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Boundary Conditions for Granular Flows at Randomly 
Fluctuating Bumpy Boundaries

M. W. Richman
Mechanical Engineering Department, Worcester Polytechnic 
Institute, 100 Institute Road, Worcester, Massachusetts, USA

Abstract
In this paper we focus attention on the interactions 

between rapid flows of identical, smooth spheres that interact 
with bumpy boundaries through inelastic collisions. The 
boundaries translate with specified mean velocities, and 
deviate about the mean with specified fluctuation velocities. 
Based upon Maxwellian velocity distribution functions that 
describe the velocities of both the flow particles and 
boundaries, we calculate the rates at which linear momentum 
and kinetic energy are exchanged between the two. Using 
these exchange rates, we write down conditions that ensure 
that both momentum and energy are balanced at bumpy 
boundaries. Finally, we employ a constitutive theory that is 
consistent with these conditions to calculate the granular 
temperature and solid fraction profiles within a granular 
material confined between two parallel, bumpy surfaces that 
randomly fluctuate about zero mean velocity.

1. INTRODUCTION
In the past several years, considerable effort has been 

devoted to quantifying the influence that boundaries exert on 
the granular flows with which they interact. That the effects 
may be profound has been demonstrated experimentally by Craig 
et. al. [1987], who found that when the internal surfaces of 
their shear cell were relatively rough the stresses induced 
were considerably higher than those induced when the surfaces 
were relatively smooth; and through numerical simulation by 
Campbell and Gong [1987], who found that shear flows of disks 
between parallel walls were critically influenced by the 
geometry of the walls.

In order to calculate the effects of a containing 
boundary on a granular flow, it is neccessary to satisfy 
conditions that at least express the balance of momentum and 
energy at such a boundary. Phenomenological conditions of this 
type were first proposed by Hui et. al. [1984] and were later



improved upon by Johnson and Jackson [1987]. Jenkins and 
Richman [1986] have employed the formal methods of averaging 
to obtain conditions that apply to either two-dimensional 
systems of identical disks or three-dimensional systems of 
identical spheres that interact with smooth, bumpy boundaries. 
The distribution function upon which the these conditions are 
based has since been improved upon by Richman and Chou [1988] 
for systems of disks, and by Richman [1988] for systems of 
spheres. Averaging techniques based upon simpler distribution 
functions have been employed by Pasquarell and Ackermann 
[1989] and Pasquarell [1991] to obtain conditions that apply 
at smooth, bumpy boundaries, and by Jenkins [1991] to obtain 
conditions at flat, frictional surfaces.

In this paper, we are concerned with the effects of 
vibrating boundaries on the granular flows that they contain. 
An experimental study of these effects has been conducted by 
Savage [1988], who vibrated the bottom panel of a rectangular 
box that contained round polystyrene beads at specified 
frequencies and at amplitudes that diminished with distance 
from the center of the box. As a result of the non-uniformity 
in vibrational amplitude, the induced mean velocities 
throughout the assemblies were upwards near the centerline of 
the box and downward near its sides. Recently Jackson [1991] 
proposed a phenomenological energy flux condition to account 
for the energy supplied to the flow by the boundary's 
vibrational motion, and predicted that inclined flows would be 
strongly influenced by small changes in this motion.

Here we focus on smooth, bumpy boundaries that translate 
with known mean velocities and deviate about the means with 
known fluctuation velocities. We write down conditions that 
ensure that both momentum and energy are balanced at these 
boundaries and employ formal methods of averaging to calculate 
the rates at which momentum and energy are transferred from 
the boundaries to the flows. Finally, we employ the resulting 
boundary conditions and a corresponding constitutive theory to 
determine the influence of the boundaries on the granular 
temperature and solid fraction profiles within a granular 
material that is excited by and confined between two parallel 
surfaces that randomly fluctuate about zero mean velocity.

2. PRELIMINARIES
We are concerned here with flows of identical, smooth, 

nearly elastic spheres of diameter o and mass m that interact 
through nearly elastic collisions with smooth but bumpy 
boundaries that translate with mean velocities U and 
fluctuate about the mean with mean square velocities .

