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ABSTRACT

CIRCE?2 is a cone-optics computer code for determining the
flux distribution and total incident power upon a receiver, given
concentrator and receiver geomeuies, sunshape (angular distribu-
tion of incident rays from the sun-disk), and concentrator imperfec-
tions such as surface roughness and random deviation in slope.
Statistical methods are used to evaluate the directional distribution
of reflected rays from any given point on the concentrator, whence
the contribution to any point on the target can be obtained. DEK-
GEN2 is an interactive preprocessor which facilitates specification
of geometry, sun models, and error distributions.

The CIRCE2/DEKGEN?2 package equips solar energy engi-
neers with a quick, user-friendly design and analysis tool for
study/optimization of dish-type distributed receiver systems. The
package exhibits convenient features for analysis of “conventional”
concentrators, and has the generality required to investigate com-
plex and unconventional designs. Among the more advanced fea-
tures are the ability to model dish or faceted concentrators and
stretched-membrane reflectors, and to analyze 3-D flux distribu-
tions on internal or external receivers with 3-D geometries. Facets
of rectangular, triangular, or circular projected shape, with profiles
of parabolic, spherical, flat, or custom curvature can be handled.
Provisions for shading, blocking, and aperture specification are also
included.

This paper outlines the features and capabilities of the new
package, as well as the theory and numerical models employed in
CIRCE2.

1. This work performed at Sandia National Laboratories, supported by
the U.S. Department of Energy under contract DE-AC04-76DP00789.

| INTRODUCTION

Sandia National Labs is actively involved in the design, de-
velopment, and testing of solar energy collection systems. A signif-
icant subset of this effort is directed toward point focus distributed
receiver systems. Accordingly, in the mid 1980’s, an effort was un-
dertaken to develop a user-friendly capability to model such sys-
tems. To predict the distribution of solar flux upon the receivers,
HELIOS [1] was chosen as a starting point over other existing op-
tics simulation codes such as CAV [2] and COPS [3] because it con-
tained fewer simplifications and allowed much greater freedom in
the receiver and reflector configurations that could be modelled.
HELIOS, incorporating much of the mathematical theory devel-
oped by Schrenk [4], was developed during the 1970’s by Biggs
and Vittitoe for modelling the solar central receiver at Sandia.
Trough and dish-type systems could also be modelled, but the
code’s generality made it unnecessarily complex, and cumbersome
to use for these applications. In order to facilitate the analysis of
point-focus collector systems, Ratzel and Boughton developed
CIRCE.001, the “daughter” of HELIOS (as in Greek mythology),
and an interactive preprocessor, DEKGEN, to assist in specification
of geometry, sun models, and concentrator errors. A plotting capa-
bility for 3-D visualization ofresults was also developed. The anal-
ysis code CIRCE.001 (Convolution of Incident Radiation with
Concentrator Errors) was easy to run, yet the package had the gen-
erality necessary to analyze very diverse concentrator and receiver
configurations. This suite of design and analysis tools was reported
at the 1987 ASME-JSME Solar Energy Conference [5], and is doc-
umented more fully in [6].

Continued work on the CIRCE.001 package over the past
several years has lead to a second-generation version: CIRCE2/DE-
KGEN?2 [7]. The most significant additions to the package include:
the capability to model 3-D internal or external receivers, improved
methodology for simulating facets of custom profile (such as
stretched-membrane facets), an improved integration routine for
computing total collected power, and control over the process by
which concentrator imperfections affect the reflected image. Sever-
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aJ constraints on the types of faceted concentrators that may be cor-
rectly modelled have been lifted, provisions for aperturing have
been incorporated, and algorithms for blocking and shading have
been extended. Additionally, optimization has made the FOR-
TRAN/77 codes even more amenable to execution on personal
computers than before. Reductions in CPU-time by factors in ex-
cess of 300 have been realized for some practical problems, and
storage requirements have been reduced by 95% even though the
maximum target grid size for resolution of flux distributions has
been increased twenty-fold. The post-processing capability has not
been updated because of the many individual preferences in the
rapidly changing field of graphic visualization.

This paper surveys the analytical models and numerical pro-
cedures employed in CIRCE2. Features and capabilities of the soft-
ware analysis package are pointed out. Code validation and
availability are also addressed.

