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Abstract

We present a simple derivation of Landau-Zener formulae for nonadiabatic level
crossings for linear and exponential density profiles. The derivation depends on a single
assumption that applies somewhat differently to the exponential and linear cases, pro-
viding some insight into the relationship between the respective formulae. We note that
one exponential Landau-Zener formula in common use is only approximately correct.
Comparisons with exact calculations are made.




Landau-Zener oscillation formulael!=® were introduced into solar neutrino calcu-
lations shortly after Mikheyev and Smirnovll discovered matter-enhanced oscillations.
Their importance derives from their simplicity and accuracy, as direct numerical inte-
grations of the Mikheyev-Smirnov-Wolfenstein equations can be tedious when the full
spectrum of solar neutrinos and finite extent of the solar core are taken into account.

While the correct Landau-Zener results for both linear and exponential densities
can be found in the literature, the derivations of these results generally obscure the sim-
ple physical arguments underlying their validity. The purpose of this paper is largely
pedagogical, to present a derivation that clearly identifies the one necessary approxima-
tion. As this approximation applies differently to the linear and exponential cases, it
provides some insight into the relationship between the respective formulae. While we
conclude that the exponential form offers advantages in the large mixing angle region,
one commonly used exponential Landau-Zener formula is shown to be unreliable in this
limit.

We begin by reviewing the two-flavor oscillation problem. Consider the case of two
flavor eigenstates related to the mass eigenstates through a vacuum mixing angle 6,

lUe) = cos B, |v1) + sinb,|va)
v,y = —sinf|vy) + cosb,|va).

If one writes the neutrino wave function in matter as

[v(2)) = ae(z)lve) + an(@)|vp)

where z is the coordinate along the neutrino’s path. the evolution of a.(z) and a,(z) is
governed by
) d fac) 1 2E\2G pp(z) — dm? cos 26, ém? sin 26, ) (ae > 1)
dr \a,) 4E \ ém?sin26, — 2EV2Grp(z) + ém?cos 26, ) \ a,

where ém? = m% — m?} and p(z) is the solar density of electrons, the variable that
determines the difference in the v, and v, effective masses. It is convenient to rewrite
Eq. (1) in a basis consisting of the light and heavy local mass eigenstates (i.e., the states
that diagonalize the right-hand side of Eq. (1))

lvp(x)) = cos O(z)|ve) — sinbB(x)|vy)

lvg (z)) = sin@(z)|ve) + cosb(x)|vy) -
The local mixing angle is defined by

sin 24,
\/;(2(1) + sin? 26,

2

sin 26(z) =




cos26(x) = —X(2)
\/X2(:z:) + sin® 26,

(2)

where X (z) = 2v2Grp(z)E/ém? — cos28,. Thus 4(z) ranges from 6, to /2 as the
density p(z) goes from 0 to oo.
If we define

lv(z)) = an (@) |ve () + ar(z)|ve(2)),

()= 50) () ®)

with the local mass eigenstate splitting determined by

Eq.(1) becomes

4EX(z) = om?\/ X2(x) + sin 20,

and with

E V2Gr —fi-p(x) sin 26,
alz) = 5 — i
om X?2(x) + sin” 26,
Note that the local mass eigenstate splitting achieves its minimum value, ém? sin 26,
at a critical density p. = p(z.)

2\/§EGch = ém? cos 26,

that defines the point where the diagonal elements of Eq. (1) cross.
Equation (3) can be trivially integrated if the splitting of the diagonal elements is
large compared to the off-diagonal elements,

(z) = Az)| sin? 28, ém? 1 [X (z)? + sin® 26,]%/2 > 1 @)
T T a(@)| T cos28, 2E | Lol sin® 26,
Pc x
a condition that becomes particularly stringent near the crossing point
.2 2

sin” 26,, ém 1
c == c) = = 1 5
Yo = v(zc) c0s20, 2E [ Lzl > (5)

Pc 4T IT=%e

The resulting adiabatic electron neutrino survival probability, valid when v, > 1, is

