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Abstract

A system combining a portable gamma-ray spectrometer
with a neural network is discussed. In this system, the neural
network is used to automatically identify radioactive isotopes
in real-time from their gamma-ray spectra. Two neural net-
work paradigms are examined: the linear perceptron and the
optimal linear associative memory (OLAM). A comparison of
the two paradigms shows that OLAM is superior to linear per-
ceptron for this application. Both networks have a linear
response and are useful in determining the composition of an
unknown sample when the spectrum of the unknown is a
linear superposition of known spectra. One feature of this
technique is that it uses the whole spectrum in the identifica-
tion process instead of only the individual photo-peaks. For
this reason, it is potentially more useful for processing data
from lower resolution gamma-ray spectrometers. This
approach has been successfully tested with data generated by
Monte Carlo simulations and with field data from both sodium
iodide and germanium detectors. With the neural network
approach, the intense computation takes place during the train-
ing process. Once the network is trained, normal operation
consists of propagating the data through the network, which
results in rapid identification of samples in the field. This
approach is useful in situations that require fast response but
where precise quantification is less important.

1. INTRODUCTION

Enormous amounts of hazardous waste were generated by
more than 40 years of plutonium production at the U.S.
Department of Energy's Hanford site. There are an estimated
1700 waste sites distributed around the 1450 square kilometers
of southeastern Washington state that comprise this site [1].
This waste includes nuclear waste (e.g., fission products),
toxic chemical waste (e.g., carbon tetrachloride, ferrocyanide,
pitrates, etc.), and mixed waste (combined radioactive and
chemical waste). The Pacific Northwest Laboratory is explor-
ing the technologies required to perform environmental
restoration and waste management in a cost-effective manner.
This includes the development of compact, portable, and inex-
pensive systems capable of real-time identification of contam-
inants in the field. The objective of our research is to demon-
strate the potential information processing capabilities of the
neural network paradigm in real-time, automated identification

IThis work was supported by the Laboratory Directed Research and
Development program at Pacific Northwest Laboratory (PNL). PNL
is a multiprogram national laboratory operated by Battelle Memorial
Institute for the U.S. Department of Energy under Contract DE-
ACO06-76RLO 1830.

of contaminants. In this paper, artificial neural networks
(ANNS) that can be used ‘with a portable gamma-ray spec-
trometer are presented. ‘

II. ARTIFICIAL NEURAL NETWORKS

ANNs are used in a wide variety of data processing appli-
cations where real-time data analysis and information extrac-
tion are required. One advantage of the neural network
approach is that most of the intense computation takes place
during the training process. Once the ANN is trained for a
particular task, operation is relatively fast and unknown sam-
ples can be rapidly identified in the field. An ANN coupled to
a sensing system, such as a spectrometer, can be used as a
portable, automated system for identifying contaminants.

The traditional approach to gamma-ray spectral analysis
can be categorized as finding peaks and fitting curves. This
approach involves an iterative process of spectrum decomposi-
tion and regeneration until a mathematically synthesized spec-
trum closely matching the true spectrum can be generated.
This is both time consuming and often requires manual inter-
vention. The ANN approach employs pattern recognition on
the entire spectrum. This recognition is performed by a single
vector-matrix multiplication that results in rapid, real-time
identification of analytes and can be used in automated
systems.

For a sample composed of a combination of isotopes, the
spectrum of the sample, S, is approximately a linear superposi-
tion of the spectra of each individual isotope, s;. This is illus-
trated by Equation 1 where @ is the relative concentration of
each isotope in the sample.

§=20‘i£i
i

Therefore, the classification system should have a linear
response with respect to the input. This deviates from the
majority of ANNs which implement a nonlinear response.
However, even with a linear response, the ANN approach has
advantages in speed and simplicity over traditional approaches
and is useful in automated systems since isotopes can be iden-
tified without human intervention.

An ANN designed to have a linear response employs linear
activation functions. A feedforward ANN that implements
linear activation functions can be reduced to a network with a
single input layer and single output layer. Therefore, the ANN
used in this application has a single input and single output
layer as illustrated in Figure 1. Two ANN paradigms were
studied for implementing the linear response: the linear per-
ceptron and the optimal linear associative memory. Both
approaches to gamma-ray spectral analysis have been applied
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separately [2 - 5]. In this paper, these two ANN techniques
are compared.
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Fig. 1. An ANN used to identify radioactive isotopes.