The bumpy boundaries are flat walls to which identical, 
smooth, hemispherical particles of diameter d are randomly 
attached at an average distance s apart. On average, the 
nearest neighbors of any hemisphere form a half torus with 
inner diameter d+2s, outer diameter 3d+2s, and height d/2. 
The complete range of s/d is from -1, which corresponds to a



perfectly flat boundary at a distance d/2 from the flat wall 
to which the bumps are attached, to -l+v/(l+2a/d) , which is the 
maximum value that prevents any flow particle from colliding 
with the flat wall. The fraction of surface area of each wall 
particle that is accesible to any flow particle is (l-cos0) , 
where 5 is defined by the relation sin0= (d+s) / (d+a) . In the 
range of s/d described, the boundary may be made effectively 
rougher by increasing 6 from zero to a maximum value that 
depends on cr/d.

Each wall-flow particle collision is described by the 
velocities c-^ of the wall particle and c of the flow particle 
just prior to impact, and by the unit vector k directed from 
the center of the wall particle to that of the flow particle 
at impact. If the coefficient of restitution that accounts 
for the energy dissipated during impact is ew, and the 
velocity of the wall is unchanged by the impact, then in terms 
of the relative velocity gsc^-c the changes in linear momentum 
and kinetic energy experienced by a flow particle due to the 
impact are given respectively by,
m(c'-c) = m(l+ew)(g*k)k , (1)
in which c' is the velocity of the flow particle immediately 
after the collision, and

^(c'2-c2) = m(l+ew)[(g.k) (U.k) + (g*k) (CVk)- ^(l-ew) (g-k)2], (2)

in which C1 is the fluctuation velocity c-^-U of the wall 
particle.

The statistics associated with collisions between wall 
particles and flow particles are described by two distribution 
functions: a single particle distribution function f defined 
such that f(c,r)dc gives the number of flow particles per unit 
volume centered at position r with velocities c within the 
range dc; and a probability distribution function p defined 
such that p(c)dc gives the probability that a specified wall 
particle has velocity c within dc. At impact, the center 
position of the wall particle is x, and the distance between 
centers of the colliding particles is a=(a+d)/2. The frequency 
of collisions per unit area of flat wall that involve flow 
particles with velocities c in the range dc, wall particles 
with velocities c-^ in the range dc^, and occur within an area 
of contact centered about k within an element dk of solid 
angle on the surface of the wall particle, is
(X/7Tsin2^) f (c,x+ak)p(c1) (g^kjdkdcdc-^ . (3)

Here the factor x accounts for the effects of excluded volume 
and the shielding of flow particles from wall particles by 
other flow particles, and the product g*k must be positive for 
a collision to occur.



3. BOUNDARY CONDITIONS
Due to repeated collisions between the grains and the 

bumps, both momentum and energy are exchanged between a flow 
and its containing boundary. In particular, a unit area of 
the boundary supplies momentum to the flow at a rate M, 
supplies energy to the flow at rate M*U due to its mean motion 
and at a rate F due to its fluctuating motion, and absorbs 
energy from the flow at a rate D due to the inelasticity of 
the boundary-flow collisions. For the bumpy boundaries of 
interest here, the supply rate M is a statistical average of 
the change in momentum given by expression (1). The rates 
M*U, F, and D are the averages of the first, second, and third 
terms in the change in energy given by expression (2).

In order to write down the forms of the required boundary 
conditions that apply to any boundary, we focus on a 
parallelepiped fixed within the flow that has two opposite 
sides of unit area, one of which remains coincident with a 
unit area of the boundary whose unit inward normal is N, while 
the other four sides shrink to zero. In this limit, the 
balance of momentum at the boundary requires that,
M = P-N (4)
where P is the pressure tensor, and the balance of energy 
requires that,

(5)M-v + F - D = Q-N
where Q is the energy flux, and v is the slip velocity equal 
to the difference between the mean boundary velocity U and the 
mean flow velocity adjacent to the boundary. The flux of 
fluctuation energy normal to the boundary is determined by 
contributions from the slip work rate M*v, which is due to 
equal tractions M acting through velocities that differ by an 
amount v, the supply rate F, and the dissipation rate D.

