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Abstract

In this paper we focus attention on the interactions
between rapid flows of identical, smooth spheres that interact
with bumpy boundaries through inelastic collisions. The
boundaries translate with specified mean velocities, and
deviate about the mean with specified fluctuation velocities.
Based upon Maxwellian velocity distribution functions that
describe the velocities of both the flow particles and
boundaries, we calculate the rates at which linear momentum
and kinetic energy are exchanged between the two. Using
these exchange rates, we write down conditions that ensure
that both momentum and energy are balanced at bumpy
boundaries. Finally, we employ a constitutive theory that is
consistent with these conditions to calculate the granular
temperature and solid fraction profiles within a granular
material confined between two parallel, bumpy surfaces that
randomly fluctuate about zero mean velocity.

I. INTRODUCTION

In the past several years, considerable effort has been
devoted to quantifying the influence that boundaries exert on
the granular flows with which they interact. That the effects
may be profound has been demonstrated experimentally by Craig
et. al. [1987], who found that when the internal surfaces of
their shear cell were relatively rough the stresses induced
were considerably higher than those induced when the surfaces
were relatively smooth; and through numerical simulation by
Campbell and Gong [1987], who found that shear flows of disks
between parallel walls were critically influenced by the
geometry of the walls.

In order to calculate the effects of a containing
boundary on a granular flow, it is neccessary to satisfy
conditions that at 1least express the balance of momentum and
energy at such a boundary. Phenomenological conditions of this
type were first proposed by Hui et. al. [1984] and were later



improved upon by Johnson and Jackson [1987]. Jenkins and
Richman [1986] have employed the formal methods of averaging
to obtain conditions that apply to either two-dimensional
systems of identical disks or three-dimensional systems of
identical spheres that interact with smooth, bumpy boundaries.
The distribution function upon which the these conditions are
based has since been improved upon by Richman and Chou [1988]
for systems of disks, and by Richman [1988] for systems of
spheres. Averaging techniques based upon simpler distribution
functions have been employed by Pasquarell and Ackermann
[1989] and Pasquarell [1991] to obtain conditions that apply
at smooth, bumpy boundaries, and by Jenkins [1991] to obtain
conditions at flat, frictional surfaces.

In this paper, we are concerned with the effects of
vibrating boundaries on the granular flows that they contain.
An experimental study of these effects has been conducted by
Savage [1988], who vibrated the bottom panel of a rectangular
box that contained round polystyrene beads at specified
frequencies and at amplitudes that diminished with distance
from the center of the box. As a result of the non-uniformity
in vibrational amplitude, the induced mean velocities
throughout the assemblies were upwards near the centerline of
the box and downward near its sides. Recently Jackson [1991]
proposed a phenomenological energy flux condition to account
for the energy supplied to the flow by the boundary's
vibrational motion, and predicted that inclined flows would be
strongly influenced by small changes in this motion.

Here we focus on smooth, bumpy boundaries that translate
with known mean velocities and deviate about the means with
known fluctuation velocities. We write down conditions that
ensure that both momentum and energy are balanced at these
boundaries and employ formal methods of averaging to calculate
the rates at which momentum and energy are transferred from
the boundaries to the flows. Finally, we employ the resulting
boundary conditions and a corresponding constitutive theory to
determine the influence of the boundaries on the granular
temperature and solid fraction profiles within a granular
material that is excited by and confined between two parallel
surfaces that randomly fluctuate about zero mean velocity.

2. PRELIMINARIES

We are concerned here with flows of identical, smooth,
nearly elastic spheres of diameter ¢ and mass m that interact
through nearly elastic collisions with smooth but bumpy
boundaries that translate with mean <velocities U and

fluctuate about the mean with mean square velocities
The bumpy boundaries are flat walls to which identical,

smooth, hemispherical particles of diameter d are randomly
attached at an average distance s apart. On average, the
nearest neighbors of any hemisphere form a half torus with
inner diameter d+2s, outer diameter 3d+2s, and height d/2.