2 THEORY AND NUMERICAL MODELING

Here the methodology used to simulate the solar image re-
flected from a real (imperfect) surface is summarized. The contri-
bution of a reflector element to the total solar flux upon the receiver
is derived. Additionally, the determination of critical reflector
quantities is addressed. Finally, quadrature of the discrete flux dis-
tribution (on the target) for determination oftotal collected power is
discussed.

2.1 HELIOS Methodology for Simulating the Solar Image
Reflected from a Real Surface

2.1.1  Conceptual Overview
Looking up at the sun, it appears to be a small disk, the bright-

ness and diameter of which are dependent upon atmospheric condi-
tions. Fundamental to solar optics is the treatment of the sun as a
disk (not point) energy source. The “sun-disk” usually appears to
be brightest at its center, dimmest at the edge. This variation in
brightness may be modelled by a probability density function, or
“distribution function,” as follows. A line drawn from the center of
the sun-disk to a point on the earth marks the direction of the “cen-
tral ray” from the sun to the earth point. A photon incident upon the
earth may strike from any of a multitude of directions, depending
upon where (on the sun) it originated. Per unit time, more photons
are incident from directions associated with the brighter areas of the
sun-disk than from those associated with dimmer areas. The direc-
tional distribution of incident photons may be described by a proba-
bility density function of direction about the central ray. This
probability density function is termed the “sunshape” distribution.
Thus, as Figure | illustrates, the sun effectively irradiates a reflector
surface as a cone ofrays, and the intensity of radiant energy over
the cone angle may vary. Accordingly, statistical cone-optic tech-
niques are employed instead of ray-tracing methods.

For a perfect (ideal) reflector, which has a smooth surface and
no absorption, all energy in a given wavelength band incident upon
the surface is specularly reflected (angle of incidence = angle of re-
flection with respect to the surface normal). Thus, the incident and
reflected sunshape distributions are identical. Real (imperfect) re
flectors, however, have characteristics that cause the reflected sun-
shape to differ from the incident one. To begin with, some of the
energy striking a real surface does not leave because of surface ab-
sorption. This is handled by utilizing a specular reflectance param-
eter, x, which is assumed to be independent of direction of
incidence. Now, in C1RCE2, reflecting surfaces are assumed to
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ricure 1. Incident and Reflected Solar Images

conform to certain ideal geometries, such as flat, paraboloidal, etc.
For these geometries, the “ideal surface normal,” Nu, is unambigu-
ously defined at each point of the surface. The profile ofreal reflec-
tors, however, will deviate from the ideal shapes, exhibiting some
degree of ““slope error”. Macroscopic imperfections such as surface
waviness contribute to the slope error. Additionally, microscopic
surface imperfections such as surface striation patterns and surface
roughness will cause the actual surface normal, N, to deviate from
the ideal normal. These “concentrator errors” cause the actual sur-
face normal to be nondeterministic; to vary from the ideal surface
normal in a manner that is impractical to establish at each point on
the reflector. Statistical methods are employed to handle the ambi-
guity. Each error type can be assigned a probability density func-
tion corresponding to the expected standard deviation about N that
N will have because of the imperfection. The individual error dis-
tributions are combined to produce an overall probability distribu-
tion for the direction of ft. Because the distribution represents a
multitude of possible surface normal directions, as depicted in Fig-
ure 2, it is referred to as the “error-cone.”

Now, given a direction of incidence, the ambiguity in the di-
rection of the surface normal results in a distribution of possible re-
flection directions according to the law of specular reflection.
Furthermore, since there is actually a multitude of possible incident
directions given by the sunshape, the reflected-ray distribution is a
result of the combined effect of both distributions. Figure 2 illus-
trates this dependence. The incident sunshape is convolved with
the error cone to determine the overall probability density function
describing the reflected image. This resultant distribution is termed
the “effective sunshape.”
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L L2 Calculation of Concentrator Error-Cone

Let the ideal or “most-probable” surface normal fJ) be a unit
normal obtained from a mathematical description of the surface.
Concentrator imperfections cause deviations in the direction of the
actual surface normal N about /0. It is assumed that the deviations
are randomly distributed and described by 2-D elliptic-normal
probability density functions. The form of such a distribution with
cr and as being the standard deviations in the r- and s- directions,
respectively, is:

|

P(rs) 2naras

exp o, (EQ1)

