
- - _-IIIII

olllli-.illllliui

NUREG/CR-6101
UCRL-ID-114839

II I III

Software Reliability and
Safety in Nuclear
Reactor Protection Systems

Manuscript Completed: June 1993
Date Published: November 1993

Prepared by
J. D. Lawrence

Lawrence Livermore National Laboratory
Livermore, CA 94550

Prepared for
Division of Reactor Controls and Human Factors

Office of Nuclear Reactor Regulation
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001
NRC FIN L1867

'DI,STR1Bi.jTIOi",I OF THIS DOCUMENT IS UNLIMITED

ABSTRACT

Planning the development, use and regulation of computer systems in nuclear reactor protection systems in such a
way as to enhance reliability and safety is a complex issue. This report is one of a series of reports from the
Computer Safety and Reliability Group, La,_a'ence Livermore National Laboratory, that investigates different
aspex;ts of computer software in reactor protection systems. There are two central themes in the report. First,
software considerations cannot be fully understood in isolation from computer hardware and application
considerations. Second, the process of engineering reliability and safety into a computer system requires activities to
be carried out throughout the software life cycle. The report discusses the many activities that can be carried out
during the software life cycle to improve the safety and reliability of the resulting product. The viewpoint is
primarily that of the assessor, or auditor.

iii NUREG/CR-6101

CONTENTS

1. Introduction .. 1

1.1. Purpose .. 1
1.2. Scope ... 1
1.3. Report Organization .. 2

2. Terminology ... 3
2.1. Systems Terminology .. 3
2.2. Software Reliability and Safety Terminology ... 3

2.2.1. Faults, Errors, and Failures .. 3

2.2.2. Reliability and Safety Measures .. 4
2.2.3. Safety Terminology .. 5

2.3. Life Cycle Models ... 6
2.3.1. Waterfall Model ... 7

2.3.2. Phased Implementation Model ... 7
2.3.3. Spiral Model ... 7

2.4. Fault and Failure Classification Schemes ... 7
2.4.1. Fault Classifications ... 12
2.4.2. Failure Classifications .. 14

2.5. Software Qualities ... 15
3. Life Cycle Software Reliability and Safety Activities ... 17

3.1. Planning Activities .. 17
3.1.1. Software Project Management Plan ... 19
3.1.2 Software Quality Assurance Plan ... 21
3.1.3. Software Configuration Management Plan .. 23
3.1.4. Software Verification and Validation Plan .. 26

3.1.5. Software Safety Plan .. 30
3.1.6. Software Development Plan ... 33
3.1.7. Software Integration Plan ... 35
3.1.8. Software Installation Plan .. 36

3.1.9. Software Maintenance Plan •.. 37

3.1.10. Software Training Plan .. 38
3.2. Requirements Activities .. 38

3.2.1. Software Requirements Specification .. 38
3.2.2. Requirements Safety Analysis ... 43

3.3. Design Activities ... 44
3.3.1. Hardware and Software Architecture ... 45

3.3.2. Software Design Specification ... 45
3.3.3. Software Design Safety Analysis ... 47

3.4. Implementation Activities ... 48
3.4.1. Code Safety Analysis ... 48

3.5. Integration Activities ... 49
3.5.1. System Build Documents ... 49
3.5.2. Integration Safety Analysis .. 49

3.6. Validation Activities ... 49

3.6.1. Validation Safety Analysis ... 50
3.7. Installation Activities .. 50

3.7.1. Operations Manual ... 50

v NUREG/CR-6101

3.7.2. Installation Configuration Tables ... 50
3.7.3. Training Manuals ... 50
3.7.4. Maintenance Manuals .. 50

3.7.5. Installation Safety Analysis .. 50
3.8. Operations and Maintenance Activities--Change Safety Analysis .. 51

4. Recommendations, Guidelines, and Assessment ... 53
4.1. Planning Activities .. 53

4.1.1. Software Project Management Plan ... 53
4.1.2. Software Quality Assurance Plan ... 54
4.1.3. Software Configuration Management Plan .. 56
4.1.4. Software Verification and Validation Plan .. 59

4.1.5. Software Safety Plan .. 65
4.1.6. Software Development Plan ... 67
4.1.7. Software Integration Plan ... 68
4.1.8. Software Installation Plan .. 69
4.1.9. Software Maintenance Plan .. 70

4.2. Requirements Activities ... 71
4.2.1. Software Requirements Specification .. 71
4.2.2. Requirements Safety Analysis ... 73

4.3. Design Activities ... 74
4.3.1. Hardware/Software Architecture Specification .. 74
4.3.2. Software Design Specification ... 74
4.3.3. Design Safety Analysis .. 75

4.4. Implementation Activities ... 76
4.4.1. Code Listings .. 76
4.4.2. Code Safety Analysis ... 77

4.5. Integration Activities ... 78
4.5.1. System Build Documents ... 78

4.5.2. Integration Safety Analysis .. 78
4.6. Valiaation Activities ... 78

4.6.1. Validation Safety Analysis ... 78
4.7, Installation Activities .. 79

4.7.1. Installation Safety Analysis .. 79
Appendix: Technical Background .. 81

A. 1. Software Fault Tolerance Techniques .. 81
A. 1.1. Fault Tolerance and Redundancy .. 82

A. 1.2. General Aspects of Recovery ... 82
A. 1.3. Software Fault Tolerance Techniques ... 84

A,2. Reliability and Safety Analysis and Modeling Techniques ... 87
A.2.1. Reliability Block Diagrams ... 87
A.2.2. Fault Tree Analysis ... 88
A.2.3. Event Tree Analysis .. 93
A.2.4. Failure Modes and Effects Analysis .. 93
A.2.5. Markov Models ... 95
A.2.6. Petri Net Models .. 97

A,3. Reliability Growth Models ... 101
A.3.1. Duane Model ... 103
A.3.2. Musa Model .. 103
A.3.3. Littlewood Model .. 104
A.3.4. Musa-Okumoto Model .. 104

References ... 107
Standards ... 107

Books, Articles, and Reports ... 108
Bibliography .. 113

NUREG/CR-6101 vi

Figures

Figure 2-1. Documents Produced During Each Life Cycle Stage .. 8
Figure 2-2. Waterfall Life Cycle Model .. 10
Figure 2-3. Spiral Life Cycle Model .. 11
Figure 3-1. Software Planning Activities ... 18
Figure 3-2. Outline of a Software Project Management Plan .. 19
Figure 3-3. Outline of a Software Quality Assurance Plan .. 22
Figure 3-4. Outline of a Software Configuration Management Plan ... 24
Figure 3-5. Verification and Validation Activities .. 28
Figure 3-6. Outline of a Software Verification and Validation Plan ... 30
Figure 3-7. Outline of a Software Safety Plan ... 30
Figure 3-8. Outline of a Software Development Plan .. 34
Figure 3-9. Outline of a Software Integration Plan .. 35
Figure 3-10. Outline of a Software Installation Plan ... 37
Figure 3-11. Outline of a Software Maintenance Plan ... 37
Figure 3-12. Outline of a Software Requirements Plan ... 39
Figure A-1. Reliability Block Diagram of a Simple System .. 89
Figure A-2. Reliability Block Diagram of Single, Duplex, and Triplex Communication Line 89
Figure A-3. Reliability Block Diagram of Simple System with Duplexed Communication Line 90
Figure A-4. Reliability Block Diagram that Cannot Be Constructed from Serial and Parallel Parts 90
Figure A-5. Simple Fault Tree ... 90
Figure A-6. AND Node Evaluation in a Fault Tree ... 91
Figure A-7. OR Node Evaluation in a Fault Tree .. 91
Figure A-8. Example of a Software Fault Tree .. 92
Figure A-9. Simple Event Tree .. 93
Figure A-10. A Simple Markov Model of a System with Three CPUs ... 95
Figure A- 11. Markov Model of a System with CPUs and Memories .. 96
Figure A-12. Simple Markov Model with Varying Failure Rates ... 97
Figure A-13. Markov Model of a Simple System with Transient Faults ... 97
Figure A-14. An Unmarked Petri Net .. 99

Figure A-15. Example of a Marked Petri Net .. 99
Figure A-16. The Result of Firing Figure A-15 ... 100
Figure A-17. A Petri Net for the Mutual Exclusion Problem .. 100
Figure A-I 8. Petri Net for a Railroad Crossing ... 101
Figure A-19. Execution Time Between Successive Failures of an Actual System .. 102

Tables

Table 2-1. Persistence Classes and Fault Sources .. 12
Table A-1. Failure Rate Calculation .. 104

vii NUREG/CR-6101

ABBREVIATIONS AND ACRONYMS

ANSI American National Standards Institute
CASE Computer-Assisted Software Engineering
CCB Configuration Control Board
CI Configuration Item
CM Configuration Management
CPU Central Processing Unit
ETA Event Tree Analysis
FBD Functional Block Diagram
FLBS Functional Level Breakdown Structure
FMEA Failure Modes and Effects Analysis
FMECA Failure Modes, Effects and Criticality Analysis
VrA Fault Tree Analysis
I&C Instrumentation and Control
I/O Input/Output
IEEE Institute of Electrical and Electronic Engineers
MTTF Mean Time To Failure
PDP Previously Developed or Purchased
PERT Program Education and Review Technique
QA Quality Assurance
RAM Random Access Memory
ROM Read Only Memory
SCM Software Configuration Management
SCMP Software Configuration Management Plan
SPMP Software Project Management Plan
SQA Software Quality Assurance
SQAP Software Quality Assurance Plan
SRS Software Requirements Specification
SSP Software Safety Plan
TMR Triple Modular Redundancy
UCLA University of California at Los Angeles
UPS Uninterruptable Power Supply
V&V Verification and Validation
WB S Work Breakdown Structure

NUREG/CR-6101 viii

EXECUTIVE SUMMARY

The development, use, and regulation of computer systems in nuclear reactor protection systems to enhance
reliability and safety is a complex issue. This report is one of a series of reports from the Computer Safety and
Reliability Group, Lawrence Livermore National Laboratory, which investigates different aspects of computer
software in reactor protection systems.

There are two central themes in this report. First, software considerations cannot be fully understood in isolation
from computer hardware and application considerations. Second. the process of engineering reliability and safety
into a computer system requires activities to be carried out throughout the software life cycle. These two themes
affect both the structure and the content of this report.

Reliability and safety are concerned with faults, errors, and failures. A fault is a triggering event that causes
things to go wrong; a software bug is an example. The fault may cause a change of state in the computer, which is
termed an error. The error remains latent until the incorrect state is used; it then is termed effective. It may then
cause an externally-visible failure. Only the failure is visible outside the computer system. Preventing or correcting
the failure can be done at any of the levels: preventing or correcting the causative fault, preventing the fault from
causing an error, preventing the error from causing a failure, or preventing the failure from causing damage. The
techniques for achieving these goals are termed fault prevention, fault correction, and fault tolerance.

Reliability and safety are related, but not identical, concepts. Reliability, as defined in this report, is a measure
of how long a system will run without failure of any kind, while safety is a measure of how long a system will run

without catastrophic failure. Thus safety is directly concerned with the consequences of failure, not merely the
existence of failure. As a result, safety is a system issue, not simply a software issue, and must be analyzed and
discussed as a property of the entire reactor protection system.

Faults and failures can be classified in several different ways. Faults can be described as design faults,
operational faults, or transient faults. All software faults are design faults; however, hardware faults may occur in
any of the three classes. This is important in a safety-related system since the software may be required to
compensate for the operational faults of the hardware. Faults can also be classified by the source of the fault;

software and hardware are two of the possible sources discussed in the report. Others are: input data, system state,
system topology, people, environment, and unknown. For example, the source of many transient faults is unknown.

Failures are classified by mode and scope. A failure mode may be sudden or gradual; partial or complete. All
four combinations of these are possible. The scope of a failure describes the extent within the system of the effects
of the failure. This may range from an internal failure, whose effect is confined to a single small portion of the
system, to a pervasive failure, which affects much of the system.

Many different life cycle models exist for developing software systems. These differ in the timing of the various
activities that must be done in order to produce a high-quality software product, but the actual activities must be
done in any case. No particular life cycle is recommended here, but there are extensive comments on the activities

that must be carded out. These have been divided into eight categories, termed sets of activities in the report. These
sets are used merely to group related activities; there is no implication that the activities in any one set must be all
carried out at the same time, or that activities in "later" sets must follow those of "earlier" sets. The eight categories
are as follows:

• Planning activities result in the creation of a number of documents that are used to control the development
process. Eleven are recommended here: a Software Project Management Plan, a Software Quality Assurance
Plan, a Software Configuration Management (CM) Plan, a Software Verification and Validation (V&V) Plan, a

Software Safety Plan, a Software Development Plan, a Software Integration Plan, a Software Installation Plan, a
Software Maintenance Plan, a Software Training Plan, and a Software Operations Plan. Many of these plans are
discussed in detail, relying on various ANSI/IEEE standards when these exist for the individual plans.

• The second set of activities relate to documenting the requirements for the software system. Four documents are
recommended: the Software Requirements Specification, a Requirements Safety Analysis, a V&V

I

l ix NUREG/CR-6101

Requirements Analysis, and a CM Requirements Report. These documents will fully capture all the
requirements of the software project, and relate these requirements to the overall protection system functional
requirements and protection system safety requirements.

• The design activities include five recommended documents. The Hardware and Software Architecture will

describe the computer system design at a fairly high level, giving hardware devices and mapping software
activities to those devices. The Software Design Specification provides the complete design on the software
products. Design analyses include the Design Safety Analysis, the V&V Design Analysis, and the CM Design
Report.

• Implementation activities include writing and analyzing the actual code, using some programming language.
Documents include the actual code listings, the Code Safety Analysis, the V&V Implementation Analysis and
Test Report, and the CM Implementation Report.

• Integration activities are those activities mat bring software, hardware, and instrumentation together to form a

complete computer system. Documents include the System Build Documents, the Integration Safety Analysis,
the V&V Integration Analysis and Test Report, and the CM Integration Report.

• Validation is the process of ensuring that the final complete computer system achieves the original goals that
were imposed by the protection system design. The final system is matched against the original requirements,
and the protection system safety analysis. Documents include the Validation Safety Analysis, the V&V
Validation and Test Report, and the CM Validation Report.

• Installation is the process of moving the completed computer system from the developer's site to the operational
environment, within the actual reactor protection system. The completion of installation provides the operator
with a documented operational computer system. Seven documents are recommended: the Operations Manual,
the Installation Configuration Tables, Training Manuals, Maintenance Manuals, an Installation Safety Analysis,
a V&V Installation Analysis and Test Report, and a CM Installation Report.

• The operations and maintenance activities involve the actual use of the computer system in the operating
reactor, and making any required changes to it. Changes may be required due to errors in the system that were
not found during the development process, changes to hardware or requirements for additional functionality.
Safety analyses, V&V analyses, and CM activities are all recommended as part of the maintenance process.

Three general methods exist that may be used to achieve software fault tolerance; n-version programming,
recovery block, and exception handling. Each of these attempts to achieve fault tolerance by using more than one
algorithm or program module to perform a calculation, with some means of selecting the preferred result. In n-
version programming, three or more program modules that implement the same function are executed in parallel,
and voting is used to select the "correct" one. In recovery block, two or more modules are executed in series, with an
acceptance algorithm used after each module is executed to decide if the result should be accepted or the next
module executed. In exception handling, a single module is executed, with corrections made when exceptions are
detected. Serious questions exist as to the applicability of the n-version programming and the recovery-block
techniques to reactor protection systems, because of the assumptions underlying the techniques, the possibility of
common-mode failures in the voting or decision programs, and the cost and time of implementing them.

One means of assessing system reliability or safety is to create a mathematical model of the system and analyze
the properties of that model. This can t;e very effective providing that the model captures all the relevant factors of
the reality. Reliability models have been used for many years for electronic and mechanical systems. The use of
reliability models for software is fairly new, and their effectiveness has not yet been fully demonstrated. Fault tree
models, event tree models, failure modes and effects analysis, Markov models, and Petri net models all have
possibilities. Of particular interest are reliability growth models, since software bugs tend to be corrected as they are
found. Reliability Growth models can be very useful in understanding the growth of reliability through a testing
activity, but cannot be used alone to justify software for use in a safety-related application, since such applications
require a much higher level of reliability than can be convincingly demonstrated during a test-correct-test activity.

NUREG/CR-6101 x

Software Reliability and
Safety in Nuclear Reactor

Protection Systems

1. INTRODUCTION

1.1. Purpose there will be appropriate plans, requirements and
design specifications, procurement and installation,

Reliability and safety are related, but not identical, testing and ,analysis for the complete computer system,
concepts. Reliability can be thought of as the as well as the hardware, software, and instrumentation

probability that a system fails in any way whatever, subsystems. The complete computer system and the
while safety is concerned with the consequences of hardware and instrumentation subsystems are
failure. Both are important in reactor protection discussed here only as they relate to the software
systems. When a protection system is controlled by a subsystem.
computer, the impact of the computer system on

reliability and safety must be considered in the reactor The report is specifically directed toward enhancing
design. Because software is an integral part of a the reliability and safety of computer controlled reactor
computer system, software reliability and software protection systems. Almost anything can affect safety,
safety become a matter of concern to the organizations so it is difficult to bound the contents of the report.
that develop software for protection systems and to the Consequently material is included that may seem
government agencies that regulate the developers. This tangential to the topic. In these cases the focus is on
report is oriented toward the assessment process. The reliability and safety; other aspects of such material are
viewpoint is from that of a person who is assessing the summarized or ignored. More complete discussions of
reliability and safety of a computer software system these secondary issues may be found in the references.
that is intended to be used in a reactor protection

system. This report is one of a series of reports prepared by the
Computer Safety and Reliability Group, Fission

1.2. Scope Energy and System Safety Program, Lawrence
; Livermore National Laboratory. Aspects of software

Software is only one portion of a computer system, reliability and safety engineering that are covered in
The other portions are the computer hardware and the the other reports are treated briefly in this report, if at
instrumentation (sensors and actuators) to which the all. The reader is referred to the following additional
computer is connected. The combination of software, report.,;:
hardware, and instrumentation is frequently referred to

as the Instrumentation and Control (I&C) System. 1. Robert Barter ,and Lin Zucconi, "Verification and

Nuclear reactors have at least two I&C systems---one Validation Techniques and Auditing Criteria for
controls the reactor operation, and the other controls Critical System-Control Software," Lawrence
the reactor protection. The latter, termed the Protection Livermore National Laboratory, Livermore, CA
Computer System, is the subject of this report. (Febru,'u'y 1993).

2. George G. Preckshot, "Real-Time SystemsThis report assumes that the computer system ,as a
whole, as well as the hardware and instrumentation Complexity and Scalability," Lawrence Livermore

subsystems, will be subject to careful development, National Laboratory, Livermore, CA (August
analysis, and assessment in a manner similar to that 1992).
given here for the software. That is, it is assumed that

1 NUREG/CR-6101

Section 1. Introduction

3. George G. Preckshot and Robert H. Wyman, sets of activities: planning, requirements specification,
"Communications Systems in Nuclear Power design specification, software implementation,
Plants," Lawrence Livermore National Laboratory, integration with hardware and instrumentation,
Livermore, CA (August 1992). validation, installation and operations, and

maintenance. Each set of activities includes a number
4. George G. Preckshot, "Real-Time Performance," of tasks that can be undertaken to enhance reliability

Lawrence Livermore National Laboratory, and safety. Because the report is oriented towards
Livermore, CA (November 1992). assessment, the tasks are discussed in terms of the

5. Debra Sparlanan, "Techniques, Processes, and documents they produce and the actions necessary to
Measures for Software Safety and Reliability," create the document contents.
Lawrence Livermore National Laboratory,

Livermore, CA (April 1992). Section 4 discusses specific motivations,
recommendations, guidelines, and assessment

6. Lloyd G. Williams, "Formal Methods in the
Development of Safety Critical Software questions. The motivation sections describe particularconcerns of the assessor when examining the safety of
Systems," SERM-014-91, Software Engineering software in a reactor protection system.
Research, Boulder, CO (April 1992). Recommendations consist of actions the developer

7. Lloyd G. Williams, "Assessment of Formal should or should not do in order to address such
Specifications for Safety-Critical Systems," concerns. Guidelines consist of suggestions that are
Software Engineering Research, Boulder, CO considered good engineering practice when developing
(February 1993). software. Finally, the assessment sections consist of

lists of questions that the assessor may use to guide the
8. Lloyd G. Williams, "Considerations for the Use of

assessment of a particular aspect of the software
Formal Methods in Software-Based Safety
Systems," Software Engineering Research, system.

