, T is the energy required to build a new
fracture surface, E is the elastic modulus of the bonding material and ¢ is the current
fracture length in the bond. Subcycling was incorporated in the code to ensure exact
compatibility within a time step between the imposed strain conditions on the bonding
and the stiffness reduction resulting from fraciore at a finite rate. The details of the
implementation of this procedure are given elsewhere [Trent, 1986; Trent, 1988].

The primary predictions of our analytic model are the effective elastic moduli.
Although these can be measured directly in the numerical model, it turns out to be
easier to infer them from the wave speeds measured in numerical wave propagation
experiments. For example, we generate tensile waves by giving the particles along
the bottom edge of the sample a constant downward velocity for a short time. Their
velocity is then set to zero and the resulting ringing recorded. The time history of the
particle velocities within the sample determines the transit time of the wave across the
sarlnplc. Knowing the size of the sample, it is then possible to calculate the p-wave
velocity.

By applying a horizontal velocity to the particles on the bottom boundary, one can
similarly generate a shear wave and thus measure the s-wave velocity, normal to the
particle velocity. For an isotropic material, these two velocities are sufficient to
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determine the material Poisson's ratio, as well as the ratio of Young's modulus to
bulk density. Details of this procedure can be found in Trent and Margolin [1992a].

A key stage in the derivation of our analytic model wil! be the "average particle"
assumption, which implies the statistical homogeneity of the sample. There are at
least two sources of inhomogeneity in the numerical model -- the presence of
boundaries, and biases due to the method of sample preparation. The effects of the
boundaries can be lessened by increasing the number of particles in the numerical
sample. In previous studies [Trent and Margolin, 1992b] our samples typically
contained about 300 particles. In the present study, we have increased this number to
over 1000.

We form our numerical samples by allowing the particles to settle under gravity,
and then bonding all particles whose centers are closer than some specified distance.
This process is designed to yield a more realistic sample, but does introduce
anisotropy due to the preferred direction of gravity. This source of anisotropy will
not decrease as the number of particles is increased. In [Trent and Margolin, 1992b]
we estimated the size of this effect to construct error bars for our numerical results.

Micromechanical Model

The micromechanical model that underlies our constitutive law is an idealization
of our discrete element model. It also consists of an assembly of two-dimensional
grains of radius R. Grains which are closer than some specified distance are
considered to be bonded to each other. As in the numerical model, when the particles
are displaced from their equilibrium positions, restoring forces result.

The macroscopic stress can be defined in terms of these forces [Margolin and
Trent, 1990]

oj =2 ¥ YFML® 3)

v particles a

Here the inner sum is over the contacts of a particular particle. By contact, we mean
the connection between a particle and a bond. The superscript (a) identifies the
contact. Fis the force within the bond. L is the vector pointingfrom the contact

Figure 2. A specific configuration of a central particle bonded to three neighbors.
along the bond, and with magnitude equal to half of the length of the bond (i.e., I5RI ;

see Fig. 1). V is the volume of the sample. A specific realization of a central particle
and its bonds is shown in Fig. 2.
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Equation 3 is an exact relation between the macroscopic stress field and the
microscopic forces. However it requires a complete and detailed knowledge of the
configuration of the particles and the bonds. Such details are of course available in
the numerical model. However to construct our constitutive theory, we will simplify
this equation by replacing the inner sum over the contacts about a particular particle
by a sum over the contacts of an "average" particle. The outer sum over all the
particles is then just the total number of particles, N, times the inner sum over the
average particle.

To be more precise about what we mean by an "average” particle, let us assume
that we can write down a probability distribution for the number of neighbors to
which a central particle is bonded, and for the lengths and orientations of the
individual bonds. We denote this distribution

P (Ng, LM L@ Ny 4)

where Nj is the number of neighbors. Thus the distribution P represents the
probability of any possible configuration of neighbors and bonds around a particle.
In these terms we can rewrite Eq. 3

Na
Sj = %‘l <Y FAL@, (5)
a=1

The brackets mean the distribution P is used to average over all configurations.
The next step in the development of our theory is to write the force F in terms of
the bond orientation vectors L and the applied strain tensor. The final result is

T Na
6” = ?__p_.g_b_!: < Z ntj(a):t (a)'t }(a)nt '(na) (a(a) - B(a) ) S -ék m (6)
tRpy '

a=1

where p is the bulk density of the granular material, py, is the density of the grains
themselves, and Ey, is the Youngs' modulus of the bond material. The vector < is the
unit vector in the direction of the bond -- i.e., (cos 8, sin 8). To derive this form, we
have assumed that the bond length is uncorrelated with the bond orientation. Details
of the derivation can be found in Margolin and Trent [1992].