Figure 3 depicts a section of a reflector with Na shown at a point on
the surface. Also imposed upon the surface at that point is a
rectangular Cartesian coordinate frame called the (4,1, 0 “sun-
reflector” coordinate system. The C-axis of this system coincides

with No- At a unit distance above the surface, parallel to the £--n
plane, lies the “reflector reference plane.” A reference P-Q
coordinate system is set up on the plane, whose axes correspond to
the *--n system translated a unit positive distance along the £-axis.
Drawn on the plane is a contour ofa 2-D elliptic-normal distribution.
The r-s coordinate system coincides with the minor and major
principal axes of the distribution, respectively. Linear dimensions
on the plane are associated with angular deviations from the ideal
normal by trigonometry. In practice, the standard deviations in the
r- and s- directions are calculated by CIRCE2 upon specification of
angular deviations in these directions and the counterclockwise
rotation angle 0 between the r-s and P-Q axes.

As mentioned previously, the concentrator error-cone is an ef-
fective probability density function resulting from the combination
of several individual error distributions. Now, if two independent
error distributions exist such that each direction of the first distribu-
tion is subject to the directional probability described by the second
distribution, the resultant effective distribution can be obtained by
mathematical convolution of the two distributions. Consider the
two elliptic-normal distributions depicted in Figure 4. Only the
ponions of contours in their respective first quadrants are shown.
Their principal axes are separated by the angle Cl. These distribu-

tions, F(7'.s’) and G(r,r), may be convolved to yield the new distri-
bution h(r, ), which is of the form:

hr,s) = cxexp [-1/2 (or2 + 2krs+>12) | (E02)

where a, b, ¢, and k are constants that depend upon the standard
deviations of the distributions and the counter-clockwise (CCW;j
rotation of the r'-axis from the /--axis. The expression in parentheses
is seen to have a quadratic form, allowing it to be expressed as the
matrix product <r s>[A] (r,s). The matrix [A] can be shown [] to be
positive-definite. Thus, the expression in parentheses describes an
ellipsoid, for which the cross-term 2krs vanishes under a rotation
given by diagonalization of the matrix [A] c/[8]. The eigenvectors
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FIGURE 3. Error Distribution on Reflector Reference Plane



arising from the diagonalization determine the principal axes tl and
t2 of the ellipdc-nonnal distribution h(r,s), and the corresponding
eigenvalues give the respective standard deviations Oj and 02. As

shown in Figure 5, the rotation angle v locates the t1-t2 axes relative
to the r-s system. The quantities Oj, a2, and v may be calculated

analytically [1] given the standard deviations of the original
distributions F and G, and their separation angle fi. Thus,
convolution of the elliptic-normal distributions F and G may be
accomplished analytically, and the only information that must be
stored to completely describe the resultant (convolved) distribution
h(tLt2) relative to the r-s coordinate system are the quantities Oj,

0,, and v.

In the above manner, the effect of the next concentrator error
is folded-in, convolving its error distribution with the newly ac-
quired distribution h(tl,t2). The process is repeated until all error
types are accounted for (up to five are allowed in CIRCE2), yield-
ing the resultant effective error-cone. This distribution may be said
to be described by the probability density function C(p,q), having
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principal axes p and q rotated CCW from the r-s system by the an-
gle X, with standard deviations o_and a . A rotational transforma-
tion through the angle 8 between the p-q and P-Q coordinate frames
(8 =X + 6) yields C(P,Q), a scalar function of the coordinates P and
Q in the reflector reference plane. In the computer code, the error-
cone is assumed to be the same at all points on the concentrator
surface.

