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Abstract Direct methods perform very well on sequential computers.

We investigate the suitability and effectiveness of iterative However, they demonstratelimitedspeedupsandperfommnce
methods for solving the weighted-least-square(WLS)state esti- on parallelcomputersdue to sequentialcharacte.rof the opera-
mation problemon RISC, vector,and parallelprocessors. Sev- tions involved. Existing state estimation algorithms may be
eral of the most popular itemtive methods are tested and divided into two classes: suboptimalandoptimal.
evaluated. Thebest performingpreconditionedconjugategradi- Suboptimalmethods arebased on 'tearing'the system into
ent (PCG) is verywell suited forvector andparallelprocessing several subsystems, and involve a hierarchical processing
as is demonstratedfor the WLS state estimationof the _ [1.III,4, 10-19]. State estimation is performedat thesubsystem
standardtest systems. A new sparse matrixformat for the gain level independentlyand then resultsareadjustedat the coordi-
matriximproves vectorperformance of the PCG algorithm and nation level. The solution is not optimal but the subsystem
ies it competitive to the directsolver.Internalparallelismin level may be executed on differentprocessorsconcurrently.
RISC processors, used in currentmultiprocessorsystems, can Optimal methods in WLS state estimation are based on
be takenadvantage of in an implementationof this algorithm, transformationsand repartitioning of the original problem

which preserve optimality of the solution [19, 20] or may be
Introduction based only on parallelizationof the originaldirectsolver. The

The state estimation program is a crucial component of the latter approach employs data domain decomposition (block
schemes) or task decomposition (elemental schemes); also a

electric energy managementand control system. It processes
on-line telemetered and pseudomeasurement data to provide hybridtechniquewhich combinesthe both methods is possible
dependable estimates of the power system state vector [1,2]. [21]. The amountof parallelism in the direct solver may be
The measurements, which include voltage magnitudes, both improvedby reordering/repartitioningof the gain matrix [22,

23] (which is not optimal with respect to the numberof fiR-insreal and reactive line flows and nodalpower injections, arecor-
ruptedwith errors.The weighted-least-square(WLS)algorithm generated in the factorizationprocess [23, 24]), yet is rather

limited according to the precedence relationship graphin fac-
is the most widely used state estimationmethod. However,the

torizationandsubstitutions[25]. Somenew algorithmsattempt
linear-programmingbased state estimation has been recently

to minimize the precedencerelationshipsusingmultiplefactor-receiving muchattention due to its bad data rejectionproperty
ization[26] orsparseinverse factors [27-30].[3-6].

The real-time state estimation requires a fast and depend- Most publicationsto date have concentratedon simulation
able implementation. As technological limits in speed of the techniquesonly to show expected performanceof these paral-
sequential computersarebeing approached, thereis a growing lel algorithms. Few papersprovide experimentalresults for
need for algorithms suitable for parallel processing. Several machinesrangingfromthe Intel iPSC hypercube,used forpar-

allel factorizationand substitutions [22], and the M1TTaggedyears ago, the power industry recognized this problemand a
very significart effort has been made to develop such algo- TokenDataflowArchitecture,which can takeadvantage of the
rithms [7]. Recently, the Dantzig-Wolfe algorithm was pro- fine-grainparallelismin parallelLU factorization [31], to vec-
posed for decomposition and parallel processing in the LP- tor computers like the Cray-1 [32] or the Cray/XMP [33] for
based state estimation [8, 9]. Muchmore has been done in this solving fast decoupled load flow, which also involves solving
directionfor the WLS estimator,which has traditionallyincor- large andsparsesystems of linearequations.
porated direct methods based on the LDU, LU, or Cholesky Iterativemethods are widely used for solving large, sparse
factorizations for solving large and sparse systems of linear systems of linear equations generatedwhen finite differences
equations in each iteratioa of the state estimation algorithm, methods are applied in the solution process of partialdiffer-

