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Abstract

A new analytical method to resolve
underspecified systems of algebraic equations is
presented.  The method is referred to as the
Full Space Parameterization (FSP) method and
utilizes easily-calculated projected solution vectors
to generate the entire space of solutions of the
underspecified system. Analytic parameterizations
for both the space of solutions and the null
space of the system reduce the determination of a
task-requirement-based single solution to a m — n
dimensional problem, where m — n is the degree
of underspecification, or degree of redundancy, of
the system. An analytical solution is presented to
directly calculate the least-norm solution from the
parameterized space and the results are compared
to solutions of the standard pseudo-inverse algorithm
which embodies the (least-norm) Moore-Penrose
generalized inverse. Application of the new
solution method to a variety of systems and task
requirements are discussed, and sample results using
four-link planar manipulators with one or two
degrees of redundancy and a seven degree-of-freedom
manipulator with one or four degrees of redundancy
are presented to illustrate the efficiency of the new
FSP method and algorithm.

1. Introduction

This paper deals with the raotion control of
serial-link manipulators using solutions of the
kinematic equations of the system:

X=F(@ (1)
or, since displacements are sought, solution of

the velocity equations obtained by taking the
time-derivatives of Eq. (1):

X = J(2)3 (@)
where X represents the n x 1 vector of position
and orientation of a given point of interest on the
manipulator (generally the end-effector expressed
in the n-dimensional Cartesian task space), § is
the m x 1 vector of joint coordinates for the
m degrees of freedom (d.o.f.) manipulator, F
represents the forward kinematic vector function for

the system, an upper dot denotes a time-derivative,
and J(g) is the n x m Jacobian matrix of the

system with component J;j; = 0F;/8q;. Since
Eq. (2) is typically highly non-linear, control of
the system is generally performed using “loop-rate”
cycles of calculation, with a linearized version of
Eq. (2) providing first-order approximations for the
displacement vectors AX and Ag over the discretized
time domain with time steps At:

AX /At & A AG/AL (3)

In solving Eq. (3) a high loop rate is generally
desirable to minimize the errors generated by
assuming that the linearized Jacobian matrix Jas has
constant coefficients during the time step At; and a
feed-back loop in the calculational cycle needs to be
utilized to minimize the error accumulation over time
(tracking drift).

Solution of Eq. (3) at each time step essentially
consists in solving a set of algebraic equations. When
the manipulator is a redundant system, the Jacobian
is a rectangular n X m matrix with n < m, and
the system of equations represented by Eq. (3) is
underspecified. If the Jacobian matrix is of rank
n, there generally exists an infinity of solutions to
the system of Eq. (3) and the matrix Jao; cannot be
directly inverted.

In what follows, we will assume that the matrix
Ja:, thereafter simply denoted by J, is of rank n
(the particular cases where the matrix is of rank
r < n will be treated in a following companion paper).
Several methods exist to resolve underspecified
systems of equations such as Eq. (3) with n < m,
and Ref. [1] provides an excellent review of these
methods for application to redundant manipulator
control. Essentially, all existing methods (for
instantaneous or real-time control) fall into two
categories: those that use a generalized inverse to
find a particular solution corresponding to a specific
criterion (e.g., the pseudo inverse for the least norm
of Ag), on which is superimposed an homogenous
solution corresponding to a secondary criterion or
cost function (e.g., manipulability index [2], gradient
projection method [3,4], obstacle or joint limit
avoidance [5,6]) which produces a self-motion of the
joints in the null space of the mapping J; and those
that utilize a set of constraints or relationships on the
task to generate an “augmented task space” {e.g., see
(7], [8]) by adding some Cartesian space variables
to the system, and produce an “extended Jacobian”
(e.g., see [9]) which, if square, can then be inverted
using direct inverse techniques.



