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ABSTRACT

CIRCE2 is a cone-optics computer code for determining the 
flux distribution and total incident power upon a receiver, given 
concentrator and receiver geomeuies, sunshape (angular distribu­
tion of incident rays from the sun-disk), and concentrator imperfec­
tions such as surface roughness and random deviation in slope. 
Statistical methods are used to evaluate the directional distribution 
of reflected rays from any given point on the concentrator, whence 
the contribution to any point on the target can be obtained. DEK- 
GEN2 is an interactive preprocessor which facilitates specification 
of geometry, sun models, and error distributions.

The CIRCE2/DEKGEN2 package equips solar energy engi­
neers with a quick, user-friendly design and analysis tool for 
study/optimization of dish-type distributed receiver systems. The 
package exhibits convenient features for analysis of “conventional” 
concentrators, and has the generality required to investigate com­
plex and unconventional designs. Among the more advanced fea­
tures are the ability to model dish or faceted concentrators and 
stretched-membrane reflectors, and to analyze 3-D flux distribu­
tions on internal or external receivers with 3-D geometries. Facets 
of rectangular, triangular, or circular projected shape, with profiles 
of parabolic, spherical, flat, or custom curvature can be handled. 
Provisions for shading, blocking, and aperture specification are also 
included.

This paper outlines the features and capabilities of the new 
package, as well as the theory and numerical models employed in 
CIRCE2.

1. This work performed at Sandia National Laboratories, supported by 
the U.S. Department of Energy under contract DE-AC04-76DP00789.

1 INTRODUCTION

Sandia National Labs is actively involved in the design, de­
velopment, and testing of solar energy collection systems. A signif­
icant subset of this effort is directed toward point focus distributed 
receiver systems. Accordingly, in the mid 1980’s, an effort was un­
dertaken to develop a user-friendly capability to model such sys­
tems. To predict the distribution of solar flux upon the receivers, 
HELIOS [1] was chosen as a starting point over other existing op­
tics simulation codes such as CAV [2] and COPS [3] because it con­
tained fewer simplifications and allowed much greater freedom in 
the receiver and reflector configurations that could be modelled. 
HELIOS, incorporating much of the mathematical theory devel­
oped by Schrenk [4], was developed during the 1970’s by Biggs 
and Vittitoe for modelling the solar central receiver at Sandia. 
Trough and dish-type systems could also be modelled, but the 
code’s generality made it unnecessarily complex, and cumbersome 
to use for these applications. In order to facilitate the analysis of 
point-focus collector systems, Ratzel and Boughton developed 
CIRCE.001, the “daughter” of HELIOS (as in Greek mythology), 
and an interactive preprocessor, DEKGEN, to assist in specification 
of geometry, sun models, and concentrator errors. A plotting capa­
bility for 3-D visualization of results was also developed. The anal­
ysis code CIRCE.001 (Convolution of Incident Radiation with 
Concentrator Errors) was easy to run, yet the package had the gen­
erality necessary to analyze very diverse concentrator and receiver 
configurations. This suite of design and analysis tools was reported 
at the 1987 ASME-JSME Solar Energy Conference [5], and is doc­
umented more fully in [6].

Continued work on the CIRCE.001 package over the past 
several years has lead to a second-generation version: CIRCE2/DE- 
KGEN2 [7]. The most significant additions to the package include: 
the capability to model 3-D internal or external receivers, improved 
methodology for simulating facets of custom profile (such as 
stretched-membrane facets), an improved integration routine for 
computing total collected power, and control over the process by 
which concentrator imperfections affect the reflected image. Sever-
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aJ constraints on the types of faceted concentrators that may be cor­
rectly modelled have been lifted, provisions for aperturing have 
been incorporated, and algorithms for blocking and shading have 
been extended. Additionally, optimization has made the FOR­
TRAN/77 codes even more amenable to execution on personal 
computers than before. Reductions in CPU-time by factors in ex­
cess of 300 have been realized for some practical problems, and 
storage requirements have been reduced by 95% even though the 
maximum target grid size for resolution of flux distributions has 
been increased twenty-fold. The post-processing capability has not 
been updated because of the many individual preferences in the 
rapidly changing field of graphic visualization.

This paper surveys the analytical models and numerical pro­
cedures employed in CIRCE2. Features and capabilities of the soft­
ware analysis package are pointed out. Code validation and 
availability are also addressed.

