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Iterative Methods for the WLS State Estimation on RISC, Vector, and Parallel
Computers

L. Nieplocha1

Pacific Northwest Laboratory*
Richland, WA 99352

Abstract

We investigate the suitability and effectiveness of iterative
methods for solving the weighted-least-square (WLS) state esti-
mation problem on RISC, vector, and parallel processors. Sev-
eral of the most popular iterative inethods are tested and
evaluated. The best performing preconditioned conjugate gradi-
ent (PCG) is very well suited for vector and parallel processing
as is demonstrated for the WLS state estimation of the IEEE
standard test systems. A new sparse matrix format for the gain
matrix improves vector performance of the PCG algorithm and
makes it competitive to the direct solver. Internal parallelisin in
RISC processors, used in current multiprocessor systems, can
be taken advantage of in an implementation of this algorithm.

Introducti
The state estimation program is a crucial component of the
electric energy management and control system. It processes
on-line telemetered and pseudomeasurement data to provide
dependable estimates of the power system state vector [1,2].
The measurements, which include voltage magnitudes, both
real and reactive line flows and nodal power injections, are cor-
rupted with errors. The weighted-least-square (WLS) algorithm
is the most widely used state estimation method. However, the
linear-programming based state estimation has been recently
receiving much attention due to its bad data rejection property
[3-6].

The real-time state estimation requires a fast and depend-
able implementation. As technological limits in speed of the
sequential computers are being approached, there is a growing
need for algorithms suitable for parallel processing. Several
years ago, the power industry recognized this problem and a
very significart effort has been made to develop such algo-
rithms [7]. Recently, the Dantzig-Wolfe algorithm was pro-
posed for decomposition and parallel processing in the LP-
based state estimation [8, 9]. Much more has beer done in this
direction for the WLS estimator, which has traditionally incor-
porated direct methods based on the LDU, LU, or Cuolesky
factorizations for solving large and sparse systems of linear
equations in each iteration of the state estimation algorithm,
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Direct methods perform very well on sequential computers.
However, they demonstrate limited speedups and performance
on parallel computers due to sequential character of the opera-
tions involved. Existing state estimation algorithms may be
divided into two classes: suboptimal and optimal.

Suboptimal methods are based on ‘tearing' the system into
several subsystems, and involve a hierarchical processing
[1.1I, 4, 10-19]. State estimation is performed at the subsystem
level independently and then results are adjusted at the coordi-
nation level. The solution is not optimal but the subsystem
level may be executed on different processors concurrently.

Optimal methods in WLS state estimation are based on
transformations and repartitioning of the original problem
which preserve optimality of the solution [19, 20] or may be
based only on parallelization of the original direct solver. The
latter approach employs data domain decomposition (block
schemes) or task decomposition (elemental schemes); also a
hybrid techinique which combines the both methods is possible
[21]. The amount of parallelism in the direct solver may be
improved by reordering/repartitioning of the gain matrix [22,
23] (which is not optimal with respect to the number of fill-ins
generated in the factorization process [23, 24]), yet is rather
limited according to the precedence relationship graph in fac-
torization and substitutions [25]. Some new algorithms attempt
to minimize the precedence relationships using multiple factor-
ization [26] or sparse inverse factors [27-30].

Most publications to date have concentrated on simulation
techniques only to show expected performance of these paral-
lel algorithms. Few papers provide experimental results for
machines ranging from the Intel iPSC hypercube, used for par-
allel factorization and substitutions [22], and the MIT Tagged
Token Dataflow Architecture, which can take advantage of the
fine-grain parallelism in parallel LU factorization [31], to vec-
tor computers like the Cray-1 [32] or the Cray/XMP [33] for
solving fast decoupled load flow, which also involves solving
large and sparse systems of linear equations.

