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Abstract system with component ,Jij -" OFi/Oqj. Since
Eq. (2) is typically highly non-linear, control of

A new analytical method to resolve the system is generally performed using "loop-rate"
underspecified systems of algebraic equations is cycles of calculation, with a linearized version of
presented. The method is referred to as the Eq. (2) providing first-order approximations for the
Full Space Parameterization (FSP) method and displacement vectors AX and A_ over the discretized
utilizes easily-calculated projected solution vectors time domain with time steps At:
to generate the entire space of solutions of the

underspecified system. Analytic parameterizations AX/At ,_ J,x_A'_/At (3)
for both the space of solutions and the null
space of the system reduce the determination of a In solving Eq. (3) a high loop rate is generally
task-requirement-based single solution to a m - n desirable to minimize _he errors generated by
dimensional problem, where m- n is the degree assuming that the linearized Jacobianmatrix J/,t has
of underspecification, or degree of redundancy, of constant coefficients during the time step At; and a
the system. An analytical solution is presented to feed-back loop in the calculational cycle needs to be
directly calculate the least-norm solution from the utilized to minimize the error accumulation over time
parameterized space and the results are compared (tracking drift).
to solutions of the standard pseudo-inverse algorithm Solution of Eq. (3) at each time step essentially
which embodies the (least-norm) Moore-Penrose consists in solving a set of algebraic equations. When
generalized inverse. Application of the new the manipulator is a redundant system, the Jacobian
solution method to a variety of systems and task is a rectangular n x m matrix with n < m, and
requirements are discussed, and sample results using the system of equations represented by Eq. (3) is
four-link planar manipulators with one or two underspecified. If the Jacobian matrix is of rank
degrees of redundancy and a seven degree-of-freedom n, there generally exists an infinity of solutions to
manipulator with one or four degrees of redundancy the system of Eq. (3) and the matrix Jar cannot be
are presented to illustrate the efficiency of the new directly inverted.
FSP method and algorithm. In what follows, we will assume that the matrix

Jar, thereafter simply denoted by J, is of rank n
(the particular cases where the matrix is of rank

1. Introduction r < n will be treated in a following companion paper).
Several methods exist to resolve underspecified

This paper deals with the tuotion control of systems of equations such as Eq. (3)with n < m,
serial-link manipulators using solutions of the and Ref. [1] provides an excellent review of these
kinematic equations of the system: methods for application to redundant manipulator

control. Essentially, all existing methods (for
X = F(_) (1) instantaneous or real-time control) fall into two

or, since displacements are sought, solution of categories: those that use a generalized inverse to
the velocity equations obtained by taking the find a particular solution corresponding to a specific
time-derivatives of Eq. (1): criterion (e.g., the pseudo inverse for the least norm

of A_), on which is superimposed an homogenous

-J(_)_ (2) solution corresponding to a secondary criterion or
cost function (e.g., manipulability index [2], gradient

where X represents the n x 1 vector of position projection method [3,4], obstacle or joint limit
and orientation of a given point of interest on the avoidance [5,6]) which produces a self-motion of the
manipulator (generally the end-effector expressed joints in the null space of the mapping J; and those
in the n-dimensional Cartesian task space), _ is that utilize a set of constraints or relationships on the
the rn x 1 vector of joint coordinates for the task to generate an "augmented task space" (e.g., see
rn degrees of freedom (d.o.f.) manipulator, F [7], [8]) by adding some Cartesian space variables
represents the forward kinematic vector function for to the system, and produce an "extended J acobian"
the system, an upper dot denotes a time-derivative, (e.g., see [9]) which, if square, can then be inverted
and J(_) is the n x m Jacobian matrix of the using direct inverse techniques.