Boulder, CO (February 1993). From the viewpoint of the assessor, software

9. Lin Zucconi and Booker Thomas, "Testing development consists of the organization that does the
Existing Software for Safety-Related development, the process used in the development, and
Applications," Lawrence Livermore National the products of that development. Each is subject to
Laboratory, Livermore, CA (January 1993). analysis, assessment and judgment. This report

discusses all three aspects in various places within the

1.3. Report Organization framework of the life cycle. Process and product are
the primary emphasis.

Section 2 contains background on several topics

relating to software reliability and software safety. Following the main body of the report, the appendix
Terms are defined, life cycle models are discussed provides information on software fault tolerance
briefly, and two classification schemes are presented, techniques and software reliability models. A

bibliography of information relating to software
Section 3 provides detail on the many life cycle reliability and safety is also included.
activities that can be done to improve reliability and
safety. Development activities are divided into eight

NUREG/CR-6101 2

Section 2. Terminology

2. TERMINOLOGY

This section includes discussions of the basic does not apply to parts that are internal components of
terminology used in the remainder of the report. The an instrument."
section begins with a description of the terms used to

describe systems. Section 2.2 provides careful Since this report is concerned with computer systems
definitions of the basic terminology for reliability and in general, and software systems in particular,
safety. Section 2.3 contains brief descriptions of instruments are restricted to those that interact with the

several of the life cycle models commonly used in computer system. There are two types: sensors and
software development, and defines the various actuators. Sensors provide information to the software
activities that must be carried out during any software on the state of the reactor, and actuators provide
development project. Section 2.4 describes various commands to the rest of the reactor protection system
classification schemes for failures and faults, and from the software.

provides the terms used in these schemes. Finally,

Section 2.5 discusses the terms used to describe 2.2. Software Reliability and Safety
software qualities that are used in following sections. Terminology

2.1. Systems Terminology 2.2.1. Faults, Errors, and Failures

The word system is used in many different ways in The words fault, error, and failure have a plethora of
computer science. The basic definition, given in IEEE definitions in the literature. "Ibis report uses the
Standard 610.12, is "a collection of components following definitions, specialized to computer systems
organized to accomplish a specific function or set of CLaprie 1985; Randell 1978; Siewiorek 1982).
functions." In the context of a nuclear reactor, the word

could mean, depending on context, the society using A fault is a deviation of the behavior of a computer
the reactor, the entire reactor itself, the portion devoted system from the authoritative specification of its
to protection, the computer hardware and software behavior. A hardware fault is a physical change in

responsible for protection, or just the software, hardware that causes the computer system to change its
behavior in an undesirable way. A software fault is a

In this re,'_ort the term system, without modifiers, will mistake (also called a bug) in the code. A user fault

consistently refer to the complete application with consists of a mistake by a person in carrying out some
which the computer is directly concerned. Thus a procedure. An environmental fault is a deviation from

"system" should generally be understood as a "reactor expected behavior of the world outside the computer
protection system." When portions of the protection system; electric power interruption is an example. The
system are meant, and the meaning isn't clear from classification of faults is discussed further in
context, a modifier will be used. Reference could be Subsection 2.4.1.

made to the computer system (a porOon of the

protection system), the software system (in the An error is an incorrect state of hardware, software, or
computer system), the hardware system (in the data resulting from a fault. An error is, therefore, that
computer system) and so forth. In some cases, the term pan of the computer system state that is liable to lead

"application system" is used to emphasize that the to failure. Upon occurrence, a fault creates a latent
entire reactor protection system is meant, error, which becomes effective when it is activated,

leading to a failure. If never activated, the latent error

A computer system is itself composed of subsystems, never becomes effective and no failure occurs.
These include the computer hardware, the computer
software, operators who are using the computer A failure is the external manifestation of an error. That
system, and the instruments to which the computer is is, a failure is the external effect of the error, as seen by
connected. The definition of instrument is taken from a (human or physical device) user, or by anot_2r
ANSI/ISA Standard $5.1: "a device used directly or program.
indirectly to measure and/or control a variable. The
term includes primary elements, final control elements, Some examples may clarify the differences among the
computing devices and electrical devices such as three terms. Afault may occur in a circuit (a wire
annunciators, switches, and pushbuttons. The term breaks) causing a bit in memory to always be a 1 (an

3 NUREG/CR-6101

Section 2. Terminology

error, since memory is part of the state) resulting in a • An effective error propagating within the
failed calculation, same component or from another component.

4. A component failure occurs when an error affects
A programmer's mistake is a fault: the consequence is the service delivered (as a response to requests) by
a latent error in the written software (erroneous

the component. There is always a time delay
instruction). Upon activation of the module where the between the occurrence of the error and the
error resides, the error becomes effective. If this occurrence of the resulting failure. This may vary
effective error causes a divide by zero, a failure occurs

from nanoseconds to infinity (if the failure never
and the program aborts, actually occurs).

A maintenance or operating manual writer's mistake is 5. These properties apply to any component of the
a fault; the consequence is an error in the computer system. In a hierarchical system, failures
corresponding manual, which will remain latent as at one level can usefully be thought of as faults by
long as the directives are not acted upon. the next higher level.

Most reliability, availability, and safety analysis and
The view summarized here enables fault pathology to modeling assume that each fault causes at most a single
be made precise. The creation and action mechanisms failure. That is, failures are statistically independent.
of faults, errors and failures may be summarized as

This is not always true. A common-mode failure occurs
follows, when multiple components of a computer system fail

due to a single fault. If common mode failures do
1. A fault creates one or more latent errors in the occur, an analysis that assumes that they do not will be

computer system component where it occurs.
excessively optimistic. There are a number of reasons

Physical faults can directly affect only the physical for common mode failures (Dhillon 1983):
layer components, whereas other types of faults

may affect any component. • Environmental causes, such as dirt, temperature,

2, There is always a time delay between the moisture, and vibrations.
occurrence of a fault and the occurrence of the

• Equipment failure that results from an unexpected
resulting latent error(s). This may be measured in external event, such as fire, flood, earthquake, or
nanoseconds or years, depending on the situation. tornadoes.
Some faults may not cause errors at all; for
example, a bug in a portion of a program that is • Design deficiencies, where some failures were not
never executed. It is convenient to consider this to anticipated during design. An example is multiple
be an extreme case in which an infinite amount of telephone circuits routed through a single

time elapses between fault and latent error, equipment box. Software design errors, where
identical software is being run on multiple

3. The properties governing errors may be stated as computers, is of particular concern in this report.follows:

• Operational errors, due to factors such as impropera. A latent error becomes effective once it is
maintenance procedures, carelessness, or improper

activated, calibration of equipment.

b. An error may cycle between its latent and • Multiple items purchased from the same vendor,
effective states, where all of the items have the same

c. An effective error may, and in general does, manufacturing defect.
propagate from one component to another. By
propagating, an error creates other (new) • Common power supply used for redundant units.
errors. • Functional deficiencies, such as misunderstanding

of process variable behavior, inadequately
From these properties it may be deduced that an designed protective actions, or inappropriate

effective error within a component may originate instnmaentation.
from:

2.2.2. Reliability and Safety Measures• Activation of a latent error within the same

component. Reliability and safety measurements are inherently
statistical, so the fundamental quantifies are defined

NUREG/CR-6101 4

Section 2. Terminology

statistically. The four basic terms are reliability, • System effectiveness is the product of capability,
availability, maintainability, and safety. These and availability and dependability. System cost
other related terms are defined in the following text. effectiveness is the quotient of system
Note that the Final three definitions are qualitative, not effectiveness and cost.

quantitative (Siewiorek 1982; Smith 1972). Most of 2.2.3. Safety Terminology
these definitions apply to arbitrary systems. The

exception is safety; since this concept is concerned Safety engineering has special terminology of its own.
with the consequences of failure, rather than the simple The following definitions, based on those developed by
fact of failure, the definition applies only to a system the IEEE Draft Standard 1228, are used in this report.
that can have major impacts on people or equipment. They are reasonably standard definitions, but
More specificaUy, safety applies to reactors, not to specialized to computer software in a few places.
components of a reactor.

• An accident is an unplanned event or series of
• The reliability, R(t), of a system is the events that result in death, injury, illness,

conditional probability that the system has environmental damage, or damage to or loss of
survived the interval [0, t], given that it was equipment or property. (The word mishap is
operating at time 0. Reliability is often given in sometimes used to mean an accident, financial loss

terms of the failure rate (also referred to as the or public relations loss.)
hazard rate), _(t), or the mean time to failure,

• A system hazard is an application systemmttf. If the failure rate is constant,
rntOc = 1/ X. Reliability is a measure of the condition that is a prerequisite to an accident. That
success with which the system conforms to some is, the system states can be divided into two sets.

authoritative specification of its behavior, and No state in the ftrst set (of nonhazardous states)
cannot be measured without such a specification, can directly cause an accident, while accidents

may result from any state in the second set (of
• The availability, A(t), of a system is the hazardous states). Note that a system can be in a

probability that the system is operational at the hazardous state without an accident occurring--it
instant of time t. For nonrepairable systems, is the potential for causing an accident that creams
availability and reliability are equal. For repairable the hazard, not necessarily the actuality.
systems, they are not. As a general rule,

0 < R(t) <_A(t) < 1. • The term risk is used to designate a measure that
combines the likelihood that a system hazard will

• The maintainability, M(t), of a system is the occur, the likelihood that the hazard will cause an

conditional probability that the system will be accident and the severity of the worst plausible
restored to operational effectiveness by time t, accident. The simplest measure is to simply
given that it was not functioning at time 0. multiply the probability that a hazard occurs, the
Maintainability is often given in terms of the probability that a hazard will cause an accident
repair rate, /.t (t), or mean time to repair, mttr. If (given that the hazard occurs), and the worst-case
the repair rate is constant, mttr = 1//.t. severity of the accident.

• The safety, S(t), of a system is the conditional • Safety-critical software is software whose

probability that the system has survived the inadvertent response to stimuli, failure to respond
interval [0, t] without an accident, given that it was when required, response out-of-sequence, or
operating without catastrophic failure at time 0. response in unplanned combination with others

can result in an accident. This includes software
• The dependability of a system is a measure of its

whose operation or failure to operate can lead to aability to commence and complete a mission hazardous state, software intended to recover fromwithout failure. It is therefore a function of both
hazardous states, and software intended to mitigatereliability and maintainability. It can be thought of
the severity of, or recover from, an accident.

as the quality of the system that permits the user to
rely on it for service. • The term safety is used to mean the extent to

which a system is free from system hazard. This is
• The capability of a system is a measure of its

ability to satisfy the user's requirements, a less precise definition than that given in Section
2.2.2, which is generally preferred in this report.

5 NUREG/CR-6101

Section 2. Terminology

It is also useful to consider the word "critical" when of the interface between the software and the

used to describe systems. A critical system is a system processes or devices being controlled.
whose failure may have very unpleasant consequences

(mishaps). The results of failure may affect the A third important characteristic claimed for
developers of the system, its direct users, their accidents is that they are intimately
customers or the general public. The consequences intertwined with complexity and coupling.
may involve loss of life or property, financial loss, Perrow has argued that accidents are
legal liability (such as jail), regulatory threats, or even "normal" in complex and tightly coupled
the loss of good will (if that is extremely important), systems. Unless great care is taken, the
The term safety critical refers to a system whose addition of computers to control these systems
failure could cause an accident, is likely to increase both complexity and

coupling, which wilt increase the potential for
A good brief discussion of accidents is found in accidents.
Leveson 1991:

2.3. Life Cycle Models
Despite the usual oversimplification of the
causes of particular accidents ("human Many different software life cycles have been
error" is often the identified culprit despite proposed. These have different motivations, strengths,
the all-encompassing nature and relative and weaknesses. The life cycle models generally
uselessness of such a categorization), require the same types of tasks to be carried out; they
accidents are caused almost without exception differ in the ordering of these tasks in time. No
by multiple factors, and the relative particular life cycle is assumed here. There is an
contribution of each is usually not clear. An assumption that the activities that occur during the
accident may be thought of as a set of events developer's life cycle yield the products indicated in
combining together in random fashion or, Figure 2-1. Each of the life cycle activities produces
alternatively, as a dynamic mechanism that one or more products, mostly documents, that can be
begins with the activation of a hazard and assessed. The development process itself is subject to
flows through the system as a series of assessment.
sequential and concurrent events in a logical
sequence until the system is out of control and The ultimate result of software development, as
a loss is produced (the "domino theory"), considered in this report, is a suite of computer
Either way, major incidents often have more programs that run on computers and control the reactor
than one single cause, and it is usually protection system. These programs will have
difficult to place blame on any one event or characteristics deemed desirable by the developer or
component of the system. The high frequency customer, such as reliability, performance, usability,
of complex, multifactorial accidents may arise and functionality. This report is only concerned with
from the fact that the simpler potentials have reliability and safety; however, that concern does "spill
been anticipated and handled. But the very over" into other qualities.
complexity of events leading to an accident
implies that there may be many opportunities The development model used here suggests one or
to intervene or interrupt the sequence, more audits of the products of each set of life cycle

activities. The number of audits depends, among other

A second characteristic of accidents is that things, on the specific life cycle model used by the
they often involve problems in subsystem developer. The audit will assess the work done that
interfaces. It appears to be easier to deal with relates to the set of activities being audited. Many

failures of components than failures in the reliability, performance, and safety problems can be
interfaces between components. This should resolved only by careful design of the software
not be a surprise to software engineers, product, so must be addressed early in the life cycle, no
consider the large number of operational matter which life cycle is used. Any errors or
software faults that can be traced back to oversights can require difficult and expensive retrofits,
requirements problems. The software so are best found as early as possible. Consequently, an
requirements are the specific representation incremental audit process is believed to be more cost

effective than a single audit at the end of the

NUREG/CR-6101 6

Section 2. Terminology

development process. In this way, problems can be external requirements change slowly. Operating
detected early in the life cycle and corrected before systems and language compilers are examples.
large amounts of resources have been wasted.

2.3.3. Spiral Model
Three of the many life cycle models are descrit_l
briefly in subsections 2.3.1. through 2.3.3. No The spiral model was developed at TRW (Boehm
particular life cycle model is advocated. Instead, a 1988) in an attempt to solve some of the perceived
model should be chosen to fit the style of the difficulties with earlier models. This model assumes
development organization and the nature of the that software development can be modeled as a
problem being solved, sequence of activities, as shown in Figure 2-3. Each

time around the spiral (phase), the product is developed

2.3.1. Waterfall Model to a more complete degree. Four broad steps are
required:

The classic waterfall model of software development
assumes that each phase of the life cycle can be 1. Determine the objectives for the phase. Consider
completed before the next phase is begun (Pressman alternatives to meeting the objectives.
1987). This is illustrated in Figure 2-2. The actual 2. Evaluate the alternatives. Identify risks to

phases of the waterfall model differ among the various completing the phase, and perform a risk analysis.
authors who discuss the model; the figure shows Make a decision to proceed or stop.
phases appropriate to reactor protection systems. Note
that the model permits the developer to return to 3. Develop the product for the particular phase.
previous phases. However, this is considered to be an 4. Plan for the next phase.
exceptional condition to the normal forward flow,
included to permit errors in previous stages to be The products for each phase may match those of the
corrected. For example, if a requirements error is previous models. In such circumstances, the first loop
discovered during the implementation phase, the around the spiral results in a concept of operations; the
developer is expected to halt work, return to the next, a requirements specification; the next, a design;
requirements phase, fix the problem, change the design and so forth. Alternately, each loop may contain a
accordingly, and then restart the implementation from complete development cycle for one phase of the
the revised design. In practice, one only stops the product; here, the spiral model looks somewhat like the
implementation affected by the newly discovered phased implementation model. Other possibilities exist.
requirement.

The spiral model is particularly appropriate when
The waterfall model has been severely criticized as not considerable financial, schedule, or technical risk is
being realistic to many software development involved in the product development. This is because
situations, and this is frequently justified. It remains an an explicit risk analysis is carried out as part of each
excellent model for those situations where the phase, with an explicit decision to continue or stop.
requirements are known and stable before development
begins, and where little change to requirements is 2.4. Fault and Failure Classification
anticipated. Schemes

2.3.2. Phased Implementation Model Faults and failures can be classified in several different

This model assumes that the development will take ways. Those that are considered useful in safety-related
applications are described briefly here. Faults are

place as a sequence of versions, with a release after classified by persistence and by the source of the fault.
each version is completed. Each version has its own There is some interaction between these, in the sense

life cycle model. If new requirements are generated that not all persistence classes may occur for all
during the development of a version, they will sources. Table 2-1 provides the interrelationship.
generally be delayed until the next version, so a
waterfall model may be appropriate to each version.

Failures are classified by mode, scope, and the effect
(Marketing pressures may modify such delays.)

on safety. These classification schemes consider the
effect of a failure, both on the environment within

This model is appropriate to commercial products that
which the computer system operates, and on the

are evolving over long periods of time, or for which
components of the system.

7 NUREG/CR-6101

Section 2. Terminology

Software Developer Activities

°'l IO _ Planning Requirements Design Implementation

_° = Activities Activities I Activities Activities

Software Requirements Design Code
Management Plan Specification Specification Listings

Software Hardware &
Development Plan Software

Architecture

Software QA
Plan

Integration Plan _ _ _ ¢
-_ "-¢ .-¢ 3

_ >
Installation Plan rr rr rr rr

¢ G • ¢

Maintenance Plan c_ ,-u =u ,.u

Training Plan E Eim t., i,_c o oq,.

I: I= I: I:

Operations Plan _ 8 (_ (_

Software Requirements Design Safety Code Safety
Safety Plan Safety Analysis Analysis Analysis

Software V&V V&V Require- V&V Design V&V Implemen-
Plan ments Analysis Analysis tation Analysis

Report Report & Test Report

Software CM Plan CM Require- CM Design CM Implemen-
ments Report Report tation Report

-- m

Software Audit Activities

Figure 2-1. Documents Produced During Each Life Cycle Stage

NUREG/CR-6101 8

Section 2. Terminology

Software Developer Activities

Jut ' '
o • Operation &
O>'_> Integration Validation Installation Maintenance

-- Activities Activities Activities
•_ _ Activities

System Build Operations
Documents i !Manuals

Installation
Configuration
Tables

:>
> _ a) Maintenance
= c z: Manuals z
• D • ¢
O D tJ tJ

= = ®=
E _ Training

o o o Manuals c
r. E =o ° ,3

Integration Validation Installation Change
Safety Safety Safety Safety
Analysis Analysis Analysis Analysis

V&V Integration V&V Validation V&V Installatiow V&V Change
Analysis & Test Analysis Test Analysis & Test Report
Report & Report Report

CM Integration CMValidation CM Installation CM Change
Report Report i Report Report

m

I-*lI*l @c
Software Audit Activities

Figure 2-1. Documents Produced During Each Life Cycle Stage (continued)

9 NUREG/CR-6101

Section 2. Terminology

, i

Pro-Development

Requirements
Specification

N_N_
Software
Design

Software
Implementation

Integration

Validation

Installation I

,,,,-,,,
Operationand
Maintenance

Figure 2-2. Waterfall Life Cycle Model

NUREG/CR-6101 10

Section 2. Terminology

JL
: Cumulative
cost

Progress
through
steps

Evaluatealternatives,

Determine identify,resolverisks

objectives,
alternatives,
constraints

Risk

analysis ..
Risk ...

analysis _.
i Risk

analysis .,. "_
Risk "_

analysis s " Operational

Commitment ._ .- " Prototype1 Prototype2 Prototype3 prototype

Review partition - " " " -" -- -....
Requirementsplan Conceptof ... - .Simulations, models, benchmarks

,,,,= =,,,, _ =,,=,

Life-cycle plan operation
Software Detailed

product design
Development Requirements design -I

plan validation I Code
Unit I

Integration Designvalidationandtest I test I
and verification I Integration I

| AcceptanceI andtestI
Plan nextphases I test

I Develop,verify
next-levelproduct

(Boebm 1988)

Figure 2-3. Spiral Life Cycle Model

ll NUREG/CR-6101

Section 2. Terminology

Table 2-1. Persistence Classes and Fault Sources

U Design Operational] Transient

Hardware component X X X
iiii II I

Software component X
, , -..

Input data X X

Permanent state X X
I iBU

Temporary state X X
,,1,

Topological X
i i

Operator X X X
i

User X X X

Environmental X X X

Unknown X
...

2.4.1. Fault Classifications usually quite expensive to correct if they are not
discovered until the product is in operation.

Faults and failures can be classified by several more-

or-less orthogonal measures. This is important, because • AxLoperational fault is a fault where some portion
the classification may affect the depth and method of of the computer system breaks and must be
analysis and problem resolution, as well as the repaired in order to return the system to a state that
preferred modeling technique, meets the design specifications. Examples include

electronic and mechanical faults, database

Faults can be classified by the persistence and source corruption, and some operator faults. Operational
of the fault. This is described in the two subsections of faults are sometimes called non-removable faults.
this section. Terms def'med in each subsection are used When calculating fault rates for operational faults,
in other subsections, it is generally assumed that the entity that has

failed is in the steady-state portion of its life, so

2.4.1.1. Fault Persistence operational fault rates are constant. As with design
fat|Its, an operational fault may cause many errors

Any fault falls into one of the following three classes before being identified and repaired.
(Kopetz 1985):

• A transient fault is a fault that does cause a

• A design fault is a fault that can be corrected by computer system failure, but is no longer present
redesign. Most software and topological faults fall when the system is restarted. Frequently the basic
into this class, but relatively few hardware faults cause of a transient fault cannot be determined.
do. Design faults are sometimes called removable Redesign or repair has no effect in this case,
faults, and are generally modeled by reliability although redesign can affect the frequency of
growth models (See Appendix A.3.). One design transient faults. Examples include power supply
fault can cau_ many errors and failures before it noise and operating system timing errors. While an
is diagnosed and corrected. Design faults are underlying problem may actually exist, no action

is taken to correct it (or the fault would fall into

NUREG/CR-6101 12

Section 2. Terminology

one of the other classes). In some computer the underlying faults are corrected and new releases are
systems, 50--80% of all faults are transient. The sent to the customers, the failure rate should decrease

frequency of operating system faults, for example, until a more-or-less steady state is reached. Over time,
is typically dependent on system load and the maintenance and enhancement process may perturb
composition, the software structure sufficiently that new faults are

introduced faster than old ones are removed. The
The class of transient faults actually includes two

failure rate may then go up, and a complete redesign isdifferent types of event; they are grouped together here in order.
since it is generally impossible to distinguish between

them. Some events are truly transient; a classic (though While this behavior looks similar to that described for

speculative) example is a cosmic ray that flips a single electronic systems, the causal factors are quitememory bit. The other type is an event that really is a
design or operational fault, but this is not known when different. One should be very careful when attempting

to extrapolate from one to the other.
it occurs. That is, it looks like the first type of transient
event. If the cause is never discovered, no real harm is

2.4.1.2. Source of Faults in Computer Systems
done in placing it in this class. However, if the cause is
eventually determined, the event should be classified Fault sources can be classified into a number of

properly; this may well require recalculation of categories; ten are given here. For each one, the source
reliability measures, is described briefly, and the types of persistence that

are possible is discussed.
A computer system is constructed according to some

specification. If the system fails, but still meets the • A hardware fault is a fault in a hardware
specification, then the specification was wrong. This is component, and can be of any of the three
a design fault. If, however, the system ceases to meet persistence types. Application systems rarely
the specification and fails, then the underlying fault is encounter hardware design faults. Transient
an operational fault. A broken wire is an example. If hardware faults are very frequent in some systems.
the specification is correct, but the system fails
momentarily and then recovers on its own, the fault is ° A software fault is a bug in a program. In theory,
transient, all such are design faults. Dhillon (1987) classifies

software faults into the following eight categories:

Many electronic systems, and some mechanical -- Logic faults
systems, have a three stage life cycle with respect to -- Interface faults
fault persistence. When the device is first constructed, Data definition faults
it will have a fairly high fault rate due to undetected
design faults and "burn-in" operational faults. This m Database faults

fault rate decreases for a period of time, after that the m Input/output faults
device enters its normal life period. During this m Computational faults

(hopefully quite long) period, the failure rate is m Data handling faults
approximately constant, and is due primarily to _ Miscellaneous faults
operational and transient faults, with perhaps a few

remaining design faults. Eventually the device begins • An input data fault is a mistake in the input. It
to wear out, and enters the terminal stage of its life. could be a design fault (connecting a sensor to the
Here the fault rate increases rapidly as the probability wrong device is an example) or an operational
of an operational fault goes up at an increasing rate. It fault (if a user supplies the wrong data).

should be noted that in many cases the end of the * A permanent state fault is a fault in state data that
product's useful life is defined by this increase in the is recorded on non-volatile storage media (such as
fault rate. disk). Both design and operational faults are

possible. The use of a data structure definition that
The behavior described in the last paragraph results in does not accurately reflect the relationships among
a failure rate curve termed the "bathtub" curve. It was the data items is an example of a design fault. The
originally designed to model electronic failure rates, failure of a program might cause an erroneous
There is a somewhat analogous situation for software, value to be stored in a file, causing an operational
When a software product is first released, there may be fault in the file.
many failures in the field for some period of time. As

13 NUREG/CR-6101

Section 2. Terminology

• A temporary, state fault is a fault in state data that might only be known that there is a fault in a
is recorded on volatile media (such as main communication system.
memory). Both design and operational faults are

Table 2-1 shows which persistence classes may occur
possible. The primary reason to separate this from for each of the ten fault sources.
permanent state faults is to allow for the

possibility of different failure rates. 2.4.2. Failure Classifications
• A topological fault is a fault caused by a mistake

in computer system architecture, not with the Three aspects of classifying failures are given below;
component parts. All such faults are design faults, there are others. These are particularly relevant to later

discussion in this report.Notice that the failure of a cable is considered a

hardware operational fault, not a topological fault.
2.4.2.1. Failure Modes

• An operator fault is a mistake by the operator.
Any of the three types are possible. A design fault Different failure modes can have different effects on a
occurs if the instructions provided to the operator computer system. The following definitions apply
are incorrect; this is sometimes called a procedure (Smith 1972).
fault. An operational fault would occur if the
instructions are correct, but the operator • A sudden failure is a failure that could not be
misunderstands and doesn't follow them. A anticipated by prior examination. That is, the

transient fault would occur if the operator is failure is unexpected.

attempting to follow the instructions, but makes an • A gradual failure is a failure that could be
unintended mistake. Hitting the wrong key on a anticipated by prior examination. That is, the

keyboard is an example. (One goal of display system goes into a period of degraded operation
screen design is to reduce the probability of before the failure actually occurs.
transient operator errors.)