2 THEORY AND NUMERICAL MODELING

Here the methodology used to simulate the solar image re­
flected from a real (imperfect) surface is summarized. The contri­
bution of a reflector element to the total solar flux upon the receiver 
is derived. Additionally, the determination of critical reflector 
quantities is addressed. Finally, quadrature of the discrete flux dis­
tribution (on the target) for determination of total collected power is 
discussed.

2.1 HELIOS Methodology for Simulating the Solar Image 
Reflected from a Real Surface

2.1.1 Conceptual Overview
Looking up at the sun, it appears to be a small disk, the bright­

ness and diameter of which are dependent upon atmospheric condi­
tions. Fundamental to solar optics is the treatment of the sun as a 
disk (not point) energy source. The “sun-disk” usually appears to 
be brightest at its center, dimmest at the edge. This variation in 
brightness may be modelled by a probability density function, or 
“distribution function,” as follows. A line drawn from the center of 
the sun-disk to a point on the earth marks the direction of the “cen­
tral ray” from the sun to the earth point. A photon incident upon the 
earth may strike from any of a multitude of directions, depending 
upon where (on the sun) it originated. Per unit time, more photons 
are incident from directions associated with the brighter areas of the 
sun-disk than from those associated with dimmer areas. The direc­
tional distribution of incident photons may be described by a proba­
bility density function of direction about the central ray. This 
probability density function is termed the “sunshape” distribution. 
Thus, as Figure 1 illustrates, the sun effectively irradiates a reflector 
surface as a cone of rays, and the intensity of radiant energy over 
the cone angle may vary. Accordingly, statistical cone-optic tech­
niques are employed instead of ray-tracing methods.

For a perfect (ideal) reflector, which has a smooth surface and 
no absorption, all energy in a given wavelength band incident upon 
the surface is specularly reflected (angle of incidence = angle of re­
flection with respect to the surface normal). Thus, the incident and 
reflected sunshape distributions are identical. Real (imperfect) re 
flectors, however, have characteristics that cause the reflected sun­
shape to differ from the incident one. To begin with, some of the 
energy striking a real surface does not leave because of surface ab­
sorption. This is handled by utilizing a specular reflectance param­
eter, x, which is assumed to be independent of direction of 
incidence. Now, in C1RCE2, reflecting surfaces are assumed to
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figure i. Incident and Reflected Solar Images

conform to certain ideal geometries, such as flat, paraboloidal, etc. 
For these geometries, the “ideal surface normal,” Nu, is unambigu­
ously defined at each point of the surface. The profile of real reflec­
tors, however, will deviate from the ideal shapes, exhibiting some 
degree of “slope error”. Macroscopic imperfections such as surface 
waviness contribute to the slope error. Additionally, microscopic 
surface imperfections such as surface striation patterns and surface 
roughness will cause the actual surface normal, N, to deviate from 
the ideal normal. These “concentrator errors” cause the actual sur­
face normal to be nondeterministic; to vary from the ideal surface 
normal in a manner that is impractical to establish at each point on 
the reflector. Statistical methods are employed to handle the ambi­
guity. Each error type can be assigned a probability density func­
tion corresponding to the expected standard deviation about N0 that 
N will have because of the imperfection. The individual error dis­
tributions are combined to produce an overall probability distribu­
tion for the direction of ft. Because the distribution represents a 
multitude of possible surface normal directions, as depicted in Fig­
ure 2, it is referred to as the “error-cone.”

Now, given a direction of incidence, the ambiguity in the di­
rection of the surface normal results in a distribution of possible re­
flection directions according to the law of specular reflection. 
Furthermore, since there is actually a multitude of possible incident 
directions given by the sunshape, the reflected-ray distribution is a 
result of the combined effect of both distributions. Figure 2 illus­
trates this dependence. The incident sunshape is convolved with 
the error cone to determine the overall probability density function 
describing the reflected image. This resultant distribution is termed 
the “effective sunshape.”
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figure 2. Important Distributions in the Statistical Modeling of Solar Reflectors

L_L2 Calculation of Concentrator Error-Cone
Let the ideal or “most-probable” surface normal fJ0 be a unit 

normal obtained from a mathematical description of the surface. 
Concentrator imperfections cause deviations in the direction of the 
actual surface normal N about f/0. It is assumed that the deviations 
are randomly distributed and described by 2-D elliptic-normal 
probability density functions. The form of such a distribution with 
cr and as being the standard deviations in the r- and s- directions, 
respectively, is:

P(r,s) 1
2na a r s

exp 2 (EQ1)