2.1.3  Sunshape Distribution

The intensity, or brightness, of the sun is seen [9-13] to vary
from the center to the edge, and to be azimuthally symmetric. The
solid angle over which incident solar intensity is non-zero is called
the “incident ray cone,” as Figure 6 illustrates. A plane is drawn in
the figure which is perpendicular to the most-probable reflected
central ray, and is at unit distance from the point on the reflector
surface. For the moment, let the incident cone of rays experience
an undistorted reflection (angle of incidence = angle of reflection)
about the most-probable normal Wo, illuminating the plane as
shown. The variation in brightness on the plane can be described
by a function S’(p). where p is measured from the center of the im-
age. Dividing this function by the total reflected power yields a
normalized probability density function S(p) which, when integrat-
ed over the illuminated area, results in a value of unity. This func-
tion, when related through trigonometry to the angle y within the
ray cone, describes the directional probability density function
Su( y) that is the sunshape. For the small angles we're concerned
with here (on the order of a few milliradians), p=uinY-y, and the
word “sunshape” is used interchangeably in referring to either the
distribution in y or in p, the quantities S(p) and Su(y) being essen-
tially the same.

2.1.4 Calculation of Effective Sunshape Distribution

The effective reflected sunshape distribution, ESUN(U,V), is
obtained by convolution of the incident sunshape and concentrator
error-cone distributions. Before convolution, each distribution is
mapped onto the reflected-ray reference plane of Figure 6.
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ricure 6. Undistorted Solar Image on Reflected-Ray Reference Plane



In general, the concentrator error-cone distribution C(P,Q),
being 2-D elliptic-normal in the reflector reference plane (default-
ing to 1-D circular-normal if all individual errors are 1-D circular-
normal), maps onto the reflected-ray plane as a 2-D elliptic-normal
distribution. Figure 7 facilitates explanation of the mapping pro-
cess. The reference planes associated with the differential reflector
element, which were shown separately in Figures 3 and 6, are
shown together in Figure 7. The sun-reflector coordinate system is
oriented such that the ((‘axis coincides with the most-probable sur-
face normal hJ/) and the ri-axis lies in the plane defined by No and
the incident central ray 4. The unit vector 60 coincides with the
most-probable reflected central ray shown in Figure 6. Imposed
upon the reflected-ray reference plane is an orthogonal (U,V) coor-
dinate system with origin at the tip of B0. (By definition, both
planes are at unit distance from the origin of the sun-reflector coor-
dinate system, though they are not depicted as such in the figure for
labeling convenience.) The system is such that the (+) U-axis takes
the same direction as the (+) £-axis, and the positive direction of
the V-axis is as shown. Let the incident ray 4 reflect in the direc-
tion B according to the actual surface normal N. The relationship
between the (P,Q) coordinates where the extended vector N inter-
sects the reflector reference plane, and the (U,V) coordinates where
the extended vector B intersects the reflected-ray plane, is given (to
first-order) by the transformation equations:

U = 2Pcosp (EQ 3a)
V=2Q (EQ 3b)

where the small angle approximation is invoked to obtain equivalent
linear dimensions on the planes from angular deviations of the

vectors N and B.

It is desired to transform probability in the reflector reference
plane to equivalent probability in the reflected-ray plane. Equiva-
lence of differential probability in the two coordinate systems may
be written as:

C(P,Q)dPdQ = D(U,V)dUdV (EQ 4)

Noting from (3) that U is a function of P only, and V is a function of
Q only, dU = (dU/dP)dP and dV = (dV/dQ)dQ. The relation for
invariance , which accounts for the mapping, becomes

D(U,V) = C(P,Q)/(4cos|r) (EQ5)

Equation (5), supplemented with the relations (3a) and (3b), is used
to obtain an equivalent concentrator error-cone distribution D(U,V),
on the reflected-ray plane, from the distribution C(P,Q) on the
reflector reference plane. Thus, these relations, along with the
quantities (", 0®, 8, and p, fully describe the projected distribution

D(U,V). Referred to a set of principal axes u and v, rotated from the
U-V system by the angle x, this elliptic-normal distribution will
have standard deviations au and ay. The latter three quantities may

be obtained analytically from the four former quantities.

Now, there is actually a multitude of possible incident direc-
tions about the central ray, as prescribed by the sunshape distribu-
tion. Thus, the angle of'incidence varies about the value p, over the
cone of incident rays. The transformation relations (3) vary corre-
spondingly. Ideally, the effective probability function describing
the angular distribution of rays reflected from the surface would re-
late, by the method presented above, a differential projected error-
cone to a differential solid angle of incident rays. Integrating over
the sun-disk, the effective directional distribution of rays coming
off of the reflector surface (i.e. effective sunshape) could be ob-
tained. This operation, however, would have to be done numerical-
ly, and would introduce large computational expense. The error

-
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ricurRe 7. Mapping the Concentrator Error Cone from the
Reflector (P-Q) Reference Plane to the Reflected:
Ray (U-V) Reference Plane.

inpoduced by treating (3) as constant over the typically very small
sun-disk solid angle is extremely small, and as Schrenk [4] specu-
lates, is probably less than the numerical roundoff associated with
the computation.