Severe difficulties and/or shortcomings exist with matter of a few explicit programming statements.
each of these techniques and have been well The following section describes how this new
documented and studied (e.g., see Refs. [1] through method, called the Full Space Parameterization
[9]). Among those drawbacks, to cite only a (FSP) method, provides parameterizations for the
few, are the implicit task priority requirements, entire space of solutions of Eq. (3), as well as for the
i.e.. the fact that a solution found from the corresponding null space (self-motion) of the mapping
superposition of a particular solution obtained from J, using easily-calculated projected vectors. Section 3
a primary criterion and a homogenous solution describes the analytic solution for the parameters
obtained from a secondary criterion, typically that provide the least-norm solution within the
does not satisfy both together (e.g., a solution space, and the results are compared to those of
obtained from a least-norm particular solution to the pseudo-inverse, since this method has become
which an obstacle-avoiding self-motion solution has "the standard" for generalized inverse techniques.
been added, is not the least-norm solution of the Several sample problems involving 4 d.o.f, planar
obstacle-avoiding solutions); and the "artificial" and 7 d.o.f. 3-D manipulators with respectively one
algorithmic singularities that may be encountered and two, and one and four degrees of redundancy are
with extended Jacobian and augmented task space presented to illustrate the results of the method in
approaches. With respect to singularities, it these comparisons of least-norm calculation. The last
should be mentioned here that the Singular Valae section briefly discusses other applications of the FSP
Decomposition (SVD) method (e.g., see [10]) is a that we have performed, and presents our conclusion.
particularly efficient method to alleviate the very
significant problems of inverse kinematic manipulator

control near singularities (e.g., see [11]). Its very high 2. Full Space Parameterizationcomputational cost, however, may still represent an
overkill for general (away from singularities) real-time
operation of manipulators, while also suffering from One of the key ideas of the proposed methodology
some of the above-mentioned drawbacks. Overall, is to represent the set of solutions of the general
we contend that all of the existing methods present underspecified system of Eq. (3) as an easily
difficulties for application to real-time robotic control parameterized subspace of a much larger, but easily
in changing environments because they each consit constructed vectorial space.
in finding a particular solution using an a priori Consider the set of projected vectors gk which
selected criterion which at some time during the are solutions of Eq. (3) and have m - n fixed
motiou may, but typically does not over the entire components. Without loss of generality these fixed

components will be set to zero. There are C_ -n
trajectory, represent the actual requirements of such m-dimensional vectors gk each being associatedthe task motion. When the requirements do not

with a n-dimensional vector _. verifying the followingcorrespond to the primary criterion anymore, one
has to set a secondary criterion and essentially property:

search in the extended space and/or null-space AX" = Jgk ¢==> A,-_"= Jkg_. 4)(without an explicit expression of it), to find a

"better" solution satisfying the current constraints, where Jk is the square submatrix of J obtained
Each task space extension and/or null space search by removing the columns of J corresponding to
requires its own analytic set up and specific the fixed zero components of gk. _, therefore.
algorithm. Consequently, when motions under is the n-dimensional vector constituted of the

real-time conditions would call for rapid changes ordered n nonzero components of gk' Since the
in requirements (e.g. time optimality, least norm, Jk, k = 1 Cmm-'_ are square n x n matrices, eachobstacle avoidance, minimum torque, maximum ' '

_. corresponding to a non-singular matrix JA. can
global strength, optimum manipulability, etc.), these De very easily obtained from the right-hand side of
methods would require a full rescope of the solution Eq. (4). With J being of rank n, the existence of at
algorithm in order to handle the particular secondary least m - n + 1 non-singular square matrices Jk, can
criteria and/or task space extension introduced at be proven as follows.
each of the changes in task requirement. In other Recall that J, of dimension (n x rn), is constituted
words, real-time motion of autonomous manipulators of rn columns ci, and is of rank n" therefore there
under widely changing conditions would require exist at least one square matrix J1 which is invertible.
the cumbersome storing on-board the robot of a For ease of indexing and without loss of generality,
correspondingly large library of complex algorithms we assume this matrix is constituted by the first t_
(generalized inverse algorithms are complex and columns of matrix J therefore'
computationally costly), and the switching from one

to the other as called by the real-time situation. J1 = (el ... e,_) (5)
This paper proposes a different approach to the

resolution of underspecified systems of equations, Let us construct the matrix J2 by substituting one
such as Eq. (3) for manipulators, in which the entire colunm el, I E {1 ..... n} of Jl by column c,_+1 of ,l.
space of solutzons is first determined (in the same
fashion at each time step), and is very conveniently

parameterized so that the subsequent calculation of J_ = (cl ... el-1 Cn+l ct+l ... Cn) (6)
a specific solution satisfying all the constraints and
requirements of the particular time step becomes the



Two cases may happen"