Iterative methods are widely used for solving large, sparse
systems of linear equations generated when finite differences
methods are applied in the solution process of partial differ-
ential equations [34-36]. Some iterative methods possess much
higher levels of parallelism than the direct ones. In this work,
the most frequently used iterative methods are tested for
solving sparse systems of linear equations in the WLS state
estimation problem. The best performing method, precondi-



tioned conjugate gradient, has a very good level of coarse-
grain parallelism. Following the trends in the paro!l.1 compater
technology—the use of Reduced Instruction Set Computing
(RISC) processors and/or powerful vector processors in mas-
sively parallel multiprocessor systems like: the Intel Paragon,
the Thinking Machines CM-5, or the Fujitsu VPP500—this
algorithm is implemented and tested on a RISC, vector, and
parallel computer.

In the following section, the WLS state estimation problem
is outlined. Then, the most popular basic and acceleration iter-
ative methods are described and tested for the WLS state esti-
mation problem on the Cray/XMP using the ITPACK package
[38]. The convergence and execution time results are pre-
sented. Later section describes details of our optimized imple-
mentations and results for the PCG algorithm on a RISC,
vector, and parallel computer. A new sparse matrix format for
storage of the gain matrix is introduced to improve efficiency
of the PCG algorithm on vector computers. The tests are per-
formed for the WLS state estimation of the IEEE 30- and 118-
bus systems. For the purpose of comparison, performance
results for the direct solver are also included.

imati
The nonlinear equations relating the measurements to the sys-
tem state can be written as:

Z2=h(x) +e ¢))
where:
z - measurement vector of dimension m;
X - state vector of dimension (n=2N - I) X m;
N- number of buses;
e - vector of measurement errors;
h - vector of non-linear functions which relate the states to
the measurements.
The truncated Taylor expansion of (1) yields:
2=h(®) + HG®) Ax + ¢, )
where x? is the linearization point, and

H&) = [ra) 8 G)]. 3)

The weighted-least-square state estimation problem is for-
mulated as the minimization of the following form:

Jx) = 2-hWIR ' [2-h (9], @)
where the covariance matrix of the noise is:
0 otherwise.
The state estimate can be found by iteratively solving the fol-
lowing equation:
A @ = HTGOR 12 -h P,
where A denotes the gain matrix:

©

A% = TGO RHGD . 1)

Iterative Solution of Systems of Linear

ns i imation
To avoid confusion, for the purpose of this paper, from now on,
an iteration of the WLS state estimation will be referred to as a
“cycle” while the “iteration” will be used in context of the iter-
ative solver.

In each cycle of WLS state estimation, a large and sparse
system of linear equations is being solved:

AAx =b, @®

where the matrix A is the symmetric-positive-definite (SPD)
gain matrix and equ. (8) is another form of equ. (6).

The direct solver which has traditionally been employed in
the WLS state estimation is based on either the Gaussian elimi-
nation, LU, LDU, or Cholesky factorization, followed by the
backward and forward substitutions. Iterative methods may be
used as an alternative approach to direct methods. They are fre-
quently used for solving partial differential equations (PDE) on
vector and parallel computers [35, 36]. Iterative methods could
be divided into two classes: basic and acceleration methods.

Basic iterative methods

Basic iterative methods are the Richardson, Jacobi, Gauss-
Seidel, Successive Over-Relaxation (SOR), and Symmetric
SOR (SSOR) methods. They may be represented as:

= Guk 44, )

where uf is the approximation of the solution vector in the k-th
iterative step, G is the iterative matrix given as:

G=1-Q'4,
where Q is the splitting matrix and d=Q"!b.
For the Richardson method, Q=I. For the Jacobi method,

Q=D(A) contains diagonal elements of matrix A. The splitting
matrix for the Gauss-Seidel method is:

0=D@A)-Cy, (11)

where C; is the strictly triangular lower part of matrix A. How-
ever, the Gauss-Seidel method is implemented as a different
form of iteration of equation (9) using the iterative matrix for
the Jacobi method, see [34]. The Successive Over-Relaxation
method is derived from the Gauss-Seidel method by introduc-
ing a relaxation factor @. The value of ® is O<w<2. The method
when <1 is said to be underelaxed, for w>1 is overrelaxed,
and when ®=1 it reduces to the Gauss-Seidel. The iterative
matrix is modified in such a way that diagonal elements of G
are premultiplied by (1-o), other elements and d are premulti-
plied by the ® factor. Similarly to forward/backward substitu-
tions, the SOR method is essentially sequential; however, it
may be implemented very efficiently on parallel computers as
an asynchronous algorithm [37).The Symmetric Successive

10



Over-Relaxation is basically identical to the SOR method but

each iteration consists of forward and backward sweep.The
splitting matrix for the SSOR method is:
o 1 -1,1

= —— (=D- —-D - . 2

Q= 5—(zD-CPD (=D -Cp (12)

Unlike the SOR method, the SSOR can be accelerated

using the Chebyshev polynomial or conjugate gradient acceler-

ations.

Sequence of u vectors converges to the true solution of sys-
tem (8) if the spectral radius of G is less than one [34].

In initial studies, performance of the basic iterative meth-
ods for solving WLS state estimation problem was tested using
the ITPACK {38] and NSPCG [39] packages. The system of
linear equations corresponding to the first cycle of the WLS
state estimation for the IEEE 30-bus system was used. The
stopping number was {= 107S. (Throughout the paper, the
sparse problem formulation was employed.) The following
table presents performance results of basic iterative methods
(time given in CPU seconds) on the Cray/XMP using the
ITPACK package.

Table 1: Performance of basic iterative methods.

. . | Gauss-
Method |Richardson| Jacobi Seidel | SOR | SSOR
iterations | diverged | diverged | >5000 | 2782 | > 5000
CPU time - - >479 ; 2.66 >63

The best overrelaxation factor for the SOR was w=1.75,
which was found using a linear search technique. Convergence
of the Gauss-Seidel and SSOR was very slow so that the itera-
tive process was terminated after exceeding 5000 iterations,
while the Richardson and Jacobi methods diverged. As could
be seen from Table 1, basic iterative methods performed
poorly.

Acceleration methods

In many cases, convergence of the basic iterative methods can
be accelerated using the polynomial or conjugate gradient
acceleration [34]. Methods in the conjugate gradient class also
include: GMRES, ORTHOMIN, ORTHO-DIR, ORTHORES,
and their Lanczos versions [40].

The conjugate gradient method was originated by Hestenes
and Stiefel [41] for solving SPD systems of linear equations.
While they employ iterative solution methods, CG methods
can be considered direct solvers since they theoretically yield
exact solutions within a finite number of steps. If roundoff
error could be discounted, the CG method would be guaranteed
to converge to the exact solution in at most N iterations, where
N is the dimension of the linear system (8). Despite its interest-
ing properties, the method was largely ignored after its initial
introduction because of the computational expense required for
convergence. This handicap was eliminated when it was dis-

covered that the CG method could be used with a precondi-
tioned system of equations to effect convergence in far fewer
than N iterations. The CG method has since become popular
because of its capacity for efficiently solving sparse matrix
problems, its suitability for implementation on vector and par-
allel computers, and developments that allow it to be general-
ized for wuse with nonsymmetric matrices. Several
modifications to the Hestenes and Stiefel's original method [41]
have been proposed that make the method suitable for nonsym-
metrizable matrix problems, see [40]. Practically, the conver-
gence rate depends on the condition number, the ratio of the
largest to smallest eigenvalue, of the matrix, A. When the
matrix's condition number is minimized, the method usually
converges much faster than in N iterations. The condition num-
ber can be minimized by premultiplying both sides of equation
(8) by the inverse of a preconditioner matrix, Q:

0lAAx = Qb (13)
to yield a new system to be solved:
AAx = b. (14)

The matrix Q should have a simple structure and approxi-
mate the gain matrix in order that the new coefficient matrix
might have a smaller condition number.