• A partial failure is a failure resulting in deviations
• A user fault differs from an operator fault only in characteristics beyond specified limits but not

because of the different type of person involved; such as to cause complete lack of the required
operators and users can be expected to have function.
different fault rates.

• A complete failure is a failure resulting in
• An environmental fault is a fault that occurs deviations in characteristics beyond specified

outside the boundary of the computer system, but limits such as to cause complete lack of the
that affects the system. Any of the three types is required function. The limits referred to in this
possible. Failure to provide an uninterruptible category are special limits specified for this
power supply (UPS) would be a design fault, purpose.
while failure of the LIPS would be an operational
fault. A voltage spike on a power line is an • A catastrophic failure is a failure that is both
example of an environmentally induced transient sudden and complete.

fault. • A degradation failure is a failure that is both

• An unknown fault is any fault whose source class gradual and partial.

is never identified. Unfortunately, in some 2.4.2.2. The Scope of Failures
computer systems many faults occur whose source
cannot be identified. All such faults are transient Failures can be assigned to one of three classes, depending

(more or less by definition), and this category may on the scope of their effects (Anderson 1983).
well include a plurality of system faults. Another
problem is that the underlying problem may be • A failure is internal if it can be adequately handled
identified at a later time (possibly months later), so by the device or process :in which the failure is
there is a certain impermanence about this detected.
category. It generally happens that some • A failure is limited if it i,; not internal, but if the
information is available about the source of the

effects are limited to that device or process.fault, but not sufficient information to allow the

source to be completely identified. For example, it • A failure is pervasive if it results in failures of
other devices or processes.

NUREG/CR-6101 14

Section 2. Terminology

2.4.2.3. The Effects of Failures on Safety system, incorrect input signals being sent to the
computer system b3 intervention of a htunan

Finally, it is possible to classify application systems by agent, incorrect commands from the operator, and
the effect of failures on safety, any other forms of tampering. Access control

should consider both inadvertent and malicious

• A system is intrinsically safe if the system has no penetration.
hazardous states.

Accuracy. Accuracy refers to "those attributes of the

• A system is termed fail safe if a hazardous state software that provide the required precision in
may be entered, but the system will prevent an calculations and outputs." In some situations, this
accident from resulting from the hazard. An can require a careful error analysis of numerical
example would be a facility in a reactor that forces algorithms.
a controlled shutdown in case a hazardous state is

entered, so that no radiation escapes. Auditability. Auditability refers to the "ease with
which conformance to standards can be checked."

• A system controls accidents if a hazardous state The careful development of project plans,
may be entered and an accident may occur, but the adherence to those plans, and proper record
system will mitigate the consequences of the keeping can help make audits easier, more
accident. An example is the containment shell of a thorough and less intrusive. Sections 3 and 4
reactor, designed to preclude a radiation release discuss this topic in great depth.
into the environment if an acciden, did occur.

Completeness. Completeness properties are "those
• A system gives warning of hazards if a failure may attributes of the software that provide full

result in a hazardous state, but the system issues a implementation of the functions required." A
warning that allows trained personnel to apply software design is complete if all requirements are
procedures outside the system to recover from the fulfilled in the design. A software implementation
hazard or mitigate the accident. For example, a is complete if the code fully implements the
reactor computer protection system might notify design.
the operator that a hazardous state has been
entered, permitting the operator to "hit the panic Consistency. Consistency is defined as "the degree of
button" and force a shutdown in such a way that uniformity, standardization and freedom from
the computer system is not involved, contradictions among the documents or parts of a

system or component." Standardized error
• Finally, a system is fail dangerous, or creates an handling is an example of consistency.

uncontrolled hazard, if system failure can cause an Requirements are consistent if they do not require
uncontrolled accident, the system to carry out some function, and under

2.5. Software Qualities the same conditions to carry out its negation. An
inconsistent design might cause the system to send

A large number of factors have been identified by incompatible signals to one or more actuators,
various theoreticians and practitioners that affect the causing the protection system to attempt
quality of software. Many of these are very difficult to contradictory actions. An example would be

quantify. The discussion here is based on IEEE 610.12, starting a pump but not opening the intake value.

Evans 1987, Pressman 1987, and Vincent 1988. The Correctness. Correctness refers to the "extent to which
latter two references based their own discussion on

a program satisfies its specifications and fulfills
McCall 1977. The discussion concentrates on defining the user's mission objectives." This is a broader
those terms that appear important to the design of definition than that given for completeness. It is
reactor protection computer systems. Quotations in this worth noting that some of the documents
section come from the references listed above, referenced at the beginning of the section

essentially equate correctness with completeness,
Access Control. The term "access control" relates to while others distinguish between them. The IEEE

"those attributes of the software that provide for Standard 610.12 gives both forms of definition.control of the access to software and data." In a

reactor protection system, this refers to the ability Expandability. Expandability attributes are "those

of the utility to prevent unauthorized changes to attributes of the software that provide for
either software or data within the computer expansion of data storage requirements or

15 NUREG/CR-6101

Section 2. Terminology

computational functions." The word Robustness. Robusmess refers to "the degree to which
"extendibility" is sometimes used as a synonym, a system or component can function correctly in

the presence of invalid inputs or stressfulGenerality. Generality is "the degree to which a
environmental conditions." This quality is

system or component performs a broad range of sometimes referred to as "error tolerance" and
functions." This is not necessarily a desirable
attribute of a reactor protection system if the may be implemented by fault tolerance or design
generality encompasses functionality beyond diversity.
simply protecting the reactor. Simplicity. Simplicity attributes are "those attributes

that provide implementation of functions in theSoftware Instrumentation. Instrumentation refers to
most understandable manner." It can be thought of

"those attributes of the software that provide for
as the absence of complexity. This is one of the

measurement of usage or identification of errors."
more important design qualities for a reactor

A well-instrumented system can monitor its own
computer protection system, and is quite difficult

operation, and detect errors in that operation.
Software instrumentation can be used to monitor to quantify. See Preckshot 1992 for additional

information on complexity and scalability.
the hardware operation as well as its own
operation. A hardware device such as a watch-dog A particularly important aspect of complexity is
timer can be used to help monitor the software the distinction between functional complexity and
operation. If instrumentation is required for a structural complexity. The former refers to a
computer system, it may have a considerable system that attempts to carry out many disparate
effect on the system design, so must be considered functions, and is controlled by limiting the goals
as part of that design, of the systein. The latter refers to the method of

Modularity. Modularity attributes are "those attributes carrying out the functions, and may be controlled
by redesigning the system to carry out the same

of the software that provide a structure of highly functions in a simpler way.
independent modules." To achieve modularity, the
protection computer system should be divided into Testability. Testability refers to "the degree to which a
discrete hardware and software components in system or component facilitates the establishment
such a way that a change to one component has of test criteria and the performance of tests to
minimal impact on the remaining modules, determine whether those criteria have been met."

Modularity is measured by cohesion and coupling Traceability. Traceability attributes are "those
(Yourdon 1979). attributes of the software that provide a thread

Operability. Operability refers to "those attributes of from the requirements to the implementation with
the software that determine operation and respect to the specific development and
procedures concerned with the operation of the operational environment."
software." This quality is concerned with the man-
machine interface, and measures the ease with

which the operators can use the system. This is
particularly a concern during off-normal and
emergency conditions when confusion may be
high and mistakes may be unfortunate.

NUREG/CR-6101 16

Section 3. Activities

3. LIFE CYCLE SOFTWARE RELIABILITY
AND SAFETY ACTIVITIES

Much has been written about software engineering and The documents that an assessor should expect to have
how a well-structured development life cycle can help available, and their contents, is the subject of this
in the production of correct maintainable software section of the report. The process of assessing these
systems. Many standard software engineering activities documents is discussed in Section 4.
should be performed for any software project, so are

not discussed in this report. Instead, the report 3.1. Planning Activities
concentrates on the additional activities required for a
software project in which safety is a prime concern. Fundamental to the effective management of any
Refer to a general text, such as Macro 1990 or engineering project is the planning that goes into the
Pressman 1987, for general information on software project. This is especially true where extreme
engineering, reliability and safety are of concern. While there are

general issues of avoiding cost and schedule overruns,

Any software development project can be discussed the particular concern here is safety. Unless a
from a number of different viewpoints. Examples management plan exists, and is followed, the
include the customer, the user, the developer, the probability is high that some safety concerns will be
project manager, the general manager, and the overlooked at some point in the project lifetime, or
assessor. The viewpoint that is presumed will have a lack of time or money near the end of the development
considerable effect on the topics discussed, and period will cause safety concerns to be ignored, or
particularly on the emphasis placed on different aspects testing will be abridged. It should be noted that the
of those topics. The interest here is the viewpoint of the time/money/safety tradeoff is a very difficult
assessor. This is a person (or group of people) who management issue requiring very wise judgment. No
evaluates both the development process and the project manager should be allowed to c 'laim "safety" as
products of that process for assurance that they meet an excuse for unconscionable cost or schedule
some externally-imposed standard. In this report, those overruns. On the other hand, the project manager
standards will relate to the reliability of the software should also not be allowed to compromise safety in an

products and the safety of the application in which the effort to meet totally artificial schedule and budget
software is embedded. The assessor may be a person in constraints.
the development organization charged with the duty of

assuring reliability and safety, a person in an For a computer-based safety system, a number of
independent auditing organization, or an employee of a documents will result from the planning activity. These
regulatory agency. The difference among these are discussed in this section, insofar as safety is an
assessors should be the reporting paths, not the issue. For example, a software management plan will

technical activities that are carried out. Consequently generally involve non-safety aspects of the
no distinction is made here among the different types development project, which go beyond the discussion
of assessor, in Section 3.1.1.

Since this report is written from the viewpoint of the Software project planning cannot take place in
assessor, the production of documents is emphasized in isolation from the rest of the reactor development. It is
this report. The documents provide the evidence that assumed that a number of documents are available to
required activities have actually taken place. There is the software project team. At minimum, the following
some danger that the software developer will must exist:
concentrate on the creation of the documents rather

than the creation of safe reliable software. The assessor • Hazards analysis. This identifies hazardous
must be constantly on guard for this activity. The reactor system states, sequences of actions that can
software runs the protection system, not the cause the reactor to enter a hazardous state,
documents. There is heavy emphasis below on sequences of actions intended to return the reactor
planning: creating and following the plans that are from a hazardous state to a nonhazardous state,
necessary to the development of software where safety and actions intended to mitigate the consequences
is a particular concern, of an accident.

17 NUREG/CR-6101

Section 3. Activities

• High level reactor system design. This identifies from sensors and what signals must be provided to

those functions that will be performed by the actuators by the computer system. Interfaces also

protection system, and includes a specification of include display devices intended for man-machine

those safety-related actions that will be required of interaction.
the software in order to prevent the reactor from

Planning a software development project can be a
entering a hazardous state, move the reactor from a

complex process involving a hierarchy of activities.
hazardous state to a non-hazardous state, or

The entire process is beyond the scope of this report.
mitigate the consequences of an accident.

Figure 3-1, taken from Evans 1983 (copyright 1983 by

• Interfaces between the protection computer Michael Evans, Pamela Piazza, and James Dolkas.

system and the rest of the reactor protection Reprinted by permission of John Wiley & Sons, Inc.),

system. That is, what signals must be obtained gives a hint as to the activities involved. Planning is
discussed in detail in Pressman 1987.

Software, design production,
integration, test, and documentation Financial and

resource planning

Personnel
experience

Cost
estimation Schedule

breakdown Technical

Methodology
Resource Project
allocation reviews

Contract
customer

Program constraints
customer
interfaces

Software organization and

project; controls and (© Evans 1983)environment

Figure 3-1. Software Planning Activities

NUREG/CR-6101 18

Section 3. Activities

The result of the planning activity will be a set of possible, provided that the topics discussed below are
documents that will be used to oversee the addressed. The plan contents can be roughly divided

development project. These may be packaged as into several categories: introduction and overview,
separate documents, combined into a fewer number of project organization, managerial processes, technical
documents, or combined with similar documents used processes, and budgets and schedules. A sample table

by the larger reactor project. For example, the of contents, based on IEEE 1058, is shown in Figure 3-
developer might choose to include the software V&V 2. Those aspects of the plan that directly affect safety
plan in the software project management plan, or to are discussed next.
include the software configuration management plan in

a project-wide configuration management plan. Such 1. Introduction
packaging concerns are beyond the scope of' this report.
Since some method is necessary in order to discuss 1.1. Project Overview

documents, the report assumes that separate documents 1.2. Project Deliverables
will exist. The documents resulting from planning
include the following minimum set; additional 1.3. Evolution of the SPMP
documents may be required by the development 1.4. Reference Materials

organization as part of their standard business 1.5. Definitions and Acronyms
procedures, or by the assessor due to the nature of the
particular project. 2. Project Organization

2.1. Process Model

• Software Project Management Plan 2.2. Organizational Structure

• Software Quality Assurance Plan 2.3. Organizational Boundaries and Interfaces

• Software Configuration Management Plan 2.4. Project Responsibilities

• Software Verification and Validation Plan 3. Managerial Process

• Software Safety Plan 3.1. Management Objectives and Priorities

• Software Development Plan 3.2. Assumptions, Dependencies and Constraints

• Software Integration Plan 3.3. Risk Management

• Software Installation Plan 3.4. Monitoring and Controlling Mechanisms

• Software Maintenance Plan 3.5. Staffing Plan

• Software Training Plan 4. Technical Process

• Software Operations Plan 4.1. Methods, Tools and Techniques

The actual time at which these documents will be 4.2. Software Documentation
produced depends on the life cycle used by the

4.3. Project Support Functions
software developer. The Software Project Management
Plan will always need to be done early in the life cycle, 5. Work Packages, Schedule and Budget

since the entire management effort is dependent on it. 5.1. Work Packages

However, documents such as the Software Operations 5.2. Dependencies
Plan might be delayed until the software system is
ready to install. 5.3. Resource Requirements

5.4. Budget and Resource Allocation
3.1.1. Software Project Management Plan 5.5. Schedule

The software project management plan (SPMP) is the 6. Additional Components

basic governing document for the entire development Index
effort. Project oversight, control, reporting, review, and
assessment are all carried out within the scope of the Appendices
SPMP.

Figure 3-2. Outline of a Software Project

One method of organizing the SPMP is to use IEEE Management Plan
Standard 1058; this is done here. Other methods are

19 NUREG/CR-6101

Section 3. Activities

A combination of text and graphics may be used to them. Give the method by which these names can
create and document the SPMP. PERT charts, be changed during the life of the project.
organization charts, matrix diagrams or other formats
are frequently useful. 3.1.1.2. Project Management Procedures

3.1.1.1. Project Organization This section of the SPMP will describe the
management procedures that will be followed during

This portion of the SPMP addresses organizational the project development life cycle. Topics that can
issues; specifically, the process model, organizational affect safety are listed here; the development
structure, boundaries and interfaces, and project organization will normally include additional
responsibilities. The following items should be information in order to completely describe the
discussed in this portion of the plan. management procedures. The following aspects of the

SPMP fall into the category of management
• Process Model. Def'me the relationships among procedures.

major project functions and activities. The
following specifications must be provided: • Project Priorities. Describe the priorities for

management activities during the project. Topics
Timing of major milestones, include:

Project baselines. Relative priorities among safety requirements,

Timing of project reviews and audits, functional requirements, schedt.le and budget.

Work products of the project. _ Frequency and mechanisms fo_ reporting.

m Project deliverables. • Project Assumptions, Dependencies and
Constraints. State:

• Organization Structure. Describe the internal
management structure of the project, m The assumptions upon which the project is

Lines of authority, based.
The external events upon which the project is

Responsibility for the various aspects of the
project, dependent.

The constraints under which the project will
Lines of communication within the project, be conducted.

The means by which the SPMP will be
• Risk Management. Identify and assess the risk

updated if the project organization changes.
Note that the SPMP should be under factors associated with the project. All of the items

listed here may have an impact on safety; this
configuration control; see Section 3.1.3.

impact must be described here. with a method for
• Organization Boundaries. Describe the managing that risk.

administrative and managerial boundaries, and Financial risks.
interfaces across those boundaries, between the

project and the following external entities. -- Schedule risks.

The parent organization. _ Contractual risks.

The customer organization. _ Technology change risks.

Any subcontractor organizations. _ Size and complexity risks.

The regulatory and auditor organizations, m Scale-up risks.

Support organizations, including quality • Monitoring and Controlling Methods. Describe
assurance, verification and validation, and reporting requirements, report formats,
configuration management, information flows, and review and audit

mechanisms.
• Project responsibilities. State the nature of each

major project function and activity, and identify by -- Internal reporting--within the development
name the individuals who are responsible for organization.

NUREG/CR-6101 20

Section 3. Activities

External reporting--to auditors and particular, the Verification and Validation Plan
regulators, and the Configuration Management Plan will

require documents that describe assessments done
• Staffing. Specify the numbers and types of for each life cycle phase. Discuss milestones,

personnel required in order to achieve a reliable baselines, reviews, and sign-offs for each
software system that meets safety requirements, document.

Skill levels required. J Software Development Plan.
Start times and duration of needs.

-- Software Requirements Specification.
-- Training requirements.

Requirements Safety Analysis.

3.1.1.3. Project Technical Procedures -- Hardware/Software Architecture.

This section of the SPMP will describe management -- Software Design Specification.
aspects of the technical procedures that will be Design Safety Analysis.
followed during the project development life cycle.
Topics that can affect safety are listed here; the _ Unit Development Folders.

development organization will normally include _ Code Safety Analysis.
additional information in order to completely describe
the technical procedures. In some cases, these -- System Build Specification.

procedures may be documented in other documents, -- Integration Safety Analysis.
and this portion of the SPMP will merely reference
those documents. In particular, the technical aspects of _ Validation Safety Analysis.

the development effort are described in the Software _ Installation Procedures.
Development Plan; see Section 3.1.5. The difference is
one of emphasis: the SPMP is directed at the project _ Operations Manuals.

management personnel, while the Software _ Installation Configuration Tables.
Development Plan is directed at the project technical
personnel. The following topics should be discussed. J Installation Safety Analysis.

Change Safety Analysis.
• Methods, Tools, and Techniques. Specify all of the

methods, tools, and techniques that will be used to • Project Support Functions. Describe all technical
develop the product. The following list is meant to support functions for the project. In many cases,
be indicative, these will have their own plans, and the SPMP

may simply refer to those. Describe (either here or
Computing systems to be used for software in the supporting plans) responsibilities, resource
development, requirements, schedules, and budgets for each

Development methods, supporting activity. Support functions include:

Programming languages. _ Software quality assurance.

Computer-assisted software engineering -- Software configuration management.

(CASE) tools. -- Software verification and validation

Technical standards to be followed. (including testing).

m Company development procedures. _ Software safety management.

Company programming style. -- Software reviews and audits.

• Software Documentation. Describe all of the 3.1.2 Software Quality Assurance Plan
technical documentation that will be required for
the project. The documents listed below are Quality assurance (QA) i._defined by IEEE as "a

considered mandatory; additional documents may planned and systematic pattern of all actions necessary
be included at the option of the development to provide adequate confidence that the item or product
organization or auditing organization. Additional conforms to established technical requirements."
documents may be required by other plans. In Software quality assurance (SQA) is the portion of

21 NUREG/CR-6101

Section 3. Activities

general quality assurance that applies to a software m Identify the person responsible for overall
product. The SQA plan describes how the quality of software quality, by name.

the software will be assured by the development 4. Documentation. List the documents subject to
organization. It may exist as a separate document, or be
part of the general reactor QA plan. Here, the first is SQA oversight.
assumed to provide specificity to the discussion. -- List the documents. This list should generally

coincide with the list provided in the Software

There will be considerable overlap between the SQA Project Management Plan, as discussed in
Plan and the other project plans. The SQA Plan will Section 3.1.1.
generally reference sucb documents, and limit the Discuss how each document will be reviewed

discussion in the SQA Plan itself to matters of by the SQA organization for adequacy.
particular concern to SQA activities. For example, the
section on code control may reference the Software 5. Start'dards, Practices, Conventions, and Metrics.

