CekA409279- -3

PNL-SA-25031

OBJECT-ORIENTED PARALLEL POLYGON RENDERING

R. W. Heiland

September 1994

Presented at the _
- GVIS 94 Graphics and Visualization
Conference ‘
September 8, 1994
Richland, Washington

Prepared for
the U.S. Department of Energy
under Contract DE-AC06-76RLO 1830

Pacific Northwest Laboratory
- Richland, Washington 99352

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-

United States Government or any agency thereof.

mendation, or favoring by the United States Government or any agency thereof. The views *9-
and opinions of authors expressed herein do not necessarily state or reflect those of the i E ﬁ
) e, o

Of
DISTRIBUTION OF THIS DOCUMENT 18 UMU&?ITEQ‘ _

DISCLAIMER

 Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.

Object-Oriented Parallel Polygon Rendering

Randy Heiland
Computing & Information Sciences,
Pacific Northwest Laboratory,!
PO Box 999, MS K1-87
Richland, WA 99352 .
rw_heiland @pnl.gov

Abstract

Since many scientific datasets can be
visualized using some polygonal
representation, a polygon renderer has
broad use for scientific visualization.
With today's high performance
computing applications producing very
large datasets, a parallel polygon renderer
is a necessary tool for keeping the
compute-visualize cycle at a minimum.
This paper presents a polygon renderer
that combines the shared-memory and
message-passing models of parallel
programming. Ituses the Global Arrays

library, a shared-memory programming

toolkit for distributed memory machines.
The experience of using an object-
oriented approach for software design
and development is also discussed.

Introduction

The use of today's massively parallel or
distributed networked multicomputers
allows a scientist to expand the
computational domain of a given
application. This in turn results in larger
static datasets that scientists want to
visualize in a dynamic fashion -- rotating
and zooming -- just as they have been
acccustomed to for smaller datasets.
Similarly, a computation may be temporal
or iterative and may demand visual
monitoring of large datasets at near real-
time rates. Graphics algorithms running

The Pacific Northwest Laboratory is
operated for the U.S. Department of
Energy by Battelle Memorial Institute
under Contract DE-ACO06-76RLO 1830.

on a serial processor may simply be too
slow for these type of applications.
Hence, there is a need to develop parallel
visualization algorithms.

The work presented here explores the
possiblity of writing portable parallel
graphics applications while avoiding the
programming complexity normally
present in parallel applications. It makes
use of a shared-memory programming
toolkit called Global Arrays.

This work focuses on one particular
graphics algorithm, polygon rendering,
because of its broad applicability to
scientific datasets. A digital computer
produces a discretized set of data that
oftentimes lends itself quite naturally to
some polygonal visualization. A
common technique for visualizing a
volume of scalar data is to display
isosurfaces (surfaces of constant value,
f(x,y,z)=C) within the volume. This
technique works best when the range of
data is smoothly varying throughout the
three-dimensional (3-D) domain. One of
the more popular algorithms for
extracting a polygonal representation of
an isosurface from a rectilinear 3-D grid
of scalar data is known as 'marching
cubes' [13,15]. This type of algorithm
has also been parallelized [10]. If the
data is defined over a non-rectilinear
domain, other algorithms can be applied.
For example, one can fit Delaunay
tetrahedra to the data then perform a
tetrahedral interpolation to obtain a
polygonal isosurface. Specific

applications often lead to their own
specialized polygonal visualization
techniques [9,12].

Polygonal representations are not only
useful for visualizing functional datasets,
but also for representing geometric
primitives. Spheres and cylinders,
commonly used in molecular graphics,
are easily polygonalized. By taking
advantage of symmetries inherent in these
primitives, algorithms can generate and
render them more efficiently.

Parallel Rendering

‘The rendering pipeline consists of
mapping data between different
coordinate spaces and eventually
obtaining a raster image in pixel (screen)
space [7]. When rendering a set of
polygons, a hidden-surface algorithm and
lighting model must be applied at some
point in the pipeline. - A standard
polygon rendering pipeline consists of the
following steps:

1. traverse the polygonal dataset

2. apply modeling transformations

3. trivially reject data outside the world
window

4. apply viewing transformation

5. clip data outside viewport

6. rasterize data, performing hidden
surface and illumination

7. display raster image (or write to disk)

Parallelizing this pipeline leads to a
variety of algorithms. Whitman [18]
offers a very good description and
classification of parallel rendering
methods. The most common high-level
classification distinguishes object-based
and image-based parallelism. Object-
based parallelism simply refers to the
partitioning of object space among all
processors. Each node then performs the

necessary geometry processing of steps

2-5 in the rendering pipeline. Image-
based parallelism partitions the raster
image plane among available nodes that
perform the rasterizing, hidden-surface,
and illumination in step 6.