Once the projected error-cone is obtained, it may be con-
volved with the projected sunshape (the process is carried out on
the reflected-ray plane) to obtain the effective reflected sunshape
ESUN(U,V). The incident sunshape is assumed to be a 1-D axi-
symmetric distribution, though usually not circular-normal because
a Gaussian distribution is generally not representative of intensity
variation over the solar disk [13]. Strictly, convolution of the pro-
jected 2-D elliptic-normal error-cone with the 1-D axisymmetric
(not circular-normal) projected sunshape must be done numerically
(fast Fourier transforms are used in CIRCE2.) However, several al-
ternatives exist for reducing the cost of this calculation, as cited in
section 3.6.

2.2  Determination of Flux at the Target Surface

Knowing the effective sunshape emanating from each point
on the reflector, the flux ofreflected solar energy upon any point on
the target can be obtained. For purposes of numerical computation,
the concentrator is usually subdivided into many relatively small
reflecting surfaces called “subfacets™. Figure 8 shows in schematic
a subfacet Aj and target section AS,-. Both are flat for convenience
in this example. Let the solid angle over which the reflector point
“views” the target section intercept the area AS;, on the reflected-
ray reference plane. By the definition of solid angle, and recalling
that the plane is at unit distance from the reflecting point, the fol-
lowing equality is arrived at:

ASj-cos®  ASj.cosy

where d is the distance between points i and j, and secy is the
distance between points i' and j.
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Since they share the same solid angle, &Si and ASr intercept
the same total power. The power intercepted byAS|. is given by the
total power coming off the reflector point, KI, multiplied by the dif-
ferential probability that energy will reflect through AS5(,. We have:

P = KI x ESUN(UV i)A4Si. (Ed7)

Using the relation (6) to eliminate AS" from (7), and dividing both
sides by 4Si gives the flux at target point i due to reflection from
concentrator point j.

idcos<»ESUN(U;.. V()
if2 Cos3 v EQ8)
In modelling solar collection systems, several considerations
affect the applicability of this equation. On its way from the sun to
the concentrator, and then to the receiver, a ray may be stopped in
several ways. The receiver itself, or supporting structures, may
block rays as they descend upon the concentrator, shading portions
ofit. Occasionally, some facets may shade themselves and other
facets, or block reflected energy. Shading and blocking at the con-
centrator is accounted by the factor Bj. This factor represents the
fraction of the area of subfacetj that is neutralized by shading and
blocking. In the vicinity of the receiver, blocking by an aperture is
called “aperturing,” and is also accounted for. Finally, if the angle
¢ is greater than 90 degrees, the incident rays strike the back side
of, or “back-strike,” the target, and are not counted.

At this point, an approximation is made to enable numerical
solution of the problem we are formulating. All energy reflected
from the entire subfacet is assumed to originate from the single
pointj. Barring aperturing and back-striking, the flux at i due to re-
flection from subfacetj is given by the product of f-j and the unneu-
tralized portion of the intercepted reflector area, (1-Bj)AjCosp .
Employing equation (8), this becomes:

Klcos<}>cosp(l - Bj) A BSUNfllp V|,
J- 2cos3y (FQ9)

The total flux at target point i is obtained by summing the
contributions of each of the j subfacets on the concentrator. '

2.3  Determination of Subfacet Quantities

For each facet of a concentrator, a local x-y-z “facet coordi-
nate system” is established. Figure 9 illustrates this coordinate sys-
tem for a parabolic facet. The mathematical description of the
facet’s geometry is defined with respect to this coordinate frame.
The facet’s pojection onto the x-y plane forms a circular image, i.e.
the facet has a circular “projected shape.” In CIRCE2, curved fac-
ets are discretized into subfacets by first dividing the projected
shape into sections, and then projecting division lines up onto the
facet surface. The figure illustrates this correspondence. (Flat fac-
ets coincide with their projected shapes, and so division is straight-
forward.)