: 1 1
Pj‘:j'ab =3 + 5 cos 20, cos 26; (6)

where 8; = 0(x;) is the local mixing angle at the density where the neutrino was pro-
duced. Eq. (6) was first discussed by Bethe. "]
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The above discussion immediately suggests a strategy® for analytically treating
nonadiabatic level crossings, 7. < 1. The solar density can be replaced by a simpler,
two-parameter form that is constrained to reproduce the true density and its deriva-
tive at the crossing point z.. Two convenient choices are the linear (p(z) = a + bz)
and exponential (p(z) = ae~%*) profiles. As the density derivative at z. governs the
nonadiabatic behavior, this procedure should provide an accurate description of the
hopping probability between the local mass eigenstates when the neutrino traverses the
crossing point. The initial and ending points z; and z s for the artificial profile are then
chosen so that p(z;) is the density where the neutrino was produced in the solar core
and p(z) = 0 (the solar surface), as illustrated in Fig. 1. Since the adiabatic result
(Eq. (6)) depends only on the local mixing angles at these points, this builds in that
limit. Eq. (1) can then be integrated exactly for linear and exponential profiles, with the
results given in terms of parabolic cylinder and Whittaker functions, respectively. This
treatment, called the finite Landau-Zener approximation,[1%: has been used extensively
in numerical calculations.

We derive a simpler (“infinite”) Landau-Zener approximation!! by observing that
the nonadiabatic region is generally confined to a narrow region around z., away from
the endpoints z; and zy. We can then extend the artificial profile to z = too, as
illustrated by the dashed lines in Fig. 1. As the neutrino propagates adiabatically in
the unphysical region = < z;, the exact solution in the physical region can be recovered
by choosing the initial boundary conditions

ar(—00) = —a,(—oc) = cos Qie_i JZ A=)z )
CLH(—C)O) = (Le(—'OO) = sin eiei f_;o A(z)dx

That is |v(—00)) will then adiabatically evolve to |v(z;)) = |ve) as = goes from —oo to
Zy.

We want to express the electron neutrino survival probability as the neutrino exits
the sun, p(zs) = 0, in terms of the asymptotic wave function [v(o0)). In the exponential
case this is trivial since the physical ending density is achieved at z = oo,

PIX® = [(velv(o0))]*. (8)

In the linear case, we must account for the (assumed adiabatic) propagation from zy to
oo to express P,, in terms of the asymptotic wave function. We find

PP = [(velp(z))* = [(v'Iv(o0))? (9a)
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where .- w0
7 Alz)dx -1 Az)dzx
|V} = cosb,e j’f “ |[Ve) +sinfye f” ) V) - (90)

Egs. (7-9) greatly simplify our task by allowing us to solve a problem on an infinite
interval, so that the asymptotic forms of the confluent hypergeometric functions can be

used. In the linear case this yields'®!

_‘7"713/8 in i 2 .
8e(00) = Ge(—00)e™ ™/ — a,(—00)4/ e I‘(61 - J_) e T+E- pives2 (10)

where R = lzm :c\/ V2Gr|-L -=p(zc)|. The rapidly varying R-dependent adiabatic phases
average out in P whenever one integrates over a neutrino-producing region of finite
extent or over a neutrmo spectrum. From Eq. (1) one immediately sees that the solu-
tion for ay(co) is identical to Eq. (10) with the substitution e(—00) — a},(—oc) and
ap(—o0) = —ak(—o0). Egs. (7), (9), and (10) then yield

1 1
P, = 3 + 5 cos 26, cos 26;(1 — 2Pop) (11a)
where
P = e ez, (11b)

As it must by our construction, P, reduces to PBdiab for v, > 1. The linear Landau-
Zener asymptotic hopping probability nglp = e~™/2 was derived by Haxton!! and
independently by Parkel?!, who married this approximation to the adiabatic one to get
Eq. (11a).