The complete range of s/d is from -1, which corresponds to a



perfectly flat boundary at a distance d/2 from the flat wall
to which the bumps are attached, to -1+v/(1l+2a/d) , which is the
maximum value that prevents any flow particle from colliding
with the flat wall. The fraction of surface area of each wall
particle that is accesible to any flow particle is (1-cosO0) ,
where 5 is defined by the relation sinO= (d+s) / (d+a) . In the
range of s/d described, the boundary may be made effectively
rougher by increasing 6 from zero to a maximum value that
depends on cr/d.

Each wall-flow particle collision is described by the
velocities c-* of the wall particle and c of the flow particle
just prior to impact, and by the unit wvector k directed from
the center of the wall particle to that of the flow particle
at impact. If the coefficient of restitution that accounts
for the energy dissipated during impact is ew, and the
velocity of the wall is unchanged by the impact, then in terms
of the relative velocity gsc”-c the changes in linear momentum
and kinetic energy experienced by a flow particle due to the
impact are given respectively by,

m(c'-c) = m(l+ew) (g*k)k . (1)

in which c¢' is the velocity of the flow particle immediately
after the collision, and

*(c'2-c2) = m(l+ew)[(g.k) (U.k) + (g*k) (CVk)- ~(l-ew) (g-k)2], (2)

in which Cl1 is the fluctuation velocity c¢-*-U of the wall
particle.

The statistics associated with collisions between wall
particles and flow particles are described by two distribution
functions: a single particle distribution function f defined
such that f(c,r)dc gives the number of flow particles per unit
volume centered at position r with velocities ¢ within the
range dc; and a probability distribution function p defined
such that p(c)dc gives the probability that a specified wall
particle has velocity c¢ within dec. At impact, the center
position of the wall particle is x, and the distance between
centers of the colliding particles is a=(a+d)/2. The frequency
of collisions per unit area of flat wall that involve flow
particles with velocities ¢ in the range dc, wall particles
with wvelocities c¢-* in the range dc”, and occur within an area
of contact centered about k within an element dk of solid
angle on the surface of the wall particle, is

(X/7Tsin2*) £ (c,x+ak)p(cl] (g*kjdkdcdc-* . (3)

Here the factor x accounts for the effects of excluded volume
and the shielding of flow particles from wall particles by
other flow particles, and the product g*k must be positive for
a collision to occur.



3. BOUNDARY CONDITIONS

Due to repeated collisions between the grains and the
bumps, both momentum and energy are exchanged between a flow
and its containing boundary. In particular, a unit area of
the boundary supplies momentum to the flow at a rate M,
supplies energy to the flow at rate M*U due to its mean motion
and at a rate F due to its fluctuating motion, and absorbs
energy from the flow at a rate D due to the inelasticity of
the boundary-flow collisions. For the bumpy boundaries of
interest here, the supply rate M is a statistical average of
the change in momentum given by expression (1). The rates
M*U, F, and D are the averages of the first, second, and third
terms in the change in energy given by expression (2).

In order to write down the forms of the required boundary
conditions that apply to any boundary, we focus on a
parallelepiped fixed within the flow that has two opposite
sides of unit area, one of which remains coincident with a
unit area of the boundary whose unit inward normal is N, while
the other four sides shrink to =zero. In this 1limit, the
balance of momentum at the boundary requires that,

M = P-N (4)

where P is the pressure tensor, and the balance of energy
requires that,

M-v + F - D = Q-N (3)

where Q is the energy flux, and v is the slip velocity equal
to the difference between the mean boundary velocity U and the
mean flow velocity adjacent to the boundary. The flux of
fluctuation energy normal to the boundary is determined by
contributions from the slip work rate M*v, which is due to
equal tractions M acting through velocities that differ by an
amount v, the supply rate F, and the dissipation rate D.