Configuration Management Plan, and describe the Describe all safety-related standards, practices,
methods by which the SQA organization will ensure conventions, and metrics that will be used during
that this plan is followed, the development process.

n Identify the life cycle phase to which each
The description here is ba.sed on ANSUIEEE standard

standard, practices, conventions, and metrics
730.1, Software Quality Assurance Plans. The use of applies.
this standard is discussed in a draft IEEE guide, 730.2,
Guide for Software Assurance Planning. A sample

table of contents for a SQA plan is shown in Figure 3- 1. Introduction
3. It is based on the IEEE standard. The developer need
not follow this sample, provided that the requirements 1.1. Purpose
listed below are included in his own plan. Concerns 1.2. Scope

that are unlikely to directly affect safety are not 1.3. Deffmitions and Acronyms

discussed in this list of requirements. 1.4. References

1. SQA Organization. Describe the organizational 2. Management

structure of the SQA effort. Major topics to 2.1. Organization
discuss include:

2.2. Tasks
-- Major SQA organizational elements and

2.3. Responsibilities
linkages between them.

3. Documentation
Organizational independence or dependence
of the SQA organization from the 4. Standards, Practices, Conventions and Metrics
development organization. 5. Reviews and Audits

2. SQA Management Tasks. Describe the major tasks 6. Test

that will be required for the SQA activity. 7. Problem Reporting and Corrective Action

Describe that portion of the software life cycle 8. Tools, Techniques and Methodologies

subject to quality assurance oversight. 9. Code Control

Describe the tasks to be performed for quality 10. Media Control
assurance. These tasks are discussed in detail

11. Supplier Control
in Sections 3-14 of the SQA Plan.

12. Records Collection, Maintenance and Retention
Describe the relationships between the SQA
tasks and the project review points. 13. Training

14. Risk Management
3. SQA Responsibilities. Identify the organizational

elements responsible for each SQA task. Figure 3-3. Outline of a Software
Identify the persons responsible for the SQA Quality Assurance Plan
Plan.

NUREG/CR-6101 22

Section 3. Activities

Specify how compliance with each standard, -- Identify responsibilities for reporting and
practices, conventions, and metrics will be tracking problems.
assured.

Identify responsibilities for ensuring that all
The following (from IEEE 730.2) lists s-,dety-related problems are resolved.

standards, practices, conventions, and metrics 9. Tools, Technique s, and Methodologies. Discuss
that may apply to the different life cycle any special software tools, techniques, and
phases: methodologies that will be used to support the
* Documentation standards. SQA activity.

* Logic structure standards. Identify each tool, technique, and
* Coding standards, methodology.
* Commentary standards.

Identify responsibilities for each tool,
* Testing standards and practices, technique, and methodology.
* Product and process metrics.

10. Code Control. Describe how source and object6. Reviews and Audits. Describe the reviews and
code will be controlled during the project

audits to be carried out during the development development. (This is discussed further in Section
process. 3.1.3.)

Identify each technical and managerial review 11. Media Control. Describe the methods and facilities

and audit, used to identify the media for each software

Describe how each review and audit will be product and documentation, including storage,
carried out. copying, and retrieval.

Describe how follow-up actions will be 12. Supplier Control. Describe the provisions used to
implemented and verified, assure that software provided by suppliers will

meet established project requirements.
The following (from IEEE 730.1) lists a

, minimal set of reviews and audits; the actual _ Identify the methods to make sure that

set should be determined by the project suppliers receive adequate and complete
management and the SQA organization, requirements.

acting together: -- State the methods used to assure the

* Software Requirements Review. suitability of previously-developed software

* Preliminary Design Review. for this project.

* Critical Design Review. -- Describe procedures to be used to provide
* Software Verification and Validation assurance that suppliers SQA methods are

Plan Review. satisfactory, and consistent with this SQA

* Functional Audit. Plan.

* Physical Audit. 13. Risk Management. Specify the methods and
* In-Process Audits. procedures employed to identify, assess, monitor,

* Managerial Reviews. and control areas of risk, especially those relating

7. Test. Describe any safety-related tests that will be to safety.

required on the software that are not included in
the Software Verification and Validation Plan. 3.1.3. Software Configuration

Management Plan
Identify all such tests.

Software configuration management (SCM) is the
Describe how the tests will be carried out.

process by which changes to the products of the

8. Problem Reporting and Corrective Action. software development effort are controlled. SCM
Describe how safety-related problems encountered consists of four major parts: the SCM plan (SCMP),

during development will be reported, tracked, and the SCM baseline, the configuration control board and
resolved, the configuration manager. The SCMP may exist as a

document of its own, may be part of the SPMP, or may

23 NUREG/CR-6101

Section 3. Activities

be part of a larger project configuration management 3. SCM Interface Control. Describe the methods that
plan. Here, the first is assumed, simply as a vehicle for will be used for each of the following functions
discussion, involving interfaces. All types of interfaces are

included: among organizational elements, among
This description is based on ANS_EE standard 828, software modules, between hardware and
Software Configuration Management Plans. The use of software, and so forth.
this standard is discussed in another ANSI/IEEE

w Identify all interface specifications and
document, 1042, Guide to Software Configuration control documents.
Management. The latter includes, in AppendixA, an
example of a SCM plan for a safety-critical embedded -- Describe the method used to manage changes
application, to interface specifications and related

documents.

See Babich 1986 for a general introduction to the topic -- Describe how it will be ensured that such

of SCM. changes are actually accomplished.

The configuration baseline identifies the development -- Describe how the status of interface
products (termed configuration items) that will be specifications and documents will be
under configuration control. The configuration control maintained.
board (CCB) generally contains representatives from
both customer and developer organizations, and
approves all changes to the baseline. The configuration 1. Introduction

manager makes sure the changes are documented and 1.1. Purpose
oversees the process of making changes to the baseline.

1.2. Scope

A sample table of contents for a SCM plan is shown in 1.3. Definitions and Acronyms
Figure 3-4. It is based on IEEE 828. The developer 1.4. References
need not follow this sample, provided that the

2. Management
requirements listed below are included in his own plan.
As usual, issues that are unlikely to directly affect 2.1. Organization

safety are not discussed in the list of requirements, 2.2. SCM Responsibilities

which follows: 2.3. Interface Control

1. SCM Organization. Describe the organizational 2.4. SCM Plan Implementation

structure of the SCM effort. Major topics to 2.5. Applicable Policies, Directives and Procedures

discuss include: 3. SCM Activities

Major CM organizational elements and 3.1. Configuration Identification
linkages between them.

3.2. Configuration Control

Organizational relationships involving the 3.3 Configuration Status AccountingCCB.
3.4. Audits and Reviews

2. SCM Responsibilities. The various responsibilities
for configuration management are described under 3.5. Release Procedures
this heading. 4. Tools, Techniques and Methodologies

Organizational responsibilities for each 5. Supplier Control

safety-related SCM task. 5.1. Subcontractor Software

Relationships between the SCM organization 5.2. Vendor Software

and other organizations. For example, the 6. Records Collection and Retention
quality assurance organization and the
software development organization.

Figure 3-4. Outline of a Software Configuration
Responsibilities of the CCB. Management Plan

NUREG/CR-6101 24

Section 3. Activities

4. SCM Plan Implementation. Establish the major m Management plans and other management
CM milestones. These include such items as: documents.

Establishment of the CCB. m Specifications, such as requirements and

Establishment of the configuration baseline, design specifications.
User documentation.

The schedule for configuration reviews and
audits. -- Test designs, test cases, and test procedure

5. SCM Policies, Directives, and Procedures. specifications.

Describe all policies, directives and procedures -- Test data and test generation procedures.
that will be used in configuration control. Many of

Support software.
the examples given in IEEE 828 are shown in the
following list. -- Data dictionaries.

w Identification of levels of software in a m Design graphics, such as CASE designs.
hierarchical tree.

Source, object, and executable code.
w Program and module naming conventions. Software libraries.

Version level designations. _ Databases.

Software product identification methods. Build instructions.

Identification of specifications, test plans and
Installation procedures.

procedures, programming manuals, and other
documents. -- Installation configuration tables.

Media identification and file management 7. Configuration Control. Describe, in detail, the
identification, process by which change takes place.

Document release process. _ Describe the level of authority required to
approve changes. This may vary according to

Turnover or release of software products to a
library function, the life cycle phase.

Identify the routing of change requests for
Processing of problem reports, change
requests, and change orders, each life cycle phase.

Structure and operation of CCB. -- Describe procedures for software library
control, including access control, read and

Release and acceptance of software products, write protection, CI protection, archive

Operation of software library systems, maintenance, change history and disaster
including methods of preparing, storing, and recovery.
updating modules. _ Define the authority and makeup of the CCB.

Auditing of SCM activities. Identify members by name and position. State
how changes to the CCB membership will be

Level of testing required prior to entry of made known.

software into configuration management, m State control procedures for nonreleased
File backup and storage procedures, including software, off-the-shelf software, and other
defense against fires and natural disasters, special software products.

6. Configuration Identification. Identify the initial 8. Configuration Status Accounting. Describe the

baseline of items under configuration control, method by which SCM reporting will take place.
These are the initial configuration items, and will Describe how information on the status of the

generally include many different types of things, various configuration items will be collected,
The following list is meant to be illustrative, not
exhaustive, verified, stored and reported.

Identify periodic reporting requirements.

25 NUREG/CR-6101

Section 3. Activities

9. Audits and Reviews. Define the role of the SCM available, it is "checked out" to the technical person,

organization in reviews and audits of the life cycle who is now responsible for it. He will make the needed
products. (The development organization may changes. Once this is done, and any tests or reviews
wish to address this topic in the V&V plan instead have taken place, the CI is returned to the
of here.) configuration manager, who ensures that all procedures

have been followed. The new document or module
-- Identify which configuration items will be now becomes the new baseline, for use in the future for

covered by each review and audit.
other changes, or for constructing product releases.

-- State the procedures to be used for identifying
and resolving problems that are discovered in This report requires a SCM plan to be written and
reviews and audits, followed. At this point, only the plan is at issue. The

later stages of the project life cycle will require
10. Supplier Control. State how the SCM procedures

assessment of the actual process of configuration
will apply to purchased and subcontractor-
developed software, management.

Changes to software requirements, design 3.1.4. Software Verification and
specifications, and code are almost certain to occur. It Validation Plan
is necessary to keep track of such changes and their
potential impact on safety. The purpose of Verification is the process that examines the products
configuration management is to manage the tracking, of each life cycle phase for compliance with the
to make sure that the version of a _onfiguration item requirements and products of the previous phase.

Validation is the process that compares the final(CI) that is being changed is actually the current
version, and to always know the current release of CIs. software product with the original system requirements
If this is not done, there are a number of significant and established standards to be sure that the customer's
dangers. (1) A safety-related change might be lost, and expectations are met. The combination of verification
not done. For example, a change to the design might and validation (V&V) processes generally includes

both inspections and tests of intermediate and f'malnot be carried through to the code. (2) Two or more
people might be simultaneously changing the same CI, products of the development effort. Figure 3-5, taken
resulting in inconsistent changes or lost changes. The from IEEE Standard 1012, provides an overview of the
latter can occur when the second person to finish the process. See also ANS 7-4.3.2 and ANS 10.4.
change overwrites the change made by the first person.
(3) A software release may be issued containing Software V&V is discussed in detail in Barter 1993.
inconsistent versions of the various code modules. That document gives a background discussion of V&V

issues, the V&V plan, and V&V activities throughout
the life cycle. Consequently, nothing more will beDeveloping and carefully following an SCMP helps to

avoid the aforementioned problems. When a change is written here about the general issues.
desired, the CCB will examine the change and decide
whether or not it should be implemented. For example, The V&V plan can be based on ANSbrlEEE standard

1012, Verification and Validation Plans. A samplethe change might be required for safety reasons, so
should be approved. On the other hand, the suggested table on contents for a software V&V plan, based on

this standard, is shown in Figure 3-6. The developerchange might have a negative impact on some
apparently unrelated safety issue; in this case, the need not follow this sample, provided that all V&V
change will have to be modified or rejected, requirements are included in the developer's own plan.

The figure assumes that the software life cycle phases

Once the CCB has approved the change, the match the life cycle stages presented in Figure 2-1; the
configuration manager oversees the process of developer will need to make modifications to match
implementing the change. This is a process issue; the the actual life cycle.
configuration manager is not involved in the technical
aspects of the change. The technical person who will There can be considerable overlap between V&V
actually carry out the change will request control of the activities and Quality Assurance and Safety Analysis
CI from the configuration manager. The latter makes activities. It is the responsibility of the project
sure the CI is available; that is, no other person is management to allocate responsibilities in a way

suitable to the actual project at hand.currently changing it. Only one person is permitted to
work on the CI at any one time. Once the CI is

NUREG/CR-6101 26

Section 3. Activities

1. Management of Life Cycle V&V. The major w Component Test Design Generation.
portion of the V&V Plan will be the way in which Integration Test Design Generation.
V&V will be carded out through the life of the
development project. If this is done carefully, then w System Test Design Generation.

the V&V tasks for the remainder of the project -- Acceptance Test Design Generation.
consists of carrying out the Plan. In general, the
following activities should be required for each 4. Implementation Phase V&V. The V&V Plan will

phase of the life cycle: describe how the various V&V tasks will be
carried out during the implementation phase of the

Identify the V&V tasks for the life cycle life cycle. The following tasks are identified in
phase. IEEE 1012 as a minimal set:

Identify the methods that will be used to m Source Code Traceability Analysis.
perform eachtask.

Source Code Evaluation.
Specify the source and form for each input
item required for each task. -- Source Code Interface Analysis.

Specify the purpose, target and form for each _ Source Code Documentation Analysis. i
output item required for each task. -- Component Test Case Generation.

I

Specify the schedule for each V&V task. -- Integration Test Case Generation.

Identify the resources required for each task. -- System Test Case Generation.
and describe how the resources will be made

available to the V&V organization. _ Acceptance Tes_ Case Generation. i
Component Test Procedure Generation,

Identify the risks and assumptions associated
with each V&V task. Risks include safety, w Integration Test Procedure Generation.
cost, schedule and resources. System Test Procedure Generation.

Identify the organizations or individuals Acceptance Test Procedure Generation.
responsible for performing each V&V task.

5. Integration Pha_ V&V. The V&V Plan will
2. Requirements Phase V&V. The V&V Plan will describe how the various V&V task will be carried

describe how the various V&V tasks will be
out during the integration phase of the life cycle.

carried out during the requirements phase of the The following tasks are identified in IEEE 1012 as
life cycle. The following tasks are identified in a minimal set:
IEEE 1012 as a minimal set:

Integration Test Execution.
Software Requirements Traceability Analysis.

6. Validation Phase V&V. The V&V Plan will
Software Requirements Evaluation. describe how the various V&V tasks will be

Software Requirements Interface Analysis. carried out during the validation phase of the life

System Test Plan Generation. cycle. The following tasks are identified in IEEE1012 as a minimal set:

Acceptance Test Plan Generation.
Acceptance Test Procedure Generation.

3. Design Phase V&V. The V&V Plan will describe
System Test Procedure Execution.how the various V&V tasks will be carried out

during the design phase of the life cycle. The _ Acceptance Test Procedure Execution.

following tasks are identified in IEEE 1012 as a 7. Installation Phase V&V. The V&V Plan will
minimal set: describe how the various V&V tasks will be

Software Design Traceability Analysis. carded out during the installation phase of the life

Software Design Evaluation. cycle. The following tasks are identified in IEEE1012 as a minimal set:

Software Design Interface Analysis.
Installation Configuration Audit.

Component Test Plan Generation.
Final V&V Report Generation.

Integration Test Plan Generation.

27 NUREG/CR-6101

Section 3. Activities

• Concept • Standards

_'- _ • Development documentation • SRS

Required J schedules • SRS •SDDV&V Inputs • Concept • Interface • Interfacedocumentation requirements requirements
documentation documentation

.._ • User . • Interfacedocumentation design
documentation

i iii •

-Life Cycle ' ,_ User

documentation

Phase J, Concept ._ '

Requirements

(Minimum _ •Concept

documentation Design

V&V Tasks evaluation • Requirementstraceabilityanalysis
• Requirementsevaluation

l-'l • Requirementsinterface • Design traceabilityanalysisanalysis • Designevaluation
• Test plan ° Interfaceanalysis

generation • Test plangeneration
° Test designgeneration

° Conceptphase ,_ ._
, task reporting

i(_ Required -"_ "Anomalyreports

V&V Outputsj) • V&V phase • Requirements • Designphasetask
summaryreport phasetask reporting

reporting • Test plan
• Test plan .-- Component

--- System "'" Int-egrati°n
--- Acceptance • Test design

• Anomaly --- Component
report(s) ---Integration

• V&V phase --- System
summary ---Acceptance
report • Anomalyreports

• V&V phase
summaryreport

• SVVP generation • Management review
• Baseline change assessment • Review support

Figure 3-5. Verification and Validation Activities

NUREG/CR-6101 28

Section 3. Activities

• Standards
• SDD
• Sourcecodelisting(s)
• Executablecode • Developmentschedules
• Interfacedesign • Conceptdocumentation

document • SRS
• User • Interfacerequirements

documentation documentation
• Sourcecode listing(s) • SDD

._ • Executablecode • Interfacedesigndocumentation• Userdocumentation • Sourcecode listing(s)
• Executablecode

.,_ • Installation • Userdocumentationpackage • SWP
• Proposed/approvedchanges

Implementation _ ,• AnomalYsvvPreport(s)

Test
• Codetraceabilityanalysis Installation
• Code evaluation and Checkout
• Interface analysis • Test procedure Operation
• Documentationevaluation generation and
• Test case generation • Integrationtest
• Test proceduregeneration execution • Installation Maintenance

Component test execution • Systemtestexecution configurationaudit
• Acceptancetest • V&V finalreport

._ execution generation • SVVP revision• Anomaly

._ evaluation• Implementationphase • Proposedchangeassessment
taskreporting • Phasetask

• Test cases • Test phasetask • Installationand reiteration
--- Component reporting checkoutphasetask
--- Integration • Test procedures reporting I-"7
--- System --- Acceptance • Anomalyreport(s)
--- Acceptance • Anomalyreport(s) • V&V phasesummary

• Test procedures • V&V phasesummary report
--- Component report • V&V finalreport • UpdatedSVVP
--- Integration • O&M task reporting
--- System • Requiredphase outputs

• Anomalyreport(s) reiterated
• V&V phase summary • Anomalyreport(s)

report

[_ • SVVP andupdates

• Task reporting ANSI/IEEE 1012
• PhaseV&V summary reports
• Anomalyreports

Figure 3-5. Verification and Validation Activities (cont.)

29 NUREG/CR-6101

Section 3. Activities

1. Introduction this sample, provided that the requirements listed
below are included the actual plan. In particular, the

1.1. Purpose developer may wish to include many of the Safety
1.2. Scope Management requirements in other plans. For example,

1.3. Definitions and Acronyms CM activities discussed here could be included in the
developer's SCM plan. The entire SSP could be

1.4. References included within a global reactor safety plan. The
2. Verification and Validation Overview software safety organization referred to in the list could

2.1. Organization be part of the system safety organization. The
requirements for a software safety plan are listed next.

2.2. Master Schedule

2.3. Resource Summary

2.4. Responsibilities 1. Introduction
2.5. Tools, Techniques and Methodologies

1.1. Purpose
3. Life Cycle Verification and Validation

1.2. Scope
3.1. Management of V&V

1.3. Definitions and Acronyms
3.2. Requirements Phase V&V

1.4. References
3.3. Design Phase V&V

2. Safety Management
3.4. Implementation Phase V&V

2.1. Organization and Responsibilities
3.5. Integration Phase V&V

2.2. Resources
3.6. Validation Phase V&V

2.3. Staff Qualifications and Training
3.7. Installation Phase V&V

2.4. Software Life Cycle
3.8. Operation and Maintenance Phase V&V

2.5. Documentation Requirements
4. Software Verification and Validation Reporting

2.6. Software Safety Program Records
5. Verification and Validation Administrative
Procedures 2.7. Software Configuration Management

Activities
5.1. Anomaly Reporting and Resolution

2.8. Software Quality Assurance Activities

5.2. Task Iteration Policy 2.9. Tool Support and Approval

5.3. Deviation Policy 2.10. Previously Developed or Purchased Software
5.4. Control Procedures

2.11. Subcontract Management
5.5. Standards, Policies and Conventions

2.12. Process Certification

Figure 3-6. Outline of a Software Verification and 3. Safety Engineering Practices during Software
Validation Plan Development

3.1. Requirements Safety Analysis

3.1.5. Software Safety Plan 3.2. Design Safety Analysis

3.3. Code Safety Analysis
The Software Safety Plan (SSP) is required for safety-
critical applications, such as reactor protection 3.4. Integration Test Safety Analysis
systems, to make sure that system safety concerns are 3.5. Validation Test Safety Analysis

properly considered during the software development. 3.6. Installation Test Safety Analysis
The discussion here is based on an IEEE Draft

Standard, 1228, Software Safety Plans. A sample table 3.7. Change Safety Analysis
of contents for an SSP, based on the draft standard, is

shown in Figure 3-7. The developer need not follow Figure 3-7. Outline of a Software Safety Plan

NUREG/CR-6101 30

Section 3. Activities

1. Organization and Responsibilities. Describe the personnel, other personnel, computer and other
way in which software safety activities fit within equipment support, and tools.
the overall project safety activities and with the

w Specify the methods to be used to identify
development organization. Major topics to discuss
include: resource requirements.

Specify the methods to be used to obtain and
m Organizational relationships involving the allocate these resources in the performance of

software safety organization, the safety tasks.
m Lines of communication between the software

Specify the methods to be used to monitor the
safety organization, the system safety use of these resources.
organization, and the software development
organization. 3. Staff Qualifications and Training. Specify the

qualifications and training required for the
The oversight, review, and approval authority software safety personnel.
of the software safety organization.

Specify the personnel qualifications required
The authority of the software safety for each of the following tasks:
organization to enforce compliance with
safety requirements and practices. * Defining safety requirements.

• Designing and implementing safety-The name and title of a single individual with
overall responsibility for the conduct of the critical portions of the protection system.
software safety program. * Performing software safety analysis

tasks.

The responsibilities of the software safety * Testing safety-critical features of the
organization. Typical responsibilities include protection system.
the following:

• Auditing and certifying SSP
• Preparation and update of the SSP. implementation.

• Acquisition and allocation of resources to * Performing process certification.

ensure effective implementation of the _ Define training requirements and the methods
SSP. by which training objectives will be met.