entiai equations [34-36]. Some iterativemethods possess much
* PacificNorthwestLaboratoryis operatedfortheU.S.Departmentof higherlevels of parallelismthanthe direct ones. In this work,
Energy(DOE)by BattelleMemorialhlstitute undercontractDE- the most frequently used iterative methods are tested for
AC06-.76RLO1830. solving sparse systems of linear equations in the WLS state
?TheauthordidthisworkwhileatTheUniversityofAlabama. estimation problem. The best performingmethod, precondi-
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tioned conjugate gradient, has a very good level of coarse- A(x °) = HT(x°)R-IH(x O) (7)
grain parallelism. Following the trends in the par,-:'_.1computer
technology-the use of Reduced Instruction Set Computing
(RISC) processors and/or powerful vector processors in mas- Iterative Solution of Systern8 of Linear
sively parallel multiprocessor systems like: the Intel Paragon, Equations in WLS State E_timation
the Thinking Machines CM-5, or the Fujitsu VPP500-this To avoid confusion, for the purpose of this paper, from now on,
algorithm is implemented and tested on a RISC, vector, and an iteration of the WLS state estimation will be referred to as a
parallel computer. "cycle" while the "iteration" will be used in context of the iter-

In the following section, the WLS state estimation problem ative solver.

is outlined. Then, the most popular basic and acceleration iter- In each cycle of WLS state estimation, a large and sparseative methods are described and tested for the WLS state esti-
system of linear equations is being solved:

marion problem on the Cray/XMP using the ITPACKpackage
[38]. The convergence and execution time results are pre- AAx = b, (8)
sented. Later section describes details of our optimized imple- where the matrix A is the symmetric-positive-definite (SPD)
mentations and results for the PCG algorithm on a RISC, gain matrix and equ. (8)is another form of equ. (6).

vector, and parallel computer. A new sparse matrix format for The direct solver which has traditionally been employed in
storage of the gain matrix is introduced to improve efficiency the WLS state estimation is based on either the Gaussian elimi-

of the PCG algorithm on vector computers. The tests are per- nation, LU, LDU, or Cholesky factorization, followed by the
formed for the WLS stateestimation of the IEEE 30- and 118- backward ,andforward substitutions. Iterative methods may be
bus systems. For the purpose of comparison, performance used as an alternative approach to direct methods. They are fre-
results for the direct solver are also included, quently used for solving partial differential equations (PDE) on

vector and parallel computers [35, 36]. Iterative methods could
The WLS State Estimation be divided into two classes: basic and acceleration methods.

The nonlinearequations relating the measurements to the sys- Basic iterative methods
tern state can be written as:

Basic iterative methods are the Richardson, Jacobi, Gauss-
z = h(x)+e (1) Seidel, Successive Over-Relaxation (SOR), and Symmetric

where: SOR (SSOR) methods. They may be represented as:

z - measurement vector of dimension m; uk + 1 = Guk + d, (9)x - state vector of dimension (n=2N. 1) × m;
N- number of buses; where ukis the approximation of the solution vector in the k-th
e - vector of measurement errors; iterative step, G is the iterative matrix given as:

h - vector of non-linear functions which relate the states to G = I- QIA, (10)the measurements.

The truncated Taylor expansion of (1) yields: where Q is the splitting matrix and d=Qlb.
For the Richardson method, Q-I. For the Jacobi method,

z = h(x°) + H(x°) Ax + e, (2) Q=D(A) contains diagonal elements of matrix A. The splitting
where x° is the linear'tzationpoint, and matrix for the Gauss-Seidel method is:

H(x O) = [Oh(x_)/O(x_)]. (3) Q=D(A)-CL, (II)
where Ct. is the strictly triangular lower part of matrix A. How-The weighted-least-square state estimation problem is for-

mulated as the minimization of the following form: ever, the Gauss-Seidel method is implemented as a different
form of iteration of equation (9) using the iterative matrix for