• det(J2)_0andsothematrixJ2 isinvertible, or {
• det(J2) = 0 and c,_+1 is either a column E= ,..kTEIRm,AT(tl,...,tv)= t,gi"

constituted of O's, or a linear combination of i=1
columnsci,i E {1 .... ,n}-{/}. Let Ch denote one (10)
of these columns ci, i E {1 .... ,n} -{/}. The P "1

first case means tha'_ _he component _qn+; of Ztk = 1)the joint velocity vector AT has no influence on k=l
the end-effector motion and any value for Aqn+l

is acceptable. We can set _qn+l "- 0 and solve Proposit*on: E C C, where g is the space of
the problem as an m - 1 dimensional problem in solutions of Eq. (3).
joint space. In that case, we have to find (m - n) Proof: from Eq. (4) we have
sub-matrices Jk instead of (m-n+l). We thus can
neglect J2 and continue the search process with
aa, etc. AX = Jgi, Vi E {1,p}, (11)

In the latter case, the previous substitution and therefore
is cancelled, and instead we substitute
oh, hE {1 .... ,n}-{l} by c,_+1. J,_ therefore
becomes

ti_.g = ati'gi Vti E Ill., Vi E {1,p} (12)

J2 = (ct ... Ch-1 Cn+l Ch+l ... ct ... cn). (7) Consequently,

P P

Since cn+l is a linear combination of columns E(tiA-X) = Z(ati'Oi) (13}
ci, i E {1 .... n}- {/}, which includes Ch we have:' ' i-,-1 i=1

cn+l = __. _ici (S) and

i

and ti A-[Y = J I ( 1,t )
i=l i=1 ]

l

det(J,)= det(cl ... Ch-I c,_+1 Ch+l ... cn)

= IIa, i det(cl ,.. Ch-1 ch Ch+l ... cn) _;r'_t _i Thus, any vector A T of E, AT = igi with

= Haidet(J1) i=_
1

_: 0 (9) P
Eti 1, is solution of (3). Therefore. sinceEq.a

Therefore the matrix J2 is invertible, i=1
This process can be applied to the (m-n) columns E C g', and dim(E) = p - 1, then E = g for

cj, j E {n + 1,..., m}, and consequently there exist P = dim(£) + 1.
Consequently, since dim(g)< m- n, at most

at least (m - n + 1) invertible square submatrices Jk. m - n + 1 linearly independentvectors gk suffice toNotice here that in the general case, many more
than m - n + 1 submatrices of J will be invertible parameterize the full space of solution of Eq. (3)
and will lead to a projected vector solution since, using Eq. (10). Moreover, each of these m - n + 1

vectors is obtained from inversion of an (n × n)
even in the latter case above where a column Ch
of the linear combination of cn+l needs to be square submatrix, which, even in the worst case of
substituted, Ch will not be the only column in the m- n- 1, is computationally less expensive than the
linear decomposition of cn+l (unless the manipulator inversion of (rn x rn) matrices required in generalized

inverse or augmented task space methods.
is "folded" on itself in a singular configuration),
and therefore, other matrices J, could be shown to From gq. (14) and the dimensionality relations

- above it is straightforward to show that the nullbe non singular and to lead to a projected vector.
could be shown to space N" of the mapping J can also be directly derived

In similar fashion, other J_ and parameterized as:be non singular and to lead to projected vectors
during the successive identification of the invertible
Jk,k=l m-n+l

Let us now consider a maximal set of p
independent vectors gk, k = 1 .... , p among those ,V -- a-_T _h']. m , AT(_I,..., trn- n+l ) -- tiT.]i
found through the submatrices reversion, and i=1

introduce the space spanned by this family' m-_+l "_

Span = 0
We can construct the affine space E (a subspace k=l

of Span {gl .... _v}), of dimension dim(E)=p-1, (15)
defined by:



An important feature of the method proposed and tile optimality conditions are'
here is that the underspecified problem in the
m-dimensional articular space has been reduced to an
rn - n dimensional problem in the parameter space of 0/2 0/2 012

m-n+1 _ -- O,i _- 1.Iil -- rz ,-l- 1; _ -- 0: _ -- 0.j -- l.r

E Oti OH &"a{tl .... tin-n+1} with the constraint t_. = l i17,
k=l

m-_+l With these conditions, analytical solutions for l}_e

or E tt. = 0 depending OIl the solution being m - n + 1 dimensional vector 7 wit}l componellts
k=t (/1 .... lm_rt+l ) can be found such that the res_fllLn,-

sought in the space E of solutions of Eq. (3) or in rn-,,+l
the null space .V" of the mapping J. This is quite ..X-q-- Z tiff,, optimizes Q while satisfying all tile
a reduction in dimensionality, since, for example, a ,=I
7 d.o.f, manipulator operated in n = 6 dimensional constraints. As an example of such an anal.vtical
task space (3-D position and orientation) requires derivation, consider a general criterion
only 2 linearly independent vectors 91 and _ to
construct E or At, and only one parameter t 1 (since Q = l[Ag(_, .X_)- Ag_{{'-' (t,*/
t2 = 1 - tl) to be found for any' desired particular
solution (e.g. least norm, etc.), where --_Zr represents a given reference operational

vector characterizing the state to be acheived by
3. Analytical Determination system, and _XZ is an operational vector function of

of Particular Solutions the .joint positions and displacements. Let B(_) l)e a
matrix such that