Molnar et al. [14] discuss parallel
rendering when these two approaches are

combined, producing a system they call
fully parallel, depicted schematically in
Figure 1. They present a classification
scheme which offers a clearer
understanding and approach to solving
the parallel rendering problem. The
classification criterion is based on where
the sort and redistribution of data occurs
when mapping primitives in object space
to pixels in screen space. To summarize
their classification scheme, parallel
rendering algorithms fall into one of three
classes: sort-first, sort-middle, or sort-
last.

In sort-first algorithms, each processor
does just enough geometry processing to
determine the region of the raster image
that. a primitive will belong. The
primitive is then sent to the appropriate
processor that was pre-assigned to
perform both the geometry processing
and rasterization for that region of the
raster image. This type of algorithm is
the least used of the three, primarily

because of the possiblity for extreme load

imbalancing.

Sort-middle algorithms are those that
perform a sort and data redistribution at
the obvious place -- between geometry
processing and rasterization. In a sort-
middle algorithm, each geometry
processing node computes screen
coordinates for each primitive that it has
been -assigned. It then determines the
rasterizing node to which it will send a
primitive's scanline information, based
on the raster image's partition among
nodes. The two sets of nodes responsible
for geometry processing and rasterization
can be disjoint or work in time-share
fashion. One problem with sort-middle
algorithms is that they are susceptible to
load imbalancing of rasterizing nodes due
to nonuniformly distributed primitives.
However, it continueés to be a very
popular method. A good reference for
implementing this type of algorithm is
Crockett and Orloff [4].

The sort-last algorithms defer sorting
until the very last stage. Primitives are
arbitrarily distributed to available nodes.

—

- Each node then performs both the
geometry processing and rasterization of
its assigned primitives, regardless of
where they fall within the raster image.
The final stage is to composite (sort and
merge) the raster images from all nodes to
form the final image. The sort-last
classification is further subdivided into
two types of implementations. Sort-last-
sparse attempts to minimize
communication by having nodes send
only those pixels which were generated
during rasterization. Sort-last-full, on the
other hand, has each node send an entire
raster image.

Global Arrays

Parallel programming applications are
commonly divided into two models:
message-passing and shared-memory.
Applications that fall under the message-
passing model typically require a
significant amount of programming
overhead and expertise. One consolation
is that at least there exist MIMD
programming libraries (Parasoft Express,
MPI, PICL, PVM, TCGMSG) [6,11]
that provide a great deal of portability
among hardware platforms. Shared-
memory applications, on the other hand,
are easier to program; however, it is
generally agreed that their
implementations are not very portable.

A new programming model called Global
Arrays (GA) [16] offers a partial solution
to this dichotomy. GA is a suite of
libraries, currently being developed at
Pacific Northwest Laboratory (PNL), that
provide a shared memory programming
toolkit for distributed memory machines.
The key concept of GA is that it provides
a portable interface through which each
process in a MIMD application can
asynchronously access blocks of
physically distributed data without the
need for explicit cooperation with other
processes. This significantly simplifies
the programming complexity for parallel
applications.

GA provides an application programmer
with both SIMD and MIMD functionality.
Currently, the application data must be
defined as two-dimensional arrays.
When these global arrays are created,
they are distributed as disjoint blocks of
data across processors. Each processor
can then perform fast operations on its
local subarray and, if necessary, still
access data on other processors.

The GA library has been ported to a
number of hardware platforms, including
the Intel Delta and Paragon, the IBM SP-
1, the Kendall Square KSR-2, and
networks of Unix workstations.

Object-Oriented Software

Software engineering (SE), a term coined
in 1968, is defined as "the application of
a systematic, disciplined, quantifiable
approach to the development, operation
and maintenance of software.” The
successes and failures of software
engineering are described for the
interested lay reader in [8]. Within the
domain of engineering sciences, SE is an
unsettled teenager among older, much
more mature adults. This is both good
and bad. " SE is certainly an exciting,
dynamic profession, ripe with a
profusion of ideas and information, much
of which is easily accessible via the
Internet. However, it is a very frustrating
experience to see one's own software
become obsolete within a few years.
This might happen for a number of
reasons. Writing an application which
relies heavily on a commercial software
library that is replaced by another,
significantly different library is a common
example. Structuring software such that
this type of disaster is minimized is just
one goal of SE.

The genesis of programming languages
and philosophies has brought us Fortran
in 1956; structured programming in the
1970s; Smalltalk, an object-oriented
language, in 1972; C in 1978; and C++ in
the early 1980s. The programming
philosophy enjoying much popularity in

the 1990s is the object-oriented
philosophy. C++ is the object-oriented
language of choice for many
programmers. Blinn [1] has noted,
somewhat humorously, that even mass
market bookstores now carry a wide
selection of books on C++ (and none on
Fortran).