J(x) = [z- h (x) ] TR-I [z- h (x) ] , (4) the Jacobi method, see [34]. The Successive Over-Relaxation
where the covariance matrix of the noise is: method is derived from the Gauss-Seidel method by introduc-

ing a relaxation factor o. The value of cois 0<0><2.The method

when to<l is said to be underelaxed, for to>l is overrelaxed,
R = E (ee r) = o2 if i=j (5) and when tt_.l it reduces to the Gauss-Seidel. The iterative0 otherwise.

matrix is modified in such a way that diagonal elements of G
The state estimate can be found by iteratively solving the fol- are premultiplied by (I-to), other elements and d are premulti-
lowing equation: plied by the to factor. Similarly to forward/backward substitu-

tions, the SOR method is essentially sequential; however, it
A (xO)(x°+ l-x °) = HT(x O)R-1 [z.. h (x°)], (6) may be implemented very efficiently on parallel computers as

where A denotes the gain matrix: an asynchronous algorithm [37].The Symmetric Successive



Over-Relaxation is basically identical to the SOR method but covered that the CG method could be used with a precondi-
each iteration consists of forward and backward sweep.The tioned system of equations to effect convergence in far fewer
splitting matrix for the SSOR method is: than N iterations. The CG method has since become popular

because of its capacity for efficiently solving sparse matrix

Q = 2 ----'_( D - CL)D -l ( D - Cu). (12) problems, its suitability for implementation on vector and par-
allel computers, and developments that allow it to be general-

Unlike the SOR method, the S$OR can be accelerated ized for use with nonsymmetric matrices. Several

using the Chebyshev polynomial or conjugate gradient acceler- modifications to the Hestenes and Stiefers original method [41]
ations, have been proposed that make the method suitable for nonsym-

Sequence of u vectors converges to the true solution of sys- metrizable matrix problems, see [40]. Practically, the conver-
ten, (8) if the spectral radius of G is less than one [34]. gence rate depends on the condition number, the ratio of the

largest to smallest eigenvalue, of the matrix, A. When the

In initial studies, performance of the basic iterative meth- matrix's condition number is minimized, the method usually
ods for solving WLS state estimation problem was tested using converges much faster than in N iterations. The condition num-

the ITPACK [38] and NSPCG [39] packages. The system of ber can be minimized by premultiplying both sides of equation
linear equations corresponding to the first cycle of the WLS (8) by the inverse of a preconditioner matrix, Q:
state estimation for the IEEE 30-bus system was used. The

stopping number was _= 10-6. (Throughout the paper, the Q'IA Ax = Q'lb (13)

sparse problem formulation was employed.) The following to yield a new system to be solved:
table presents performance results of basic iterative methods
(time given in CPU seconds) on the Cray/XMP using the AAx = b. (14)

ITPACK package. The matrix Q should have a simple structure and approxi-

Table 1:Performance of basic iterative methods, mate the gain matrix in order that the new coefficient matrix
might have a smaller condition number.

Gauss- SOR SSOR Three methods exist for preconditionin_g an equation sys-Method Richardson Jacobi Seidel
tem: the matrix as an approximation of A", as an incomplete

iterations diverged diverged > 5000 2782 > 5000 Cholesky or LDLT decomposition, and as a splitting matrix
CPU time - I > 4.79 2.66 > 6.3 from an iterative technique. Ortega and Voigt [35] give a syn-

opsis of each of these strategies in a useful survey of preeondi-
The best overrelaxation factor for the SOR was tt_=l.75, tioners for CG methods and their implementation on vector and

which was found using a linear search technique. Convergence parallel computers. When a splitting matrix is used, the CG
of the Gauss-Seidel and SSOR was very slow so that the itera- method is referred to as " accelerator of the iterative method

tive process was terminated after exceeding 5000 iterations, for which the splitting matrix was used as a preconditioner. The
while the Richardson and Jacobi methods diverged. As could conjugate gradient method can be employed only for solving
be seen from Table 1, basic iterative methods performed SPD and mildly nonsymmetric linear systems.