The transfer rates M, F, and D vary with the geometry of 
the boundary, and therefore depend on N, s/d, and and a/d. 
Each is a statistical average of its corresponding transfer in 
a single wall-flow particle collision, and therefore depends 
on ew. The rate H, for example, is the average over all 
possible collisions of the change in momentum m(l+ew)(g*k)k 
given in equation (1) weighted by the collision frequency (3). 
The rates F and D are similarly weighted averages of the second term m(l+ew)(g-k)(C2*k) and third term m(l-ew2)(g*k)2/2 
of the change in energy given in equation (2).

In order to illustrate the averaging procedure, we assume 
that the distribution functions f(c,r) and p(c) are 
Maxwellians:

-(c-u)•(c-u)
(6)



in which the particle number density is n(r), the mean flow velocity is u(r), and the granular temperature is w2(r); and

P(c) ( 27TV2 ) 3 / 2 exp
-(c-U)•(c-U) 

2 V2 (7)

in which the boundary's mean velocity is U, and its mean square fluctuation velocity is V2. If the velocity
integrations are carried out first, then the intermediate 
expressions for M, F, and D may be written compactly in terms 
of the quantity.

(U-ZO *k
[2)V(i+v2/?^2) 31/2 (8)

where 1/ and W are u and w evaluated at x+ak. The resulting 
integral expression for the rate at which momentum is supplied 
by the boundary to the flow is,

PX(l+ew)
7r3/2sin20

k (?V2+v2) [v/^(^+$2) erfc (-#) +$exp (-f2) ] dk (9)

where the flow density p is equal to the product mn. 
Similarly, the energy supply rate F is given by the integral,

F =
21/2px(l+ew)V2

fl3/2sin20
(^2+V2)1/2 [exp(-$2)+v/7r$erfc(-f) ]dk (10)

and the energy dissipation rate D is given by,

PX(l-ew2) 
21/27r3/2sin25

(^2+V2)3/2[(l+$2)exp(-$2)

+V^f$(—+#2) erfc(-§) ]dk (11)

In principle, it remains only to carry out the k-integrations 
(9), (10), and (11) over that portion of a wall particle's 
surface area that is accessible to the flow particles.

Although it is not possible to express the results of the 
exact k-integrations for M, F, and D in closed form, there 
are circumstances under which approximate closed form 
expressions may be obtained. If, for example, the 
dimensionless gradients ovw/w and avp/p are of order a/L,



where L is a characteristic length L over which the mean flow fields vary, while the gradient avu/w is of order (a/L)1/2, 
then to within an error of order (c;/L) , the quantity $ is 
approximated by,

[v-a(N-k)•vu]
$ = ----------------— , (12)[2w(1+V2/w2)]1/2

in which v is equal to U-u and all mean fields are evaluated 
at r=x+aN. If, in addition, the dimensionless slip velocity v/w is of order (ff/L)1/2, and the quantity (l-ew) is of order 
(a/L), then to within an error of order (a/L) the Cartesian 
components of M are given by.

Mi = />X(w2+V2) ,1/2
Ni + [7r(l+v^/w2) ] 1/2 w lii

+
a 3uj
w dr\ Iijk+IijNk) (13)

in which all mean fields are evaluated at r. The tensor 
components and li-j^, which depend on the measure 9 of
bumpiness ancf the orthogonal triad N, t, and r at the 
boundary, are defined by,

=; —{2 [csc20 (l-cos0)+cos0]NiNj

+ [2CSC20(1-COS0)-COS0](titj+7i7j)}, (14)

and
Iijk s (sin20-2)NiNjNk 

sin2^
~ ^ [^i(tjtk+7j7k)+Nj (tkti+7k7i)+Nk(titj+7i7j) ] . (15)

The corresponding lowest order approximation to integral (10) 
for F is given by.

F = (2/fl)1/24pxV2(w2+V2)1/2(l-cos0)csc20 (16)

and, to within an error of order (a/L)3/2, the approximation 
to integral (11) for D is,

D (2/7T) 1/22px(l-ew) (w2+V2) 3/ 2 (l-cos#) csc20 (17)



Just as the mean fields in expression (13) for M are evaluated 
at r, so too are those that appear in approximate expressions 
(16) and (17) for F and D.