A. Linear Perceptron

Linear perceptron is one of the oldest ANN paradigms. It
originally sparked interest in the pattern recognition commu-
nity in the late 1950s and early 1960s [6]. However, it was
unable to solve pattern recognition problems that were not lin-
early separable. The original perceptron implemented a hard-
limited threshold as the activation function. For the gamma-
ray spectral analysis application, a modified linear activation
function (linear for positive input and zero for negative input)
known as a perceptron function is used. The delta rule is used
to train the perceptron in an iterative process, which is detailed
in Table I. With linear activation functions, this training algo-
rithm is mathematically identical to the backpropagation algo-
rithm [7] since the derivative terms in backpropagation would
be unity in this case.

Table I
Perceptron Learning Rule

Step 1. Initialize weights with random values.

Step2. Pick a labeled pattern (spectrum, xP, and known

composition, P) from the training set and present
the spectrum to the network.

Step 3. Propagate data forward and generate the output
classification.

xp = lV_ Kp
Calculate m;n-square error between target classi-
fication and actual classification.

Step 4.

Step 5. Adapt the synaptic weights by using a delta rule to

reduce output error.

AW =1 - )P (1= leaming rate)

Step 6. If there are more spectra in the training set, loop
back to step 2.

Step 7. If the output error is high or the maximum number
of iterations have not been met, then loop back to
step 2.

B. Optimal Linear Associative Memory (OLAM)

The optimal linear associative memory (OLAM) approach
is based on a simple matrix associative memory model [8,9].
It was developed in the early 1970s as a content addressable
memory and is useful in situations where the input consists of
a linear combination of known patterns (e.g., gamma-ray
spectra). It is an improvement over the original matrix mem-
ory approach in that it projects an input pattern onto a set of
orthogonal vectors where each orthogonal vector represents a
unique pattern (exemplar). With linear activation functions,
the training is a straight forward matrix orthogonalization
process where each pattern from the training set is made to
project onto a separate, unique orthogonal axis in the output
space. This process is described in Table II.

Table II
OLAM Weight Specification

Form matrices of spectra and isotopic concentra-

Step L.
tions. Arrange spectra, xP, as columns in an NXp
dimensional matrix X and target concentrations,
tP, as columns in an Mxp dimensional matrix T.
Step 2. Generate inverse of the spectral matrix X. Since

X is generally not a square matrix, a psgﬁdo—
inverse technique is used to generate ;(ff.
(T indicates pseudo-inverse)

Step 3. Form the synaptic weight matrix.
W=1XF

III. PROTOTYPE SYSTEM LAYOUT ’

Figure 2 illustrates a prototype system that combines a
portable gamma-ray spectrometer with an ANN. Figure 1
illustrates the ANN that is connected to the gamma-ray spec-
trometer. In this prototype, a sodium iodide (Nal) detector is
used, and 512 channels of data are produced by the spectrome-
ter. All channels are fed into the ANN so that there is one
input for every channel. There is a single processing layer
(output layer) in the ANN where the number of output neurons
is equal to the number of isotopes being identified (8 in this
case). One feature of this approach to gamma-ray spectral
analysis is that the whole spectrum is used in the identification
process instead of individual peaks in the spectrum. For this

Energy Identified
Unknown Spectrum Isotopes
Sample L
Gamma-Ray Neural —»
L Spectrometer Network —»
Detector —>
(Nal, Ge)

Fig. 2. Prototype system combining gamma-ray spectrometer
with an ANN.



reason, it is potentially more useful for processing data from
lower resolution gamma-ray spectrometers like those employ-
‘ing Nal detectors. '

Each isotope presented to the spectrometer produces a
spectrum that is characteristic of that isotope. By presenting
many different isotopes to the system, a database of spectra is
constructed. From this database, training sets and test sets are
generated. These sets are collections of labeled patterns
(spectra of isotopes with known concentrations) representative
of the desired identification mapping. The training sets are
used to configure the ANN. The goal of this training is to
learn an association between the spectra and the Iabels repre-
senting the spectra. ANNs were developed with both the
linear perceptron learning rule and with the OLAM weight
specification. The training process for the OLAM in a non-
iterative process, while the linear perceptron training process
requires thousands of iterations. For this reason, it took only
. 200 milliseconds on a SPARCstation 10 to generate the
OLAM ANN, while it took a couple of hours to generate the
linear perceptron ANN. Training times on an Intel i486 based
personal computer are only a few times greater than this.