poorly. Algorithm: Preconditioned Conjugate Gradient

Acceleration methods I.Input
0

In many cases, convergence of the basic iterative methods can Initial guess of x i.e., u
be accelerated using the polynomial or conjugate gradient Stopping number

acceleration [34]. Methods in the conjugate gradient class also 2. Compute

include: GMRES, ORTHOMIN, ORTHO-DIR, ORTHORES, 5 ° - b - u °

and theirLanczosversions[40]. Solve linear system Qz 0 = 80 for z 0
The conjugate gradient method was originated by Hestenes

Set t90 = z ° and a 0 = (z°,5 °)
and Stiefel [41] for solving SPD systems of linear equations.
While they employ iterative solution methods, CG methods 3. For k = 1,2 ....
can be considered direct solvers since they theoretically yield Compute c k-1 = Ap k-1

exact solutions within a finite number of steps. If roundoff Set kk_l = ak_l / (pk-1, ck-1)

error could be discounted, the CG method would be guaranteed Take Ilk = Ilk-1 + _k-lPk-1

to converge to the exact solution in at most N iterations, where Compute _k = _k-1 -_'k-i Ck-1

N is the dimension of the linear system (8). Despite its interest- = 8king properties, the method was largely ignored after its initial Solve for Z k the linear system Qzk

introduction because of the computational expense required for Check for convergence.

convergence.Thishandicapwas eliminatedwhen itwas dis- If stopping number <_ then STOP else



Set ak = (z k, 8k) in their CPU time consumption. In general, some algorithms

Set (I k = ak/ak_ 1 may be better suited to a particular computer than others, and

Compute pk = z k + Otkpk-1 such issues as data structures and parallelization must be con-
sidered when a particular algorithm is selected.

As before, performance of the PCG method was tested In tested problems, 118and 472 measurements for the IEEE
using ITPACK. Test results for different preconditioners are 30-bus and ll8-bus systems were used, respectively.
given in Table 2. The CG method with the SSOR precondi-
tioner performed best. The best overrelaxation factor towas in Initial studies showed that among iterative algorithms, the
the range <0.95,1>. PCG with the Jacobi and SSOR preconditioners works the best

in the WLS state estimation. In the next step, this algorithm
Table 2: Performance of the preconditioned conjugate gradient, was implemented on RISC, vector, and parallel processors.

Preconditioner none Jaeobi SSOR Even in a single processor implementation, the CG with the

numberof iter. 229 115 55 Jacobi preconditioner gave better results than with the SSOR or
Incomplete Cholesky Factorization (ICF) (which did not fail

CPUtime 0.210 0.107 0.0977 when implemented according to a different formula [45] than
one used in nlaACK and NSPCG) preconditioners. Moreover,The Incomplete Cholesky Factorization (ICF) algorithm, as

implemented in ITPACK and NSPCG packages, breaks down since unlike in many applications where iterative solvers are
for this particular problem. Moreover, the Chebyshev polyno- used, here, the structure of the matrix A is not regular, the

SSOR and ICF preconditioners exhibit sequential nature, andmial acceleration method [33] with the Jacobi or SSOR,
therefore, are not well suited for vector/parallel implementationalthough nondivergent, failed to converge for the same stop-

ping number. [46].

As can be seen in Table 2, the CG method without precon- Iterative solvers compute approximations to the solution
ditioner required many more iterations than the system dimen- vector until a stopping criterion is met. In this application, the
sion (N---59for IEEE 30-bus system) to converge. This can be following stopping test was determined to work the besl:
explained by the large condition number of the gain matrix in

the WLS state estimation problem, see Table 3. ; = IIu(*+')- u I1 . (15)

Table 3: Condition number of the gain matrix IIu<*+*)
WLScycle 1 2 3 4 Of course, a lower value of the stopping number leads to a bet-

30-bussystem 2.705.105 3.919.10 5 3.859.105 3.859.105 ter accuracy of the iterative solution but also increases the
amount of computations. In each cycle of WLS state estima-

ll8-bus system 7.712.105 8.803.105 9.035.105 9.042.105 tion, updates of the state vector as well as values of the mis-
match vector become smaller in magnitude as the Newton-