Only a few authors have studied solution

techniques involving linear combinations of vector /_Z = B(_)A_ (19t
sets similar to that discussed here for manipulator
redundancy resolution, and they have done so and define the vector It and matrix (7 as:
only for very particular control situations (e.g., see
the "joint blocking" technique for acceleration-level
control in [12]) or for unconstrained conditions
(e.g., see [13]). Here, we show how the general H. lI_,. = ,.XZT'B'_I,.; I,:= l. m - n + 1 _20}
Lagrangian-type constrained optimization formalism
can be used to derive the solution parameter set
{tl .... tp}, in either Eq. (10) or Eq. (15), for

a general task requirement seeking to optimize a G, G,a = _TiBTB-_j i = 1. m - n+ lj = 1. m - n + 1
criterion Q(A'_(ti)) under a set of r constraints ('21t
C3(A_(ti)) =0 • j=l,r" i= 1, rn--n+ l.

Since derivation of the wide variety of analytical where the upper T sign denotes a transpose.
solutions that correspond to the various types of Assume the r constraints c'i(__(t) = 0) are
criteria and/or constraints typically involved in expressed as
manipulator control is clearly beyond the scope

of this paper (many of these solutions for both _jr _. 1 =0' j = 1. r 12'2/
discrete and continuous criteria, and for various

types of constraints such as joint limit avoidance, a form to which many kinematic constraints
obstacle avoidance, etc., have been derived in [14] (e.g., joint limits, obstacle avoidance, etc./ can
and will appear in companion papers), we only be reduced [1,t]. Then the optimality conditions
present here an example of such an analytical solution [Eq. 117)] become'
for a "general" least-norm criterion with a set of

constraints expressed in a form most encountered f _
in manipulator kinematics [14]. Since the focus of (2,t + H + i,g + El/i;'3 i -- "o

this initial paper is to present comparisons of the / i=_

FSP method with the "standard" least norm (of the 7:'T7 = 1 (2:_1
joint velocities) algorithm, we then reduce the general

_./ T_
solution to this particular case. and apply it to several .3 t = 1 j = 1, r
illustrative manipulator systems.

For a general criterion Q(_N_(ti)), i = l, m-n+ l to where 7_-and F are the _t - rz + 1 dimensional vectors
be optimized in the space defined by Eq. (101 with a 7-T = (1.1,1 .... 1) and _r = (0.0 .... 0), respectively
set ofr generalconstraints CJ(A-O(t,) = 0, j = 1 . r: Setting ?7T = (u_ .... u,-) and _, = 7;I'(_'-17:: alld

the Lagrangian is: defining the vector b. 7.'. and d. and the lllalrix ..11[)y'

m-,,+l lai -- 7T0'-17 _ _ r 7r __, , c', = G'-17:, d, = l + G-Ill.r

12(I,.I.L. u3) =Q(I,)+I,( t, - l + ua(.7"J(t,) .'1i3 =,'ibj -a,_' G I i= 1.r.j = l.r: _lle
,=1 a=l solution of V<I. (23) for the l,agrange )lltlllipliv)'s a)l_t

(16) parameter set call I)e written as



leading to a corresponding (and of course different)
F = .-t-l(ad-b'.(l +FTg-IH)) (2-t) solution for t from Eq. (27). The resulting solutions

A T, from Eq. (28) were compared with each other

/_ = -(1 + ifi'b + 7.rg-tH)/a (25) and with the pseudo-inverse solution, systet,_atically
showing better than five digit accuracy in every case

= -G-l(/ag+ L uiT_i + -_) (26) ._ _ I . .

i=l

For comparison with the pseudo-inverse algorithm
which optimizes the least norm of the joint tl

displacements in unconstrained conditions, we set _,.__AZ_ = 3, AZ = A_, and consequently, B in (a) "_ @,
Eq. (19) is the identity matrix. Thus G becomes the
Gramnaian matrix of the vectors 9i, i = 1, m - n + 1.
and H = 3. Since in the unconstrained condition
5, = 3, i = 1, r, Eq. (26) reduces to

t*= a-l-_/(Tra-'_) (27) I

and the least norm solution is obtained as: [
t

A_._. = t_ (28) (b)