The key concept in C++ is that of a class.
Classes provide a programmer with data-
hiding, dynamic-typing, user-controlled
memory management, and operator
overloading [17]. The paradigm shift
needed for programming in C++ is to
think of an application as a set of
interacting concepts (objects), rather than
just data structures being modified by
procedures. Defining an object such that
it contains all relevant data and all relevant
(member) functions enforces the notion
of modularity. This in turn permits easier
code maintenance.

The notion of parallel object-oriented
languages is an intriguing idea.
Assuming C++ i$ here to stay, parallel
C++ languages will inevitably appear
[2,3].

Implementation and Results

A scanline z-buffer triangle renderer with
Gouraud shading has been implemented
using Global Arrays. A triangle renderer
was chosen because 1) any polygon can
be tessellated into a set of triangles, and
2) triangle data structures are easier to
manage than generic polygons.
Following an earlier implementation in
TCGMSG of a sort-middle rendering
algorithm, the latest implementation is a
sort-last algorithm. Currently, only the
sort-last-full version is implemented.

The algorithm proceeds as follows:

1) Read in triangles and fill a (global
array) buffer.

2) Create a global array, partitioning it
(uniformly) among all nodes. Loop
back to reading until the entire dataset
resides in global arrays.

3) Each node performs geometry

processing and rasterization on its
local triangles (in the global arrays),
resulting in a (local) raster image and
accompanying z-buffer.

4) Composite the raster images from all
nodes using the z-buffer information.

For the final compositing stage, a
pairwise processor Ssort was

~ implemented. This pairwise composition

is depicted schematically in Figure 2.
Such a scheme avoids load imbalancing

- of a more simplistic master-slave scheme

whereby one master node would receive
and composite the raster images from all
other nodes. The current pairwise
composition implementation is also rather
simplistic in that a node is paired with its
neighbor node. A better scheme might be
to dynamically pair two nodes as they
complete their rasterization step.

Although no timing results will be
presented here (because the code is not
yet optimized), speedup results for runs
on the KSR-2, a shared-memory
massively parallel computer, are shown
in Figure 3. This chart plots
(n,T(1)/T(n)) where n is the number of
processors and T(1)/T(n) is the ratio
between the rendering time using one
processor, T(1), and the rendering time
using n processors, T(n). For this plot,
n=1,2,4,6,8, and 16. The number of
triangles rendered on each run was about
500,000. Note that as the number of
processors increases, the communication
costs are greater for the compositing
stage, thereby causing the algorithm to
fall away from a linear scale.

Figure 4 shows the results of the sort-
last-full algorithm on each of four
processors and the resulting composite
image. The data for this figure was taken
from a TCGMSG parallel molecular
dynamics simulation. Each molecule is
represented as a triangulated sphere
(randomly colored). :

The previous sort-middle implementation
in TCGMSG was written in C++ and ran
on a network of Silicon Graphics
workstations. The C++ classes included

the matrix and vector classes from
Graphics Gems IV [5]. Additionally,
classes were defined for certain geometric
primitives. Because of C++'s operator
overloading feature, one could then
transform data as follows:

hydrogen = unit_sphere *
H_scale + H_translate;

where 'hydrogen' and ‘unit_sphere' are
instances of C-++ objects containing a list
of triangles and 'H_scale' and
'H_translate' are scalar values.

During the second phase of this work,
TCGMSG was replaced by the GA

programming model and the KSR-2 was

targeted as the machine of choice. These
two choices led to the temporary
dismissal of C++ as the implementation
language. Because of GA's rather
restrictive data types (2-D arrays), it does
not fit into an object-oriented framework
very naturally. However, the need to
dismiss C++ for the second phase was
realized when the C++ compiler stopped
working on the KSR-2 for a period of
time. Hence, the GA implementation of
the sort-last renderer is currently in the C
language.

Summary

The Global Arrays libraries should be a
welcome addition for any programmer
writing parallel applications. Using GA
for this particular graphics application
was relatively straightforward. Of course
one always wants more features.
Allowing for N-dimensional arrays, or
better yet, structures of abstract data
types, is just one request.

The fact that the C++ compiler was not
working on the KSR-2 for some time
suggests that this language has not
matured as much as one would like.
Nevertheless, it seems that C++ is here to
stay for the forseeable future. Some of
the features of C++ this novice object-
oriented programmer finds most
appealing are strong type-checking, data-

hiding, and operator overloading. The
first is desirable for minimizing
programming errors and the latter two are
desirable for programming elegance.

Planned future work is to:

1) optimize the current GA
implementation (including testing sort-
last-sparse)

2) perform timing tests on the KSR-2 as
well as a network of Unix
workstations

3) incorporate the parallel renderer into
the Extensible Computational
Chemistry Environment (ECCE) being
developed at PNL

4) begin developing a parallel ray-casting
volume renderer.