Three methods exist for preconditioning an equation sys-
tem: the matrix as an approximation of A, as an incomplete
Cholesky or LDLT decomposition, and as a splitting matrix
from an iterative technique. Ortega and Voigt [35] give a syn-
opsis of each of these strategies in a useful survey of precondi-
tioners for CG methods and their implementation on vector and
parallel computers. When a splitting matrix is used, the CG
method is referred to as - accelerator of the iterative method
for which the splitting matrix was used as a preconditioner. The
conjugate gradient method can be employed only for solving
SPD and mildly nonsymmetric linear systems.

Algorithm: Preconditioned Conjugate Gradient

1.Input
Initial guess of x i.e., u?
Stopping number {
2.Compute
8¢ = b - u°
Solve linear system Qz? = §°
set p’ = z% and ap = (29,89
3.For kK =1,2, ...
Compute k-1 - Apk4
Set Ay; = ap_y/(pF1, k)
Take uf = u*1 + A 1Py ;g
Compute

for z°

& = 81 Ay sop;

Solve for z¥ the linear system 0zF = 8k
Check for convergence.

If stopping number <{ then STOP else



set a, = (zX,8)
Set 0y = ak/ak_l
Compute pk = zK + akpk'l

As before, performance of the PCG method was tested
using ITPACK. Test results for different preconditioners are
given in Table 2. The CG method with the SSOR precondi-
tioner performed best. The best overrelaxation factor ® was in
the range <0.95,1>.

Table 2: Performance of the preconditioned conjugate gradient.

Preconditioner none Jacobi SSOR
number of iter. 229 115 55
CPU time 0.210 0.107 0.0977

The Incomplete Cholesky Factorization (ICF) algorithm, as
implemented in ITPACK and NSPCG packages, breaks down
for this particular problem. Moreover, the Chebyshev polyno-
mial acceleration method [33] with the Jacobi or SSOR,
although nondivergent, failed to converge for the same stop-
ping number.

As can be seen in Table 2, the CG method without precon-
ditioner required many more iterations than the system dimen-
sion (N=59 for IEEE 30-bus system) to converge. This can be
explained by the large condition number of the gain matrix in
the WLS state estimation problem, see Table 3.

Table 3: Condition number of the gain matrix
WLS cycle 1 2 3 4

2.705.10° [ 3.919-10° | 3.859.10° | 3.859.10°
7.712:10° | 8.803-10° | 9.035-10° | 9.042-10°

30-bus system

118-bus system

Initial studies also included the use of different scaling
techniques for the gain matrix and right-hand-side vector. Scal-
ing was successfully used in the LP state estimation to alleviate
the problem of round-off errors that reduce accuracy and
increase amount of computations [42, 8, 43]. The gain matrix
and the right-hand-side vector were scaled, and then the itera-
tive solver was applied to solve the scaled problem. However,
none of the scaling techniques described in [42] helped to
improve the convergence.

Iinplementation Considerati

Performance of the PCG algorithms for solving large sparse
systems of linear equations on vector and parallel machines
depends on the efficiency with which data structures are han-
dled [44, 46]. Often, to get an iterative solution to converge,
one has a choice between many “cheap” iterations or a few
expensive iterations. Iterative procedures such as Jacobi or
SOR belong to the first class while PCG methods belong to the
second. Likewise preconditioners for CG methods may be so
classified. The Jacobi preconditioner is very cheap while the
SSOR or Incomplete Cholesky preconditioners are expensive

in their CPU time consumption. In general, some algorithms
may be better suited to a particular computer than others, and
such issues as data structures and parallelization must be con-
sidered when a particular algorithm is selected.

In tested problems, 118 and 472 measurements for the IEEE
30-bus and 118-bus systems were used, respectively.