Review of Previous Validation Studi

We begin by noting that an expression for the effective elastic moduli can be
written down from Eq. 6 and the definition

00
Mijkm = — (7)
€ km
s0
= Na
Mijkm 2pEul _ @@ @@ (o@.50), (8)
mRPw oo !
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The dependence of the moduli on the Young's modulus Ep, of the bond material is
consistent with our assumption that only the elastic properties of the bond matter and
then from dimensional analysis. This dependence, as well as the dependence on bulk
density, was verified using the DEM code [Trent and Margolin, 1992a].

The term in the angular brackets is more difficult to treat. We begin by assuming
that the orientations of the bonds are not correlated. Strictly speaking this cannot be
so, since the bonds cannot physically overlap; that is, there is a small angle about the
position of each bond from which all other bonds are excluded. However this
assumption should be adequate when there are relatively few bonds around the
particle. In this case, the sum over "a", the bond index, becomes just the
coordination number N, times the bracket for any one bond. Then the effective
moduli should scale directly with average bond length, and with the expected value of
the coordination number. These scalings were verified [Margolin and Trent, 1990).

If one further assumes that the bonds, as well as any damage, are isotropically
distributed, then the angular integrals can be evaluated and the actual values of the
moduli predicted. Some examples are provided in the appendix. These calculations
were also performed [Margolin and Trent, 1990] and showed excellent agreement as
long as the expected value of the coordination number was small. In the numerical
model, we control the degree of bonding by specifying the maximum separation
between bonded particles. For example, when we specify that all grain pairs for
which & S .4 (see Fig. 1) are bonded, then the expected coordination number < Nj >
= 3.3. When we increase maximum bonding distance to § £ 1.0, we find <Nz > =
4.5. We found systematic and significant differences between the code and the
theory for § > 1.0, with the theory predicting the larger moduli.

It turns out to be possible to account for these differences by enforcing the
physical constraint that the bonds cannot overlap. In estimating the angular integral,
for example for the second bond, we exclude a small angle of % y about the
orientation of the first bond. This does not alter the probability function for the
orientation of a single bond (which we continue to assume is isotropic), but rather for
the probability function of two or more bonds. That is, originally we had assumed
that the bonds' orientations were not correlated. Now we introduce a small anti-
correlation. This correction is described in [Margolin and Trent, 1992] where we
evaluate the changes in the angular integrals using a perturbation theory. With this
correction, the agreement between theory and the DEM code is excellent for all values
of the maximum bonding distance 28R.

To summarize then, we have validated our theoretical expression for the effective
moduli Eq. 8 for isotropic materials. In this paper, we will extend our studies to
anisotropic materials. We will motivate the importance of this step in the next section
before showing new comparisons.

Constitutive Theory and Anisotropic Damage

The main purpose of this paper is to validate the formulae for the effective elastic
moduli for nonisotropic materials. Anisotropy may be a material property, due to the
detailed history of the formation of the bonds. However anisotropy due to inelastic
changes (i.e., crack growth within the bonds) is of greater interest here. The reason
for our interest lies in the way we expect to couple our constitutive model into a solid
dynamics code.

Solid dynamics codes solve numerically the time-dependent partial differential
equations that express the conservation of mass, momentum, and energy. In the
simplest case (in which one ignores the energy equation), the solution procedure is a
cyclic process:
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1) the divergence of the stress tensor is used to update the velocity field;
2) the velocity field is used to calculate the strain rate tensor;
3) the strain rate tensor is used by the constitutive law to update the stress tensor.

Within the constitutive law, the damage, e.g., the crack width function p(0) in Eq. 8,
appears as an internal variable. The constitutive law has the following components:

1) the current damage is used to calculate the effective elastic moduli;
2) the moduli and the strain rate tensor are used to update the stress tensor;
3) the stress tensor is used to update the damage based on Griffith's law,

Thus, in addition to updating the stress field, the constitutive law must also update the
crack width function p(8), which will depend in a complicated way on the history of
loading. The important feedback from the damage is in its effect on the elastic
moduli, which is what we want to validate,

In the following section, we will compare DEM predictions of the moduli with the
theory, for specified crack width functions. For a general loading history, the
function B(8) will not be representable in analytic form. However for any given stress
field, Griffith's law defines a critical axis and a critical angle. Bonds whose
orientations lie within the cone defined by this axis and angle are unstable to crack
growth. With this in mind, we have attempted to choose damage patterns for our
comparison that are similar to what might appear in actual geologic conditions.

mpari he Th nalytic M

Our purpose in this section is to validate Eq. 8. We will do this by specifying various
patterns of damage in the material. Insofar as the analytic theory is concerned, all that
changes are the angular integrals within the brackets. Furthermore, the longitudinal
speed is proportional to the square root of the modulus Mj11, whereas the shear
wave speed is proportional to the square root of M1212, with the same constant of
proportionality. Thus the theory predicts that each of the wave speeds measured in
the DEM experiments (described below) divided by the square root of the appropriate
angular integral should be a constant.