Severe difficulties and/or shortcomings exist with
each of these techniques and have been well
documented and studied (e.g.. see Refs. [1] through
[9]). Among those drawbacks, to cite only a
few, are the implicit task priority requirements,
i.e.. the fact that a solution found from the
superposition of a particular solution obtained from
a primary criterion and a homogenous solution
obtained from a secondary criterion, typically
does not satisfy both together (e.g., a solution
obtained from a least-norm particular solution to
which an obstacle-avoiding self-motion solution has
been added, is not the least-norm solution of the
obstacle-avoiding solutions); and the “artificial”
algorithmic singularities that may be encountered
with extended Jacobian and augmented task space
approaches. With respect to singularities, it
should be mentioned here that the Singular Value
Decomposition (SVD) method (e.g., see {10]) is a
particularly efficient method to alleviate the very
significant problems of inverse kinematic manipulator
control near singularities (e.g., see [11]). Its very high
computational cost, however, may still represent an
overkill for general (away from singularities) real-time
operation of manipulators, while also suffering from
some of the above-mentioned drawbacks. Overall,
we contend that all of the existing methods present
difficulties for application to real-time robotic control
in changing environments because they each consit
in finding a particular solution using an a prior:
selected criterion which at some time during the
motior. may, but typically does not over the entire
trajectory, represent the actual requirements of
the task motion. When the requirements do not
correspond to the primary criterion anymore, one
has to set a secondary criterion and essentially
search in the extended space and/or null-space
(without an explicit expression of 1t), to find a
“better” solution satisfying the current constraints.
Each task space extension and/or null space search
requires its own analytic set up and specific
algorithm. Consequently, when motions under
real-time conditions would call for rapid changes
in requirements (e.g. time optimality, least norm,
obstacle avoidance, minimum torque, maximum
global strength, optimum manipulability, etc.), these
methods would require a full rescope of the solution
algorithm in order to handle the particular secondary
criteria and/or task space extension introduced at
each of the changes in task requirement. In other
words, real-time motion of autonomous manipulators
under widely changing conditions would require
the cumbersome storing on-board the robot of a
correspondingly large library of complex algorithms
(generalized inverse algorithms are complex and
computationally costly), and the switching from one
to the other as called by the real-time situation.
This paper proposes a different approach to the
resolution of underspecified systems of equations,
such as Eq. (3) for manipulators, in which the entire
space of solutions is first determined (in the same
fashion at each time step), and is very conveniently
parameterized so that the subsequent calculation of
a specific solution satisfving all the constraints and
requirements of the particular time step becomes the

matter of a few explicit programming statements.
The following section describes how this new
method, called the Full Space Parameterization
(FSP) method, provides parameterizations for the
entire space of solutions of Eq. (3), as well as for the
corresponding null space (self-motion) of the mapping
J, using easily-calculated projected vectors. Section 3
describes the analytic solution for the parameters
that provide the least-norm solution within the
space, and the results are compared to those of
the pseudo-inverse, since this method has become
“the standard” for generalized inverse techniques.
Several sample problems involving 4 d.o.f. planar
and 7 d.o.f. 3-D manipulators with respectively one
and two, and one and four degrees of redundancy are
presented to illustrate the results of the method in
these comparisons of least-norm calculation. The last
section briefly discusses other applications of the FSP
that we have performed, and presents our conclusion.

2. Full Space Parameterization

One of the key ideas of the proposed methodology
is to represent the set of solutions of the general
underspecified system of Eq. (3) as an easily
parameterized subspace of a much larger, but easily
constructed vectorial space.

Consider the set of projected vectors g, which
are solutions of Eq. (3) and have m — n fixed
components. Without loss of generality these fixed
components will be set to zero. There are C1 "
such m-dimensional vectors g, each being associated
with a n-dimensional vector g}, verifying the following
property:

AX = Jg, <= AX = Ji7} {4)

where Jy is the square submatrix of J obtained
by removing the columns of J corresponding to
the fixed zero components of g,. gy, therefore.
1s the n-dimensional vector constituted of the
ordered n nonzero components of g.. Since the
Jr, k=1, C»~" are square n X n matrices, each
gr corresponding to a non-singular matrix Jj, can
be very easily obtained from the right-hand side of
Eq. (4). With J being of rank n, the existence of at
least m — n + 1 non-singular square matrices J, can
be proven as follows.

Recall that J, of dimension (n x m), is constituted
of m columns ¢;, and is of rank n: therefore there
exist at least one square matrix J; which is invertible.
For ease of indexing and without loss of generality,
we assume this matrix is constituted by the first n
columns of matrix J, therefore:

Jy={(c1...cn) . (5)

Let us construct the matrix Jy by substituting one
column ¢;, 1 € {1....,n} of J1 by column ¢p4 of J.
J'_g :.(C] Cl-1 Cn41 Clg Cn) (6)



Two cases may happen:
¢ det{J2) # 0 and so the matrix Js is invertible, or

o det(Js) = 0 and cp41 is either a column
constituted of 0’s, or a linear combination of
columns ¢i,i € {1,...,n} — {{}. Let ¢; denote one

of these columns ¢;, i € {1,...,n} — {I}. The
first case means tha: .he component Agnyq of
the joint velocity vector Ag has no influence on
the end-effector motion and any value for Ag, 4.
is acceptable. We can set Agn41 = 0 and solve
the problem as an m — 1 dimensional problem in
joint space. In that case, we have to find (m — n)
sub-matrices J; instead of (m—n+1). We thus can
neglect J, and continue the search process with
J3, etc.