The transfer rates M, F, and D vary with the geometry of
the boundary, and therefore depend on N, s/d, and and a/d.
Each is a statistical average of its corresponding transfer in
a single wall-flow particle collision, and therefore depends
on ew. The rate H, for example, is the average over all
possible collisions of the change in momentum m(l+ew) (g*k)k
given in equation (1) weighted by the collision frequency (3).
The rates F and D are similarly weighted averages of the
second term m(l+ew) (g-k) (C2*k) and third term m(l-ew2) (g*k)2/2
of the change in energy given in equation (2).

In order to illustrate the averaging procedure, we assume
that the distribution functions f(c,xr) and P (c) are
Maxwellians:

— (c-u) ¢ (c-u)
(6)



in which the particle number density is n(r), the mean flow
velocity is u(r), and the granular temperature is w2 (r);, and

- (c-U) ¢ (c-0U)

P(c) exp (7)
(27Tv2) 3/2 2V2

in which the boundary's mean velocity is U, and its mean

square fluctuation velocity is v2. If the velocity

integrations are carried out first, then the intermediate

expressions for M, F, and D may be written compactly in terms
of the quantity.

(U-20 *k
(8)
[2)V(i+v2/2*2) 31/2
where I/ and W are u and w evaluated at x+ak. The resulting

integral expression for the rate at which momentum is supplied
by the boundary to the flow is,

PX(1+ewW|  wy24v2) [v/* (A+82) erfe (-#) +$exp (-£2) | dk

9
t3/2sin20 (%)

where the flow density p 1is equal to the product mn.
Similarly, the energy supply rate F is given by the integral,

21/2px (1+ew) V2
F = (*2+V2)1/2 [exp (-$2)+v/Ir$Serfc(-£f) ]dk (10
f13/2sin20

and the energy dissipation rate D is given by,

PX(l-ew2)
(*24+V2)3/2[ (1+$2) exp (-$2)
21/27t3/2sin25

+VAES (—+H#2) erfe (-8) ]1dk (11
In principle, it remains only to carry out the k-integrations
(9), (10), and (11) over that portion of a wall particle's

surface area that is accessible to the flow particles.
Although it is not possible to express the results of the
exact k-integrations for M, F, and D in closed form, there
are circumstances under which approximate closed form
expressions may be obtained. If, for example, the
dimensionless gradients ovw/w and avp/p are of order a/L,



where L is a characteristic length L over which the mean flow
fields vary, while the gradient avu/w is of order (a/L)1l/2,

then to within an error of order (c;/L), the quantity §$ is
approximated by,

[v—a (N-k) *vu]
S | (12)

in which v is equal to U-u and all mean fields are evaluated
at r=x+aN. If, in addition, the dimensionless slip velocity
v/w is of order (ff/L)1/2, and the quantity (l-ew) is of order
(a/L), then to within an error of order (a/lL) the Cartesian
components of M are given by.

1/2
Ni + 2zi
[7r (14+vr/w2) ] 1/2 v “

Mi = />X(w2+V2]

a 3uj
Tijk+IijNk 13
w dr) ij ijNk) (13)
in which all mean fields are evaluated at r. The tensor
components and 1li-j*, which depend on the measure 9 of
bumpiness ancf the orthogonal triad N, t, and r at the
boundary, are defined by,
5, —{2 [ecsc20 (1-cos0) +cosO]NiNj
+ [2CSC20 (1-COS0)-COSO0] (titj+7i73)}, (14)
and
Iijk s (sin20-2)NiNjNk
sin2*
~ A [*1i(tjtk+7j7k)+Nj (tkti+7k7i)+Nk (titj+7i73)] . (15)

The corresponding lowest order approximation to integral (10)
for F is given by.

F = (2/£f1)1/24pxV2 (w2+V2)1/2 (1-cos0)csc20 (16)

and, to within an error of order (a/L)3/2, the approximation
to integral (11) for D is,

D (2/71) 1/22px (1l-ew) (w2+V2) 3/2 (1-cos#) csc20 (17)



Just as the mean fields in expression (13) for M are evaluated
at r, so too are those that appear in approximate expressions
(16) and (17) for F and D.