Initial studies also included the use of different scaling Raphson algorithm converges. It was found that the stopping
techniques for the gain matrix and right-hand-side vector. Scal- number for the iterative solver should be lower in the initial

ing was successfully used in the LP state estimation to alleviate cycles of the state estimation procedure. Comparing values of
the problem of round-off errors that reduce accuracy and the slate estimates for the IEEE ll8-bus system calculated
increase amount of computations [42, 8, 43]. The gain matrix

using iterative and direct solvers, the following values of the
and the fight-hand-sidevector were scaled, and then the itera- stopping numbers for iterative solver in consecutive cycles of
tive solver was applied to solve the scaled problem. However, the state estimation procedure were determined as providing an
none of the scaling techniques described in [42] helped to adequate accuracy: 10-6, 3.10-6, 8.10-6, 2.10-5. These values
improve the convergence, were employed for both the IEEE 30- bus and ll8-bus systems

on all computers used in this work. Because implementation
Implementation Considerations and accuracy of floating point computations differ from one

Performance of the PCG algorithms for solving large sparse computer to another, in each case, a slightly different number
systems of linear equations on vector and parallel machines of iterations were performed.

depends on the efficiency with which data structures are han- The accuracy of the state estimates computed using the
died [44, 46]. Often, to get an iterative solution to converge, iterative solver was determined separately for voltages and
one has a choice between many "cheap" iterations or a few angles comparing the appropriate values to these obtained
expensive iterations. Iterative procedures such as Jacobi or using the direct solver on the same computer. The relative
SOR belong to the first class while PCG methods belong to the accuracy was calculated in percents using the infinity norm:
second. Likewise preconditioners for CG methods may be so

classified. The Jacobi preconditioner is very cheap while the Max(IXi'era'iv'-Xdirec'l_.lO0%, (16)
SSOR or Incomplete Cholesky preconditioners are expensive _,1 'JXairect I
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that is, as the largest absolute value of the ratio of mismatches Table4: CPU time for direct solver on the RS/6000.

between estimates for direct and iterative Sol'vers divided by IEEE 30-bus system IEEE 118-bussystem
the value of this estimate, iWLScycle

!wit ordering!with ordering wit ordering with ordering
In the next three sections implementations of the Jacobi-

PCG on RISC, vector, and parallel computers are discussed. 1 0.033 0.017 0.649 0.217
The performance of this algorithm is compared to the perfor- 2 0.033 0.017' 0.633 0.200
mance of the direct solver, the LDL r factorization with forward 3 0.033 0.017 0.649 0.200
and backward substitutions. For the direct solver, to reduce the 4 0.033 0.017 0.620 0.200

number of fill-ins in the factorized matrix, the system was reor- sum 0.10 0.068 1.951 0.817

dered using the Tinney scheme two. reordering - 0.017 0.067

Table 5: Performance of PCG on the RS/6000.
Implementation on a RISC processor .......

IEEE 30- bus system IEEE ll8-bus system
The preconditioned Jacobi-CG method is very well suited for WLS cycle
RISC processors like the IBM RS/6000 used in this study, iter. time iter. time
Architectures of RISC processors allow execution of more 1 93 0.050 143 0.400

than one instruction per clock cycle [47]. This can be done by 2 92 0.050 153 0.433

taking advantage of internal parallelism of these processors, 3 81 0.033 196 0.533
pipelining, and processor instruction overlap scheduling. RS/
6000 has independent branch, fixed, and floating point units, 4 46 ..... 0.017 123 0.333
which can work in parallel [48]. Presence of Floating Multiply ......sum: 0.15 - 1.7
and Add (FMA) instruction, which executes a*b+c operation relative _bltage Angle Voltage Angle....