For boundaries that do not fluctuate about their mean 
velocities, Richman [1988] based all averaging at the boundary 
on a corrected Maxwellian flow-particle velocity distribution. For such boundaries, V2 and F vanish, expression (17) for D 
reduces to Richman's result, and expression (13) for M, 
differs from his by a term not obtained here because the 
correction to the Maxwellian (6) has been ignored.

4. A BOUNDARY VALUE PROBLEM
Of interest here are the steady, gravity-free motions of 

granular materials that are confined between two parallel 
bumpy boundaries that randomly vibrate about zero mean 
velocities. The boundaries have mean square fluctuation velocities V2, and are separated by a fixed distance 2L. The 
grains are identical spheres of mass density a. Under these circumstances, the profiles of granular temperature w2 and 
solid fraction v are induced entirely by the fluctuations of 
the boundary; the resulting normal pressure P22 is constant 
throughout; and the velocity field u, the slip velocity v, and 
the shear stresses all vanish.

We establish an x1-x2-X3 Cartesian coordinate system such 
that the x2-direction is normal to the boundaries, which are 
located symmetrically at x2=-L and x2=+L and are infinite in 
the x^- and X3-directions. The solid fraction v and the 
dimensionless measure W=w/V of granular temperature then 
depend only on the dimensionless distance y=x2/cr from the 
midplane between the boundaries, and the balances of mass and 
momentum are identically satisfied. Furthermore, if Q2 is the 
x2-component of the energy flux, and 7 is the collisional rate 
per unit volume of energy dissipation, then in terms of their dimensionless counterparts qHQ2/aV3 and Fsc^/aV3, the balance 
of energy reduces to,
q' + T = 0 , (18)
where a prime denotes differentiation with respect to y. In 
these flows, there is a net loss of energy due to inelastic 
collisions between particles.

For q, F, and the dimensionless normal pressure 
we employ a kinetic constitutive theory that is 

based on the Maxwellian distribution (6) and, for simplicity, 
applies only to dense flows. In this theory, which is 
obtained from that derived by Jenkins and Richman [1985] by 
neglecting the contributions to the constitutive relations 
from the corrections to the Maxwellian and from particle 
transport, the normal pressure P is given by,
P = 4yGW2 , (19)



where G (v) =v (2-v) /2 (l-t') ^ ; the component q of the energy flux 
is.

-2Pq = ---- W^1/2

and the rate F of energy dissipation is, 

6(1-e)PWF = rl/2

(20)

(21)

where e is the coefficient of restitution between flow 
particles. The assumptions regarding the magnitudes of the 
gradients of the mean fields and the difference (1-e) made in 
deriving relations (19), (20), and (21) are consistent with
those made in deriving expressions (13), (16), and (17) for M,
F, and D.

When equations (20) and (21) are employed to eliminate q 
and F from equation (18), the energy equation becomes simply,
W" - X2W = 0 , (22)
in which A2=3(l-e). The profile that is symmetric about y=0 
is therefore,

ficoshAy
coshA^ (23)

where p is the value L/a of y at the upper boundary. The 
constants fl and P remain to be determined. When they are 
known, constitutive relation (19) determines the solid 
fraction profile.

The x-^— and x3-components of the momentum condition (4) 
at the upper boundary y=f} are identically satisfied because 
the shear stresses, slip velocity, and velocity gradients all 
vanish. In order that the solid fraction at the boundary be a free parameter, the x2-component requires that x=4Gft2/(1+fl2) . 
The constant 0 is determined by the energy flux boundary 
condition (5) at y=j9. If expressions (16) , (17) , and (20) are 
employed to eliminate F, D, and Q2, and expression (23) is 
employed to eliminate W* from the intermediate result, then 
balance between the supply, dissipation, and flux of energy at 
the boundary is given by,
1 - e(l+n2) = Afltl+fl2)1/2 , (24)

where e is equal to (l-ew)/2, and the parameter A depends on 
the measure A of flow particle inelasticity, the measure 9 of 
boundary roughness, and the dimensionless half-width P, 
according to