Figure 3 depicts a section of a reflector with Na shown at a point on 
the surface. Also imposed upon the surface at that point is a 
rectangular Cartesian coordinate frame called the (4, ri, 0 “sun- 
reflector” coordinate system. The C-axis of this system coincides 
with No- At a unit distance above the surface, parallel to the £--n 
plane, lies the “reflector reference plane.” A reference P-Q 
coordinate system is set up on the plane, whose axes correspond to 
the ^--n system translated a unit positive distance along the £-axis. 
Drawn on the plane is a contour of a 2-D elliptic-normal distribution. 
The r-s coordinate system coincides with the minor and major 
principal axes of the distribution, respectively. Linear dimensions 
on the plane are associated with angular deviations from the ideal 
normal by trigonometry. In practice, the standard deviations in the 
r- and s- directions are calculated by CIRCE2 upon specification of 
angular deviations in these directions and the counterclockwise 
rotation angle 0 between the r-s and P-Q axes.

As mentioned previously, the concentrator error-cone is an ef­
fective probability density function resulting from the combination 
of several individual error distributions. Now, if two independent 
error distributions exist such that each direction of the first distribu­
tion is subject to the directional probability described by the second 
distribution, the resultant effective distribution can be obtained by 
mathematical convolution of the two distributions. Consider the 
two elliptic-normal distributions depicted in Figure 4. Only the 
ponions of contours in their respective first quadrants are shown. 
Their principal axes are separated by the angle Cl. These distribu­

tions, F(r',s') and G(r,r), may be convolved to yield the new distri­
bution h(r, j), which is of the form:

h (r, s) = c x exp [-1/2 (or2 + 2krs + i>r2 ) ] (EO 2)

where a, b, c, and k are constants that depend upon the standard 
deviations of the distributions and the counter-clockwise (CCWj 
rotation of the r' -axis from the /--axis. The expression in parentheses 
is seen to have a quadratic form, allowing it to be expressed as the 
matrix product <r s>[A] (r,s). The matrix [A] can be shown [ 1 ] to be 
positive-definite. Thus, the expression in parentheses describes an 
ellipsoid, for which the cross-term 2krs vanishes under a rotation 
given by diagonalization of the matrix [A] c/[8]. The eigenvectors
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figure 3. Error Distribution on Reflector Reference Plane



arising from the diagonalization determine the principal axes tl and 
t2 of the ellipdc-nonnal distribution h(r,s), and the corresponding 
eigenvalues give the respective standard deviations Oj and o2. As 
shown in Figure 5, the rotation angle v locates the tl-t2 axes relative 
to the r-s system. The quantities Oj, a2, and v may be calculated
analytically [1] given the standard deviations of the original 
distributions F and G, and their separation angle fi. Thus, 
convolution of the elliptic-normal distributions F and G may be 
accomplished analytically, and the only information that must be 
stored to completely describe the resultant (convolved) distribution 
h(tl,t2) relative to the r-s coordinate system are the quantities Oj, 
o,, and v.

In the above manner, the effect of the next concentrator error 
is folded-in, convolving its error distribution with the newly ac­
quired distribution h(tl,t2). The process is repeated until all error 
types are accounted for (up to five are allowed in CIRCE2), yield­
ing the resultant effective error-cone. This distribution may be said 
to be described by the probability density function C(p,q), having

principal axes p and q rotated CCW from the r-s system by the an­
gle X, with standard deviations o and a . A rotational transforma-° p q
tion through the angle 8 between the p-q and P-Q coordinate frames 
(8 = X + 6) yields C(P,Q), a scalar function of the coordinates P and 
Q in the reflector reference plane. In the computer code, the error- 
cone is assumed to be the same at all points on the concentrator 
surface.

2.1.3 Sunshape Distribution
The intensity, or brightness, of the sun is seen [9-13] to vary 

from the center to the edge, and to be azimuthally symmetric. The 
solid angle over which incident solar intensity is non-zero is called 
the “incident ray cone,” as Figure 6 illustrates. A plane is drawn in 
the figure which is perpendicular to the most-probable reflected 
central ray, and is at unit distance from the point on the reflector 
surface. For the moment, let the incident cone of rays experience 
an undistorted reflection (angle of incidence = angle of reflection) 
about the most-probable normal Wo, illuminating the plane as 
shown. The variation in brightness on the plane can be described 
by a function S’(p). where p is measured from the center of the im­
age. Dividing this function by the total reflected power yields a 
normalized probability density function S(p) which, when integrat­
ed over the illuminated area, results in a value of unity. This func­
tion, when related through trigonometry to the angle y within the 
ray cone, describes the directional probability density function 
Su( y) that is the sunshape. For the small angles we’re concerned 
with here (on the order of a few milliradians), p=uinY-y, and the 
word “sunshape” is used interchangeably in referring to either the 
distribution in y or in p, the quantities S(p) and Su(y) being essen­
tially the same.