The corresponding exponential solution is somewhat more complicated!],

ae(oo) — ae(—oo)e“s":" cos 26, x
5P(—26) e—’;—‘s-(1+cos20v)ei55f + - P(lé) e—"TG(I—cos20u)e—i56f
['(=i5(1 —cos26,)) I'(23(1 + cos 26,))
— a;,(—oo)e_we" c0s20u gin 26, x
[ P('Lé) 614&(1—%605 20‘,)6—1'(%):
(1 - cos 26,,)F(z'%(1 — cos 26,,))
. F(_Zé) 6—%6-(1—4105 '28,,)6165f:]
(1 + cos 26,)(—i5(1 + cos26,)) ’
(12)
where p(z) = p.e~*/™ (so the crossing point is defined as z = 0), § = 1925—5’;”—2 =

%5927%1%, ef = lim In\/f(z), and ¢, = lLim (hl f(x) — 75%«%2%1;)’ with f(z) =
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V2G prop(z). [There are two rapidly varying adiabatic phases, as the integrations are
extended to £o00, because the density is not symmetric.] The phases again average out
in P,, when the neutrino-producing region is finite or the neutrino spectrum continuous.
From Egs. (7), (8), and (12) one finds the result of Eq. (11a) but with

—né(l—cos 26,) __ 6—27\'6

Pexp . €

hop 1— e_2m5 (13)

Exponential descriptions of the transition from adiabatic to nonadiabatic level crossings
were discussed by Pizzochero®, by ToshevP®!, and by Petcovl®l. Toshev obtained the
survival probability for an infinite exponential profile (the limit as 6; — 7/2 of Egs. (11a)
and (13)), while the resonance-density-independent terms in Petcov’s expansion of his
finite exponential Landau-Zener result are precisely equivalent to Egs. (11a) and (13).
The exponential result of Pizzochero k

Pﬁjoi;z — 6—1r6(l—cos 20.,) (14)
is widely used but does not correspond to Eq. (13). Note that §(1—cos 28) = . cos 26/(1+
cos 26). Thus for small angles §(1 — cos 26) — ~./2, and § — v./(26)* becomes large in
the nonadiabatic region (v. ~ 1). Thus Eq. (13) and (14) then both reduce to the linear
result of Eq. (11b). However, as we will argue below, the advantages of the exponential
form come in the treatment of large 6,, and in that case § and ~. are of comparable
magnitude. Eq. (14) is then not an accurate approximation to the correct result of
Eq. (13).

Eq. (11b) and Eq. (13) provide convenient descriptions of the shape of P, (E) as
one crosses from the adiabatic to the nonadiabatic region. Which is better to use in
solar calculations? First we note that any (infinite) Landau-Zener approximation will
fail if the nonadiabatic region (say v(z) < 10) around the crossing z. for the true
density profile includes the starting or ending densities p(z;) or p(zy): our assumption
of adiabatic propagation in the unphysical regions is then violated. In fact this problem
arises only for z; and only when z; is not at the sun’s center. If we consider z; ~ z. and
~e ~ 1 (this would correspond to small mixing angles and large ém? /2FE, with a crossing
near the sun’s center) and vary E, an exact treatment changes P, (F) continuously
across E°, the neutrino energy where z. and z; coincide, 2v/2E°p(z;) = ém? cos 26, .
That is, the F,op evolves continuously as the nonadiabatic interval surround z. is moved
through z; by changing E. But in the Landau-Zener case, one would use the adiabatic
result whenever E < E°, Pyop = 0 (no level crossing), and Eq. (11b) or Eq. (13) for
E > E°, thus approximating P,_ by a step function. Fortunately the transition region
in E for small 8, is very sharp, so the step function approximation, while failing in
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a technical sense, yields excellent results when integrated over an extended neutrino-
producing core or continuous neutrino spectrum.

Eq. (11b) and Eq. (13) are differentiated, however, by another consideration, whether
the nonadiabatic regions in these approzimate profiles include the physical starting and
ending densities, p(z;) and p(zs) = 0. A particularly clear example is a neutrino pro-
duced precisely at z; = 0 and experiencing a crossing at z. near z;, p(z.) < p(z;). For
the true solar density, the nonadiabatic region is centered on z. and confined to physical
densities: v(z;) = oo because the derivative in Eq. (4) vanishes. But the approximate
density profile may not share this attractive property: v(Z;)approx may not be large,
so that the nonadiabatic region for the approximate profile may extend into unphysi-
cal densities. This contradicts the assumption of adiabatic propagation in unphysical
densities that we made in extending the finite Landau-Zener integration to x = —o0.
Fortunately, as sin® 20, is typically < 10~2 for nonadiabatic crossings near the solar
core, the nonadiabatic region of Eq. (4) is extraordinarily narrow whether one employs
the exact or an approximate density. Thus the range of z. where this problem arises is
very small, and can be safely ignored in numerical calculations, regardless of whether
the exponential or linear Landau-Zener approximations is used.