Of course the randomly generated DEM sample is not exactly isotropic. The
particular realization that we have used contains 1042 particles and 2906 bonds. The
distinct element assembly is shown in Fig. 3 where the straight line indicates a bond
connecting two particles. Figure 4 shows the orientations of these bonds sorted into
eighteen bins, each ten degrees wide. We find that there is a standard deviation of
the order of ten percent from the average value of 161.4 bonds/bin. Since the actual
number of bonds in a bin represents a weight in the angular integrals that should be
constant and since the deviations are distributed fairly isotropically, one might expect
to see deviations between the theory and the DEM experiments of the same order.

We have investigated two different damage patterns. In case 1, the current crack
length of each bond varies continuously from horizontal to vertical as follows:

B=pPo +Prcos2(0+¢) 9)

where Py is the minimum fracture length
Bo + B1 is the maximum fracture length
0 is the orientation of the bond measured from the horizontal
¢ is a constaat angle that specifies the orientation of the
damage distribution
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Figure 3. Distinct element assembly with 1024 particles and 2906 bonds.
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We illustrate this distribution in Fig. 5, choosing as the parameters Pg = 0.05, B; =
0.40 and ¢ =0°. In all cases we have chosen o = 0.50. It is clear that for this
choice of parameters, most of the intact bonds are nearly vertical. In Fig. 6 we show
the distribution for the same choice of parameters, except that ¢ = 90°. In this case,
the more intact bonds are nearly horizontal. We emphasize that for both cases, and
indeed for all the numerical simulations, the samples (as defined by the total number
of particles, bonds and their detailed orientations) are identical. Only the damage
patterns are varied. Recall from Eq. 1 that the stiffness of a given bond depends not
only on the damage, B, but also on the separation distance, 8R, which is different for
each bond. Bonds with smaller separations are stiffer, since a given incremental
strain will cause higher stresses in the bonding material. When B =0, we have an
isotropic distribution of damage. In this case, the standard deviation about the
numceical results is quite small. When B # 0, we show several anisotopic
distributions. In these cases, the standard deviation is larger, but still is only about
7% of the mean, consistent with the angular distribution of bonds. The results for a
suite of runs is shown in Table 1. In this table, the column labeled form factor is
derived by dividing the measured speed by the square root of the angular integral.
The wave type refers to longitudinal (p) or shear (s) loading. The solutions of the
angular integrals for both p-wave and s-wave loading are in the appendix.

Figure 5. Representation of bonds forcase 1 ~ Figure 6. Representation of bonds
where the orientation angle, ¢, is zero. Note where ¢ is n/2. Note the more
the less damaged bonds are vertical. intact bonds are now horizontal.

In case 2, the damage is defined

B =Po ford >¢or0<-¢
B =20y foro>0>-¢

(10)
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Here the sample has only two levels of damage, o and B;. The damage of any
particular bond depends on its orientation, 8, and the angle ¢ which defines the
orientation where the damage changes from Bo to Bj. The results of the case 2
studies are given in Table 2. These results are qualitatively similar to those of case 1,
with standard deviations which are onl; 6% of the mean. Again, the angular integrals
are evaluated for this case for both p and s-waves in the appendix.

Table 1. Summary of Distinct Element Results for Case 1 (a=0.50 for all cases)
Wave Bo B1 [ Mean Measured Angular Form