2.1.4 Calculation of Effective Sunshape Distribution
The effective reflected sunshape distribution, ESUN(U,V), is 

obtained by convolution of the incident sunshape and concentrator 
error-cone distributions. Before convolution, each distribution is 
mapped onto the reflected-ray reference plane of Figure 6.
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figure 6. Undistorted Solar Image on Reflected-Ray Reference Plane



In general, the concentrator error-cone distribution C(P,Q), 
being 2-D elliptic-normal in the reflector reference plane (default­
ing to 1-D circular-normal if all individual errors are 1-D circular- 
normal), maps onto the reflected-ray plane as a 2-D elliptic-normal 
distribution. Figure 7 facilitates explanation of the mapping pro­
cess. The reference planes associated with the differential reflector 
element, which were shown separately in Figures 3 and 6, are 
shown together in Figure 7. The sun-reflector coordinate system is 
oriented such that the (('axis coincides with the most-probable sur­
face normal hJ0 and the ri-axis lies in the plane defined by No and 
the incident central ray A. The unit vector 60 coincides with the 
most-probable reflected central ray shown in Figure 6. Imposed 
upon the reflected-ray reference plane is an orthogonal (U,V) coor­
dinate system with origin at the tip of B0. (By definition, both 
planes are at unit distance from the origin of the sun-reflector coor­
dinate system, though they are not depicted as such in the figure for 
labeling convenience.) The system is such that the (+) U-axis takes 
the same direction as the (+) £-axis, and the positive direction of 
the V-axis is as shown. Let the incident ray A reflect in the direc­
tion B according to the actual surface normal N. The relationship 
between the (P,Q) coordinates where the extended vector N inter­
sects the reflector reference plane, and the (U,V) coordinates where 
the extended vector B intersects the reflected-ray plane, is given (to 
first-order) by the transformation equations:

U = 2Pcosp (EQ 3a)

V = 2Q (EQ 3b)

where the small angle approximation is invoked to obtain equivalent 
linear dimensions on the planes from angular deviations of the 
vectors N and B.

It is desired to transform probability in the reflector reference 
plane to equivalent probability in the reflected-ray plane. Equiva­
lence of differential probability in the two coordinate systems may 
be written as:

C(P,Q)dPdQ = D(U,V)dUdV (EQ 4)

Noting from (3) that U is a function of P only, and V is a function of 
Q only, dU = (dU/dP)dP and dV = (dV/dQ)dQ. The relation for 
invariance , which accounts for the mapping, becomes

D(U,V) = C(P,Q)/(4cos|r) (EQ 5)

Equation (5), supplemented with the relations (3a) and (3b), is used 
to obtain an equivalent concentrator error-cone distribution D(U,V), 
on the reflected-ray plane, from the distribution C(P,Q) on the 
reflector reference plane. Thus, these relations, along with the 
quantities ct^, o^, 8, and p, fully describe the projected distribution
D(U,V). Referred to a set of principal axes u and v, rotated from the 
U-V system by the angle x, this elliptic-normal distribution will 
have standard deviations au and ay. The latter three quantities may 
be obtained analytically from the four former quantities.

Now, there is actually a multitude of possible incident direc­
tions about the central ray, as prescribed by the sunshape distribu­
tion. Thus, the angle of incidence varies about the value p, over the 
cone of incident rays. The transformation relations (3) vary corre­
spondingly. Ideally, the effective probability function describing 
the angular distribution of rays reflected from the surface would re­
late, by the method presented above, a differential projected error- 
cone to a differential solid angle of incident rays. Integrating over 
the sun-disk, the effective directional distribution of rays coming 
off of the reflector surface (i.e. effective sunshape) could be ob­
tained. This operation, however, would have to be done numerical­
ly, and would introduce large computational expense. The error
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figure 7. Mapping the Concentrator Error Cone from the 

Reflector (P-Q) Reference Plane to the Reflected- 
Ray (U-V) Reference Plane.

inpoduced by treating (3) as constant over the typically very small 
sun-disk solid angle is extremely small, and as Schrenk [4] specu­
lates, is probably less than the numerical roundoff associated with 
the computation.