However, the analogous problem for nonadiabatic crossings near the solar surface is
more troublesome: the linear Landau-Zener treatment requires an additional extension
to unphysical densities as £ — +oc. It does not share an important property of the
exponential treatment, that «v(x) — oo as one approaches the solar surface (p = 0). That
is, it is apparent from Eq. (4) that the nonadiabatic region becomes very broad for large
8., and often extends into the region of negative densities for a linear potential. If this
happens, there is no reason to expect the linear Landau-Zener result to be accurate.
This distinguishes the linear and exponential approximations, and suggests that the
exponential is the preferred choice for large 6,,.

A comparison of the Landau-Zener approximations to exact calculations is made in
Fig. 2. The exact calculations were performed by integrating Eq. (1) in the vicinity of
the crossing point by an adaptive algorithm that controls local and accumulated errors,
and then matching to the adiabatic result in regions where this result is essentially exact
(y(x) > 30). The form of Eq. (1) used in this integration is that of Egs. (21) and (22)
of Ref. [10]: we express Eq. (1) in terms of two solutions that evolve locally with the
correct adiabatic phases, + i fox Az')dz’!. This, of course, removes the most rapidly
varying components from Eq. (1), simplifying the numerical integration. An analytic
fit1?] continuous and with continuous derivatives, to the solar electron density is used.
This function was determined by fitting the standard solar model densities tabulated by
Bahcall’3l, and is generally accurate to < 1%. The neutrino is assumed to be produced
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exactly at the solar center.

The exact integrations determine the surface amplitudes az(zs) and ag(zy). The
relative phasing of these amplitudes depends on the accumulated adiabatic phases, and
thus oscillates rapidly with variations in the neutrino production point or energy. Thus
the physically relevant quantity in any realistic calculation that integrates over the
spatial extent of the neutrino-producing solar core or over the neutrino spectrum is the
Ve survival probability

P, =lar(x)? [welvr (e ? + lan (@s) [ | velva (z )]

=%+%COS29v(1—2|aH(xf)|2). (15)
Clearly this is the appropriate quantity to compare to the various analytic results, since
a similar averaging of phases was done in those derivations. P,, is also the neutrino
survival probability a long distance from the sun, as ar(z) and ag(z) do not evolve in
vacuum apart from the associated vacuum mass eigenstate phases.

In accordance with our qualitative arguments, the various Landau-Zener results
are virtually indistinguishable for small sin® 20, when the nonadiabatic region is a very
narrow interval surrounding the crossing point. The agreement with the exact calcu-
lations is also excellent. But for sin? 26 > 0.05 discernible differences appear for small
ém?2/E corresponding to nonadiabatic crossings occuring in the outer layers of the sun.
While the exponential Landau-Zener continues to agree with the exact calculations to
an accuracy < 2%, the linear form overestimates the hopping probability: the linear
profile underestimates v(z) for z > z., and the nonadiabatic region has become suffi-
ciently broad for large sin? 26 that the accumulated error is apparent. It is also clear
from Fig. 2d that Pizzochero’s form of the exponential Landau-Zener probability fails:
it agrees more closely with the linear result than the more correct exponential result,
and among the three Landau-Zener formulas provides the poorest description of the
exact results for small §m?/E.