In the latter case, the previous substitution
1s  cancelled, and instead we substitute
ch, h€{l,....,n} = {I} by cny1.  J2 therefore
becomes

Ja=(c1 ... Che1 Cn41 Ch4t -~ C ... cn) . (7)

Since cp4+1 is a linear combination of columns
ci, 1 € {1,....n} = {{}, which includes ¢y, we have:

Cn+1 220’:'0{ (8)

and
det(J,) = det(cy ... Ch—1 Cnt1 Chg1 --. Cn)
= Ha;det(cy ... ch—1 ch Cht1 ... Cn)
= Ma;det(Jy)
£ 0 (9)

Therefore the matrix J, is invertible.

This process can be applied to the (m —n) columns
cj, J €{n+1,..., m}, and consequently there exist
at least (m — n+ 1) invertible square submatrices Jj.

Notice here that in the general case, many more
than m — n + 1 submatrices of J will be invertible
and will lead to a projected vector solution since,
even in the latter case above where a column cj
of the linear combination of cnt1 needs to be
substituted, ¢), will not be the only column in the
linear decomposition of cp+1 (unless the manipulator
is “folded” on itself in a singular configuration),
and therefore, other matrices J; could be shown to
be non singular and to lead to a projected vector.
{n similar fashion, other J, could be shown to
be non singular and to leaclf to projected vectors
during the successive identification of the invertible
Jpk=1,m—-n+1.

Let us now consider a maximal set of p
independent vectors g,k =1,...,p among those
found through the submatrices inversion, and
introduce the space spanned by this family:
Spa‘n {EI'EQV"'gp}’

We can construct the affine space £ (a subspace
of Span {g,....9,}), of dimension dim(E)=p -1,
defined by:

Proposition: E C £, where £ is the space of
solutions of Eq. (3).
Proof: from Eq. (4), we have

AN = Jg,, Vi€ {1.p}. (11)

and therefore

AX =Jt;g;, V4, €R, V€ {l.p} . (12)

Consequently,

D (6:aX) =) (J47)) (13)

and

(i‘i)ﬁf=1<it@> S

=1 i=1

P
Thus, any vector Ag of £, A = Zt,@ with
i=1

P
Zt¢ = 1, is a solution of Eq. (3). Therefore. since
=1

E Cc € and dim(E) = p~ 1, then E = £ for

Consequently, since dim(£)< m — n, at most
m — n + 1 linearly independent vectors g, suffice to
parameterize the full space of solution of Eq. (3)
using Eq. (10). Moreover, each of these m — n + 1
vectors is obtained from inversion of an (n X n)
square submatrix, which, even in the worst case of
m — n = 1, is computationally less expensive than the
inversion of (m x m) matrices required in generalized
inverse or augmented task space methods.

From Eq. (14) and the dimensionality relations
above, it is straightforward to show that the null
space AV of the mapping J can also be directly derived
and parameterized as:

m-n+1
Af={Aaemm,Aa(tl,u.,tm_nm: DR

i=1

m—n+1
Z tp = 0}

k=1



An important feature of the method proposed
here is that the underspecified problem in the
m-dimensional articular space has been reduced to an
m — n dimensional problem in the parameter space of

m—n+1
{ti. ... tm—n41} with the constraint Z try = 1
k=1
m—n+1
or Z tr = 0 depending on the solution being
k=1

sought in the space E of solutions of Eq. (3) or in
the null space .V of the mapping J. This is quite
a reduction in dimensionality, since. for example. a
7 d.o.f. manipulator operated in n = 6 dimensional
task space (3-D position and orientation) requires
only 2 linearly independent vectors g, and g, to
construct £ or N, and only one parameter t; (since
ts = 1 —t1) to be found for any desired particular
solution (e.g. least norm, etc.).