For each subfacet, the quantities used in the developments of
the previous sections must be established. Continuing with our ex-
ample, the following approximations are made in the code. Refer-
ring to Figure 9, the centroid of the shaded element on the x-y plane
is determined. Projecting this point up onto the facet defines the lo-
cation of the source-point j for the subfacet. The most probable
normal, NO, is taken to be perpendicular to the facet surface there,
rising off of the concentrating (concave) side. The area Aj of the
subfacet is approximated by dividing the area of the shaded element
in the x-y plane, projected area AJ, by the dot product of M) and zk,
where zk is a unit vector along the (+) z-axis of the kIl facet’s local

coordinate system.
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FIGURE 9. Parabolic Facet



2-1  Determination of Total Power Intercepted by Target

To determine total collected power, the normally incident flux
at a regular pattern of grid points on the target surface is evaluated,
from which a numerical integration yields total power. Here, “reg-
ular” means: at intervals on the target surface described by equi-
incremental stations of the curvilinear coordinates which describe
the surface. Figure 10 may be used for clarification. Shown is a
spherical target section, which is completely described by varia-
tions of the coordinates © and 9 on the surface defined by the equa-
tion p=constant. The total angular extents A© and A< are divided
into equal increments 80 and 89, such that A© = nSO and
A9 = m89. An orthogonal net of lines is formed on the surface
with 60 and 89 spacing. The grid of points located by the intersec-
tions of the mesh lines represents a “regular” discretization of this
two-coordinate surface.

Integration of the flux distribution on the receiver is accom-
plished by numerically integrating over subsections of 3x3 grid
points and summing the results over all subsections. The quadra-
ture is performed over a flat, rectangular domain in the surface co-
ordinates. For example, in the spherical case, the surface integral
becomes:

JIF (0, 9) p2smod@ilo = JJ* (©, 9) dOdif (EQ 10)
R R

where F(©,9) is the flux distribution on the target. Orthogonal
coordinates © and 9 can be visualized to preside over a flat domain
upon which the scalar function F* is defined. The grid of points
becomes rectangular and equi-spaced in this domain, and the value
of F* is known at each of the points. Numerical quadrature is simply
a matter of choosing a weighting scheme for the values at the points.
The weighting technique that is used in CIRCE2 has been found [7]
to be particularly accurate for integrating the circular-periodic flux
distributions of axisymmetric targets, while retaining the same
accuracy as the methods employed in HELIOS for flat, rectangular
targets. Moreover, it is just as fast as the HELIOS methods. It
amounts to a trapezoidal rule in the azimuthal coordinate, where flux
variations are relatively small, combined with a Simpson’s rule
weighting in the orthogonal direction, where flux variations are
usually higher. For flat rectangular and circular targets, the method
yields results that agree extremely well with those of the
sophisticated (and computationally expensive) integrator used in
CIRCE.001, which couples an 8-point adaptive Legendre-Gauss fit
in one direction with a 7-point Newton-Cotes adaptive scheme in the
other.
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riGURe 10. Spherical Target Section

3 PACKAGE FEATURES AND CAPABILITIES

3.1 Interactive Preprocessor

DEKGEN? is an interactive preprocessor module that guides
the user through the process of building and discretizing the con-
centrator and receiver, defining the concentrator error distributions,
and specifying a sun model. The code has the capability to read
data files, such as tabular sunshapes and facet data, that are used re-
peatedly or are most efficiently generated by separate computer
program. Where possible, DEKGEN2 checks to ensure that data
input is consistent with previous information and/or within the ac-
ceptable ranges of the parameters. The code then creates the data
deck necessary to run the analysis module CIRCE2.

3.2 Concentrator Modeling

Concentrator geometry is defined relative to an absolute X-Y-
Z “collector reference frame,” as shown in Figure 11. The sun posi-
tion is specified by defining a vector in this reference frame that lo-
cates the sun. Effects of instantaneous tracking errors may be
investigated by aligning the concentrator axis with the global Z-
axis, and then specifying an off-axis “sun vector.”