In the case of a neutrino produced on the far side of the sun at a density p(z;) <
p(zc), two crossings are encountered as the neutrino travels toward the earth. The
derivation of the survival probability in the Landau-Zener approximation can be done
is precise analogy with the single crossing case: two finite wedges with the proper
slope and density at the crossing point represent the propagation of the neutrino to the
central point of maximum density, and then the propagation from that point to the solar
surface. The amplitudes for each section can be obtained by extending the wedges to
infinity under the assumption of adiabatic propagation in the unphysical regions. The
analogs of Eqgs. (10) and (12) for p > 0 are then needed for the first wedge. The final
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result is 11
P,fi:’“ble crossing . 5 + 5 cos 26, c0s 26;(1 — 4Phop(1 — Phop)) (16)

The derivation of Eq. (16) requires an averaging over the relative phases accumulated
between the first and second crossings, in addition to the averaging of the asymptotic
phases going into the first crossing and leaving the second. Such averaging is again phys-
ically motivated because all of these phases vary rapidly with changes in the neutrino
energy or production point within the sun.

In Fig. 3 we compare results from Eq. (16) with exact integrations. The neutrino
is produced at a radius z; = 0.3 R on the far side of the sun, and thus passes through
the solar center on its way to the earth. The magnitudes |ar(zs)| and |ag(zs)| now
depend on the exact path and energy (there is interference between the two hopping
amplitudes), so one must average the exact P, before a meaningful comparison with
Eq. (16) can be made. We do so by making small variations in z; in a symmetric
interval about 0.3 R, fitting the resulting variations in P,, by a function of the form
A + B cos(w z; + ¢), and then equating P,, = A. This procedure yields a very nice
representation of the numerical results. The comparisons in Fig. 3 are very much like
those of Fig. 2, with discernible differences between the calculations arising only for
large mixing angles. Fig. 3d (sin® 26, = 0.5) again shows that the exponential form is
somewhat more accurate for small 6m?/E.

In conclusion, we have attempted to provide a clear derivation of Landau-Zener
formulae for solar neutrino oscillation probabilities to illustrate the conditions for their
validity. The linear and exponential forms and exact calculations agree very well except
when ém?/E is small and sin® 26 is large. This exception corresponds to nonadiabatic
crossing occuring in the outer layers of the sun where v(z) < 10 over a substantial
region (typically Az ~ 0.1 Rg). The exponential formula remains quite accurate, while
deviations of the linear formula from the exact results exceed 10% for sin®26 = 0.5
and 6m?/E = 10~%V?/MeV. The exponential formula of Pizzochero yields a fit that
is similar to the linear result, but slightly poorer. This modest failure of the linear
profile is readily understood as resulting from its tendency to underestimate y(z) for
T > ., resulting in an extension of the nonadiabatic region into unphysical densities
(beyond p = 0). Thus it overestimates the hopping probability for large sin? 20 and
small 6m?/E.

This work was supported in part by the U.S. Department of Energy and by NASA
under grant #NAGW?2523. Marcus Bruggen thanks the Institute for Nuclear Theory
for a summer fellowship for undergraduate research.
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Figure 1.

Figure 2.

Figure 3.

Figure Captions

The solid line in the top figure shows, for a neutrino produced at the sun’s center
with sin? 20 = 0.005 and §m?/E = 1078 eV2?/MeV, that the region of nonadiabatic
propagation, defined here as v(z) < 10, is confined to a narrow region about the
crossing point z.. For these parameters the crossing point is z. = 0.34 Ry and
v. = 0.78, so that the transition is near the boundary that separates the adiabatic
and nonadiabatic regions in the ém?/E — sin® 26 plane (see Ref. [10]). In the lower
figure, the solid lines represent the solar density p(z) and a linear approximation
to p(z) that has the correct initial and final densities and the correct slope at z..
By extending the wedge to oo (dotted lines and arrows) and assuming adiabatic
propagation in the regions of unphysical density, one obtains the simple Landau-
Zener result of Eq. (11).

The electron neutrino survival probability is given as a function of §m?/E for a
neutrino produced at the sun’s center. The solid dots are the results of numerical
integrations. The solid, dotted, and dash-dotted lines are the linear, exponential,
and Pizzochero-exponential Landau-Zener results. The dashed line is the adiabatic
result.

As in Fig. 2, only for a neutrino produced at z, = 0.3 Ry that passes back through
the sun’s center. The exact (numerically integrated) results were averaged over a
narrow neutrino production region centered on z;, as discussed in the text.
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