Once the projected error-cone is obtained, it may be con­
volved with the projected sunshape (the process is carried out on 
the reflected-ray plane) to obtain the effective reflected sunshape 
ESUN(U,V). The incident sunshape is assumed to be a 1-D axi- 
symmetric distribution, though usually not circular-normal because 
a Gaussian distribution is generally not representative of intensity 
variation over the solar disk [13]. Strictly, convolution of the pro­
jected 2-D elliptic-normal error-cone with the 1-D axisymmetric 
(not circular-normal) projected sunshape must be done numerically 
(fast Fourier transforms are used in CIRCE2.) However, several al­
ternatives exist for reducing the cost of this calculation, as cited in 
section 3.6.

2.2 Determination of Flux at the Target Surface

Knowing the effective sunshape emanating from each point 
on the reflector, the flux of reflected solar energy upon any point on 
the target can be obtained. For purposes of numerical computation, 
the concentrator is usually subdivided into many relatively small 
reflecting surfaces called “subfacets”. Figure 8 shows in schematic 
a subfacet Aj and target section AS,-. Both are flat for convenience 
in this example. Let the solid angle over which the reflector point 
“views” the target section intercept the area AS;, on the reflected- 
ray reference plane. By the definition of solid angle, and recalling 
that the plane is at unit distance from the reflecting point, the fol­
lowing equality is arrived at:

ASj-cos® ASj.cosy

where d is the distance between points i and j, and secy is the 
distance between points i' and j.



REFLECTED 
CENTRAL 

RAY ,
TARGET

REFLECTED-RAY REFERENCE PLANE
INCIDENT 
CENTRAL 

RAY "

EFFECTIVE REFLECTED CONE

SUBFACET J,

figure 8. Geometric Relationship Between Reflector Element j and Target Point i.

Since they share the same solid angle, &Si and ASr intercept 
the same total power. The power intercepted byAS(.. is given by the 
total power coming off the reflector point, kI, multiplied by the dif­
ferential probability that energy will reflect through A5(,. We have:

P = kI x ESUN (UV i.)ASi. (Ed 7)

Using the relation (6) to eliminate AS^ from (7), and dividing both 
sides by ASi gives the flux at target point i due to reflection from 
concentrator point j.

idcos<»ESUN(U;.. V(-<) 

if2 COS3 V
(EQ 8)

In modelling solar collection systems, several considerations 
affect the applicability of this equation. On its way from the sun to 
the concentrator, and then to the receiver, a ray may be stopped in 
several ways. The receiver itself, or supporting structures, may 
block rays as they descend upon the concentrator, shading portions 
of it. Occasionally, some facets may shade themselves and other 
facets, or block reflected energy. Shading and blocking at the con­
centrator is accounted by the factor Bj. This factor represents the 
fraction of the area of subfacet j that is neutralized by shading and 
blocking. In the vicinity of the receiver, blocking by an aperture is 
called “aperturing,” and is also accounted for. Finally, if the angle 
<t> is greater than 90 degrees, the incident rays strike the back side 
of, or “back-strike,” the target, and are not counted.

At this point, an approximation is made to enable numerical 
solution of the problem we are formulating. All energy reflected 
from the entire subfacet is assumed to originate from the single 
point j. Barring aperturing and back-striking, the flux at i due to re­
flection from subfacet j is given by the product of f-.j and the unneu­
tralized portion of the intercepted reflector area, (l-Bj)AjCosp . 
Employing equation (8), this becomes:

Klcos<}>cosp(l - Bj) A BSUNflJp V(.,)
J-‘ 2cos3y

(EQ 9)

The total flux at target point i is obtained by summing the 
contributions of each of the j subfacets on the concentrator. '

2.3 Determination of Subfacet Quantities
For each facet of a concentrator, a local x-y-z “facet coordi­

nate system” is established. Figure 9 illustrates this coordinate sys­
tem for a parabolic facet. The mathematical description of the 
facet’s geometry is defined with respect to this coordinate frame. 
The facet’s pojection onto the x-y plane forms a circular image, i.e. 
the facet has a circular “projected shape.” In CIRCE2, curved fac­
ets are discretized into subfacets by first dividing the projected 
shape into sections, and then projecting division lines up onto the 
facet surface. The figure illustrates this correspondence. (Flat fac­
ets coincide with their projected shapes, and so division is straight­
forward.)