IV. RESULTS

The prototype system illustrated in Figure 2 was tested
with both Monte Carlo simulated spectra and field data col-
lected from a gamma spectrometer equipped with a sodium
iodide detector. Figure 1 illustrates the ANN configured to
identify 8 radioactive isotopes (Na22, Mn54, C057, C060,
Cs137, Eul52-154 Ra226 and Th232) from their gamma-ray
spectra. Field operation consists of presenting an unknown
sample to the system, generating a gamma-ray spectrum, pass-
ing the spectrum through the ANN, and generating a classifi-
cation of the unknown sample. The values on the output
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Fig. 3. Spectrum of a mixture of C0%0 and Cs137 (sample 4)
with the associated classifications by the linear perceptron
(LP) and OLAM ANNs. ANN outputs in gray indicate incor-
rect identification of an isotope.

neurons are proportional to the quantities of each radioactive
isotope found in the sample. Figure 3 illustrates the classifica-
tion of a sample composed of equal amounts of Co%0 and
Cs137 (sample 4). In this case, the OLAM correctly identified
the composition of the samples while the linear perceptron
incorrectly identified a significant amount of Co>7. Figure 4
illustrates the classification of a sample composed of equal
amounts of Na22, CoS7, Co90, Cs137 and Eul52-154 (sample
5). In this case the OLAM correctly identifies all the isotopes
present in the sample though the ratios between identified
isotopes are not uniform. Figure S illustrates the classification
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Fig. 4. Spectrum of a mixture of Na22, Co37, Co%0, Cs137 and
Eul52-154 (sample 5) with the associated classifications by
the linear perceptron (LP) and OLAM ANN:S.
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'Fig. 5. Spectrum of a mixture of Na22, Co%0, Cs137 and

Eul52-154 (sample 7) with the associated classifications by the
linear perceptron (LP) and the OLAM ANNs. ANN outputs in
gray indicate incorrect identification of an isotope.




Table I

Classification of actual spectra from Nal detector with linear
perceptron (LP) and OLAM . Each column represents a dif-
ferent isotope. RMS Error is listed in the right-hand column.

Na22 Mn54 C057 C060 Cs 137Eu15XR3226Th232 Error

Table IV
Classification of Monte-Carlo generated spectra simulating a
Nal detector with linear perceptron (LP) and OLAM ANNs.
Each column represents a different isotope. RMS Error is
listed in the right-hand column.

Sample 1 (Co60)

Actual  0.00 0.00 0.00 1.00 0.00 0.00 0.00 00()
LP 0.01 0.08 0.00 1.00 0.00 0.00 0.00 0.07 0.038
OLAM 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.000

Sample 2 (Eul5%)

Actual 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00.
LP 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.000

OLAM 0.00 0.00 0.00 0.00 0.00 1.00_0.00 0.00 0.000

Sample 3 (Ra226)

Actual 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
LpP 0.00 0.00 0.00 0.01 0.00 0.00 1.00 0.00 0.004

OLAM 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.000
Sample 4 (Mixture of Co80 and Cs137)

Actual 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00
Lp 0.06 0.00 0.27 0.62 1.01 0.02 0.01 0.00 0.166
OLAM 0.02 0.00 0.00 1.15 1.01 0.00 0.00 0.00 0.054

Sample 5 Mixture of Na22, Co57, Co®0, Cs!137, and Eul3%)

Actual 1.00 0.00 1.00 1.00 1.00 1.00 0.00 0.00
LP 0.96 0.00 0.33 0.00:1.00 121 0.02 0.00 0.423
OLAM 0.85 0.00 0.67 1.41 1.00 1.17 0.00 0.00 0.203

Sample 6 (Mixture of Co%, Cs137 and Eul3%)

Actual 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00
LP 0.08 0.00 0.40 0.00 095 1.13 0.03 0.00 0.385
OLAM 0.00 0.23 0.00 1.61 0.97 1.10 0.00 0.00 0.233

Sample 7 Mixture of Na22, Co%0, Cs137, and Eul3x)

Actual 1.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00
LpP 0.96 0.00 0.32 0.00 1.05 1.12 0.02 0.00 0.374
OLAM 0.86 0.18 0.00 1.32 1.04 1.09 0.00 0.00 0.143

No22 M4 Co57 CoB0 Cs 137 Eulo*Ra226T1232 Error

Sample 1 (Mixture of Co®0 and Cs137)

| OLAM 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.000

Actual 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00
LP 0.00 0.00 0.00 0.89 0.72 0.00 0.00 0.00 0.106