For boundaries that do not fluctuate about their mean
velocities, Richman [1988] based all averaging at the boundary
on a corrected Maxwellian flow-particle velocity distribution.
For such boundaries, V2 and F vanish, expression (17) for D
reduces to Richman's result, and expression (13) for M,
differs from his by a term not obtained here because the
correction to the Maxwellian (6) has been ignored.

4. A BOUNDARY VALUE PROBLEM

Of interest here are the steady, gravity-free motions of
granular materials that are confined between two parallel
bumpy boundaries that randomly vibrate about zZzero mean
velocities. The boundaries have mean square fluctuation
velocities V2, and are separated by a fixed distance 2L. The

grains are identical spheres of mass density a. Under these
circumstances, the profiles of granular temperature w2 and
solid fraction v are induced entirely by the fluctuations of
the boundary; the resulting normal pressure P22 is constant
throughout; and the velocity field u, the slip velocity v, and
the shear stresses all vanish.

We establish an x1-x2-X3 Cartesian coordinate system such
that the x2-direction is normal to the boundaries, which are
located symmetrically at x2=-L and x2=+L and are infinite in
the x*- and X3-directions. The solid fraction v and the
dimensionless measure W=w/V of granular temperature then
depend only on the dimensionless distance y=x2/ct from the
midplane between the boundaries, and the balances of mass and
momentum are identically satisfied. Furthermore, if Q2 is the
x2-component of the energy flux, and 7 is the collisional rate
per unit volume of energy dissipation, then in terms of their
dimensionless counterparts gHQ2/av3d and Fsc”/av3, the balance

of energy reduces to,
q' + T =0 ) (18)

where a prime denotes differentiation with respect to y. In
these flows, there is a net loss of energy due to inelastic
collisions between particles.
For q, F, and the dimensionless normal pressure
we employ a kinetic constitutive theory that is
based on the Maxwellian distribution (6) and, for simplicity,
applies only to dense flows. In this theory, which is
obtained from that derived by Jenkins and Richman [1985] by
neglecting the contributions to the constitutive relations
from the corrections to the Maxwellian and from particle
transport, the normal pressure P is given by,

P = 4yGW2 , (19)



where G®W)=v(2-v) /2 (1-t') *; the component q of the energy flux
is.

2P W 20
q = 22 (20
~1/2

and the rate F of energy dissipation is,

6(1-e)PW
rl/2

where e is the coefficient of restitution between flow

particles. The assumptions regarding the magnitudes of the
gradients of the mean fields and the difference (l1l-e) made in
deriving relations (19), (20), and (21) are consistent with
those made in deriving expressions (13), (16), and (17) for M,
F, and D.

When equations (20) and (21) are employed to eliminate g
and F from equation (18), the energy equation becomes simply,
W' - X2w = 0 . (22)
in which A2=3(l-e). The profile that is symmetric about y=0

is therefore,

ficoshAy
(23)

coshA”
where p is the value L/a of y at the upper boundary. The
constants Il and P remain to be determined. When they are
known, constitutive relation (19) determines the solid

fraction profile.

The x-*— and x3-components of the momentum condition (4)
at the upper boundary y=f! are identically satisfied because
the shear stresses, slip velocity, and wvelocity gradients all
vanish. In order that the solid fraction at the boundary be a
free parameter, the =x2-component requires that =x=4Gft2/(1+f12) .
The constant 0 is determined by the energy flux boundary
condition (5) at y=j9. If expressions (16) , (17) , and (20) are
employed to eliminate F, D, and Q2, and expression (23) is
employed to eliminate W* from the intermediate result, then
balance between the supply, dissipation, and flux of energy at
the boundary is given by,

1 - e(l+n2) = Afltl+fl2)1/2 , (24)

where e is equal to (l-ew)/2, and the parameter A depends on
the measure A of flow particle inelasticity, the measure J of
boundary roughness, and the dimensionless half-width P,
according to



AtanhA/J
A = e —_ (25|

23/2(i_cos*)esc2)

The parameter A increases monotonically as either the flow
particles become more inelastic, the distance between the
plates increases, or the boundary becomes smoother. The ratio
Q2 of the temperature at the boundary to the mean square

fluctuation velocity of the boundary is then fixed by,

(A2-2£)+ [ (A2-2£)2+4 (A2—62)]11/2
1+Q2 (26)
2 (A2-£2)

Solution (26) of energy balance (24) ensures that the supply
rate F exceeds the dissipation rate D to precisely compensate
for the net loss within the flow.