Initial studies showed that among iterative algorithms, the
PCG with the Jacobi and SSOR preconditioners works the best
in the WLS state estimation. In the next step, this algorithm
was implemented on RISC, vector, and parallel processors.
Even in a single processor implementation, the CG with the
Jacobi preconditioner gave better results than with the SSOR or
Incomplete Cholesky Factorization (ICF) (which did not fail
when implemented according to a different formula [45] than
one used in ITPACK and NSPCG) preconditioners. Moreover,
since unlike in many applications where iterative solvers are
used, here, the structure of the matrix A is not regular, the
SSOR and ICF preconditioners exhibit sequential nature, and
therefore, are not well suited for vector/parallel implementation
[46].

Iterative solvers compute approximations to the solution
vector until a stopping criterion is met. In this application, the
following stopping test was determined to work the best:

lu®*D _u @13

lu*D)13

Of course, a lower value of the stopping number leads to a bet-
ter accuracy of the iterative solution but also increases the
amount of computations. In each cycle of WLS state estima-
tion, updates of the state vector as well as values of the mis-
match vector become smaller in magnitude as the Newton-
Raphson algorithm converges. It was found that the stopping
number for the iterative solver should be lower in the initial
cycles of the state estimation procedure. Comparing values of
the state estimates for the IEEE 118-bus system calculated
using iterative and direct solvers, the following values of the
stopping numbers for iterative solver in consecutive cycles of
the state estimation procedure were determined as providing an
adequate accuracy: 105, 3.10°5, 8:10°%, 2:105. These values
were employed for both the IEEE 30- bus and 118-bus systems
on all computers used in this work. Because implementation
and accuracy of floating point computations differ from one
computer to another, in each case, a slightly different number
of iterations were performed.

{= 15)

The accuracy of the state estimates computed using the
iterative solver was determined separately for voltages and
angles comparing the appropriate values to these obtained
using the direct solver on the same computer. The relative
accuracy was calculated in percents using the infinity norm:

Xiterative ~ *direct

Max( (16)

)-100%,

Xdirect



that is, as the largest absolute value of the ratio of mismatches
between estimates for direct and iterative solvers divided by
the value of this estimate.

In the next three sections implementations of the Jacobi-
PCG on RISC, vector, and parallel computers are discussed.
The performance of this algorithm is compared to the perfor-
mance of the direct solver, the LDLT factorization with forward
and backward substitutions. For the direct solver, to reduce the
number of fill-ins in the factorized matrix, the system was reor-
dered using the Tinney scheme two.

Implementation on a RI I i

The preconditioned Jacobi-CG method is very well suited for
RISC processors like the IBM RS/6000 used in this study.
Architectures of RISC processors allow execution of more
than one instruction per clock cycle [47]. This can be done by
taking advantage of internal paralielism of these processors,
pipelining, and processor instruction overlap scheduling. RS/
6000 has independent branch, fixed, and floating point units,
which can work in parallel {48]. Presence of Floating Multiply
and Add (FMA) instruction, which executes a*b+c operation
(two floating point operations) in one clock cycle, makes
implementation of vector products or vector SAXPY opera-
tions—straightforward but computationally expensive ele-
ments of the CG algorithm—overy efficient. In order to improve
processor overlap scheduling, loop unrolling to depth three
was used in the vector operations of the PCG algorithm. This
technique helps the compiler to generate a more efficient code
suitable for pipeline execution [48].

Most modern computers use cache—very fast but limited
in size~—memory. On the RS/6000 access to a word takes one
or eight clock cycles depending on whether the word is located
in cache or main memory. Operation of RISC processors can
be very seriously degraded if inside DO loops data is accessed
with a large stride causing frequent cache misses. Sparse
matrix-vector product in CG algorithm as well as factorization
and substitutions in direct solver use indirect addressing that
translates into varying in size strides, access to nonadjacent
memory locations, and less efficient execution.

The performance of direct solver, the LDLT factorization
with forward and backward substitutions with and without
reordering of the gain matrix, is shown in Table 4. The perfor-
mance of iterative solvers is independent of ordering since fill-
ins are not generated.