Fig. 1. Least-norm solution of the FSP method on

4. Experimental Results s.mple trajectories of a 4 d.o.f, planar manipulatorwith 1 d.o.r. (position and orientation control) with
a) 1800 , b) 360 ° total orientation change over the

The IMSL standard pseudo-inverse algorithm trajectory.and the FSP method described above with the
least-norm solution of Eqs. (27) and (28) were
both implemented on several redundant manipulator Figure 2 shows two example trajectories for the
test-beds and tested on a variety of trajectories. In simulated 4 d.o.f, planar manipulator controlled in
all cases, a feedback loop from the output of the position (a:, 9) only, therefore with 2 d.o.r. In this
redundancy resolution was utilized to add to the case, there are 6 (2 x 2) square subrnatrices and

desired A_ '_+1 vector at time step n + 1 the error C_ = 20 possible combinations of vectors 9i. The four
between the desired configuration _n at time step combinations that involved three vectors gi exhibiting
n and the configuration actually resulting from the a zero at the same component were rejected, and
joint displacement solution of time step n. The all feasible others were investigated. Typically all
actual configurations, calculated using the forward 16 were found suitable and leading to a parameter
kinematic Eq. (1), are those plotted in the following solution t. Comparisons of the resulting solutions A T
figures, with the pseudo-inverse solution also showed better

Figure 1 shows two example trajectories for than five digit accuracy in every case.

a simulated 4 d.o.f, planar manipulator, with The FSP method was also implemented on several
equal length in all four links. Both the position hardware systems, including the 7 d.o.f. CESARm
(z, !/) and orientation (tk) of the end-effector are manipulator [4],[15] ,[16] . On this system, F'SP-based
controlled, leading to one degree of redundancy control schemes were implemented for control in
(d.o.r.) with n = 3 and rn = 4. In this case, 3-D of the position of the wrist, the position of
there are C_3 = 4 possible (3 x 3) submatrices the end-effector, or the position and orientation of
and, if invertible, ,t projected vectors 9i. Since the end-effector, leading respectively to redundancy
only' rn - n + 1 --- 2 independent vectors are resolution with l d.o.r, on a 4 d.o.f, a-D system,
necessary, there are C4 = 6 sets of vectors that and ,t d.o.r, and 1 d.o.r, on a 7 d.o.f. 3-I)
could potentially be used to construct the entire system. Although closed loop at the redundancy
space E from Eq. (10). In an actual implementation, resolution level (as explained previously), the control
all these combinations would of course not need schemes drove the manipulator in open loop fashion
to be calculated (although computations in parallel (i.e., with no joint-encoder data feedback). Figure 3
are feasible and would not significantly slow down shows an example of the FSP results umng a
the algorithm). For the purpose of our verification sequence of 3-D graphics displaying the rnotio,l of
studies, however, each feasible combination was the 7 d.o.f. CESARm (located on the ItER:X,IIES-III
calculated at every time step of each test trajectory mobile robot,) over a sample position and oriemation
(typically all ,t submatrices were invertible and all 6 control trajectory with least-norm minimization. For
combinations were found suitable), each combination everyone of tlmse lests in 3-I), the FSP soltltio_ls



were compared with the results of the pseudo-inverse 8. Conclusion
algorithm and showed better than five digit accuracy.

A new approach for controlling redundant
manipulators under varying criteria and constraints
has been presented. The approach uses the Full
Space Parameterizatlon (FSP) method to generate
the entire solution space as well as the null space
for the underspecified system. Within these spaces.
the optimization problem to find a specific solutioll
reduces to an m-r_ dimensional problem in parameter

(a) I space. An example of analytical solution has beell
derived for the generic case of a criterion involving
the least norm of a general operational vector
funtion with a set of kinematic and/or environment
constraints imposed on the system. The solution has
then been reduced to the case of uncmmtrained least
norm of the joint displacements sc that comparisons
could be performed between the new FSP approach
and the "standard" pseudo-inverse algorithm. In
these comparisons, the two methods provided
identical results to within numerical round-off errors

(at the sixth significant digit). As part of these
comparisons, sample results obtained with the FSP
were presented for a ,t d.o.f, planar manipulator and
a 7 d.o.f, a-D manipulator.
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