Up to 250 facets are located on the concentrator by specifying
the (X,Y,Z) coordinates of their vertexes. (The venex of each facet
marks the origin of its local facet coordinate system.) Facets can
be “aimed” in either of two ways. The user can specify the direc-
tion cosines of the facet-system z-axis. Alternatively, the user may
define up to 50 “aim points” as shown in the figure, each being as-
signed an integer identifier and (X,Y,Z) coordinates. Each facet
may then be associated with any one of the aim points through a
correspondence list. The facets are internally aimed (temporarily
assuming the sun to be overhead along the collector Z-axis) such
that the reflected central ray from the vertex of each facet goes
through its associated aim point. Facets of rectangular and triangu-
lar projected shape may also be individually rotated about their z-
axes to obtain the desired orientation.

Concentrator modelling must include the effects of shading
and blocking. The receiver itself, or supporting structures, may
block rays as they descend upon the concentrator, shading ponions
of it. Occasionally, some facets may shade themselves and other
facets, or block reflected energy. For concave facets, self-blocking
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ricUre 11. Elements of Concentrator Modeling



and self-shading are checked and accounted for. Shading of the
concentrator by the target/support structure can be handled in a
number of ways. The user may input, individually for each facet, a
factor Bj corresponding to the fraction of surface that is shaded,
which can also include the fraction of the surface whose reflected
rays are being blocked. This fraction is assumed to apply to all sub-
facets of the facet. Alternatively, the user may orient a circular or
rectangular planar shape above the concentrator such that it emu-
lates the receiver. The shadow it casts on the concentrator is calcu-
lated internally, depending upon the sun position, and subfacets are
assigned a shading factor Bj according to the portion of the surface
intercepted by the shadow.

3.3 Facet/Subfacet Modelling

Facet geometry is described by “contour” or “profile,” and
"projected shape.” Facets of circular, rectangular, or triangular pro-
jected shape may be specified. The package affords control over
the level of discretization of the projected shapes, thus the number
of elements into which the facets are divided (see Section 2.3.)

Regarding contour, a facet has a characteristic shape that is
produced by rotation of a curve about the facet coordinate system
r-axis. The curve is assumed to originate at the origin of the x-y-z
system, to be single-valued (does not pass over itself), and to be
monotonically increasing (inflection points permissible). CIRCE2
handles the standard parabolic, spherical, and flat profiles, as well
as more customized shapes, such as those characteristic of
stretched-membrane reflectors. The profile curve for custom
shapes can be described by one of three methods: i) polynomial (up
to 10th order) where the order and coefficients must be supplied; ii)
linear interpolation or cubic spline fit of a table of radius vs. z data
(up to 99 data points possible); iii) same as option (ii), but the user
inputs most-probable normals. Each of these options has attributes
over the others for certain data sets, as explained at length in [7].

3.4 Target/Receiver Modelling

CIRCE2 and DEKGEN?2 support the generation and analysis
of flat rectangular or circular targets, or 3-D internal or external re-
ceivers of cylindrical, spherical, or conical (upright or inverted)
shape. Targets are not limited to “complete” shapes, i.e., just the
frustrum of a cone may be analyzed, or a small angular section of
the frustrum, as opposed to the full axisymmetric region. Up to a
51x51 grid of points may be imposed upon the targets for resolution
of the flux distribution. Moreover, “hybrid” receivers built from
axisymmetric cylindrical, spherical, conical, and flat-circular com-
ponents may be constructed, with up to a 51x51 grid assignable to
each component. For axisymmetric targets, receiver aperturing is
automatically accounted for, and can be separately specified for
other targets. Thus, the package is particularly well suited to evalu-
ation of axisymmetric cavity-type receivers.

3.5 Sunshape Modelling

In measuring the intensity variation over the sun-disk, power
is usually given as a function of the angle from the central ray. This
distribution is called the sunshape. In analysis, it is convenient to
separate the total insolation I from the “shape” of the distribution
by normalizing the input distribution. After normalization, this dis-
tribution (also called the sunshape) constitutes the probability den-
sity function represented as S(p) in Section 2.1.3. CIRCE2 requires
input of total insolation I as well as some distribution (which is in-
ternally normalized if necessary) to indicate shape. Provisions exist

for inputing the distribution by i) tabular data; ii) specification of
standard deviation and ultimate width for a Gaussian distribution;
or iii) specifying width and choice of one of six “limb-darkening"
options for a uniform “top-hat” distribution.