(two floating point operations) in one clock cycle, makes accuracy 0.03% 0.09% 0.006% 0.02%

implementation of vector products or vector SAXPY opera-
tions---straightforward but computationally expensive ele- cal clock cycle) and are recently used in many parallel comput-
ments of the CG algorithna---very efficient. In order to improve ers. This performance gap could be easily eliminated providing
processor overlap scheduling, loop unrolling to depth three that the iterative solver exhibits a significantly better level of
was used in the vector operations of the PCG algorithm. This parallelism than the iterative solver. It is not uncommon that
technique helps the compiler to generate a more efficient code some algorithms that are slower than the best sequential algo-
suitable for pipeline execution [48]. rithms perform much better on parallel machines.

Most modern computers use cache--very fast but limited

in size---memory. On the RS/6000 access to a word takes one Implementation Qn a vector computer
or eight clock cycles depending on whether the word is located

On a vector computer, like the Cray/XMP, the code of iterativein cache or main memory. Operation of RISC processors can
be very seriously degraded if inside 130 loops data is accessed solvers vectorizes much better than the code of direct solvers.
with a large stride causing frequent cache misses. Sparse However, special consideration must be given to the data struc-
matrix-vector product in CG algorithm as well as factorization tures to implement sparse-matrix vector product operation effi-
and substitutions in direct solver use indirect addressing that ciently. Standard rowwise sparse matrix format leads to short
translates into varying in size strides, access to nonadjacent innermost loops because their length corresponds directly to
memory locations, and less efficient execution• the number of nonzero elements per row in the gain matrix. It

limits performance of this operation because the length of vee-
The performance of direct solver, the LDL r factorization tor registers on the Cray/XMP is 64 and on others like the Hita-

with forward and backward substitutions with and without chi $820, Convex C-l, or NEC SX/2 even longer [47].This can
reordering of the gain matrix, is shown in Table 4. The perfor- be alleviated by using a different matrix format. One such a
mance of iterative solvers is independent of ordering since fill- format, developed at Purdue and used as the primary format in
ins are not generated. NSPCG package [39], is very well suited for solving PDEs on

Direct solver is about twice as fast as the Jacobi-CG for the vector computers using the PCG method. The matrix is repre-
IEEE ll8-bus system, see Table 4 and 5. However, comparing sented with two two-dimensional arrays. First one accommo-
the performance ol_ traditional CISC and RISC processors, see dates nonzero elements of the matrix and the other
Table 9 and 10, it can be noticed that performance gap between corresponding column indices. The size of these arrays is the
the iterative and direct solver has narrowed more than twice number of unknowns times the maximum number of nonzero

after migration to the RISC platform. RISC processors are elements in a row. After transformation of DO loops, the inner-

much more powerful than CISC processors (processors of the most has length equal to the number of unknowns and vector-
IBM RS/6000, Model 320 and Sequent Symmetry have identi- izes very weU. However, because the number of nonzero



elements per row in the gain matrix varies a lot (from 3 to 43 noted that, the CPU time for the i;:rative solver includes time
elements for the IEEE 118-bus system), there is a significant spent to transform the standard sparse matrix storage of the
amount of time wasted processing the extra zero-valued ele- gain maa-ix into the new format, which operation, of course,
ments. Here, this problem was solved by developing of a new could be avoided in a production-type code.
sparse matrix format. The corresponding code for the PCG
algorithm vectorizes well and the overhead is reduced. Table 7: CPU time for direct solver..... on the Cray.

WLS cycle 30-bus 118-bus

New Sparse Matrix Format 1 5.908110.3 7.979.10.2

Instead of using a rectangular array, the sparse matrix is stored 2 6'04i. l0 -3 7.909.10-_-
in blocks resembling stairs. The height of each consecutive
block is a multiplicity of the vector register size, V, which 3 6.036110"3 7.875.10.2
varies on different supercomputers. This provides the lowest 4 6.032110-j 7.868.10.2

possible start-up cost of vector operation per element in the sum 2.402-10.2 0.3163

innermost DO loop [47]. The width is equal to the number of reordering 4.656.10"3 3.177.10.2,,

nonzero elements in the last row of the gain matrix, stored in
this block minus width of the previous blocks. This format Table 8: Performance of PCG on the Cray.