Sample 2 (Mixture of Na22, Mn34, Co57, Co90 and Cs!37)

Actual 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00
Lp 0.00 0.41 0.70 0.66 0.00 0.00 0.00 0.00 0.441
OLAM 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.000

Sample 3 (Mixture of 0.5 Na22, Co%7, and 0.7 Cs!37)

Actual 0.50 0.00 1.00 0.00 0.70 0.00 0.00 0.00
Lp 0.00 0.00 0.90 0.00 0.15 0.00 0.00 0.00 0.350
OLAM 0.50 0.00 1.00 0.00 0.70 0.00 0.00 0.00 0.000

Sample 4 (Mn>* with peak reduced by 50%)

Actual 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00
LP 0.00 0.49 0.00 0.00 0.00 0.00 0.00 0.00 0.004
OLAM 0.01 0.50 0.00 0.01 0.01 0.00 0.00 0.00 0.006

Sample 5 (Mn>% with only peak)

Actual 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
LP 0.00 1.01 0.00 0.00 0.00 0.00 0.00 0.00 0.004
OLAM 0.00 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.006

of a sample composed of equal amounts of Na?2, Co80, cs137
and Eul52-154 (sample 7). In this case, the OLAM incorrectly
identified a small amount of Mn34 while the linear perceptron
did not identify the presence of Co%0 and misidentified a small
a Mn>4. The linear perceptron had a hard time identifying
Co%0 and often identified Co>7 when it was not present. In
several cases, the OLAM indicated a small amount of Mn34
when it was not present. However, the errors with the OLAM
were always smaller than the linear perceptron. Similar results
were found with other samples which can be found in Table
. Additional studies that were performed with a Germanium
detector yielded similar results.

Table IV lists results from Monte Carlo simulated spectra.
The linear perceptron and OLAM were tested on spectra of
mixtures and on modified spectra. Spectra of mixtures were
generated by combining the simulated spectra of the different
isotopes. Modified spectra were produced by reducing the
peak height of some spectra and by removing everything but

the peak of other spectra. Since both the spectrum of the mix-
tures and the OLAM were generated from ideal spectra, the
OLAM perfectly identified all the isotopes in the different .
mixtures. The linear perceptron did not fair well. For the
modified spectra, the linear perceptron performed slightly
better than the OLAM. These results indicate that the linear
perceptron uses the peak information more than the OLAM
does.

The time to identify an isotope from a 512 channel spec-
trum with 8 possible isotopes is 20 milliseconds on a 33 MHz
Inte] i486DX based personal computer. Therefore, the classi-
fication process is limited not by the ANN but by the time it
takes to acquire and generate a spectrum. In applications that
can acquire and deliver data much faster, the ANN can be
implemented in specialized hardware. In such a case, three
orders of magnitude increase in classification speed can be
achieved. )

V. DISCUSSION

The initial results of our research have demonstrated the
pattern recognition capabilities of the neural network paradigm
in analyzing gamma-ray spectra. This study has shown the
superior performance of the OLAM approach over the linear

‘perceptron for gamma-ray spectral analysis in both classifica-

tion accuracy and training speed. The classification perfor-
mance can be attributed to the orthogonalization process used




by the OLAM during training. Since this training process is
non-iterative, the OLAM offers a substantially shorter training
time than the linear perceptron.

One of the disadvantages of the OLAM, is that nearly ideal
spectra are needed in the training process. However, if needed
the OLAM can be provided with Monte Carlo generated
spectra. The linear perceptron can be trained with noisy data
or data with defects as long as a large training set is available.

This paper also illustrates some advantages of the ANN
approach over conventional analytical techniques. These
advantages include simplicity, real-time analysis, and automa-
tion. All of these are important in building compact and
portable systems for automated contaminant identification.
With this approach, the isotopes in a contaminant can be iden-
tified in a fraction of a second once the spectrum is sent to the
ANN. .

Further work could involve comparison of the ANN
approach to more conventional techniques, exploration of
other ANN paradigms, examination of techniques for combin-
ing ANN models, and development of field prototype systems.
A field deployable system should work with different source
geometries and should compensate for pile-up and gain shift-
ing. An ANN that handles gain-shifting was recently reported
by Olmos et. al. [10].

Information on ANN developments at Pacific Northwest
Laboratory is available in the World Wide Web (WWW)
pages of the Environmental Molecular Science Laboratory
which is accessible through such WWW clients as NCSA
Mosaic.

URL: http://www.emsl.pnl.gov:2080/docs/cie/neural/
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