• Coordination of safety task planning with
other organizalional components and 4. Software Life Cycle. Describe the relationship
functions. This includes software between software safety tasks and the

development, system safety, software development activities that will occur in the
quality assurance, software configuration development organization's chosen life cycle.

management, and software V&V. 5. Documentation Requirements. Specify the
• Coordination of all technical issues documents that will be required as part of the

related to software safety withother software safety program.
components of the development and Describe the method of documentation control

support organizations and the regulators, that will be used. (The configuration

• Creating, maintaining, and preserving management organization could be used for
adequate records to document the this purpose.)
conduct of the software safety activities.

• Participation in audits of the SSP -- List all safety-specific documents that will be
implementation, prepared. In particular, there must be

documents describing the results of the
• Training of safety and other personnel in various safety analyses described below in

methods, tools, and techniques used in Sections 3.2.2, 3.3.3, 3.4.2, 3.5.2, 3.6.1, 3.7.5,
the software safety tasks, and 3.8.1.

2. Resources. Specify the methods to be used to
ensure there are adequate resources to implement m Describe how other project documents must
the software safety program. Resources include be augmented to address software safety
(but are not limited to) financial, schedule, safety activities. At minimum, the following topics

must be addressed:

31 NUREG/CR-6101

Section 3. Activities

* Software project management, software meets the additional requirements

* Software safety requirements, necessary for safety-critical software:

* Software development standards, * Software development tools.

practices, and conventions. * Previously developed software.
* Software test documentation. * Purchased software.

* Software verification and validation * Subcontractor-developed software.

documentation. 8. Software Quality Assurance Activities. Describe
* Software user and operator the interactions between the software quality

documentation, assurance organization and the software safety
6. Software Safety Program Records. Identify what organization.

software safety program records will be generated,
maintained and preserved. 9. Tool Support and Approval. Specify the process to

be used and the criteria to be applied in approving
At minimum, the following records shall be and controlling tool usage. This applies to
kept. development tools, and concerns the

* Results of all safety analyses, appropriateness of each tool to developing safety-
critical code. The following aspects must be

* Information on suspected or verified addressed:
safety problems that have been detected
in pre-release or installed systems, m Tool approval procedures.

* Results of audits performed on software -- Installation of upgrades to previously
safety program activity, approved tools.

* Results of safety tests carried out on the
Withdrawal of previously approved tools.software system.

* Records on training provided to software -- Limitations imposed on tool use.

safety personnel and software 10. Previously Developed or Purchased Software.
development personnel. State the actions that will take place to ensure that

Specify the person responsible for preserving previously developed or purchased (PDP) software
software safety program records, meet the safety-related requirements of the

Specify what records will be used to ensure development project.

that each hazard, the person responsible for its m Define the role of the software safety
management, and its status can be tracked organization in approving PDP software.
throughout the software development life
cycle. -- Describe the approval process. At minimum,

the following steps should be performed for
7. Software Configuration Management Activities. PDP software that will be used in safety-

Describe the interactions between the software critical applications:
configuration management organization and the
software safety organization. * Determine the interfaces to and

functionality of the PDP software.

Describe the process by which changes to * Identify relevant documents that are
safety-critical software items are to be available to the obtaining organization,
authorized and controlled, and determine their status.

Describe the role and responsibility of safety * Determine the conformance of the PDP

personnel in the change evaluation, change software to published specifications.

approval, and change verification processes. * Identify the capabilities and limitations of

Describe the relationship between the the PDP software with respect to the
Configuration Control Board and the software safety requirements of the development
safety organization, project.

* Using an approved test plan, test the
--- Describe the methods for ensuring that

configuration management of the following safety-critical features of the PDP

NUREG/CR-6101 32

Section 3. Activities

software in isolation from any other 3.1.6. Software Development Plan
software.

The Software Development Plan provides necessary* Using an approved test plan, test the
information on the technical aspects of the

safety-critical features of the PDP
software in conjunction with other development project, that are required by the
software with which it interacts, development team in order to carry out the project.

Some of the topics that should be discussed in this plan* Perform a risk assessment to determine if
were also listed for the Software Project Management

the use of the PDP software will result in Plan discussed in Section 3.1.1. The latter document is

undertaking an acceptable level of risk directed at the project management personnel, so
even if unforeseen hazards result in a emphasizes the management aspects of the
failure, development effort. The document discussed here

11. Subcontract Management. Specify the method for emphasizes the technical aspects of the development
ensuring that subcontractor software meets the effort, and is directed at the technical personnel.
requirements of the software safety program.

Describe how subcontractors will be A sample table of contents for a Software

controlled to ensure that they meet the Development Plan is shown in Figure 3-8. The
requirements of the software safety plan. developer need not follow this sample, provided that

the requirements listed below are included in the actual
Describe how the capabilities of the plan. Additional information required for development
subcontractor to support the software safety is discussed in other plans. For example, testing is
program requirements will be determined, discussed in the Software V&V Plan.

Describe how the subcontractor will be
monitored to ensure his adherence to the The reader is referred to IEEE Standard 1074 for

requirements of the SSP. information on life cycle processes.

Describe the process to be used to assign 1. Life Cycle Processes. Describe the life cycle that
responsibility for, and track the status of, will be used on this project. Discuss the various
unresolved hazards identified or impacting the processes that make up this. life cycle. For each

subcontractor, process, give the input information required in

12. Process Certification. Specify the method to be order to carry out the process, a description of the

used (if any) to certify that the software product actions that must take place during the process,
was produced in accordance with the SSP and the output information produced by the
processes, process. Since the output of one process is likely

to be used as input to another, a data flow diagram
13. Safety Analyses. Specify the various safety would be appropriate. The processes suggested

analyses that will be performed for each stage of here are based on IEEE 1074.
the life cycle. These are discussed in detail below
in Sections 3.2.2, 3.3.3, 3.4.2, 3.5.2, 3.6.1, 3.7.5, _ Requirements Processes.

and 3.8.1. * Define, Develop, and Document Software

Specify which safety analyses will be carried Requirements.
out for each life cycle stage. * Define and Document Interface

Requirements.

Name the person responsible for each * Prioritize and Integrate Software
analysis. Requirements.

Describe the review procedures that will be * Verify Requirements.

carried out for each analysis. * Perform and Document Requirements
Describe the documentation that will be Safety Analysis.

required for each analysis. -- Design Processes.

* Define and Document the Software
Architecture. This includes how the
software architecture will fit into the
hardware architecture.

33 NUREG/CR-6101

Section3.Activities

1. Introduction * Verify the Software Implementation.
• Perform and Document Implementation

1.1. Purpose Safety Analysis.

1.2. Scope -- Integration Processes.

1.3. Definitions and Acronyms * Specify and Document System Build
1.4. References Methods.

2. Life Cycle Processes * Integrate Hardware, Software and

2.1. Requirements Processes Instrumentation.
• Create and Document Integration Test

2.2. Design Processes Procedures and Test Cases.

2.3. Implementation Processes * Perform Integration Testing.

2.4. Integration Processes * Verify the Software Integration.

2.5. Validation Processes * Perform and Document Integration Safety

2.6. Installation Processes Analysis.
m Validation Processes.

2.7. Operation and Maintenance Processes

3. Methods, Tools and Techniques * Specify and Document Validation Test
Procedures and Test Cases.

3.1. Requirements Methods, Tools and Techniques * Perform and Document Validation

3.2. Design Methods, Tools and Techniques Testing.

3.3. Implementation Methods, Tools and * Verify the Validation Testing.

Techniques * Perform and Document Validation Safety

3.4. Integration Methods, Tools and Techniques Analysis.

3.5. Installation Methods, Tools and Techniques m Installation Processes.

4. Standards * Specify and Document Installation

5. Schedule and Milestones Procedures.
• Specify and Document Installation

6. Technical Documentation Requirements Acceptance Procedures.

• Specify and Document Installation Test
Figure 3-8, Outline of a Software Procedures and Test Cases.

Development Plan * Specify and Document Installation

• Design and Document the Database. Configuration Tables.

• Design and Document Interfaces. This * Verify the Installation Procedures.
includes all interfaces between the * Perform and Document Installation

software components, and between Safety Analysis.
software, hardware, and instrumentation, o Operation and Maintenance Processes.

• Select or Develop and Document * Specify and Document Operation
Algorithms. Procedures.

• Perform and Document Detailed Design. * Specify and Document Regression Test
• Verify the Software Design. Procedures and Test Cases. This will

• Perform and Document Design Safety probably consist of the installation test
Analysis. procedures and test cases, augmented by

Implementation Processes. tests to cover any faults found and
repaired during operation.

• Create Unit Development Folders. 2. Methods, Tools, and Techniques. Describe the
• Create Source Code. methods and techniques that will be used to
• Create and Document Test Data. develop the software, and the tools that will be
• Generate Object Code. used in connection with those methods and

• Perform and Document Unit Testing. techniques.

NUREG/CR-6101 34

Section 3. Activities

Requirements. Describe the requirements of this with the hardware and instrumentation, and
methodology and any tools that will be used testing the resulting integrated product. During the In'st
to implement it. A formal requirements phase, the various object modules are combined to
methodology is recommended for reactor produce executable programs. These programs are then
protection systems. Specify any requirements loaded in the second phase into test systems that are
tracking tool that will be used. constructed to be as nearly identical as possible to the

ultimate target systems, including computers,
Design. Describe the design method and any communications systems and instrumentation. The
tools that will be used to implement it. A

final phase consists of testing the results, and is
formal design method is recommended for discussed in another report (Barter 1993).
reactor protection systems. Specify any CASE
tools that will be used. Specify what

A sample table of contents for a Software Integration
computers will be used to perform and

Plan is shown in Figure 3-9, based on IEC 880. The
document the software design, developer need not follow this sample, provided that
Implementation. Describe the implementation the requirements listed below are included in his own
method and all tools that will be used in plan. These requirements are listed next.
implementation. Specify what programming
language will be used. Specify the compiler 1. Integration Level. Multiple levels of integration
and linker that will be used. Specify what may be necessary, depending on the complexity of
computers will be used for software the software system that is being developed.
development and unit testing. Several integration steps may be required at some

levels.
Integration. Describe the integration method
and any tools that will be used to implement
the integration. Note that integration 1. Introduction
validation procedures, methods and tools are 1.1. Purpose

described in the Software V&V Plan. This 1.2. Scope
includes integration testing.

1.3. Definitions and Acronyms
Installation. Describe the installation method 1.4. References
and any tools used to assist in installation.
Note that installation validation procedures, 2. Identification of the Integration Process

methods, and tools are described in the 2.1. Integration Level
Software V&V Plan. This includes

2.2. Integration Objects and Strategies
installation testing.

3. Integration Marginal Conditions
3. Standards. List all international, national, and

company standards that will be followed in the 3.1. Integration and Testing Environment
project. 3.2. Priorities

4. Schedule and Milestones. List all of the technical 3.3. Risks

milestones that must be met. Describe what is 3.4. Other Marginal Conditions

expected at each milestone. 4. Organization of Integration

5. Technical Documentation. List all of the technical 4.1. Integration Network Plan
documents that must be produced during the
software development. Discuss milestones, 4.2. Personnel and Responsibilities
baselines, reviews, authors and sign-offs for each 5. Integration Procedures

document. This list may be all of or a subset of the 5.1. Required Products
list given in Section 3.1.1.3.

5.2. Integration Instructions

3.1.7, Software Integration Plan 5.3. Special Handling

Software integration actually consists of three major
phases: integrating the various software modules Figure 3-9. Outline of a Software
together to form single programs, integrating the result Integration Plan

35 NUREG/CR-6101

Section 3. Activities

Describe the different levels of integration m List all of the products of each integration
and the scope of each integration step at each step.

level. 9. Integration Instructions. Provide the technical
Give a general description of the various instructions needed to carry out each integration
objects that will be included in each step at step, as follows.
each level.

m List the inputs to the integration step.
2. Integration Objects and Strategies.

-- Describe the procedures for obtaining the
Give a complete list of all objects, computer input items (hardware, instrumentation,
hardware, instrumentation, software, and data software, and data) for the step. This is
that will be included in each integration step. expected to involve the CM organization.

Describe the strategy that will be used for -- Describe the integration process for the step.

each integration step. m List the outputs of the integration step.
3. Integration and Testing Environment.

Discuss contingency strategies if the

Describe the environment that will be used to integration fails to complete.

perform and test each integration step. -- Describe the procedures for delivering the
-- List the tools that will be used in each completed integration product to the

integration step. configuration management organization.

4. Integration Priorities. Allocate each integration -- Describe the procedures for delivering the
step a priority, based on schedule, dependence completed integration product to the V&V
along the integration products, risk, and any other organization for integration testing.
factors deemed important to the development
organiTation, 3.1.8. Software Installation Plan

5. Integration Risks. Risk here refers primarily to Software installation is the process of installing the
budget and schedule. Other forms of risk can be finished software products in the production
considered, at the option of the development environment. The Installation Plan will describe the

organization, general procedures for installing the software product.

If any integration step involves significant For any particular installation, modifications, or
risk, describe the potential problems and the additions may be required to account for local
preventive measures that will be taken to conditions.
avoid them.

A sample table of contents for a Software Installation
6. Integration Network Plan. Plan is shown in Figure 3-10. The developer need not

Order the integration steps into a time follow this sample, provided that all of the installation
sequence. This order is determined primarily requirements are included in the actual plan.
by the del_ndencies among the integration Installation testing may be included in this plan, or in
steps. Steps at more detailed levels will the V&V plan. The latter alternative is presumed here.
generally be required to complete successfully
before a step at a more general level can be 1. Installation Environment. Describe the
performed. Other factors can influence this environment within which the software product is
order, expected to perform. This can include the reactor

itself, the reactor protection system, and the
7. Integration Personnel and Responsibilities. protection system instrumentation and computer

m List the personnel who will be involved in the hardware. This description should be limited to
those items required for successful installation andintegration steps.
operation.

Provide a means to keep this list up to date.

8. Integration Products.

NUREG/CR-6101 36

Section 3. Activities

I
!

I. Introduction follow this sample, provided that all the necessary
activities are included in his own plan.

1.1. Purpose

1.2. Scope The maintenance activity should include use of a

1.3. Definitions and Acronyms configuration management system to track the failure
reports, fault corrections, and new releases of code and

1.4. References documents.
2. Identification of the Installation Environment

2.1. Application Environment I. Failure Reporting. A well-designed method must
exist for collecting operational failures and making

2.2. Computer Hardware them known to the software maintenance

2.3. Instrumentation organization. The essential poinL'_are that no

3. Installation Package failures be overlooked by the customer and that no
f failures be lost by the maintenance organization.

3.1. Installation Software All failures must be tracked by the maintenance
3.2. Installation Documents organization. This includes software failures,

4. Installation Procedures misunderstandings on the part of operators,
mistakes in documenLs, bad human factors, and

anything else that causes the protection to fail or
Figure 3-10. Outline of a Software potentially to fail.

Installation Plan
Failure detection includes all procedures by

2. Installation Package. Describe all of the materials which the existence of the failure is recorded

that will be included in the installation package, by the customer. This will generally include
This will include the software producLs, the media reporting forms.
that contain them, and associated documents. If
alternatives are available, describe each. For -- Failure reporting includes the procedures used

example, several different installation media might to inform the maintenance organization of thefailures. It includes transmission of the failure

be provided, reports from the customer to the maintenance
3. Installation Procedures. Describe completely the

procedure for installing the software in the
operational environment. This should be a step-by- 1. Introduction

step procedure, written for the anticipated 1.1. Purpose
customer. Anticipated error conditions should be

1.2. Scopedescribed, with the appropriate recovery
procedures. 1.3. Definitions and Acronyms

1.4. References
3.1.9. Software Maintenance Plan

2. Failure Reporting Procedures

Software maintenance is the process of correcting 2.1. Failure Detection
faults in the software product that led to failures during

operation. There is a related activity, sometimes termed 2.2. Failure Reporting
"enhancement," which is the process of adding 2.3. Failure Tracking

functionality to a software product. That is not 3. Fault Correction Procedures
considered here. Enhancement of a reactor protection 3.1. Fault Detection
system should repeat all of the development steps
described in this report. 3.2. Fault Repair

3.3. Testing Correction
The software maintenance plan describes three primary
activities: rel'xn'ting of failures that were detected 3.4. Regression Testing
during operation, correction of the faults that caused 4. Re-release Procedures
those failures, and release of new versions of the

software product. A sample table of contents for this Figure 3-11. Outline of a Software
plan is shown in Figure 3-11. The developer need not Maintenance Plan

37 NUREG/CR-6101

Section 3. Activities

organization, and entry of these reports into a 3.2. Requirements Activities
failure tracking system. The latter should be

under configuration control. Perhaps the most critical technical tasks in any
software development project are those tasks that relate

Failure tracking consists of the procedures to the understanding and documentation of the
used to make sure that the failure is assigned software requirements. This is especially true for a
to some person or group for analysis and fault project, such as a reactor protection system, in which
detection. The failure tracking system should safety is a vital concern. There are several risks if the
permit management to always know who is software requirements are not fully documented. Some
responsible for handling the failure and any requirements may be omitted, others may be
causative faults, misunderstood, still others may be interpreted

2. Fault Correction. Every failure is caused by one or differently by diIferent developers. Any of these can
more faults. These may be an incorrect create a hazard in a safety-critical application.

requirements specification, a design error, or a
coding error. The fault must be found and Software requirements are concerned with what the
corrected. This includes correction of any related software must do in the context of the entire
documentation if that is necessary. The plan will application, and how the software will interact with the
describe the method to be used in finding and remainder of the application. These two aspects are
correcting the fault captured here in the Software Requirements

Specification. In actual usage, the aspects may be split
Fault detection includes all activities required into two documents, if so desired by the development
to find the fault or faults that caused the organization. It is also possible to record the
failure, requirements specifications in some type of computer

Fault rep_ consists of all activities and database, using a requirements tracking system or a

procedures involved in correcting the fault. CASE tool.

Because the failure was not discovered during In the discussion here, four documents are described.
any of the previous test activities, the Taken together, they span the documentation, analysis,
acceptance test will need to be modified to and review of the various requirements activities. The
take the new failure into account, development organization may choose to combine

Regression testing is the process of testing the some of the documents, or to have additional
newly modified software product to make documents. This is not of great importance as long as
sure that no new faults have been placed into the information discussed below is included in some
the software document. The documents are:

3. Re-release. Procedures must be defined to create
• Software Requirements Specification.

new versions of the software product, releasing
these to the customers and ensuring that the newly • RequirementsSafetyAnalysis.
corrected software product is correctly installed. • V&V Requirements Analysis Report.

3.1.10. Software Training Plan • CM Requirements Report.

The training plan will describe the procedures that will The V&V and CM reports are described in detail in the
be used to train the operators of the software system. In V&V and CM plans, so are not discussed here.
this case, reactor operators will need to be trained in
use of the protection system software. It is also 3.2.1. Software Requirements
possible that training will be required for managers and Specification

for maintenance personnel. The SRS is required for a safety-critical application, to
make sure that all safety-related system requirements

The actual training requirements depend to a great are made known to the software developers. These
extent on the actual software product, development requirements come from the overall application system
organization, maintenance organization, and customer design, and reflect the requirements placed on the
(utility). Consequently, no attempt is made here to software by the application system. In a reactor
outline the contents of the training plan. protection system, this means that the protection

NUREG/CR-6101 38

Section 3. Activities

system design must be known and documented, ,and the 1. Introduction

demands that the system makes on the computer 1.1. Purpose
system must be known. A hazard analysis of the 1.2. Scope

protection system should be available. 1.3. Def'mitions and Acronyms

The discussion here is based on IEEE 830, Software 1.4. References

Requirements Specification. Topics have been added 2. General Description
that relate specifically to real-time safety-critical 2.1. Project Perspective
systems. A sample table of contents of an SfLS is 2.2. Project Functions
shown in Figure 3-12. The developer need not follow 2.3. llser Characteristics
this outline, provided that the requirements for an SRS 2.4. C_eneral Constraints

that are listed below are included. In particular, the 2.5. Assumptions and Dependencies

developer is encouraged to use some form of 2.6. Impacts

automated (or semi-automated) requirements tracking 2,6.1. Equipment Impacts
system, or to use a CASE system. 2.6.2. Software hnpact,s

2.6.3. Organizational Impact,;
1. Project Perspective. l)escribe the way in which the

2.6.4. Operational Impactssoftware system fits within the larger reactor
protection system. This section can be thought of 3. Specific Requirements
as an overview of the software project, showing 3.1. Functional Requirements for Software
how it fits within the "largerprotection system. Componenus

3.2. Performance Requirements
-- Describe briefly the functions of each

3.2.1. M(nles of Operation
component of the protection system, to the

3.2.2. Timing Requirementsextent required for the software developers to
understand the context of the software 3.2.3. Flexibility Requirements

requirements. 3.3. Interface Requirements
3.3.1. Operator Interfaces

-- Identify the principal external interfaces of the 3.3.2. Instrumentation Interfaces
software system. A context diagram, showing

3.3.3. Software Interfaces
the connections between the protection system
and the software system, can be quite helpful. 3.3.4. Hardware Interfaces

3.4. Reliability Requirements

-- Describe the computer hardware and 3.4.1. Availabilityinstrumentation that will be used, if this is
3.4.2. Reliability

known and imposed by out,side authority. Be
3.4.3. Safety.sure that no unnecessary constraints are

imposed on the software design. 3.4.4. Maintainability
3.4.5. Backup

2. Project Functions. Describe briefly the functions 3.4.6. Recovery and Restart
of the various parts of the software system. Do not 3.4.7. Software and Hardware Diagnostic

go into great detail here--that is reserved for CapabilitiesSection 3 of the SRS. Instead, think of this section

as a self-contained management overview. 3.4 8. Fault Tolerance
3.5. Design Constraint,_

-- For the .sake of clarity, the functions listed 3.5.1. Standards Compliance
here should be organized so that they can be 3.5.2. Hardware Limitations
understood to the customer, assessor, and 3.5.3. Software Limitations

regulator. 3.6. Security Requirements

-- Block diagrams, data tlow diagrams, finite 3.7. Database Requirelaents

I state diagrams, and other graphical techniques 3.8. Operations Requirements
can be helpful, but are not mandatory.