For each subfacet, the quantities used in the developments of 
the previous sections must be established. Continuing with our ex­
ample, the following approximations are made in the code. Refer­
ring to Figure 9, the centroid of the shaded element on the x-y plane 
is determined. Projecting this point up onto the facet defines the lo­
cation of the source-point j for the subfacet. The most probable 
normal, N0, is taken to be perpendicular to the facet surface there, 
rising off of the concentrating (concave) side. The area Aj of the 
subfacet is approximated by dividing the area of the shaded element 
in the x-y plane, projected area aJ , by the dot product of N0 and zk, 
where zk is a unit vector along the (+) z-axis of the k1*1 facet’s local 
coordinate system.
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FIGURE 9. Parabolic Facet
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2.-1 Determination of Total Power Intercepted by Target
To determine total collected power, the normally incident flux 

at a regular pattern of grid points on the target surface is evaluated, 
from which a numerical integration yields total power. Here, “reg­
ular” means: at intervals on the target surface described by equi- 
incremental stations of the curvilinear coordinates which describe 
the surface. Figure 10 may be used for clarification. Shown is a 
spherical target section, which is completely described by varia­
tions of the coordinates © and 9 on the surface defined by the equa­
tion p=constant. The total angular extents A© and A<p are divided 
into equal increments 80 and 89, such that A© = nS© and 
A9 = m 89. An orthogonal net of lines is formed on the surface 
with 6© and 89 spacing. The grid of points located by the intersec­
tions of the mesh lines represents a “regular” discretization of this 
two-coordinate surface.

Integration of the flux distribution on the receiver is accom­
plished by numerically integrating over subsections of 3x3 grid 
points and summing the results over all subsections. The quadra­
ture is performed over a flat, rectangular domain in the surface co­
ordinates. For example, in the spherical case, the surface integral 
becomes:

J J F (©, 9) p2sm9d©il9 = JJf* (©, 9) dQdif (EQ 10)
R R

where F(©,9) is the flux distribution on the target. Orthogonal 
coordinates © and 9 can be visualized to preside over a flat domain 
upon which the scalar function F* is defined. The grid of points 
becomes rectangular and equi-spaced in this domain, and the value 
of F* is known at each of the points. Numerical quadrature is simply 
a matter of choosing a weighting scheme for the values at the points. 
The weighting technique that is used in CIRCE2 has been found [7] 
to be particularly accurate for integrating the circular-periodic flux 
distributions of axisymmetric targets, while retaining the same 
accuracy as the methods employed in HELIOS for flat, rectangular 
targets. Moreover, it is just as fast as the HELIOS methods. It 
amounts to a trapezoidal rule in the azimuthal coordinate, where flux 
variations are relatively small, combined with a Simpson’s rule 
weighting in the orthogonal direction, where flux variations are 
usually higher. For flat rectangular and circular targets, the method 
yields results that agree extremely well with those of the 
sophisticated (and computationally expensive) integrator used in 
CIRCE.001, which couples an 8-point adaptive Legendre-Gauss fit 
in one direction with a 7-point Newton-Cotes adaptive scheme in the
other.

CENTER OF 
GENERATION 
OF TARGET

3 PACKAGE FEATURES AND CAPABILITIES

3.1 Interactive Preprocessor

DEKGEN2 is an interactive preprocessor module that guides 
the user through the process of building and discretizing the con­
centrator and receiver, defining the concentrator error distributions, 
and specifying a sun model. The code has the capability to read 
data files, such as tabular sunshapes and facet data, that are used re­
peatedly or are most efficiently generated by separate computer 
program. Where possible, DEKGEN2 checks to ensure that data 
input is consistent with previous information and/or within the ac­
ceptable ranges of the parameters. The code then creates the data 
deck necessary to run the analysis module CIRCE2.

3.2 Concentrator Modeling

Concentrator geometry is defined relative to an absolute X-Y- 
Z “collector reference frame,” as shown in Figure 11. The sun posi­
tion is specified by defining a vector in this reference frame that lo­
cates the sun. Effects of instantaneous tracking errors may be 
investigated by aligning the concentrator axis with the global Z- 
axis, and then specifying an off-axis “sun vector.”