3.6 Control over Calculation of Effective Sunshape

In general, the effective reflected sunshape ESUN(U,V) (¢f
Section 2.1.4) varies from point-to-point on the concentrator be-
cause, though the error-cone C(P,Q) and incident sunshape S(p) are
assumed to be invariant, the incidence angle p may vary. Thus, the
relative positioning of the reflector- and reflected-ray reference
planes of Figure 7 changes from point-to-point on the concentrator.
Accordingly, the projected distribution D(U,V) on the reflected-ray
plane varies, and along with it, the product distribution ESUN.

Calculation of the effective sunshape may be the dominant
computational operation in a CIRCE2 simulation if it is done at
many points on the concentrator. However, undercalculation leads
to greater error. It is advantageous to be able to tailor this compu-
tation to the resources and goals of the analysis. In many cases, it is
appropriate, or necessary, to approximate ESUN as being constant
over a facet or group of facets. In this case, CIRCE2 sets up, at
each subfacet in the group, a reflected-ray reference plane with ap-
propriate U-V coordinate axes. An invariant effective sunshape
over that group of subfacets, ESUN’(U,V), is used in the calcalcu-
lations of section 2.2. CIRCE2 may be directed to calculate a nev.
effective sunshape at: i) every subfacet; ii) the center of each facet
(effective sunshape invariant over the facet); iii) the center of only
one facet (effective sunshape invariant over entire concentrator).

The cost of the calculation of the effective sunshape may also
be moderated, at the expense of some accuracy, by using approxi-
mate analytic methods instead of a numerical computation. One
option is to convert the 1-D sunshape (usually not prescribed as a
circular-normal distribution) into a 1-D circular-normal distribution
having the same rms width as the prescribed sunshape, and then to
perform the convolution with the 2-D elliptic-normal projected er-
ror cone analytically. Another is to approximate the projected er-
ror-cone by an /ms-equivalent 1-D circular-normal distribution,
simplifying convolution with the 1-D sunshape, whether numerical-
ly or analytically performed.

4 CODE OPTIMIZATION AND VALIDATION

While capabilities of CIRCE2/DEKGEN?2 have been signifi-
cantly extended relative to CIRCE.001/DEKGEN [5,6], computa-
tional and storage requirements have been reduced dramatically.
C1RCE2 requires only 5% of the storage that CIRCE.001 does.
Additionally, optimization of the code has resulted in large compu-
tational savings - reductions in CPU time of over three orders of
magnitude have been realized on a VAX/8800 for some practical
problems. These attributes make the current code even more ame-
nable to execution on personal computers.

Where they have common capabilities, CIRCE2 has been
checked extensively against its predecessor, CIRCE.001, which has
seen substantial use at Sandia National Labs and elsewhere. CIR-
CE.001, being a direct descendent of HELIOS [1], was checked ex-
tensively against that code (see [5,6] for some of the benchmark
cases run, and timing studies performed, on CRAY, VAX and PC
machines.) The CIRCE2/DEKGEN?2 package has been used, pri-
marily by Sandia researchers, in recent analyses published in the
solar energy literature [14-20], (Several of these are to be presented
at this conference.) This body of work has provided an indirect,



semi-quantitative validation of CIRCE2. More directly, flux distri-
butions on flat targets recorded by the Sandia Video Flux-Mapping
System, and calibrated by flux gauges in the target, have been visu-
ally compared against images predicted by CIRCE2. However, the
comparisons have been subjective, relying on visual judgement. As
reponed in [16], software and a methodology are now available to
quantitatively compare real image measurements against theoretical
predictions. It would be necessary to apply these tools with the spe-
cific goal of benchmarking CIRCE2 before a conclusive, fully
quantitative assertion could be made regarding the code’s validity.

5 CONCLUSIONS, AVAILIBILITY

Considerable practical use of the CIRCE2/DEKGEN?2 soft-
ware package has resulted in a robust and user-friendly product.
More work must be done to verify the analysis code, but the tools
apparently now exist to do this quanutadvely.

Our objective is to release the package for general use in early
1992. The codes are written in standard FORTRAN/77, and run in-
terchangeably on our VAX/VMS and PC/DOS systems.
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