Type B/a Speed(m/s) Integral Factor, K
p 9.05 0.00 0.1000 1882.7 0.2651 3656.59
s 0.05 0.00 0.1000 1159.7 0.0884 3900.49
P 0.10 0.00 0.2000 1728.3 0.2356 3560.67
s 0.10 0.00 0.2000 1042.5 0.0785 3720.84
P 0.25 0.00 0.5000 1286.4 0.1473 3351.77
s 0.25 0.00 0.5000 779.2 0.0491 3516.48
P 0.05 0.40 0.0 0.5045 1530.5 0.2258 3220.86
s 0.05 0.40 0.0 0.5045 734.8 0.0491 3316.11
p 0.05 0.40 90.0 0.4555 964.0 0.0687 3677.89
s 0.05 0.40 90.0 0.4955 689.0 0.0491 3109.41
P 0.05 0.30 0.0 0.4034 1619.3 0.2356 3336.10
s 0.05 0.30 0.0 0.4034 860.7 0.0589 3546.45
P 0.05 0.30 90.0 0.3966 1212.5 0.1178 3532.72
s 0.05 0.30 90.0 0.3966 815.2 0.0589 3358.97
P 0.15 0.35 0.0 0.6539 1251.6 0.1718 3019.63
s 0.15 0.35 0.0 0.6539 558.1 0.0344 3009.07
P 0.15 0.35 90.0 0.6461 556.4 0.0344 2999.91
s 0.15 0.35 90.0 0.6461 522.7 0.0344 2818.21

The form factors for all cases in Tables 1 and 2 are shown in Fig. 7. Note the
variation in values is of the same order as the variation in bond orientation shown in
Fig. 4. An earlier suite of identical calculations was performed on a smaller assembly
of only 270 particles, glued together with 610 bonds. The bond porosity (not
counting the volume of the bonds) of this assembly was 38%, compared to 26% for
the assembly shown in Fig. 3. Higher porosity samples will have lower acoustic
speeds. The standard deviation of bond orientations was over 20% of the mean,
compared to only 10% for the bigger assembly. Even though these differences in
sample characteristics are significant, the form factors for this case are quite similar,
as illustrated in Fig. 8. Notice the mean (thick dashed line) is nearly the same as in
Fig. 7 but the variation is greater, reflecting the greater variation in nonisotropic bond
orientation.

To summarize, recall that both case 1 and case 2 consisted of strongly
vertically as well as strongly horizontally oriented damage subjected to longitudinal
and shear loading. We see that the form factors predicted by both the results from the
case 1 anisotropic damage studies, and the case 2 anisotropic damage studies are
consistent with the data derived from isotmgpic damage studies. Furthermore the
standard deviations derived from each of the two data sets are only about 7% of the
mean, and are consistent in magnitude with the anisotropy of the distribution of bond
orientations in the numerical sample.
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Table 2. Summary of Distinct Element Results for Case 2 (a=0.50 for all cases)
Wave Bo B1 ¢ Mean Measured Angular Form

Type B/a Speed (m/s) Integral Factor, K
p 0.05 0.40 45.0 0.4517 1603.2 0.2495 3209.61
s 0.05 0.40 45.0 0.4517 761.3 0.0540 3276.11
p 0.40 0.05 45.0 0.4483  959.2 0.0745 3514.24
s 0.40 0.05 45.0 0.4483 678.8 0.0540 2921.09
p 0.05 0.40 60.0 0.5649 1384.7 0.2129 3001.01
s 0.05 0.40 60.0 0.5649 646.3 0.0331 3552.39
p 0.40 0.05 30.0 0.5589 850.5 0.0613 3435.14
s 0.40 0.05 30.0 0.5589 585.7 0.0331 3219.30
p 0.05 0.30 45.0 0.3512 1690.6 0.2539 3355.13
s 0.05 0.30 45.0 0.3512 895.7 0.0638 3546.11
p 0.30 0.05 45.0 0.3488 1253.7 0.1289 3491.94
s 0.30 0.05 45.0 0.3488 836.5 0.0638 3311.74
p 0.05 0.30 60.0 0.4321 1538.0 0.2278 3222.49
s 0.05 0©.30 60.0 0.4321 837.9 0.0489 3789.11
P 0.30 0.05 30.0 0.4278 1176.3 0.1195 3402.78
s 0.30 0.05 30.0 0.4278 772.8 0.0489 3494.72
p 0.15 0.35 45.0 0.5010 1448.0 0.1973 3259.91
s 0.15 0.35 45.0 0.5010 789.4 0.0491 3562.51
p 0.35 0.15 45.0 0.4990 1077.7 0.0973 3454.95
s 0.35 0.15 45.0 0.4990 718.3 0.0491 3241.64
p 0.15 0.35 60.0 0.5657 1326.0 0.1763 3158.04
s 0.15 0.35 60.0 0.5657 731.1 0.0371 3795.68
p 0.35 0.15 30.0 0.5622 1016.5 0.0897 3393.99
s 0.35 0.15 30.0 0.5622 667.3 0.0371 3464.45
Form Factor
Summary: P-Wave S-Wave All Cases
Mean 3345.49 3403.38 3374.43
Standard Deviation 195.22 282.42 244.49
Percent of Mean 5.83 8.30 7.24
nclusi