Direct solver is about twice as fast as the Jacobi-CG for the
IEEE 118-bus system, see Table 4 and 5. However, comparing
the performance on traditional CISC and RISC processors, see
Table 9 and 10, it can be noticed that performance gap between
the iterative and direct solver has narrowed more than twice
after migration to the RISC platform. RISC processors are
much more powerful than CISC processors (processors of the
IBM RS/6000, Model 320 and Sequent Symmetry have identi-

Table 4: CPU time for direct solver on the RS/6000.

IEEE 30-bus system IEEE 118-bus system
WLS cycle
w/o ordering |with ordering| w/o ordering |with ordering
1 0.033 0.017 0.649 0.217
2 0.033 0.017 0.633 0.200
3 0.033 0.017 0.649 0.200
4 0.033 0.017 0.620 0.200
sum 0.10 0.068 1.951 0.817
reordering - 0.017 - 0.067
Table 5: Performance of PCG on the RS/6000.
IEEE 30- bus system | IEEE 118-bus system

WLS cycle
iter. time iter. time
1 93 0.050 143 0.400
2 92 0.050 153 0.433
3 81 0.033 196 0.533
4 46 0.017 123 0333

sum: - 0.15 - 1.7

relative Yoltage Angle Voltage Angle
accuracy 0.03% | 0.09% | 0.006% | 0.02%

cal clock cycle) and are recently used in many parallel comput-
ers. This performance gap could be easily eliminated providing
that the iterative solver exhibits a significantly better level of
parallelism than the iterative solver. It is not uncommon that
some algorithms that are slower than the best sequential algo-
rithms perform much better on parallel machines.

Implementation on a vector computer

On a vector computer, like the Cray/XMP, the code of iterative
solvers vectorizes much better than the code of direct solvers.
However, special consideration must be given to the data struc-
tures to implement sparse-matrix vector product operation effi-
ciently. Standard rowwise sparse matrix format leads to short
innermost loops because their length corresponds directly to
the number of nonzero elements per row in the gain matrix. It
limits performance of this operation because the length of vec-
tor registers on the Cray/XMP is 64 and on others like the Hita-
chi $820, Convex C-1, or NEC SX/2 even longer [47].This can
be alleviated by using a different matrix format. One such a
format, developed at Purdue and used as the primary format in
NSPCG package [39], is very well suited for solving PDEs on
vector computers using the PCG method. The matrix is repre-
sented with two two-dimensional arrays. First one accommo-
dates nonzero elements of the matrix and the other
corresponding column indices. The size of these arrays is the
number of unknowns times the maximum number of nonzero
elements in a row. After transformation of DO loops, the inner-
most has length equal to the number of unknowns and vector-
izes very well. However, because the number of nonzero



elements per row in the gain matrix varies a lot (from 3 to 43
elements for the IEEE 118-bus system), there is a significant
amount of time wasted processing the extra zero-valued ele-
ments. Here, this problem was solved by developing of a new
sparse matrix format. The corresponding code for the PCG
algorithm vectorizes well and the overhead is reduced.

New Sparse Matrix Format

Instead of using a rectangular array, the sparse matrix is stored
in blocks resembling stairs. The height of each consecutive
block is a muitiplicity of the vector register size, V, which
varies on different supercomputers. This provides the lowest
possible start-up cost of vector operation per element in the
innermost DO loop [47]. The width is equal to the number of
nonzero elements in the last row of the gain matrix, stored in
this block minus width of the previous blocks. This format
requires sorting out in increasing order and correspondingly
renumbering elements of the state vector according to the
number of nonzero elements per row in the gain matrix.

this area
oL Ly corresponds
% e to savings in
matrix-vector
multiplication

V- length of
vector registers

wee NONZETOS

Purdue format new format

Fig. 1: Storage of nonzero elements in sparse matrix formats suitable
for vectorization.

The performance of the matrix vector product operation using
this new matrix format versus standard nonsymmetric (with
and without vectorization) and Purdue formats was tested for
the gain matrix for IEEE 30-bus and 118-bus systems. Results
given in Table 6 show superiority of this new format over the
others.