Up to 250 facets are located on the concentrator by specifying 
the (X,Y,Z) coordinates of their vertexes. (The venex of each facet 
marks the origin of its local facet coordinate system.) Facets can 
be “aimed” in either of two ways. The user can specify the direc­
tion cosines of the facet-system z-axis. Alternatively, the user may 
define up to 50 “aim points” as shown in the figure, each being as­
signed an integer identifier and (X,Y,Z) coordinates. Each facet 
may then be associated with any one of the aim points through a 
correspondence list. The facets are internally aimed (temporarily 
assuming the sun to be overhead along the collector Z-axis) such 
that the reflected central ray from the vertex of each facet goes 
through its associated aim point. Facets of rectangular and triangu­
lar projected shape may also be individually rotated about their z- 
axes to obtain the desired orientation.

Concentrator modelling must include the effects of shading 
and blocking. The receiver itself, or supporting structures, may 
block rays as they descend upon the concentrator, shading ponions 
of it. Occasionally, some facets may shade themselves and other 
facets, or block reflected energy. For concave facets, self-blocking

Z

AIM POINT 
FOR FACET

REFLECTED CENTRAL RAY

INCOMING CENTRAL 
RAY
---------------- FACET

CONCENTRATOR

VERTEX

figure 10. Spherical Target Section figure 11. Elements of Concentrator Modeling



and self-shading are checked and accounted for. Shading of the 
concentrator by the target/support structure can be handled in a 
number of ways. The user may input, individually for each facet, a 
factor Bj corresponding to the fraction of surface that is shaded, 
which can also include the fraction of the surface whose reflected 
rays are being blocked. This fraction is assumed to apply to all sub­
facets of the facet. Alternatively, the user may orient a circular or 
rectangular planar shape above the concentrator such that it emu­
lates the receiver. The shadow it casts on the concentrator is calcu­
lated internally, depending upon the sun position, and subfacets are 
assigned a shading factor Bj according to the portion of the surface 
intercepted by the shadow.

3.3 Facet/Subfacet Modelling
Facet geometry is described by “contour” or “profile,” and 

"projected shape.” Facets of circular, rectangular, or triangular pro­
jected shape may be specified. The package affords control over 
the level of discretization of the projected shapes, thus the number 
of elements into which the facets are divided (see Section 2.3.)

Regarding contour, a facet has a characteristic shape that is 
produced by rotation of a curve about the facet coordinate system 
r-axis. The curve is assumed to originate at the origin of the x-y-z 
system, to be single-valued (does not pass over itself), and to be 
monotonically increasing (inflection points permissible). CIRCE2 
handles the standard parabolic, spherical, and flat profiles, as well 
as more customized shapes, such as those characteristic of 
stretched-membrane reflectors. The profile curve for custom 
shapes can be described by one of three methods: i) polynomial (up 
to 10th order) where the order and coefficients must be supplied; ii) 
linear interpolation or cubic spline fit of a table of radius vs. z data 
(up to 99 data points possible); iii) same as option (ii), but the user 
inputs most-probable normals. Each of these options has attributes 
over the others for certain data sets, as explained at length in [7].

3.4 Target/Receiver Modelling

CIRCE2 and DEKGEN2 support the generation and analysis 
of flat rectangular or circular targets, or 3-D internal or external re­
ceivers of cylindrical, spherical, or conical (upright or inverted) 
shape. Targets are not limited to “complete” shapes, i.e., just the 
frustrum of a cone may be analyzed, or a small angular section of 
the frustrum, as opposed to the full axisymmetric region. Up to a 
51x51 grid of points may be imposed upon the targets for resolution 
of the flux distribution. Moreover, “hybrid” receivers built from 
axisymmetric cylindrical, spherical, conical, and flat-circular com­
ponents may be constructed, with up to a 51x51 grid assignable to 
each component. For axisymmetric targets, receiver aperturing is 
automatically accounted for, and can be separately specified for 
other targets. Thus, the package is particularly well suited to evalu­
ation of axisymmetric cavity-type receivers.

3.5 Sunshape Modelling
In measuring the intensity variation over the sun-disk, power 

is usually given as a function of the angle from the central ray. This 
distribution is called the sunshape. In analysis, it is convenient to 
separate the total insolation I from the “shape” of the distribution 
by normalizing the input distribution. After normalization, this dis­
tribution (also called the sunshape) constitutes the probability den­
sity function represented as S(p) in Section 2.1.3. CIRCE2 requires 
input of total insolation I as well as some distribution (which is in­
ternally normalized if necessary) to indicate shape. Provisions exist

for inputing the distribution by i) tabular data; ii) specification of 
standard deviation and ultimate width for a Gaussian distribution; 
or iii) specifying width and choice of one of six “limb-darkening" 
options for a uniform “top-hat” distribution.