3. Analytical Determination
of Particular Solutions

Only a few authors have studied solution
techniques involving linear combinations of vector
sets similar to that discussed here for manipulator
redundancy resolution, and they have done so
only for very particular control situations (e.g., see
the *“joint blocking” technique for acceleration-level
control in [12]) or for unconstrained conditions
(e.g., see [13]). Here, we show how the general
Lagrangian-type constrained optimization formalism
can be used to derive the solution parameter set
{ti... . tp}, in either Eq. (10) or Eq. (15), for
a general task requirement seeking to optiinize a
criterion Q(Ag(¢;)) under a set of r constraints
ClAgti)) =0 j=1,r;i=1.m-n+1.

Since derwatlon of the wide variety of analytical
solutions that correspond to the various types of
criteria and/or constraints typically involved in
manipulator control is clearly beyond the scope
of this paper (many of these solutions for both
discrete and continuous criteria. and for various
types of constraints such as joint limit avoidance,
obstacle avoidance, etc., have been derived in [14]
and will appear in companion papers), we only
present here an example of such an analytical solution
for a “general” least-norm criterion with a set of
constraints expressed in a form most encountered
in manipulator kinematics [14]. Since the focus of
this initial paper is to present comparisons of the
FSP method with the ‘standard” least norm (of the
joint velocities) algorithm. we then reduce the general
solution to this particular case. and apply it to several
illustrative manipulator systems.

For a general criterion Q(Ag(t;)),i =1, m—n+1to
be optimized in the space defined by Eq. (10) with a
set of r general constraints C7/(Ag(t,)) =0, j=1.r
the Lagrangian is:

m-n+1 r
Lt pry) = QU+l Y =1+ 1,V (t)

=1 J=1

and the optimality conditions are:

oL ) oL oL .
— =0i=tm-n+li—=0— =0.;=1Lr

at; O Iy,
(17
With these conditions. analytical solutions for the
m — n + 1 dimensional vector t with components
(ty,. . tm—n+1) can be found such that the resulting
m—n-41
Ag = Z t:g, optimizes @ while satisfying all the
=1
constraints.  As an example of such an analytical
derivation, consider a general criterion

=|AZ(7, A7) - AZ, | (18)

where AZ, represents a given reference operational
vector characterizing the state to be acheived by
system, and AZ is an operational vector function of
the joint positions and displacements. Let B(qy) be a
matrix such that

AZ = B(3)A] (19)

and define the vector /1 and matrix G as:

‘ﬁ.Hk.:_\'_ZTB?k; k=1, m~-n+1 {20)

G .G, = §?BTB§J-11' =l.m-n+lij=1l.m-n+t
(20
where the upper T sign denotes a transpose.

Assume the r constraints C"qu"(?) = 0) are
expressed as

— T
B i-1=0,j=1.r (22)

a form to which many kinematic constraints
(e.g., joint hmits. obstacle avoidance. etc.) can
be reduced [14]. Then the optimality conditions
[Eq. (17)] become:

]
GI+H+ue+ Y i3 =5
=1

~
~~1

3 i=

“.
I

whme ¢ and @ are the mi — n + 1 dimensional vectors
={1.1.1....1Yand 37 = (0.0....0). respectively

Sottmn vl = (vy.. ve) and @ = FTGTE and

and d. and the mdtn\ 1 by
T

T
hy = ¢ Te—-13" < =3 G-l (1]:1—{—,? (r=VIT
— r
Ay = eiby — a3’ G=va i=1l.r.y=1nm the
solutlon of Eq. (23) for the Lagrange multiphers and
parameter set can be written as:

ciehnmg the \ectorz



P=A"Yad-3(14+€7¢g " H)) (24)
p=-1+5'b+8"g" H)/a (25)
i=-G e+ Y wid +H) (26)

=1

For comparison with the pseudo-inverse algorithm
which optimizes the least norm of the joint
displacements in unconstrained conditions, we set
AZr = 0,AZ = Ag, and consequently, B in
Eq. (19) is the identity matrix. Thus G becomes the
Grammian matrix of the vectors g;,: =1,m — n+ 1.
and A = 5. Since in the unconstrained condition
3'=53.i=1,r Eq.(26) reduces to

" =G 'e/(ETG ) (27)
and the least norm solution is obtained as:
m-n+1
AGrn. = Y. BT (28)

=1

4. Experimental Results

The IMSL standard pseudo-inverse algorithm
and the FSP method described above with the
least-norm solution of Eqs. (27) and (28) were
both implemented on several redundant manipulator
test-beds and tested on a variety of trajectories. In
all cases. a feedback loop from the output of the
redundancy resolution was utilized to add to the

desired AX"T! vector at time step n + 1 the error
between the desired configuration X" at time step
n and the configuration actually resulting from the
joint displacement solution of time step n. The
actual configurations, calculated using the forward
kinematic Eq. (1), are those plotted in the following
figures.