3. User Characteristics. Describe the general Figure 3-12. Outline of a Software
characteristics of the users o1 the software system. Requirements Specification
These will include the reactor operators and

39 NUREG/CR-6101

Section 3. Activities

software maintainers, and may include reactor support software in order to adapt them to the
management personnel, depending on the specific new software system.

requirements imposed by the overall prott:ction -- De,so, be any organizational impact,; required
system, by the new software system. This can include
-- For each c_,_s of user, give those reorganizations, increase or decrease in staff

characteristics that will be required in order to levels, upgrade of staff skills, and changes to
design the software system. This can include interfaces with regulators.

educational level, experience with nuclear -- Summarize any operational changes that will
reactors, experience with real-time computer be required, such as operational procedures,
systems, and general technical ability, relationships between the reactor protection

4. General Constraints. Give a general description of system and the reactor operators, staff
outside factors that will limit the designer's procedures, data retention and retrieval
options. The following list is typical, not procedures, reporting channels and method,s,
exhaustive: failure consequences, and recovery

Regulatory and other legal policies, procedures and processing time requirements.

m Hardware limitations. 7. Functional Requirements. This large section of the
SRS describes what the software system must do.

Interfaces to other applications. The section can be subdivided in a manner that
makes the functional requirements clear. For

Audit functions, example, functions that relate to particular

•-- Use of specific operating systems, compilers, protection system activities could be grouped
programming languages, and databa.,_e together, or functions that relate to particular
products, protection system components.

Use of specific communications protocols. _ Each functional requirement should be
individually numbered, for reference by

Critical safety considerations, designers and as_ssors.
Critical security considerations.

Each functional requirement should be stated
5. Assumptions and Dependencics. List each of the in a single positive sentence. Additional

factors that can affect the requirements or design if sentences may be included if necessary to
they change. These are not design constraint,_, but fully describe the requirement.

more general assumptions. For example: -- It is frequently useful to state what is not
Business conditions, required, so that the designers do not provide

Anticipated changes in laws or regulations, unwanted functionality.

Availability of specific hardware or software. -- It is desirable to use a formal language to

Possible changes in the computer industry, describe the functions. This can be the only
language used, or English can be, u,_.xlas a

6. Impacts. Provide warnings about anticipated supplement. The formal language may, for
impacts of the new software system. For a new example, be a language such as Z, which is
reactor, this section of the SRS is probably not based on mathematical logic (Stepney 1987).
applicable. However, if an existing protection An English description may be required in
system is being replaced by a new computer-based addition to the formal specification in order to
protection system, impacts should be described.
The purpose is to provide ample time to prepare ensure that the latter is comprehensible to

developers, managers, users, and auditors.
for the new system.

Summarize any changes that will be required 8, General Interface Requirements. The Software
to existing equipment, new equipment that Interface Specification should identify the
must be installed, and building modifications reliability and .safety requirements associated with

each system interface. The list given next, from
that may need to be made. Redmill 1988, applies to all interfaces. Separate
Discuss any additions or modifications that lists are given below for instrumentation and
will be needed to existing applications and operator interfaces.

NUREG/CR-6101 40

Section 3, Activities

Functions provided and required by the units, precision, error bounds (including
system and its processes, whether the bounds are a function of range),

Sequences of interactions, meaning, calibration, and any other significant

Input/output files for batch transfer to and facts about the sensor. If an analog to digital
from other systems, converter is used, give its resolution.

Nature of the information transferred. -- For each actuator, describe the values that

Definition of printed or microfilm outputs, may be sent to the actuator. Give ranges,
Formats. units, digital to analog resolution, precision,

Available options, meaning, calibration, and any other significantfacts about the actuator. (Many actuators will

Timing. be simple on/off actuators, and most of the
Color. foregoing list will not apply.)

Frequency of demands. 11. Software Interface Requirements. If the software
Accuracy. system will communicate with any other

Message error rates and types, application software: system, define all the
Electrical and mechanical interface interfaces between the systems. This

requirements, communication may be in terms of subroutine

Input checking, calls, remote procedure calls, communication
Presentation formaL'_, messages, or some other means. All such are

Information density, referred to as "messages" here.

Alerting signals, w For each message, describe the source and

Backup and error correction, destination of the message, the message

Security requirements, contents and format, the meaning of the
message, expected return messages,

9. Operator Interface Requirements. Define all of the transmission method and medium, error

requirements for communication between the conditions, expected frequency and size, and a
software system and the operators, reasonable upper limit to frequency and size.

Be careful to define only the requirement, not An upper limit to frequency, for example,
the design. In particular, do not specify the could be a frequency that is exceeded less
appearance of operator screens unless that than 0.01% of the time.

appearance is really a requirement. -- Interactions between the application program

The following aspects of operator interfaces and the operating system are not usually
should be considered if they apply to the considered to be interfaces that must be
application (Redmill 1988): defined here. There may be rare exceptions,

however, in particular cases.
* Positioning and layout of controls and

displays w The following aspects of communication
* Human reaction and decision times system interfaces should be considered if they

* Use of colors, bold face, underlining and apply to the application (Redmill 1988):
blinking on displays * Handshaking

* Menu techniques * Error checks

* Default values * Input and output communication ports

* Response times * Communication protocols and procedures

* Help facility * Interrupts

* Comfort signals * Exception handling and error recovery

10. Instrumentation Interface Requirements. In a real- * Message formals

time system, instrumentation can be divided into * Message throughput
two classes: sensors and actuators. See Preckshot 1992a for more information on

For each sensor, describe the values that may communication systems.

be received from the sensor. Give ranges,

41 NUREG/CR-6101

Section 3. Activities

12. Hardware Interface Requirements. If the software important so as to minimize future design
system must communicate directly with the changes.
computer hardware, define all the interfaces

14. Reliability Requirements. A number of topics
between the software and hardware systems. As

relating to the general subject of reliability are
above, the term "message" is used. collected together here.
m For each message, describe the software and

-- Availability is the percent of time that the
hardware elements of the message, the software system will be available for use. It
method of message transmittal, the reason

should be stated numerically. Different
such message is required, transmission availability requirements may exist for the
medium, error conditions, and expected and different modes of operation. State any
upper limit to frequency and size of the assumptions that are used in deriving the
message, availability number.

13. Performance Requirements. Specify both static -- Reliability is a measure of the length of time
and dynamic numerical performance requirements, the software system can be expected to

Static requirements include the number of operate before failing, under the assumption
terminals to support and number of that the computer hardware does not fail. The
simultaneous users to support, usual measure is mean time to fail, or failure

rate. Different reliability requiremenLs may
-- Dynamic requirements include numbers of exist for the different modes of operation.

transactions per unit of time, task switching State any assumptions that are used in
time, amount of data to be processed in deriving the reliability numbers.
certain time periods, and amount of time that
may have elapsed between a signal being _ Safety (in this section) is a measure of the
present at a particular sensor and a resulting length of time the software system can be
signal arriving at an actuator, expected to run before failing in such a way as

to cause a system hazard. The usual measure
Modes of operation refer to the basic is the probability that the system will fail
configurations in which the system must catastrophically per demand. Different safety

operate and in which the system would exhibit requirements may exist for the different
differing performance characteristics, modes of operation. See also the requirements
Examples include: fully operational test and discussed for a software safety plan, Section
the partial loss of a particular protection 3.1.5, and the later discussions on safety
system component, analyses in Sections 3.2.2, 3.3.3, 3.4.2, 3.5.2,

Timing requirements must be specified 3.6. l, 3.7.5, and 3.8.1.
numerically, and are usually given in terms of -- Maintainability is a measure of the length of
response time. This is the elapsed time time it will take to restore a failed application
between the receipt of an input signal from an to usable status. This may be merely a restart

operator or sensor and the amval of a of the software system; the measure does not
resulting output signal to an operator or usually include the amount of time required to
actuator, identify and fix bugs. The usual measure is

--. Timing requirements may depend on the mean time to repair. In this context, the
mode of operation. If so, individual timing requirement is the amount of time the system
requirements for each mode of operation must is permitted to be not working before it is
be given, restored to operation, and may differ for the

different modes of operation.
w Describe the required adaptability (flexibility)

of the software system. This can include the _ Specify any backup, recovery, and restart
ability to switch between modes of operation, requirements. Any special requirements, such
operating environment,_, planned changes or as reinitialization or reconfiguration, should
improvements, and the use of new hardware, be described.
The intent is to provide inlbrmation to the

If the application requires the ability to
designers as to where flexibility will be diagnose hardware or software failures,

NUREG/CR-6101 42

Section 3. Activities

identify these requirements. Acceptable + Repair of redundant channels.
responses to undesired events should be * Information collection.

characterized. Undesired events, such as + Separate sources.
hardware failure and operator errors, should

+ Separate channels.
be described and the required software system

• Information processing.responses should be stated.
+ Weak signal levels.

-- If the application must not only detect
failures, but also recover from them and + Data storage.
continue to operate, the fault tolerance + Analysis techniques (correlation).

requirements should be given. Note that no + Noise reduction.
system can recover from all errors. + 'Error handling.

• Human errors or violations.
Identify the reliability and safety requirements
associated with each mode of operation. The + Security standarcL,;.
following l_st identifies potential modes of + Control a_pecks.

operation that should be considered (Redmill + Procedural aspects.

1988); not all will necessarily apply to + Management aspects.

reactors: 15. Design Constrain'_,. List all guides, standards, and
• System generation, regulations that apply to the design.

• Installation of new software. -- List any laws and regulations, company
• Normal operation. There may be several policies, departmental standards, and national

different normal modes, and international standards that may affect the
• Degraded operation, design of the software system.

• Emergency operation. -- If the application must run on certain
• Automatic operation, hardware configurations, or in conjunction
• Semi-automatic operation, with particular software products, list them

• Manual operation, here.

• Periodic processing (such as daily or 16. Security Requirements. Specify the requirements
hourly), for protecting the software system from accidental

• Maintenance. or malicious access, use, modification, destruction,

• Housekeeping. or disclosure.

• Shutdown. -- This may include access restrictions,
• Error isolation, cryptographic techniques, the use of history

• Error recovery, logs, restrictions on the use of terminals or
communications lines, physical isolation, and

• Backup. similar matters.
m All aspects of fault, error and failure handling

should be covered (Redmill I988): 17. Database Requirements. Specify the requirements
for any database that is to be developed as part of

• Hardware/software failure, the software system. Be careful not to overspecify;
+ Failure detection, list only items for which there is an identified
+ Failure identification, external requirement.

+ Failure isolation. I8. Operational Requirements. Specify the normal and
+ Remedial procedures, special operations required by the user. This can
+ Redundancy. include the different modes of operation listed
+ Fail-safe operation, earlier.

• System recovery procedures.

+ Fallback procedures. 3.2,2, Requirements Safety Analysis

+ Reconstruction of obliterated or A safety analysis should be performed for any real-
incorrectly altered data. time system for which safety is a consideration. The

43 NUREG/CR-6101

Section 3. Activities

purpose of the analysis is to identify any errors or functions and consuaints and no unintended ones. This
deficiencies that could contribute to a hazard and to same criteria should be applied to the software
identify system ,safety considerations that are not component interface specifications. The result of the
addressed in the software requirements specification, system analysis is an identitication of incomplete,
Four analyses are recommended here; additional missing, and incorrectly allocated requirements.
analyses may be required, depending on the nature and
sensitivity of the application. The safety analysis and Specification Analysis evaluates the completeness,
the reporting of the results of the analysis could be correctness, consistency, and testability of software
included in the project's V&V activities, or within the safety requirements. Well-defined requirements are a
system safety activities. The recommended analyses strong standard by which to evaluate a software
are as follows: component. Specification analysis should evaluate

each requirement singularly and all requirements as a
• Criticality Analysis determines which software set. Among the techniques used to perform

requirements are safety critical, specification analysis are hierarchy analysis, control

• System Analysis determines that all system flow analysis, information flow analysis, and
requirements have been correctly allocated, functional simulation. Hierarchy analysis identifies

missing and incomplete requirements and requirements
• Specification Analysis determines that each for functions that are never used. Control flow analysis

software safety function and requirement is examines the order in which software functions will be
correctly and consistently implemented with the performed and identifies missing and inconsistently
other functions and requirements in the specified functions. Information flow analysis
requirements documentation, examines the relationship between functions and data

to identify incorrect, missing, and inconsistent
• Timing and Sizing Analysis determines that there

input/output specifications. Functional simulation
will be sufficient resources to accomplish safety- models the characteristics of a software component to
critical requirements, predict performance, check human understanding of

One viewpoint of requirement.,; safety analysis is given system characteristics, and assess feasibility.
in Lee 1992. This is not the only possible approach.
The discussion here is based on that document, and is Timing and Sizing Analysis evaluates software
limited to the objectives of the various analyses, requirements that relate to execution time and memory

allocation. Timing and sizing analysis focuses on
Criticality Analysis will identify those software program constraints. The types of constraint
requirements that have safety implications so that requirements are maximum execution time, time to

analysis efforts can be focused on the most t,viticai execute critical functions, and maximum memory
requirements. The analysis must consider each usage. The analysis should evaluate the adequacy and
software requirement and determine its potential feasibility of timing and sizing requirements,
impact on safety. For a reactor protection system, particularly under stress conditions.
requirements will be classified as critical or non-

critical, depending on their impact on safety. 3.3. Design Activities
Requirements that are determined to be critical must be
delineated in some way to be sure that they receive The next logical activity after the software
sufficient attention during software design, verification requirements have been determined is to design the

and validation, testing, and later .'_tfetyanalyses, software system. The life cycle being used by the
development organization will determine whether or

System Analysis matches the software requirements to not all requirements activities are really completed
the overall system requirements. Software is a before the design is begun. However, there are certain
component of a system that is made up of hardware, activities that can be considered design, as opposed to
instrumentation, and other software. The objective of requirements and implementation, no matter what life
system analysis is to ensure that the software cycle is used. These activities are the topic of this

component requirements are complete and traceable to section.
the system level requirements and are complementary
to the reqfiirements for other parts of the protection In the discussion here, five documents are described.
system. This analysis ensures that the software Together, they span the documentation, analysis, and
component requirements include all necessary review of the various software design activities. The

NUREG/CR-6101 44

Section 3. Activities

development organization may choose to combine 3.3.2. Software Design Specification
some of the documents, or to have additional

The software design specification shows exactly howdocuments. This is not of great importance as long as
the information discussed below is included in some the software requirements will be implemented in
document. The documents are: software modules and processes. The term "module" is

used here to mean a collection of progranuning

• Hardware and Software Architecture. language statements, possibly including subroutines,
which is compiled as a unit. An (executable) load

• Software Design Specification. module is a collection of one or more modules,

• Software Design Safety Analysis. including both application modules and operating
system library modules, that is capable of independent

• V&V Design Analysis Report. execution in a computer. The term "process" is used to

• CM Design Report. mean the execution of a load module on a computer.
Multiple copies of a load module might be running on

The V&V and CM reports are described in the V&V the same or different computers at the sazne time, each
and CM plans, so are not discussed here. as an individual identifiable process. "

3.3.1. Hardware and Software Many different design techniques are available. While
Architecture a formal design technique is preferred for reactor

The design architecture consists of a description of the protection systems, other alternatives do exist. Some
are described in Pressman 1987. One technique for

hardware and software elements, and the mapping of
real-time systems is given in Hatley 1987, Object-the software into the hardware. The hardware
oriented design techniques are popular in somearchitecture will show the various hardware items--
quarters (Rumbaugh 1991). An automated or semi-computers, file systems, I/O devices (such as sensors,
automated design system is recommended; a CASEactuators, and terminals) and communication networks.

This provides a physical view of where computation tool is an example. It is best if this design system is
can take place, how information is physically stored directly linked to the requirements tracking system.

and displayed, and how information is physically Because of the many design techniques that might be
routed from one device to another, used, plus the desire to use automated design systems,

no attempt is made here to describe a table of contentsThe software architecture will show the various
for a design document. Certain requirements can be

software processes, databases, files, messages, and
screen designs. This architecture shows the logical placed on the design; these are listed next. This list is
view of where computations take place, where derived from IEEE Standard 1016, Software Design
information is logically stored and displayed, and how Descriptions.
information moves logically from one process, data

1. Whatever technique is used, the software designstore, or input device to another process, data store, or
output device, should result in a hierarchical decomposition into

layers of design elements. IEEE 1016 defines a

Finally, the mapping shows the connections between design element as a component "that is structurally
and functionally distinct from other elements andthe software and the hardware. Each process must run
that is separately named and referenced."on a computer, each data store must reside on one or

more physical storage media, each screen display must 2. A design element may be a software system,
be shown on a real terminal, and information must subsystem, or module; database, file, data
move over physical communication lines in order to structure, or other data store; message; program or
carry out logical communication between processes process.

and I/O devices. 3. Each design element should be placed in the
configuration management system as aThe architecture description will probably consist of a

set of drawings, possibly within a CASE tool. For this configuration item.

reason, no suggestion is made here for a document 4. Each design element must have a number of
table of contents, attributes. The following list is meant to be

representative. The designer may have additional

45 NUREG/CR-6101

Section 3. Activities

attributes. The description of the attributes should operating system services, memory, and
be as clear as possible. This may, for example, buffer space.

imply that attributes for many elements are m If the element does any processing, describe
described together. For example, an entity- the method by which the element carries out
relationship diagram may be used to describe the

iLsfunction. This can include a description of
structure of several design elements at once. A algorithms, .sequencing of events or processes,
state-transition diagram can be used to explain the

triggering events for process initiation,
interactions of several process design elements, priority of events, actual process steps,
The intent is to include all necessary design process termination conditions, contingency
information in a way that can be implemented processing, and error handling. A formal
correctly and understood by the assessor, description of the design processing is

The name of the design element, strongly encouraged. Diagrams are
encouraged; this can include data flow

The type of the design element, which could diagrams, control flow diagrams, Warnier-Orr
include the system, subsystem, module, diagrams, Jackson diagrams, decision tables,
database, file, data structure, screen display, Finite state diagrams, and others. See
message, program, and process. Pressman 1987.

The purpose of the design element. That is, If the element is a data store, message, or
wi_v the element exisLs in the design.

- screen display, describe its structure. This can
The function of the design element. That is, include the method of representation, initial
what it does. values, permitted ranges of values, use,

semantics, format, and appearance. TheIf the element has subordinate elements in the
description should discuss whether the

hierarchical decomposition, list them. A element is static or dynamic, whether it is
diagram can be quite helpful for this purpose, shared by several processes or transactions,
List all elements with which this element whether it is used for co atrol or value, and

interacts. This could be done using an entity- how it is validated. A formal description of
relationship diagram (for databases and data the structure of the design element is strongly
strucUtres), data flow diagram (for processes), encouraged. An entity-relationship diagram
finite state diagram (for understanding can be helpful to understanding.

control), structure chart (for a program), a _ Include a list of all requirements implemented
transaction diagram (for messages), or
whatever best shows the interactions. The by this element. This is used to verify that the

design implements the requirements, and only
interaction description should include timing, the requirements. Some elements may
triggering events, order of execution, data implement more than one requirements, while
sharing, and any other factor that affects
interaction, some requirements may need several elements

for a successful implementation. A cross
Provide detailed descriptions of the ways in reference table can be used here.
which the design element interacLswith other

List all implementation concerns that are
design elements. This description includes

determined as part of the design. This canboth the methods of interaction and the rules
include programming language, use of

governing the interactions. Methods include operating system privileges, hardware
the mechanisms for invoking the design requirements, error lists, error code lists,
element, input and output parameters or
messages, and shared data. Rules include standards and regulations that must be

followed, accuracy, performance
communications protocols, data format, range considerations, and reliability considerations.
of values of parameters, and the meaning of
each parameter or message. -- List all hazards that may be affected by this

Describe all resources required by the design design element, or that may affect the way in
which the element is implemented.

element for it to perform its function. This can
include CPUs, printers, terminals, disk space,
communication lines, math libraries,

NUREG/CR-6101 46

Section 3. Activities

3.3.3. Software Design Safety Analysis The control logic used to invoke the program tasks
should be considered critical.

A safety analysis should be performed on the software

design of any computer-controlled reactor protection The design must be traceable to the requirements. The
system. The purpose of the analysis is to verify that the analysis should ensure that all safety critical
design correctly and consistently incorporates the requirements have been included in the design. It
system safety requirements and identifies safety- should also ensure that no new design features are
critical software design elements and detects errors that developed that have no basis in the requirements.
might result in violations of the system safety

requirements. Four new analyses are recommended During logic analysis, the design descriptions, control
here, and one requirement safety analysis should be flows, and detail design are analyzed to ensure they
reviewed. Additional analyses may be required by the completely and correctly implement the requirements.
developer or the assessor, depending on the nature and Special emphasis should be placed on logic to handle
sensitivity of the application. The results of the design error conditions and high data rate conditions. The

safety analysis should be documented. The analysis should identify any conditions that would
recommended analyses are as follows: prevent safety-critical processing from being

accomplished.
• Design Logic Analysis determines whether the

software design equations, algorithms, and control Design Data Analysis evaluates the description and
logic correctly implement the safety requirements, intended use of each data item in the software. Data

• Design Data Analysis determines whether the analysis ensures that the structure and intended usage
data-related design elements are consistent with of data will not violate a safety requirement. The

the software requirements and do not violate analysis ensures that all critical data item definitions
system safety requirements, are consistent with the software requirements. This

includes the range and accuracy of the data item, and
• Design Interface Analysis determines that the the insertion of the proper values into constants. The

interfaces among the design elements have been analysis should determine that the precision of
properly designed, and do not create a safety intermediate variables is sufficient to support the final

hazard, output accuracy requirements. The use of each data

• Design Constraint Analysis evaluates any item in the design logic is also evaluated. This includes
restrictions imposed on the software requirements the order of use and the correct use. The usage must be
by real-world limitations and the design of the consistent with the structure, the accuracy, and the
software system, and determines that no new range of the data. The analysis should also focus on
safety hazards have been created, unintentional use or setting of the safety-critical data

by non-safety-critical logic.
• The Timing and Sizing Analysis performed as part

of the Requirements Safety Analysis (Section Design Interface Analysis verifies the proper design
3.2.2) should be reviewed. If the results of that of a safety-critical software component's interfaces
analysis have changed due to the completion of the with other components of the system. This includes
software design, the analysis should be revised, other software components and interfacing software
New information on timing and sizing generally programs, and hardware components. This analysis
becomes available during the design activities, and will verify that the software component's interfaces
may change previous conclusions, have been properly designed and do not introduce a

Design Logic Analysis evaluates the equations, hazard. Design interface analysis will verify that
algorithms, and control logic of the software design, control and data linkages between interfacing
Logic analysis examines the safety-critical areas of components have been properly designed. This
each software module. This is done by determining includes evaluation of the description of parameters

whether the module implements any of the safety- passed, data items passed and returned, direction of
critical requirements. The interaction between safety control, and the form of data. The clefmition and typing
critical and non-safety critical components should be of parameiers must be consistent and compatible. The
identified. Components that generate outputs used by evaluation includes the interfaces for safety-critical
critical components should also be considered critical, components to both critical and non-safety-critical

components.