requires sorting out in increasing order and correspondingly IEEE 30-bus sys. IEEE l l8-bus sys.
renumbering elements of the state vector according to the WLS cycle
number of nonzero elements per row in the gain matrix, iter. time iter. time

1 78 ....8.796.10-3 140 4.768.10-2

thisarea , 2 65 7.686.10-3 161 6.181.10-2
[_!_;;;;;;;;;;;.. eorresponqs............................ to savingsm 3 63 8.139.10-3 187 6.675.10-2',::::::::.':::'-::::::.':::'-:-, matrix-vector
i!!i!i!;.'a.';:_............. multiplication 4 50 6.595.10-3 116 4.221.10.2

_:":........................ sum: - 3.121.10-2 0,2184
'2!_::.:::::::::..... .....
!!!!!!!!!!!!!!!i:::::::::::: reordering - 3.053.10-3 1.976.10.2
iiiiiiiiii;iiiiiiiiiiiiiii[i rela_,,e Voltage Angle Voltage Angle'..':::::::::::::::::::::::w.
_:'.:.'."....................... accuracy!::::-"-'-::-':::-'............. I__._t.'.'-'..'---4 V-lengthof 0.045% 0.13% 0.0051% 0.0078%
i_:::::::":::"::.......... _ vectorregisters ..........

' I!!1!1|!I!1 .................

iii_iii_ii_i_i!-''-'"-"..... '..................... ,.....nonzeros The PCG with Jacobi preconditioner appears to be very

Purdue format new format well suited for multiprocessor vector supercomputers since the
code can be not only vectorized but also parallelized. This

Fig. 1: Storage of nonzero elements in sparsematrix formats suitable however, was not done in this work because of lack of access to
for vectorization, the Cray/XMP-24 (having 2 processors only) in the dedicated

mode that is required to perform reliable accounting when mul-
The performance of the matrix vector product operation using titasking is used. Performance of the parallel PCG was tested
this new matrix format versus standard nonsymmetric (with on another parallel machine instead.
and without vectorization) and Purdue formats was tested for

the gain matrix for _ 30-bus and ll8-bus systems. Results
given in Table 6 show superiority of this new format over the

others, implementation on parallel processors
Table 6: CPU time for a single sparse matrix - vector product The machine used in the tests was the Sequent Symmetry with

operation using different matrix formats on the Cray. 24 CISC processors and shared memory configuration, with

std. std. 64-bit-wide bus. Each processor has 64KB of 2-way set asso-
nonvector, vectorized Purdue new fret. ciative write-back cache and floating point Weitek 1167 accel-

30-bus system 2.495.10-4 1.972.10.4 1.213.10.4 9.138-10"5 erator [47]. The WLS state estimation program was ported to

I18-bus system 1.154.10-2 7.922.10-4 4.755.10-4 3.236.I0 .4 the Sequent Symmetry and the PCG solver was parallelized
..... based on the data domain decomposition approach.

The introduced sparse matrix format improved overall per- Most existing power system network decomposition
formance of the PCG algorithm as compared to the vectorized schemes [49, 50] are more oriented toward direct solvers espe-
direct solver, see Tables 7-8. For the IEEE 30-bus system, cially using block schemes [21] where size of the interconnec-
direct solver is faster than the PCG but not for a larger ll8-bus tion area limits amount of parallelism in the algorithm. Here,

system where the PCG algorithm takes advantage of increased the decomposition was accomplished by dividing the data into
efficiency of vectorization in longer DO loops. It should be equal blocks assigned to different processors [44] what eorre-



sponds to 'tearing' of the network into equally sized clusters Tables 9 and 10 show performance of sequential direct and

and mapping them to different processors. Since amount of sequential iterative solvers, respectively. Difference in perfor-

computations in all the operations of the PCG algorithm except mance between them is larger than on the RISC processor.

sparse matrix vector multiplication---where the number of
Table 11: CPU times and speedups in parallel PCG for 30-bus system

nonzero elements, related to the cluster size and connectivity,

determines computational complexity----is directly propor- cydeo,. 1 2 3 4 total avg.

tional to the cluster size, this provided a good load balancing. Proc. time Sp. 'time Sp. time Sp, time Spl time Sp.