Table 6: CPU time for a single sparse matrix - vector product
operation using different matrix formats on the Cray.

std.
vectorized

1.972.104(1.213-104(9.138-10°
7.922.10%14.755-10%|3.236.10°*

std.
nonvector.

2.495.10*
1.154.10?

Purdue | new fmt.

30-bus system
118-bus system

The introduced sparse matrix format improved overall per-
formance of the PCG algorithm as compared to the vectorized
direct solver, see Tables 7-8. For the IEEE 30-bus system,
direct solver is faster than the PCG but not for a larger 118-bus
system where the PCG algorithm takes advantage of increased
efficiency of vectorization in longer DO loops. It should be

noted that, the CPU time for the i.crative solver includes time
spent to transform the standard sparse matrix storage of the
gain matrix into the new format, which operation, of course,
could be avoided in a production-type code.

Table 7: CPU time for direct solver on the Cray.

WLS cycle | 30-bus | 118-bus

1 5.908-103{7.979-10°2

2 6.041-1037.909.10°2

3 6.036-10|7.875-10°2

4 6.032:10(7.868-10°2
sum  |2.402:10%| 03163

reordering |4.656-10°3{3.177-10°2

Table 8: Performance of PCG on the Cray.

IEEE 30- bus sys. | IEEE 118-bus sys.
WLS cycle
iter. time iter. time
1 78 8796103 140 |4.768-102
65 |7.68610%| 161 |6.181.102
3 63 |8.139-10%] 187 [6.675-102
4 50 6595103 116 |4.221-10°2
sum: - 3.121-10 - 0.2184
reordering - [3.053.103 - 1976102
relaive Voltage Angle Voltage Angle
accuracy 1 0.045% | 0.13% | 0.0051% | 0.0078%

The PCG with Jacobi preconditioner appears to be very
well suited for multiprocessor vector supercomputers since the
code can be not only vectorized but also parallelized. This
however, was not done in this work because of lack of access to
the Cray/XMP-24 (having 2 processors only) in the dedicated
mode that is required to perform reliable accounting when mul-
titasking is used. Performance of the parallel PCG was tested
on another parallel machine instead.

lementati el I

The machine used in the tests was the Sequent Symmetry with
24 CISC processors and shared memory configuration, with
64-bit-wide bus. Each processor has 64KB of 2-way set asso-
ciative write-back cache and floating point Weitek 1167 accel-
erator [47). The WLS state estimation program was ported to
the Sequent Symmetry and the PCG solver was parallelized
based on the data domain decomposition approach.

Most existing power system network decomposition
schemes [49, 50] are more oriented toward direct solvers espe-
cially using block schemes [21] where size of the interconnec-
tion area limits amount of parallelism in the algorithm. Here,
the decomposition was accomplished by dividing the data into
equal blocks assigned to different processors [44] what corre-



sponds to ‘tearing’ of the network into equally sized clusters
and mapping them to different processors. Since amount of
computations in all the operations of the PCG algorithm except
sparse matrix vector multiplication—where the number of
nonzero elements, related to the cluster size and connectivity,
determines computational complexily—is directly propor-
tional to the cluster size, this provided a good load balancing.
The differences in execution times between processors were
always less than 6%. However, the shared memory bus traffic
related to the number of tielines was not optimized. It was
probably the main source of performance degradation when
more than eight processors for IEEE 118-bus system were
used, see Figure 2.

Parallel execution was implemented with the fork and join
schemes. From the main program, the same code of the itera-
tive solver was forked for each processor. Communication was
accomplished via shared memory and synchronization using
barriers. The PCG algorithm requires synchronization when
the vector product operation is computed. Each processor per-
forms this operation on the appropriate parts of the vectors
stored in its local memory. After this is done, the partial results
are combined into the final result—each processor reads the
numbers computed by the other processors and adds them up.
The result is stored and used locally. Multiple-write conflict is
avoided since each partial result is stored in a shared memory
variable but written only by a single processor. The PCG with
Jacobi preconditioner has a coarse-grain parallelism since the
vector product operation occurs only twice per iteration,

Table 9: CPU time for direct solver on the Sequent.