47 NUREG/CR-6101

Section 3. Activities

Design Constraint Analysis evaluates restrictions requirements, identifies safety-critical software
imposed by requirements, by real-world limitations, modules and data structures, and detects errors that
and by the design solution. The design materials might result in violations of the system safety
describe any known or anticipated restrictions on the requirements. Four new analyses are recommended
software components. These restrictions may include here, and one requirement safety analysis should be
timing and sizing constraints, equation and algorithm reviewed; additional analyses may be required by the
limitations, input and output data limitations, and developer or the assessor, depending on the nature and
design solution limitations. Design constraint analysis sensitivity of the application. The results of the design
evaluates the feasibility of the safety-critical software safety analysis should be documented. The
based on these constraints, recommended analyses are as follows:

,

The design safety analysis should also identify any • Code Logic Analysis determines whether the
additional risks that may arise due to the use of software correctly implements the software design.
particular tools, methods, programming languages, or • Code Data Analysis determines whether the data
design approaches. For example, errors in compilers structures correctly implement the data structure
can create new and unexpected hazards, design.

3.4. Implementation Activities • Code Interface Analysis verifies the compatibility
of internal and external interfaces between

Implementation consists of the translation of the software components and other system
software design into actual code. This code will exist components.

in some form, such as a programming language, a • Code Constraint Analysis ensures that the program
database an implementation language, or a screen
design language. Many such languages exist, varying operates within the constraints imposed by the
from assembler (second generation) languages through requirements, the design and the target computer
procedure-oriented programming (third generation) system.
languages to high-level block (fourth generation) • The Timing and Sizing Analysis performed as part
languages, of the design safety analysis should be reviewed.

If the results of that analysis have changed due to

The discussion here calls for four documents, where the completion of the software implementation,
the code listings are considered a single document, the analysis should be revised. New information
Taken together, they cover the documentation, analysis on timing and sizing generally becomes available
and review of the various software implementation during the implementation activities, and may
activities. The development organization may choose change previous conclusions.

to have additional documents. Code Logic Analysis evaluates the sequence of

• Code Listings. operations represented by the coded program. The
logic analysis will detect logic errors in the coded

• Code Safety Analysis. software. Tiffs analysis evaluates the branching,

• V&V Implementation Analysis and Test Report. looping, and interrupt processing of the software
components. The analysis also should ensure that code

• CM Implementation Analysis. that has no basis in the design is not implemented.

The V&V and CM reports and described in the V&V Logic reconstruction entails the preparation of
and CM plans, so are not discussed here. There is little flowcharts or other graphical representations from the
to say about code listings, other than they must exist, code and comparing them to the design material
so that is not discussed either, descriptions. This analysis verifies the consistency and

correctness of the code with respect to the detailed

3.4.1. Code Safety Analysis design. As part of this process, equations are
reconstructed and compared to the requirements and

A safety analysis should be performed on the actual design.
software that is developed for any computer-controlled
reactor protection system. The purpose of the analysis Code Data Analysis concentrates on data structure and
is to verify that the implementation correctly and usage in the coded software. Data analysis focuses on
consistently incorporates the system safety how data items are defined and organized to be sure

NUREG/CR-6101 48

Section 3. Activities

the design is correctly implemented. The data analysis Integration testing is described in a separate testing
compares the usage and value of all data items in the report (Barter 1993), and follows the Software
code with the descriptions provided in the design Verification and Validation Plan described in Section
materials to ensure consistency with the design. This 3.1.4. The Integration Safety Analysis is carried out
analysis verifies the correct type has been used for each according to the Software Safety Plan described in
data item, such as floating point, integer, or array. This Section 3.1.5.
analysis will ensure that data structures are not used in
such a way as to create a potential hazard. Special 3.5.1. System Build Documents
attention is applied to accessing arrays to ensure that
code will not access arrays outside their bounds and The Integration Plan describes the various steps that
destroy safety-critical data. will be carded out during the integration process. One

of these is the actual construction of the software

Code Interface Analysis verifies the compatibility of programs from modules and libraries. The exact
internal and external interfaces of a software procedure for doing this is documented in the System

component. Interface analysis is designed to verify that Build Specification. There will be one such
the interfaces have been implemented properly. The specification for each program that must be created.
analysis will ensure that the interfaces are consistent The developer may have a separate build document for

each program, or combine the specifications into aand do not create a potential hazard. At least four types
of interfaces are evaluated: subroutine calls to other single document.

software components, parameters passed through
common or global data, messages passed through The System Build Specification provides the exact
communication systems, and external hardware steps taken to build the program. This includes names
interfaces, of modules and files, names of libraries, and job

control language used to build the program. This

Code Constraint Analysis ensures that the program specification must be in sufficient detail to permit the
operates within the constraints imposed on it by the build to be earned out without ambiguity.
requirements, the design, and the target computer

system. The constraints imposed include physical, No attempt is made here to provide an outline for the
mathematical, accuracy, speed, and size. System Build Specification. It must be tailored to the

particular development process being used, the nature
of the operating system and programming languageThe code safety analysis should also identify any

additional risks that may arise due to the use of being used, and the nature of the hardware upon which
the program will run.particular tools, methods, programming languages or

implementation approaches. This is in addition to the
3.5.2. Integration Safety Analysissimilar analysis performed as part of the design safety

analysis. The Integration Safety Analysis will ensure that no

hazards have been introduced during the integration
3.5. Integration Activities activities. The method of doing this is not specified

here. It is the responsibility of the developer, the V&V
Integration consists of the activities that are required in

organization, and the software safety organization to
order to combine the various software programs and

make sure that all safety concerns have been addressed
hardware items into a single system. The various during the integration process.hardware modules must be assembled and wired

together according to the hardware design 3.6. Validation Activities
specifications. The various software modules are

linked together to form executable programs. The Validation is the set of activities that ensure that the

software is then loaded into the hardware. Finally, the protection system, as actually implemented, satisfied

entire combination is tested to be sure that all internal the original externally-imposed requirements. In
and external interface specifications have been particular, it is necessary to guarantee that the system

satisfied, and that the software will actually operate on safety requirements are all met. Validation consists of a
that particular hardware, mixture of inspections, analyses and tests. The

inspection and test aspects are discussed in Barter
The integration activities are governed by the 1993. Safety analysis is described here.
Integration Plan, discussed above in Section 3.1.7.

49 NUREG/CR-6101

Section 3. Activities

Validation is carried out according to the Software The Operations Manual structure is dependent on the
Verification and Validation Plan described in Section actual characteristics of the particular computer
3.1.4. The Validation Safety Analysis is earned out system. No suggestion is given here as to a possible

according to the Software Safety Plan described in table of contents.
Section 3.1.5.

3.7.2. Installation Configuration Tables
3.6.1. Validation Safety Analysis

Real-time systems frequently require tables of
The Validation Safety Analysis will examine the entire information that tailor the system to the operational
system and the process of developing the system, to environment. These tables indicate I/O channel
ensure that all system safety considerations have been ntm_bers, sensor and actuator connections and names,
correctly implemented in the protection system and and other installation-specific quantities. If this
that no new system hazards have been created due to particular protection system requires such a table, the
any actions of the protection system. This analysis will developer should prepare a document that describes all
review all previous analyses and ensure that no actions the configuration information that must be provided
have taken place to invalidate their results, and how the system is to be informed of the

configuration information. The actual configuration
The method of performing this analysis is not specified tables should created as part of the installation activity.
here. It is the responsibility of the software safety They should be fully documented.
organization, possibly with the assistance of the V&V
organization and the system safety organization, to 3.7.3. Training Manuals
ensure that the Validation Safety Analysis is properly

An operator training program should be required socarried out.
that the operators may learn the correct way to use the

3.7. Installation Activities protection system. The Training Manual is an
important part of the training program. It may be

Installation is the process of moving the complete provided by the system developer or the customer
system from the developer's site to the operational site. (utility).
The nature of reactor construction is such that there

may be considerable time delays between the No further information on training is provided here.
completion of the protection computer system by the 3.7.4. Maintenance Manuals
developer and the installation of that system in an

actual reactor. The documents discussed here should The Maintenance Manual will describe the procedures
provide sufficient information to permit the installation to be followed when the operational software must be
to take place correctly, and for the protection system to changed. The manual may be prepared by the
operate correctly, development organization or by the maintenance

organization. The manual will completely describe all
Installation is carried out according to the Software of the steps that must be carried out to change the
Installation Plan described in Section 3.1.8. 'Pae

program, validate the changes, prepare new releases,
Installation Safety Analysis is carried out according to install the new releases, and validate the installation.
the Software Safety Plan described in Section 3.1.5.

3.7.1. Operations Manual 3.7.5. Installation Safety Analysis

Once the computer system has been installed in the
The Operations Manual provides all of the information operational setting, a final safety analysis will be
necessary for the correct operation of the reactor performed. This will verify that all system safety
protection system. This includes normal operation, off- requirements are implemented in the installation, that
normal operation, and emergency operation. Start-up no safety-related errors have occurred during
and shut-down of the computer system should be installation, and that no hazards have been introduced

discussed. All communications between the computer during installation.
system and the operator should be described, including
the time sequencing of any extended conversations. All
error messages should be listed, together with their

meaning and corrective action by the operator.

NUREG/CR-6101 50

Section 3. Activities

3.8. Operations and Maintenance _tic_ software. The design and code should be
analyzed and tested using the methods defined in the

Activities---Change Safety Analysis previous sections of this document.

Changes may be categorized in three separate areas:
software requirement changes; implementation For constraint changes, the analysis must evaluate the
changes to change the design and code to be compliant impact on software safety. The operational changes are
with software or safety requirements; and constraint evaluated for changes to operator interfaces or
changes, such as changes in equipment, assumptions, additional administrative procedures that may result in
or operating procedures, a hazard. The change may also affect planned safety

test procedures. Hardware changes are evaluated for

When software requirement changes are new fault paths that may be introduced or for deletion
recommended, the safety activity should analyze those of required interlocks. All changes to assumptions
changes for safety impact. As in requirements analysis, should be evaluated for their impact. The safety
the analyst should identify safety-critical requirements activity may recommend additional software
and determine their criticality. The analyst should also requirements or design changes based on this analysis.

identify any safety impacts on system operation,
operating procedures, and the safety analysis activity. A safety change database should be developed to track
Impacts to the safety activity include the ability to the status of all changes. The database should include a
verify or test the change. The analysis should also tracking number for each change, the level of software

ensure that the change does not make any existing affected (e.g., requirements, design, or code), the
hazards more severe. Once the requirements change identification and version of the affected component,

has been approved, the safety activity should analyze safety impact (e.g., none, high, medium, or low), the
and test the changes using the methods defined in the development status of the change (e.g., requirements,

previous sections of this document, design, code, or test), and the safety analysis and
approval status.

Implementation changes to design or code are analyzed
to identify any safety-critical software componel_ts that
are changed and to ensure that only the required
components are changed. Changes to non-critical code
should be analyzed to ensure they do not affect safety-

51 NUREG/CR-6101

Section 4. Recommendations

4. RECOMMENDATIONS, GUIDELINES, AND ASSESSMENT

This section is directed especially at the internal or 4.1.1. Software Project Management Plan
external assessor. The life cycle tasks described in

Section 3 are revisited, the reliability and safety risks The Software Project Management Plan (SPMP) is the
associated with each task are discussed, basic governing document for the entire development

recommendations for preventing and decreasing these effort. Project oversight, control, reporting, review, and
risks are explored, and guidelines for using best assessment are all carried out within the scope of this
engineering judgment to implement the tasks are plan.
described. Finally, this section presents a list of
questions that can be used by the assessor when Without an SPMP, the probability is high that some
assessing the work products, processes, and the safety concerns will be overlooked at some point in the
development organization's ability to produce a safe project development period, that misassignment of
reactor protection system, resources will cau_ safety concerns to be ignored as

deadlines approach and funds expire, and that testing
will be inadequate. Confusion among projectA recommendation is a suggestion that is important to

the safety of the system. A guideline is a good development team members can lead to a confused,
engineering practice that should be followed to complex, inconsistent software product whose safety

cannot be assured.improve the overall quality, reliability, or
comprehensibility of the system. An assessment
question suggests factors that an assessor should 4.1.1.1. Recommendation

investigate in order to verify the acceptability of the A safety-related software project should have an
task solution. SPMP. The size, scope, and contents of this plan

should be appropriate to the size, complexity, and
The assessor may wish to ask additional questions; safety-critical nature of the project. Detailed
nothing written here is meant to imply that assessors requirements for a SPMP are provided in Section 3.1.1.
should be restricted to the questions listed here. The The plan should be under configuration control.
questions are generally phrased in such a way that an

affu'mative answer is the preferred answer; a negative 4.1.1.2. Guideline
answer may be acceptable, but requires justification.
Many questions ask about the existence of some item; The SPMP may be organized according to IEEE
these should be read as containing an implied question Standard 1058, as shown in Figure 3-2.
that the underlying concept is satisfactory to the
assessor. For example, the question "Are general report 4.1.1.3. Assessment Questions
formats known?" should be read as implying that the
formats are sufficient to provide the information 1. Process Model Questions.

needed, a. Is the timing of project milestones realistic?

4.1. Planning Activities b. Is there sufficient time between milestones toaccomplish the needed work?

Planning activities are basic to the entire development c. Is sufficient time allotted for review andaudit?
effort. There will be at least one plan; the question is
how many plan or plans will there be, who will creates d. Is there time to integrate the software into the
the plan(s), and who follows the plan(s). If the project complete protection computer system, and to
management team does not create the plans, or at least integrate that into the reactor protection
oversee and coordinate their creation, someone else system?
will. In the worst case, each member of the e. Is there time to recover from unanticipated

development team acts according to the developer's problems?

own plan. Different team members will be "marching f. Are project work products and deliverables
to different drummers." Such chaotic activity is well defined?

generally not conducive to safety, g. Is it known who will be responsible for each
product and deliverable?

53 NUREG/CR-6101

Section 4. Recommendations

h. Do adequate resources exist to produce the a. Are necessary special skill needs identilied?

products and deliverables? b. Do management mechanisms exist in the
2. Organizational Structure Questions. SPMP for obtaining people with the required

skills in a timely manner?
a. Is the project organization structure well

defined? c. Are training requirements known and
documented?

b. Are responsibilities known and documented?
10. Technical Methods, Tools, and Techniques

c. Does a management structure exist to keep the Questions.
SPMP up to date?

d. is the SPMP under configuration control? a. Are the development computer systems

3. Organizational Boundary and Interface Questions. identified?
b. Do these systems exist?

a. Are the boundaries of the development
organization well defined? c. Do they have sufficient resources for the

development work'?

b. Are reporting channels clear? d. Are the development methods identified?
c. Does a lormal communication channel exist

between the software development e. Are they few in number?
organization and the regulator or assessor'? f. Are they sufficiently formal to permit correct

specification and implementation of the
4. Project Responsibility Questions. software system?

a. Does the SPMP state that safety is the primary 11. Software Documentation Questions.
concern, over budget and schedule?

a. Are required technical documents identified?
b. Do management mechanisms exist to enforce

this? b. Are production dates given'?

5. Project Priorities Questions. c. Are these realistic?
d. Are internal review and audit processes

a. Does the SPMP require that safety is the top identified?
priority, over budget and schedule? e. Are sufficient time and other resources

b. Does a mechanism exist for ensuring this? allocated to perform the reviews and audits?

6. Assumptions, Dependencies, and Constraint f. Is a specific person identified as responsible
Questions. for each document?

a. Are the assumptions that may have an impact 12. Project Support Function Questions.
on safety documented in the SPMP?

a. Are the referenced support functions defined
b. Are external events upon which the project in other documents, or defined here? (In the

depends documented? latter case, see the relevant assessment
c. Are project constraints that may have an checklists below.)

impact on safety identified and documented in 13. Follow-Through Questions.
the SPMP?

7. Risk Management Questions. a. Does evidence exist at each audit that the
SPMP is being followed?

a. Are known risk factors identified'?

b. Is the potential impact of each risk factor on 4.1.2. Software Quality Assurance Plan
safety described?

Software quality assurance (SQA) is the process by
c. Does a method exist for managing each risk

which the overall quality of the software products is
that may impact safety? assessed.

8. Monitoring and Controlling Mechanism

Questions. Many aspects of software quality are described in the

a. Are required reports identified'? various Plans recommended in this report. This

b. Are general formats known? includes the Configuration Management Plan, the
Software Safety Plan, the Software Verification andc. Do the formats provide the information
Validation Plan, and others. Without a single Software

required by the recipient of the report? Quality Assurance Plan governing these various
9. Staffing Questiohs.

NUREG/CR-6101 54

Section 4. Recommendations

individual plans, it is possible that the various f. Is the relationship between the SQA
individual plans many not be mutually consistent, and organization and other assurance
that some aspects of software quality that are important organizations described'? Other organizations
to safety may be overlooked, include, but are not necessarily limited to, the

CM organization, the Safety organization and
4.1.2,1. Recommendation the V&V organization.

g. Is the person responsible for the SQAP
A safety-related software project should have a

identified, by name and position?
Software Quality Assurance Plan. The size, scope, and
contents of this plan should be appropriate to the size h. Is the person responsible for overall software
and complexity of the software system and the risk that quality assurance identified, by name and
can arise if the software system fails. Detailed position?
requirements for a Software Quality Assurance Plan i. Does the plan explain how conflicts between
are given above, in Sections 3.1.2. The plan should be the SQA organization and the development
under configuration control, organization will be resolved?

3. Document Questions.
4.1.2.2. Guideline

a. Are required software documents listed?

The SQA Plan (SQAP) may be organized according to b. Is it known how each document will be

IEEE Standard 730.1 as shown in Figure 3-3. reviewed by the SQA organization for
adequacy?

4.1.2.3. Assessment Questions 4. General Review and Audit Questions.

Many of the assessment questions that relate to the a. Are required reviews and audits listed?

SQAP are given later, in the sections that discuss b. Are the methods by which each review and
assessment of the other plans. In particular, see Section audit will be carried out described?

4.1.4. 5. Requirements Review Questions. Does the SQAP

1. General Questions. require the following items:
a. Can each requirement be traced to the next

a. Does the SQAP specify which software higher level specification? Example of such
products are covered by the Plan? specifications are system specifications and

b. Does the SQAP explain why it was written'? user requirements specifications.

That is, what need does the SQAP satisfy? b. Can each derived requirement be justified?
c. Does the SQAP explain the standard that was c. Are algorithms and equations described

used to create the SQAP? adequately and completely?

2. Management Questions. d. Are logic descriptions correct?

a. Is each project element that interacts with the e. Are hardware/software external interfaces
SQA organization listed? compatible?

b. Is the SQA organization independent of the f. Is the description of and the approach to the
development organization? If not, is each man-machine interface adequate?

dependency clearly justified? g. Are symbols used consistently in the SRS?

c. Are the life cycle development phases that h. Is each requirement testable?

will be subject to SQA oversight listed? i. Are verification and acceptance requirements
d. Are required SQA tasks listed and described? adequate and complete?

e. Is the relationship between the SQAP and j. Are interface specifications complete and
other assurance plans described? Does a compatible?

method exist for delineating overlapping k. Is the SRS free from unwarranted design
responsibilities? Other plans include, but are detail?
not limited to, the Configuration Management
Plan, the Software Safety Plan, and the V&V 6. Preliminary Design Review Questions. Does the
Plan. SQAP require the following items:

55 NUREG/CR-6101

Section 4. Recommendations

a. Are detailed functional interfaces between the 4.1.3. Software Configuration
software system under development and other Management Plan
software, hardware, and people fully defined?

Software configuration management (SCM) is theb. Is the software design, taken as a whole,
complete, consistent, and simple? process by which changes to the products of the

software development effort are controlled. This
c. Can the design be shown to be compatible includes determining the configuration baseline and

with critical system timing requirements, controlling change to the baseline.
estimated running times and any other

perfommnce requirements? Without a Software Configuration Management Plan
d. Is the design testable? (SCMP), it is difficult or impossible to manage
e. Can each element of the preliminary design be configuration baseline change, or for software

traced to one or more specific requirements? developers to know which versions of the various

f. Can each requirement be traced to one or configuration items are current. Software modules that

more specific design elements? call other modules may be created using an incorrect

7. Detailed Design Review Questions. Does the version of the latter; in the worst case, this might not

SQAP require the following items: be discovered until operation under circumstances
when correct operation is absolutely neces._ary to

a. Is the design compatible with the SRS? That prevent an accident. This can occur if some functions

is, can each requirement be traced to the are rarely needed, so are inadequately tested or linked
design, and can each design element be traced into the final software product.
to one or more requirements?

b. Are all logic diagrams, algorithms, storage It is also possible that several people will have
allocation charts, and detailed design different understandings as to what changes have been
representations fully described? approved or implemented, resulting in an incorrect

c. Are the interfaces compatible? final product.

d. Is the design testable?
4.1.3,1. Recommendation

e. Does the final design include functiou flow,

timing, sizing, storage requirements, memory A safety-related software project should have an
maps, databases and files, and screen formats? SCMP. The plan should provide for baseline definition,

8. Test Questions. change authorization, and change control. Detailed

a. If the SQAP includes test requirements that requirements for an SCMP are provided in Sections
3.1.3. The plan should be under configuration control.are not in the V&V Plan, are all such

requirements fully justified? 4.1.3.2. Guideline
9. Problem Reporting and Corrective Action

Questions. The SCMP may be organized according to IEEE
Standard 828 and IEEE Guide 1042, as shown in

a. Does the SQAP include provisions to assure
that problems will be documented, corrected, Figure 3-4.

and not forgotten? 4.1.3.3. Assessment Questions
b. Does the SQAP require that problem reports

be assessed for validity? 1. Organizational Questions.

c. Does the SQAP provide for feedback to the a. Are product interfaces that have to be

developer and the user regarding problem supported within the project itself identified?
status? Software-software? Software-hardware?

d. Does the SQAP provide for the collection, Software maintained at multiple sites?
analysis and reporting of data that can be used Software developed at different sites?
to measure and predict software quality and Dependence on support software?

reliability? b. Does the SCMP define the required
capabilities of the staff needed to perform
SCM activities ?