We have shown the development of a new type of constitutive law for cemented
granular material using statistical mechanics and based on the granular level
characteristics of the assembly, such as bond damage (fracture) and topology. The
distinct element method has provided a numerical testbed to evaluate the ability of the
constitutive law to predict the effective elastic moduli of materials with widely varyin g
degrees of damage and anisotropy. The results have shown that the analytic theory is
in good agreement with the calculations, i.e. the variability in the predictions is of the
same order as the variability of bond isotropy. The distinct element method has also
been shown to provide valuable insight as to how the microscale fracture process can
influence macroscopic failure in specific boundary value problems such as surface
spall, compaction, and tensile strength. It is clear from this study that macroscopic
inelasticity of quasi-brittle geologic materials, which traditionally has been modeled
with plasticity formulations, may be better served by a constitutive law based on
micromechanical considerations. One such model has been described in this paper.

12 Trent & Margolin



4500 L S LA B R IR B B N A B

4000 -, g ) ]

3500 _m...e..'....-,i_..-ﬁ ..... "o J‘@ ..... . 9 ..... i, ,l.er

SR o I W ST

3000 F YT ewe T e -

5 ! ! . ]

8 200 - ‘ ‘ :
£ 2000 | 1so— iContinuously Discretely
Lsé | tropici Anisotropic § Anisotropic

1500 |- ’ i .

i 1

1000 - e Vertical Velocity (p—wave) .

500 B * Horizontal Velocity (s—wave) ]

o i 1 1 i | A 1 1 | 1 | Nl 1 A 1 4 1 I

0 5 10 15 2.0 25 30 35 40
Calculation Number

Figure 7. Form factors for calculational results in Tables 1 and 2 for an assembly of
1042 particles and 2906 bonds. The thick dashed line is the mean value for all cases

and one standard deviation is also indicated. The overall mean is 3374.4 with a
standard deviation of 7.2%.
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The summation term inside the angular brackets on the left side of Eq. 8 can be
expressed as the following integrals if it is assumed that the bonds as well as any
damage are isotropically distributed:

< fr}"zﬁ"r{"cﬁf’(a“’ - p(°>)> = f sin*@ [a(6) - B(6))] d6 (al)
0

a=l

for longitudinal (p-wave) loading and

Na
< Z T‘(ﬂ)r‘(’}')rg‘)rg)(a(d) __ﬂ(ﬂ)) S =

a=l

sin’@ cos’ @ [a(8) - B(8)] d6 (a2)

i ST P

for shear (s-wave) loading.

If o is assumed constant and B(6) is given as in Eq. 9, then, for ¢=0, the solution of
Eq. (al) can be evaluated as

{2 sin'e [a—{Bo + B, cosZ(e)}] dé = (a-p,) (%g—) - ﬁ,(%) (a3)

and for ¢=n/2, Eq. (al) can be written as

f sin*@ [a - {ﬁo +B, cos2(9 + %)}] do = (a-B,) (%g') - ﬁ,(%) (ad)

These expressions are evaluated for the assumed values of a, Bo and ) and appear
in Table 1. For the shear wave loading, Eq. (a2) can be written as

S uin

sin®0 cos’ @ [a - {ﬂo + B, cos’(e)}] dé= (a-pB,) (T”g) - B (—312) (as)

for ¢=0. The solution of Eq. (a2) is identical for the case of ¢=n/2. Again, these are
evaluated for the chosen values of o, B and ) and then appear in Table 1.
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Case 2 Solutions

Again, if a is assumed constant and B(0) is given now as in Eq. 10, then for p-wave
loading, Eq. (al) can be expressed for any value of ¢ as

.3

¢ 2
[ sin*6 (@ - B)a6 + [ sin*6 (& - By)d6 (a6)
0 ¢
and the solution for any value of the damage separation angle, ¢, is
_p\3m _ 3¢ _ sin2¢ = sind¢
(@=hBo)ig + (B, ﬁo)[s et ] @7)

This expression is evaluated for the values of a, Bg, B1 and ¢ chosen for the distinct
element analysis, and are listed in Table 2. For the shear wave loading, Eq. (a2) can
be expressed as

x
I sin?@ cos® @ (a - ﬁ,)de + Iz sin? @ cos® @ (a - ﬂo)dG (a8)
0

¢

The solution for any value of the damage separation angle, ¢, is

(@~ Bo) [% ~ % + ———-Si';;q + (- B) [% - ———Siggd’]- (29)

This expression was evaluated for the specified values of a, By, B1 and ¢, and used to
evaluate the form factors in Table 2.
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