For fixed values of e and A, equation (26) determines 0.
If, in addition, the values of A, fl and therefore 9 are fixed,

then equation (23) determines the profile W(y). For
prescribed values of P, the profile u()) is then obtained by
inverting constitutive relation (19) . Alternatively, for

prescribed wvalues of the depth-averaged solid fraction,

IE*
v g “(y)dy (27)
PJ o

we vary the value of P until the profile y(y) obtained by
inverting relation (19) has a depth-averaged wvalue that agrees
with its prescribed value.

5. RESULTS AND DISCUSSION

Of primary interest here are the effects of the
boundaries' fluctuation velocity, geometry, and dissipative
character on the mean profiles and normal pressure induced
throughout the flow. In the boundary value problem described
above, the fluctuations of the boundaries are entirely
responsible for the agitation of the grains. Consequently,
both the granular temperature and the normal pressure scale
with the square V2 of the boundaries' fluctuation speed. It
remains to describe the effects of bumpiness 9 and
inelasticity (l-ew) on the solutions.

We focus attention on values of A between zero (for
perfectly elastic flow particles) and .55 (fore=.8, 1large
values of fl, and flatboundaries) . In Figure 1we show the
variations of the ratio 0 with the parameter A for ew=.95,
.9, and .8. The The dimensionless difference on the left-
hand-side of equation (24) corresponds to the dimensional
difference (F-D) , andmust compensate for the net loss of
energy within the flow.As the boundary becomes bumpier, the

factor (l-cosfl)csc20 that magnifies this difference increases.
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Figure 1. The variations Figure 2. The variations of W
of fl with A for ew=.95, with y/£ for ew=.95 and .8
.9, and .8. when e=.95, /3=5 and 6=0.

Consequently, as A decreases, the ratio fl increases. However,
the increase is moderated by an accompanying increase in net
energy 1loss in the flow. If, for example, e=ew=.95 and £=5,
then as the boundary evolves from perfectly flat (0=0)
relatively bumpy (0=ir/3) the ratio f{l increases by twenty one
percent from 1.65 to 1.99.

The same energy balance described by condition (24)
dictates that as ew increases, the ratio fl must also increase.
Again, the increase in Il is moderated by a corresponding
increase in the net energy loss in the flow. If, for example,
e= .95, 0=5, and 0=0, then as varies from .8 to .95, the
ratio fl increases by seventeen percent from 1.47 to 1.72. The
extremes in the profiles of W(y) for this example are shown in
Figure 2. Because the solid fraction does not appear in the
energy equation_(22), the profiles of granular temperature are
independent of w.

For a fixed value of 0, the normal pressure throughout
the flow depends on 0, ew, e, and uw. However, constitutive

relation (19) and solution (23) demonstrate that for the same
value of 0, the ratio P/fl2 and the profile 1i/(y) depend only on

e and u. In Figure 3, the variations of P/fl2 with u are shown
for e=.95 and .9 when_ 0=5. Not suprisingly, the normal
pressure increases with v and e. In fact, the increase in P
with e is more pronounced than it might appear in Figure 3
because as e increases so too does fl. In Figure 4, solid
fraction profiles are shown for I7=.4 and .45 when e=.95 and

0=5. For these values of y, e, and 0, these profiles prevail
regardless of the boundary parameters ew and O.



0.a -

06 -
04 -

0.4 -

0.2 -

Figure 3. The “variations Figure 4. The _variations of y
of P/fl2 with v for e=.95 with y//3 for i/=.4 and .45 when
and .9 when £=5° e=.95 and 0=5.
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