Figure 1 shows two example trajectories for
a simulated 4 d.o.f. planar manipulator, with
equal length in all four links. Both the position
{r,y) and orientation (y) of the end-effector are
controlled, leading to one degree of redundancy
(dor.) with n=3 and m=4. In this case,
there are Cf = 4 possible (3 x 3) submatrices
and. if invertible. 4 projected vectors §;. Since
only m — n 4+ 1 = 2 independent vectors are
necessary, there are Cf = 6 sets of vectors that
could potentially be used to construct the entire
space E {rom Eq. (10). In an actual implementation,
all these combinations would of course not need
to be calculated (although computations in parallel
are feasible and would not significantly slow down
the algorithm). For the purpose of our verification
studies, however, each feasible combination was
calculated at every time step of each test trajectory
(typically all 4 submatrices were invertible and all 6
combinations were found suitable), each combination

leading to a corresponding (and of course different)
solution for t from Eq. (27). The resulting solutions
Ag, from Eq. (28) were compared with each other
and with the pseudo-inverse solution, systematically
showing better than five digit accuracy in every case

|
e;;;; Z

8

%

VeSe'
<

(a)

Fig. 1. Least-norm solution of the FSP method on
sample trajectories of a 4 d.o.f. planar manipulator
with 1 d.o.r. (position and orientation control) with
a) 180°, b) 360° total orientation change over the
trajectory.

Figure 2 shows two example trajectories for the
simulated 4 d.o.f. planar manipulator controlled in
position (z, y) only, therefore with 2 d.o.r. In this
case, there are 6 (2 X 2) square submatrices and
C3 = 20 possible combinations of vectors g;. The four
combinations that involved three vectors g; exhibiting
a zero at the same component were rejected, and
all feasible others were investigated. Typicalily all
16 were found suitable and leading to a parameter
solution t. Comparisons of the resulting solutions Ag
with the pseudo-inverse solution also showed better
than five digit accuracy in every case.

The FSP method was also implemented on several
hardware systems, including the 7 d.o.f. CESARm
manipulator [4],[15],[16]. On this system, FSP-based
control schemes were implemented for control In
3-D of the position of the wrist, the position of
the end-effector, or the position and orientation of
the end-effector, leading respectively to redundancy
resolution with 1 d.o.r. on a 4 dof. 3-D system,
and 1 dor. and 1 dor. on a 7 dof 3D
system. Although closed loop at the redundancy
resolution level (as explained previously), the control
schemes drove the manipulator in open loop fashion
(l.e., with no joint-encoder data feedback). Figure 3
shows an example of the FSP results using a
sequence of 3-D graphics displaying the motion of
the 7 d.o.f. CESARm (located on the HERMIES-111
mobile robot) over a sample position and orientation
control trajectory with least-norm minimization. For
everyone of these tests in 3-D, the FSP solutions



were compared with the results of the pseudo-inverse
algorithm and showed better than five digit accuracy.

Fig. 2. Least-norm solution of the FSP method
on a) straight line, b) circular, sample trajectories of
a 4 d.o.f. planar manipulator with 2 d.o.r. (position
control only).

5. Conclusion

A new approach for controlling redundant
manipulators under varying criteria and constraints
has been presented. The approach uses the Full
Space Parameterization (FSP) method to generate
the entire solution space as well as the null space
for the underspecified system. Within these spaces.
the optimization problem to find a specific solution
reduces to an m—n dimensional problem in parameter
space. An example of analytical solution has been
derived for the generic case of a criterion involving
the least norm of a general operational vector
funtion with a set of kinematic and/or environment
constraints imposed on the system. The solution has
then been reduced to the case of unconstrained least
norm of the joint displacements sc that comparisons
could be performed between the new FSP approach
and the “standard” pseudo-inverse algorithm. In
these comparisons, the two methods provided
identical results to within numerical round-off errors
{at the sixth significant digit). As part of these
comparisons, sample results obtained with the FSP
were presented for a 4 d.o.f. pianar manipulator and
a 7 d.o.f. 3-D manipulator.
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