WLS cycle | 30-bus sys. |118-bus sys.
1 0.083 1.017
2 0.067 1.017
3 0.067 1.017
4 0.067 1.033
sum 0.284 4.083
reordering 0.017 0.167

Table 10: Performance of sequential PCG on the Sequent.

IEEE 30- bus system|IEEE 118-bus system|
WLS cycle - - - -

iter. time iter. time

1 92 0.600 143 4.483

2 91 0.583 151 4.600

3 82 0.533 195 5.933

4 48 0.317 132 4.133
sum - 2.033 - 19.149
relative Voltage | Angle | Voltage | Angle
accuracy 1 0.029% | 0.096% | 0.0063% | 0.013%

Tables 9 and 10 show performance of sequential direct and
sequential iterative solvers, respectively. Difference in perfor-
mance between them is larger than on the RISC processor.

Table 11: CPU times and speedups in parallel PCG for 30-bus system

cycle 1 2 3 4 total

( avg.
Proc.| time | Sp. |time | Sp. | time | Sp. | time | Sp. |time| Sp.

2 1035(1.714] 035 {1.667| 0.3 [1.777/0.167|1.899]1.17|1.76

4 10213002 |2916/0.183]2.914/0.116/2.715{0.70 | 2.89

8 ]0.153{3.922/0.150|3.812{0.133/4.749(0.0674.133] 0.50 | 4.13

Table 12: CPU times and speedups in parallei PCG for 118-bus system

cycle= 1 2 3 4

total | avg.

Proc. | time | Sp. | time | Sp. | time | Sp. | time | Sp. time | Sp.
2 |2.316(1.936|2.383(1.930{3.183(1.864(2.166/1.908{10.05{ 1.91
1.18313.789(1.266{3.632|1.600{3.708|1.150|3.509| 5.12 | 3.68

8 [0.667(6.725{0.750|6.133|0.900{6.512|0.566|7.294} 2.88 | 6.67
12 }0.516|8.689(0.566(8.128]0.716(8.279]0.466|8.886| 2.26 | 8.49
16 ]0.450{9.962(0.483|9.871]0.633|9.373]0.400(10.33} 1.97 | 9.89

The performance of parallel PCG solver is shown in Tables
11-12 and Figure 2. The tables include the longest CPU time of
a processor and the speedup (calculated with respect to time
results for the sequential implementation of the PCG) in each
cycle of the WLS state estimation, total CPU time to solve the
problem and average speedup (overall) on 2, 4, 8, 12, and 16
processors. These results demonstrate a very high level of par-
allelism of this algorithm as applied to the WLS state estima-
tion problem.

16 3 ,1"

o

30- bus system

-t o -} o 'l

0 2 4 6 8 10 12 14 16

number of processors

Fig. 2: Speedup for the PCG solver for the IEEE 30- and 118- bus
systems.



Conclusions

Parallel direct solvers for the power systems applications have
been studied for a long time. In the current work, we investi-
gate the use of an alternative approach, iterative methods, for
this purpose. It was found that among iterative methods, which
have been tested for solving the WLS state estimation problem,
the preconditioned conjugate gradient performs best. This
algorithm was implemented on RISC, vector, and parallel com-
puters. Although the iterative solver is still slower than the
direct methods on a single scalar processor, this performance
gap has very much narrowed after migration from a traditional
Complex Instruction Set Computing (CISC) to a RISC plat-
form, and has been completely eliminated on a vector proces-
sor. Moreover, the PCG algorithm appears to have a much
better potential for parallel execution than direct solvers (based
upon results reported in the literature, for example [22]). This
should make it faster than parallelized direct solvers on multi-
processor RISC or/and vector systems. However, we feel that
still more research needs to done. For example, further
research in this area might be directed into developing a better,
application-specific, preconditioner for the CG method to
accelerate its convergence.
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