3.6 Control over Calculation of Effective Sunshape
In general, the effective reflected sunshape ESUN(U,V) (cf 

Section 2.1.4) varies from point-to-point on the concentrator be­
cause, though the error-cone C(P,Q) and incident sunshape S(p) are 
assumed to be invariant, the incidence angle p may vary. Thus, the 
relative positioning of the reflector- and reflected-ray reference 
planes of Figure 7 changes from point-to-point on the concentrator. 
Accordingly, the projected distribution D(U,V) on the reflected-ray 
plane varies, and along with it, the product distribution ESUN.

Calculation of the effective sunshape may be the dominant 
computational operation in a CIRCE2 simulation if it is done at 
many points on the concentrator. However, undercalculation leads 
to greater error. It is advantageous to be able to tailor this compu­
tation to the resources and goals of the analysis. In many cases, it is 
appropriate, or necessary, to approximate ESUN as being constant 
over a facet or group of facets. In this case, CIRCE2 sets up, at 
each subfacet in the group, a reflected-ray reference plane with ap­
propriate U-V coordinate axes. An invariant effective sunshape 
over that group of subfacets, ESUN’(U,V), is used in the calcalcu- 
lations of section 2.2. CIRCE2 may be directed to calculate a nev. 
effective sunshape at: i) every subfacet; ii) the center of each facet 
(effective sunshape invariant over the facet); iii) the center of only 
one facet (effective sunshape invariant over entire concentrator).

The cost of the calculation of the effective sunshape may also 
be moderated, at the expense of some accuracy, by using approxi­
mate analytic methods instead of a numerical computation. One 
option is to convert the 1-D sunshape (usually not prescribed as a 
circular-normal distribution) into a 1-D circular-normal distribution 
having the same rms width as the prescribed sunshape, and then to 
perform the convolution with the 2-D elliptic-normal projected er­
ror cone analytically. Another is to approximate the projected er­
ror-cone by an /ms-equivalent 1-D circular-normal distribution, 
simplifying convolution with the 1-D sunshape, whether numerical­
ly or analytically performed.

4 CODE OPTIMIZATION AND VALIDATION

While capabilities of CIRCE2/DEKGEN2 have been signifi­
cantly extended relative to CIRCE.001/DEKGEN [5,6], computa­
tional and storage requirements have been reduced dramatically. 
C1RCE2 requires only 5% of the storage that CIRCE.001 does. 
Additionally, optimization of the code has resulted in large compu­
tational savings - reductions in CPU time of over three orders of 
magnitude have been realized on a VAX/8800 for some practical 
problems. These attributes make the current code even more ame­
nable to execution on personal computers.

Where they have common capabilities, CIRCE2 has been 
checked extensively against its predecessor, CIRCE.001, which has 
seen substantial use at Sandia National Labs and elsewhere. CIR­
CE.001, being a direct descendent of HELIOS [1], was checked ex­
tensively against that code (see [5,6] for some of the benchmark 
cases run, and timing studies performed, on CRAY, VAX and PC 
machines.) The CIRCE2/DEKGEN2 package has been used, pri­
marily by Sandia researchers, in recent analyses published in the 
solar energy literature [14-20], (Several of these are to be presented 
at this conference.) This body of work has provided an indirect,



semi-quantitative validation of CIRCE2. More directly, flux distri­
butions on flat targets recorded by the Sandia Video Flux-Mapping 
System, and calibrated by flux gauges in the target, have been visu­
ally compared against images predicted by CIRCE2. However, the 
comparisons have been subjective, relying on visual judgement. As 
reponed in [16], software and a methodology are now available to 
quantitatively compare real image measurements against theoretical 
predictions. It would be necessary to apply these tools with the spe­
cific goal of benchmarking CIRCE2 before a conclusive, fully 
quantitative assertion could be made regarding the code’s validity.

5 CONCLUSIONS, AVAILIBILITY

Considerable practical use of the CIRCE2/DEKGEN2 soft­
ware package has resulted in a robust and user-friendly product. 
More work must be done to verify the analysis code, but the tools 
apparently now exist to do this quanutadvely.

Our objective is to release the package for general use in early 
1992. The codes are written in standard FORTRAN/77, and run in­
terchangeably on our VAX/VMS and PC/DOS systems.
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