(25)AtanhA/JA = ----------------- —23/2(i_cos^)esc29

The parameter A increases monotonically as either the flow 
particles become more inelastic, the distance between the 
plates increases, or the boundary becomes smoother. The ratio Q2 of the temperature at the boundary to the mean square 
fluctuation velocity of the boundary is then fixed by,

1+Q2 (A2-2£)+[(A2-2£)2+4(A2—62)]1/2 
2 (A2-£2) (26)

Solution (26) of energy balance (24) ensures that the supply 
rate F exceeds the dissipation rate D to precisely compensate 
for the net loss within the flow.

For fixed values of e and A, equation (26) determines 0. 
If, in addition, the values of A, fl and therefore 9 are fixed, 
then equation (23) determines the profile W(y). For 
prescribed values of P, the profile u (y) is then obtained by 
inverting constitutive relation (19). Alternatively, for 
prescribed values of the depth-averaged solid fraction,

v
If*-g ^(y)dy
pj o

(27)

we vary the value of P until the profile y(y) obtained by 
inverting relation (19) has a depth-averaged value that agrees 
with its prescribed value.

5. RESULTS AND DISCUSSION
Of primary interest here are the effects of the 

boundaries' fluctuation velocity, geometry, and dissipative 
character on the mean profiles and normal pressure induced 
throughout the flow. In the boundary value problem described 
above, the fluctuations of the boundaries are entirely 
responsible for the agitation of the grains. Consequently, 
both the granular temperature and the normal pressure scale with the square V2 of the boundaries' fluctuation speed. It 
remains to describe the effects of bumpiness 9 and 
inelasticity (l-ew) on the solutions.

We focus attention on values of A between zero (for 
perfectly elastic flow particles) and .55 (for e=.8, large
values of fl, and flat boundaries) . In Figure 1 we show the
variations of the ratio 0 with the parameter A for ew=.95, 
.9, and .8. The The dimensionless difference on the left- 
hand-side of equation (24) corresponds to the dimensional 
difference (F-D) , and must compensate for the net loss of
energy within the flow. As the boundary becomes bumpier, thefactor (l-cosfl)csc20 that magnifies this difference increases.
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Figure 1. The variations 
of fl with A for ew=.95,
.9, and .8.

Figure 2. The variations of W 
with y/£ for ew=.95 and .8 
when e=.95, /3=5, and 6=0.

Consequently, as A decreases, the ratio fl increases. However, 
the increase is moderated by an accompanying increase in net 
energy loss in the flow. If, for example, e=ew=.95 and £=5, 
then as the boundary evolves from perfectly flat (0=0) 
relatively bumpy (0=ir/3) the ratio fl increases by twenty one 
percent from 1.65 to 1.99.

The same energy balance described by condition (24) 
dictates that as ew increases, the ratio fl must also increase. 
Again, the increase in fl is moderated by a corresponding 
increase in the net energy loss in the flow. If, for example, 
e= .95, 0=5, and 0=0, then as varies from .8 to .95, the 
ratio fl increases by seventeen percent from 1.47 to 1.72. The 
extremes in the profiles of W(y) for this example are shown in 
Figure 2. Because the solid fraction does not appear in the 
energy equation_(22), the profiles of granular temperature are 
independent of u.

For a fixed value of 0, the normal pressure throughout 
the flow depends on 0, ew, e, and u. However, constitutive 
relation (19) and solution (23) demonstrate that for the same value of 0, the ratio P/fl2 and the profile i/(y) depend only on 
e and u. In Figure 3, the variations of P/fl2 with u are shown 
for e=.95 and .9 when_ 0=5. Not suprisingly, the normal 
pressure increases with v and e. In fact, the increase in P 
with e is more pronounced than it might appear in Figure 3 
because as e increases so too does fl. In Figure 4, solid 
fraction profiles are shown for I7=.4 and .45 when e=.95 and 
0=5. For these values of y, e, and 0, these profiles prevail 
regardless of the boundary parameters ew and 0.
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