Acknowledgements

This work was supported by funds from
the Environmental and Molecular
Sciences Laboratory Construction Project
at Pacific Northwest Laboratory (PNL)
and from a Laboratory Directed Research
and Development (LDRD) project
through the Molecular Science Research
Center at PNL. Pacific Northwest
Laboratory is operated by Battelle
Memorial Institute for the U.S.
Department of Energy under Contract
DE-AC06-76RLO 1830. The author
would like to thank Jarek Nieplocha for

- patiently answering many questions about

Global Arrays and for providing feedback
on this paper. Additional thanks go to
Robert Harrison for answering
TCGMSG questions, Tom Keller for

-answering C++ questions, and Don

Jones for the encouragement to pursue
this research.

References

[1] J.F. Blinn, replying to a letter to the
editor, IEEE CG&A, July 1994, p. 4.

[2] F. Bodin, P. Beckman, D. Gannon,
S. Yang, S. Kesavan, A. Malony, and B.
Mohr, "Implementing a Parallel C++
Runtime System for Scalable Parallel

Systems," Proceedings of
Supercomputing '93, ACM SIGARCH
and IEEE Computer Society, pp. 588-
597.

[3] R. Chandra, A. Gupta, and J.L.

Hennessy, "COOL: An Object-Based
Language for Parallel Programming,"
Computer, August 1994, pp. 13-26.

[4] T.W. Crockett and T. Orloff, "A

Parallel Rendering Algorithm for MIMD
Architectures,” Proc. Parallel Rendering
Symposium, ACM Press, New York,
1993, pp.35-42.

[5]1 J.-F. Doue, "C++ Vector and Matrix
Algebra Routines," Graphics Gems 1V,
P.S. Heckbert (ed.), Academic Press,
1994, pp. 534-557.

[6] C.C. Douglas, T.G. Mattson, and -

M.H. Schultz, "Parallel Programming
Systems for Workstation Clusters," tech
report tr975 on the Internet, ftp'd from
casper.cs.yale.edu: pub/yale975.tar.Z.

[71 1.D. Foley, A. van Dam, S.K.
- Peiner, and J.F. Hughes, Computer
Graphics: Principles and Practice,
Addison-Wesley, Reading, MA, 1990,
pp. 229-281, 866-889.

[8] W.W. Gibbs, "Software's Chronic
Crisis," Scientific American, September
1994, pp. 86-95.

[9] A. Gueziec and R. Hummel, "The -

Wrapper Algorithm: Surface Extraction
and Simplification,” IEEE Workshop on
Biomedical Image Analysis 1994, pp.
204-213.

[10] C. Hansen and P. Hinker,
"Massively parallel isosurface
extraction," Proceedings of Visualization
'92," pp. 77-83.

[11] R.J. Harrison, "Portable Tools and
Applications for Parallel Computers,"
Int. J. Quant. Chem., 40, 1991, pp. 847-
863.

[12] A. Koide, A. Doi, and K. Kajioka,
"Polyhedral approximation approach

to molecular orbital graphics,” J.
Molecular Graphics, 4, 1986, pp. 149-
160.

[13] W.E. Lorensen and H.E. Cline,
"Marching cubes: A high resolution 3D
surface construction algorithm,” ACM
Siggraph, July 1987, pp. 163-169.

[14] S. Molnar, M. Cox, D. Ellsworth,
and H. Fuchs, "A Sorting Classification
of Parallel Rendering," IEEE CG&A,
July 1994, pp. 23-32.

[151 G. Nielson and B. Hamann, "The

asymptotic decider: Resolving the
ambiguity in marching cubes,” IEEE
Conference on Visualization 1991, pp.
83-91.

[16] J. Nieplocha, R.J. Harrison, and
R.J. Littlefield, "Global Arrays:

A Portable 'Shared-Memory’
Programming Model for Distributed
Memory Computers," to appear in
Proceedings of Supercomputing '94.

[17] . Stroustrup, The C++
Programmzng Language, Addison-
Wesley. Reading, MA, 1991.

[19] S. Whitman, "Multiprocessor
Methods for Computer Graphics
Rendering," Jones and Bartlett, Boston,
MA, 1992.

Traverse dataset and distribute primitives

G G G o000 G G

Geometry processing

R R R 00 R R

Rasterization

Display

Figure 1. Fully parallel.rendering.

999" 08

Figure 2. The pairwise composition scheme

16 1+ /

12 4 6 8 16

Figure 3. Speedup plot for the KSR-2.

o @ ¢

@,
so e
000 @

Figure 4. Sort-last-full images on each of four processors and the composite image.