The differences in execution times between processors were 2 0.35 1.714 0.35 1'667 0.3 1.777 0.167 1.899 1.17 1.76
,,

always less than 6%. However, the shared memory bus U'aflic 4 0.2 3.0 0.2 2.916 0.18312.914 0.116 2.715 0.70 2.89

related to the number of tielines was not optimized. It was 8 J0.153 3.922 0.150 3.812 0.133 4.749 0.067 4.133 0.50 4.13

probably the main source of performance degradation when

more than eight processors for IEEE ll8-bus system were Table 12: CPU times and speedups in parallel PCG for ll8-bus system

used, see Figure 2. cycle,o 1 2 3 4 total avg.
Proc. time Sp. time Sp. time Sp. time Sp. time Sp.

Parallel execution was implemented with the fork and join

schemes. From the main program, the same code of the itera- 2 2.316 1.936 2.38'3 1.930 3.183 1.864 2.166 1.908 10.05 1.91
4 1.183 3.789 1.266 3.632 1.600 3.708 1.150 3.509 5.12 3.68

tive solver was forked for each processor. Communication was

accomplished via shared memory and synchronization using 8 0.667 6.725 0.750 6.133 0.900 6.512 0.566 7.294 2.88 6.67

barriers. The PCG algorithm requires synchronization when 12 0.516 8.689 0.566 8.128 0.716 8.279 0.466 8.886 2.26 8.49

the vector product operation is computed. Each processor per- 16 0.450 9.962 0.483 _.871 0.633'9.373 0.400 10.33 1.97 9.89

forms this operation on the appropriate parts of the vectors

stored in its local memory. After this is done, the partial results The performance of parallel PCG solver is shown in Tables

are combined into the final result--each processor reads the 11-12 and Figure 2. The tables include the longest CPU time of

numbers computed by the other processors and adds them up. a processor and the speedup (calculated with respect to time

The result is stored and used locally. Multiple-write conflict is resu!ts for the sequential implementation of the PCG) in each

avoided since each partial result is stored in a shared memory cycle of the WLS state estimation, total CPU time to solve the

variable but written only by a single processor. The PCG with problem and average speedup (overall) on 2, 4, 8, 12, and 16

Jacobi preconditioner has a coarse-grain parallelism since the processors. These results demonstrate a very high level of par-

vector product operation occurs only twice per iteration, allelism of this algorithm as applied to the WLS state estima-

tion problem.Table 9: CPU time for direct solver on the Sec uent.

"- w - i - ! - ! - w - w - w - w

WLS cycle 30-bus sys. ll8-bus sys. 16 ,w,'
1 0.083 1.017 o,,'

¢p0
0J

2 0.067 1.017 14 ....'
3 0.067 1.017 ,,,,"'
4 0.067 1.033 12 ,,,,"

p0lJ

sum 0.284 4.083 1 0 ,,'"
reordering 0.017 0.167 ta, ,'""

Table 10: Performance of sequential PCG on the Sequent.
¢j0 °°l

m¢_eIEEE 30- bus system IEEE 118-bus system .,
WLS cycle ,,,

iter. time iter. time 4 _ , '"
1 92 0.600 143 4.483 [2 91 0.583 151 4.600

3 82 0.533 195 5.933

4 48 0.317 132 4.133 00

sum - 2.033 19.149 ntmaber of processors
, ,,

relative Voltage Angle Voltage Angle Fig. 2: Speedup for the PCG solver for the IEEE 30- and 118- bus
accuracy 0.029% 0.096% 0.0063% 0.013% systems.
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