NUREG/CR-6101 56

Section 4. Recommendations

c. Does the plan specify what organizational b. Does the plan identify the important interfaces
responsibilities are likely to change during the between adjacent phases of the life cycle'?

life of the SCMP? c. Does the plan identify interfaces between
d. Does the plan state who has the authority to different software modules?

capture data and information and who has d. Does the plan identify interfaces between
authority to direct implementation of computer hardware and software modules?
changes? Between instrumentation and software?

e. Does the plan define the level of management e. Dx_s the plan identify documents used in
support that is needed to implement the SCM interface control? Where are these documents

process? defined? How ate they mainlained?

f. Does the plan define responsibilities for 4. SCMP Implementation Questions.
processing baseline changes?

a. Are the resources planned for SCM sufficient
-- Responsibility for originating changes.

to carry out the defined _sks? Do they take
, -- Responsibility for reviewing changes, into account the size, complexity, and

-- Responsibility for approving changes, criticality of the software project?

w Responsibility for administrating the b. Does the plan describe how SCM activities
change process, will be coordinated with other project
Responsibility for validating the changes, activities'?

-- Responsibility for verifying change c. Does the plan describe how phase-specific
completion. SCM activities will be managed during the

g. Does the plan specify who has the authority to different life cycle phases'?
release any software, data ,'roddocuments? 5. SCM Policy Questions.

h. Does the plan specify who is responsible for a. Does the plan specify standard identification
each SCM activity? procedures? Actual needs in this area are

Ensuring the integrity of the software specific to the project; audit procedures
system, should ensure that the plan is adequate to
Maintaining physical custody of the prevent confusion. Unnecessary procedures
product baselines, can actually interfere with understanding, so

Performing product audiL_, naming policies should be adequately

Library management, justified. Policies can include:

Developing and maintaining specialized _ Standard labels for products.
SCM tools. -- Identification of the hierarchical structure

i. Does the plan identify the person or persons of computer programs.
with authority to override normal SCM _ Component and unit naming conventions.
procedures during exceptional situations? _ Numbering or version level designations.

j. Does the plan explain how any such override,,, _ Media identification methods.
will be reconciled with the product baselines, _ Database identification methods.

so that inconsistencies and lost updates do not _ Documentation labeling and
occur? identification methods.

2. SCM Responsibility Questions. b. Do specific prcw..edures exist for interacting

a. If the developer plans to use an existing CM with dynamic libraries? These procedures
organization, are required special procedures may include the following:
identified? _ Promoting a software module from one

b. Does the plan delineate the assumptions made type of library to another. For example,
by the SCM group? from a development library to a

3. SCM Interface Control Questions. production library.
Documentation releases.

a. Does the plan identify organizational
Computer program product releases.

interfaces that affect the SCM process, or are
affected by the SCM process? -- Firmware releases.

57 NUREG/CR-6101

Section 4. Recommendations

c. Do specific procedures exist to manage the -- Debuggers.

change process? This includes: -- Other support software.

The handling of change requests, h. Does the plan explain how test data will be
Provision 'for accepting changes into a identified?

controlled library, i. Does the plan explain how databases (such as
Processing problem reports, installation configuration tables) will be

Membership in the CCB. identified?

_ation of the CCB. j. Does the plan explain how baselines are

Capturing the audit trail of important verified?
changes to product baselines, k. Does the identification scheme provide for

d. Do standard reporting procedures exist? These identifying different versions and different
include: releases of the Cls?

Summarizing problem reports. 1. Does the plan explain how physical media
will be identified?

Standard CM reports to management and
assessors, m. Are naming conventions available for each

modifiable configuration item?
e. Are audit procedures defined in the CM plan?

7. Configuration Control Questions.
Are procedures defined for performing
audits of the CM process? a. Is the level of authority described in the plan

Are procedures defined for performing consistent with the Cls identified in the plan?
physical audits oi"configuration items? b. Does the plan require that each significant

f. Do procedures exist for accessing and change be under configuration control?
controlling libraries? This includes: c. Does the plan fully describe the information

Security provisions, needed to approve a change request?

Change processing, d. Does the plan fully describe CCB procedures

Backups. for approving change requests?

Long-term storage, e. Does the plan require that safety-related

6. Configuration Identification Questions. change requests be so identified, and made
known to the assessors during the next audit?

a. Does the configuration identification scheme f. If different change procedures are required
match the structure of the software product? during different life cycle phases, are these

b. Does the plan specify when CIs will be given differences fully described in the plan?

identification numbers? g. Does the plan fully describe procedures for
c. Does the plan specify which items will be accessing software libraries and controlling

placed under configuration control (thus library interfaces? For ensuring that only one
becoming configuration items)? person at a time is able to change software

d. Is a separate identification scheme required modules?
for third-party software? h. Does the plan provide a method for

e. Does the plan explain how hardware and maintaining a change history for each CI?
software identification schemes are related i. Does the plan provide for library backup and
when the software is embedded in the disaster recovery procedures? Are these
hardware? This applies to such things as procedures sufficient to enable a change
firmware, ROM code, and loadable RAM history for each CI to be recovered if a library
image code. is lost?

f. Does the plan explain if a special scheme is j. Does the plan provide a method of associating
required for reusable software? source code modules with their derived object

g. Does the plan explain how support software code modules and executable modules?
will be identified? This includes: k. Does the plan provide procedures for keeping

Language translators, data files synchronized with the programs tl_t

Operating systems, use them?
Loaders.

NUREG/CR-6101 58

Section 4. Recommendations

!. Does the plan fully describe the authority of c. Docs the plan explain who is responsible for
the CCB ? Is this authority sufficient to control performing subcontractor reviews and audits?

safety-related changes to the Cl baseline? l 1. Follow-Through Questions.
m. Does the plan require the CCB to as_ss the

,safety impact of change requests? a. Does evidence exist at each audit that the
SCM plan is being followed?

n. Does the plan describe fully the procedures to

be used by the configuration manager in order 4.1.4. Software Verification and
to oversee changes authorized by the CCB? Validation Plan

o. Does the plan fully describe the authority of
the configuration manager? Is this authority Software V&V is discussed in a separate report (Barter
sufficient to ensure that unauthorized changes 1993). The following recommendations, guidelines,

do not take place? That authorized changes and assessment questions are taken from that report.
have been fully tested, reviewed, or analyzed
for safety impact? The software V&V plan is an es_ntial element of the

p. Is there a clearly-stated method for recovering V&V process because it allows the developer, with
an old version in the event that a newer regulatory approval, to define the exact nature of the

version has problems in execution'? process. Once defined, the V&V plan should be

8. Configuration Status Accounting Questions. viewed a.s a "contract" between the developing
organization and the regulating organization.

a. Does the plan describe what infonnation must
be made available for status reports? Without a Software V&V Plan, it will be difficult or

b. Does the plan describe each safety-related impossible to be sure thai the products of each phase of
status report, including audience, content, and the software life cycle have been adequately verified,
format? and that the final software system is a correct

c. Does the plan provide a means of tracking implementation of the requirements imposed upon it by
problem reports that relate to ._afety,and the original system specifications.
making sure that each problem reported has
been correctly resolved? 4.1.4.1. Recommendation

9. Audit and Review Questions. A safety-related soltware project should have a
Software V&V Plan. The size, scope, and contents ofa. Does the plan provide for a single, separate

audit trail for each CI and for the personnel this plan should be appropriate to the size and
working on each CI? complexity of the software system and the risk that can

arise if the software system fails. Detailed

b. Does the plan make provisions for auditing requirements for a Software V&V Plan are provided in
the SCM process? Section 3.1.4. The plan should be under configuration

c. Does the plan provide for periodic reviews control.
and audits of the configuration baseline,

including physical audits of the baseline? 4.1.4.2. Guideline
d. Does the plan provide for audits of suppliers

and subcontractors, if such are used? The Software V&V Plan may be organized according
to IEEE Standard 1012, taking into account thee. Does the plan make provisions to protect

records needed in order to audit and assess the contents of ANS standards 7-4.3.2 (Appendix E) and

development process and development 10.4.

products? 4.1.4.3. Assessment Questions
10. Supplier Control Questioas.

a. Does the plan require suppliers and The assessment questions listed below are from Barter
subcontractors to use a configuration 1993.
management system consistent with, and
equivalent to, that described for the 1. General Questions.

development organization itself?, a. Does the V&V plan reference a management
b. Does the plan provide for periodic reviews of plan or a quality assurance plan?

subcontractor CIs, including physical audits?

59 NUREG/CR-6101

Section 4. Recommendations

b. Are specific elements of the higher-level * Has each tool been identified by name
plans addressed in the V&V plan? along with a description, identification

c. Does the V&V plan identify the software that number, qualification status, version, and
is being placed under V&V? purpose in each V&V activity?

d. Is the purpose of the protection system clearly * Has a distinction been made between
identified? existing tools and those that will have to

e. Is the scope of the V&V effort defined? be developed (if any)?

f. Is a clear set of objectives defined and is there e. For those tools that have to be developed, is
a sense that the objectives will support the there an estimate of the time and resources
required level of safety? needed to develop and qualify the tools?

2. V&V Overview Questions. * Have tool development activities been
factored into the schedule?

a. Is the V&V organization def'med, along with * For existing tools, have the tools been
its relationship to the development program? adequately qualified?

• Does the plan call for a V&V * For existing tools that have not been
organization that is independent from the adequately qualified, is there an estimate
development organization? of the time and resources needed to

• Is the relationship between the V&V qualify the tool and have the qualification
organization and other project elements activities been factored into the schedule?

(project management, quality assurance, f. Are techniques and methods defined with the
configuration and data management) same level of detail as tools?

defined? * Has each technique and methodology
• Are the lines of communication clearly been identified by name along with a

defined within the V&V organization? description, qualification status and
b. Is a schedule defined that provides enough purpose in each V&V activity?

time for V&V activities to be effectively * Have the techniques and methods been
carried out? adequately qualified?

• Does the schedule define the expected * For those techniques and methods that

receipt dates for development products? have not been adequately qualified, is
• Does the schedule define the time allotted there an estimate of thc time and

to perform V&V activities? resources needed to qualify them, and
• Does the schedule define the expected have the qualification activities been

receipt dates for development products? factored into the schedule?

• Are realistic delivery dates set for V&V * Is there a requirement that the V&V staff
reports? be trained in the techniques and

• Are the performing organizations defined methodologies used as part of the
for each activity? development effort?

• Are dependencies on other events clearly * Is there a requirement that at least one
defined? member of the V&V staff be experienced

c. Are the resources needed to perform the V&V in using the techniques or
activities in the time allotted defined? methodologies?

3. Software Life Cycle Management V&V• Are the staffing levels defined and are
they realistic? Questions.

• Are resource issues such as facilities, a. Is each task identified and tied into the project
tools, f'mances, security, access fights, V&V goals? There should be a sufficient mix
and documentation adequate addressed? of tasks so as to completely support the

d, Are the tools, techniques, and methods to be project V&V goals and only those tasks that
used in the V&V process defined? Adequate support the goals should be included.
consideration should be given to acquisition, * Have the tasks been clearly identified as
training, support, and qualification of each to development materials to be evaluated,

tool, technique, and methodology, activities to be performed, tools and

NUREG/CR-6101 60

Section 4. Recommendations

techniques to be used, security and f. Are the planning assumptions for each V&V
control procedures to be followed? task described? Assumptions about the state

* Are all of the tasks identified in Table 1 of the development process may include
of IEEE 1012 included? completion of prior activities, status of

* If any of the tasks listed in Table 2 of previously identified discrepancies,
IEEE 1012 is identified, is there a clear availability of resources, and scheduling of

justification for their use? tasks.
* Have the assumptions been identified andb. Does each task identify the methods to be

used and the criteria to be applied to those are the assumptions consistent with the
methods? project plan?

* Are the methods identified for each task g. Does the V&V plan include a contingency
consistent with the V&V overview with plan to identify risk factors that may cause the

respect to resources, qualification, and V&V activity to fail to perform its functions?
schedule? * Have the risks been identified?

c. Is the input required by each task and the * Is there a contingency plan identified for
output from each task identified? each risk for each task?

* Are the development materials to be * Are corrective procedures specified to
evaluated adequately identified? minimize disruption to the V&V process?

* In addition to specific reports identified h. Does the V&V plan identify the
for each phase of testing, is output responsibilities of the V&V participants?
identified for a summary of positive * Have organizational elements for the

findings, smlmmry of discrepancies, entire project been identified in the
conclusions, and recommendations? project plan?

d. Is the method of handling anomalies * Have those organizational elements that

encountered during each activity identified'? interface to the V&V effort been

* Does the output tie into another activity identified in the project plan and in the
in such a way as to make the output V&V plan in a consistent manner?
meaningful? (i.e., are discrepancies * Have specific responsibilities for each
reported to discrepancy tracking and task been assigned to an organizational
resolution activities or are they only unit?
reported and then dropped?) * Have the interfaces between the V&V

* Is the content of a discrepancy report organization and the development
defined? organization and regulatory agency been

* Will discrepancy reports include the defined?
name of the document or program in i. Does the V&V plan establish a method of
which the discrepancy was found? performing base line change assessments?

* Will discrepancy reports include a * Is there a defined procedure for
description of the discrepancy in evaluating proposed software changes
sufficient detail so as to be against V&V activities that are in

understandable by a person not familiar progress or have been previously
with the original problem? completed?

* Will discrepancy reports include * Is there a defined procedure for updating
assessments as to the severity of the the V&V plan in the event that the
discrepancy and the impact of the software changes require a change in
discrepancy? schedule and/or resources?

e. Are V&V schedule and resource requirements j. Does the V&V plan describe the means by
described in detail? which management overview of the V&V

* Have schedule and resources been effort will be conducted?

adequately defined so as to give a feeling * Is the management structure defined?

of confidence that the V&V effort will * Is there a defined procedure for

not be unduly rushed in its activities? management review of the V&V process?

61 NUREG/CR-6101

Section 4. Recommendations

* Does the V&V plan state that * Does the V&V plan require the
management is responsible for the assessment of the criticality of each
technical quality of the V&V process? software item?

* Will management receive summary 5. Requirements Activities V&V Questions.
reports of v&v process at each phase of
the life cycle? a. Is the V&V plan coordinated with other

project activities, especially those involving
* Is there a procedure for the periodic safety?

assessment and updating of the V&V * Does the project plan call for the
procedures, methods, and tools? generation of concept documentation,

k. Does the V&V effort feed its information SRS, interface requirements, hazarct,_
back into the overall development effort analysis, and user documentation prior _'_
through review support? beginning the V&V requirements
* Is there a defined procedure for analysis?

correlating V&V results with * Does the V&V plan require t_
management and technical review generation and disseminati_ ,Jy
documents? reports?

4. System Level V&V Questions. * Does the V&V plan define the method of

a. Is the V&V plan coordinated with project resolving anomalies?
planning documents to ensure that early b. Does the V&V plan explicitly define the
concept documents are available to the V&V activities required during the requirements
effort? analysis?

* Does the project plan call for the * Does the V&V plan require the
identification of initiating documentation performance of a software requirements
(statement of need, project initiation traceability analysis that traces elements
memo, or task statement), feasibility of the SRS to elements of the system
studies, performance goals, preliminary requirements?

hazards analysis, and system definition * Does the trace go both from the SRS to
documentation prior to beginning the the system requirements and from the
V&V effort? system requirements to the SRS?

* Does the V&V plan require the c. Does the V&V plan require a software
generation and dissemination of anomaly requirements evaluation to help ensure that
reports? the SRS is both internally consistent and

b. Does the V&V plan explicitly define the consistent with system objectives?

activities required before the requirements * Does the V&V plan require that the SRS
development activities begin? be evaluated for safety, correctness,

* Does the V&V plan require an evaluation consistency, completeness, accuracy,
of the system-level documentation to readability, and testability?
determine if the proposed concept will * Is there a SRS standard and does the

satisfy user needs and project objectives? V&V plan require that the SRS conform
* Does the V&V plan require the to that standard?

identification of interfaces to other * Does the V&V plan require that the SRS
hardware and software systems along be evaluated for how well the

with any constraints imposed by those specifications meet system objectives,
systems? software system t_bjectives and address

* Does the V&V plan require the issues identified in the hazards analysis?

identification of afiy constraints or * Does the V&V plan require that the SRS
limitation of the proposed approach? be evaluated for performance issues?

* Does the V&V plan require an d. Does the V&V plan require a software
assessment of the hardware and software requirements interface analysis to help ensure
allocations? that the software requirements correctly

NUREG/CR-6101 62

Section 4. Recommendations

define the interfaces to the software (both * Does the V&V plan require that the
hardware and software)? software design document be assessed as

• Does the V&V plan require that the SRS to the quality of the design?
be evaluated against hardware * Is there a software design documentation
requirements, user requirements, operator standard, and does the V&V plan require
requirements, and software requirements that the software design documents
documentation? conform to that standard?

e. Does the V&V plan require a system test plan d. Does the V&V plan require a design interface
and an acceptance test plan that will be used analysis to help ensure that the software
for later testing? design correctly meets the hardware, operator,

• Does the V&V plan require that a system and software interface requirements?
test plan and an acceptance test plan be * Does the V&V plan require that the
generated during the requirements phase? software design document be evaluated

• Does the V&V plan require that the plans against hardware requirements, operator
be defined in enough detail to support the requirements, and software interface
testing required? requirements documentation?

6. Design Activities V&V Questions. e. Does the V&V plan require a software
component test plan, an integration test plan,

a. Is the V&V plan coordinated with other and a test design be generated for use in later
project activities, especially those involving testing?

safety? * Does the V&V plan require that a
• Does the project plan call for the software component test plan, an

generation of an SRS, software design integration test plan, and a test design be
documents, interface requirements, generated during the design phase?

interface designs, and user documentation * Does the V&V plan require that the plans
prior to beginning the design V&V be defined in enough detail to support the
analysis? testing required?

• Does the V&V plan require the
7. Implementation Activities V&V Questions.

generation and dissemination of anomaly
reports? a. Is the V&V plan coordinated with other

• Does the V&V plan define the method of project activities, especially those involving
resolving anomalies? safety?

b. Does the V&V plan explicitly define the * Does the project plan call for the
activities required during the design analysis? generation of software design documents,

• Does the V&V plan require the interface design documents, source code
performance of a design traceability listings, executable code at the software
analysis that traces elements of the unit level, and user documentation prior
software design document (SDD) to to beginning the implementation V&V
elements of the software requirements? analysis and testing?

• Does the V&V plan require the• Does the trace go both from the SDD to
the SRS and from the SRS to the SDD? generation and dissemination of anomaly

c. Does the V&V plan require a design reports?
evaluation to help ensure that the software * Does the V&V plan define the method of
design document is internally consistent, resolving anomalies?
testable, and meets established standards, b. Does the V&V plan explicitly define the

practices, and conventions? activities required during the implementation

• Does the V&V plan require that the phase?
software design document be evaluated * Does the V&V plan require the
for correctness, consistency, performance of an implementation
completeness, accuracy, readability, and traceability analysis that traces source
testability? code to elements of the software design?

63 NUREG/CR-6101

Section 4. Recommendations

* Does the trace go both from the code to * Does the project plan call for the
the design and from the design to the generation of software design documents,
code? interface design documents, source code

c. Does the V&V plan require a source code listings, executable code at the software
evaluation to help ensure that the source code component level, and user documentation
is internally consistent, testable, and meets prior to beginning the integration and
established standards, practices, and validation V&V analysis and testing?
conventions? * Does the V&V plan require the

* Does the V&V plan require that the generation and dissemination of anomaly
source code be evaluated for correctness, reports?

consistency, completeness, accuracy, * Does the V&V plan define the method of
readability, safety, and testability? resolving anomalies?

* Does the V&V plan require that the b. Does the V&V plan explicitly define the
source code be assessed as to the quality activities required during the integration and
of the code? validation analysis and testing?

* Is there a software coding standard and * Does the V&V plan require the

does the V&V plan require that the performance of integration, system, and
source code conform to that standard? acceptance testing?

* Does the V&V plan require that the * Are the testing requirements sufficiently
source code be evaluated for adherence to detailed so as to ensure that there is a

project coding standards? very low probability of error during

d. Does the V&V plan require a source code operation?
interface analysis to help ensure that the 9. Installation Activities V&V Questions.
source code correctly meets the hardware,

a. Is the V&V plan coordinated with other
operator, and software design documentation?

project activities, especially those involving
* Does the V&V plan require that the safety?

source code be evaluated against the * Does the project plan call for the
hardware design, operator interface generation of an installation package and

design, and software design previous phase summary reports prior to
documentation? beginning the installation and checkout

e. Does the V&V plan require generation and V&V analysis and testing?

use of test cases to help ensure the adequacy * Does the V&V plan require the
of test coverage? The test cases bridge the gap generation and dissemination of anomaly
between the test design and software design reports?

documents and the actual test procedures. * Does the V&V plan define the method of
* Does the V&V plan require the

generation of test cases for software resolving anomalies?
component, integration, system, and b. Does the V&V plan explicitly define the
acceptance testing? activities required during the installation

* Does the V&V plan require the analysis and testing?
* Does the V&V plan require thegeneration of test procedures for software

unit, integration and system testing? performance of an installation

* Does the V&V plan require the execution configuration audit?
of the test procedures for software * Does the V&V plan require the
components? generation of a final report?

8. Integration and Validation Activities V&V 10. Operation and Maintenance Activities V&V
Questions. Questions.

a. Is the v&v plan coordinated with other a. Is the V&V plan coordinated with other
project activities, especially those involving project activities, especially those involving
safety? safety?

NUREG/CR-6101 64

Section 4. Recommendations

* Does the project plan require that may be part of the system safety or quality assurance
development schedules, concept organizations. The important issue is its independence
documentation, SRSs, interface from the development organization.
documents, software design documents,
source code listings, user documentation, 4.1.5.3. Assessment Questions
the installation package, and proposed
changes be available prior to beginning 1. Organization and Responsibility Questions.

the operation and maintenance V&V a. Is the software safety program organization
analysis and testing? described? Is the organization structure

* Does the V&V plan require the practical? Can the organization successfully
generation and dissemination of anomaly manage the software safety program?
reports? b. Are the lines of communication between the

* Does the V&V plan require that the software safety organization, the project
software V&V plan be updated in management organization, the software
response to changes? development team, and the regulators clear?

* Does the V&V plan require the c. Is the authority of the software safety
establishment of a system for evaluating organization defined? Is it sufficient to

anomalies, assessing proposed changes, enforce compliance with safety requirements
feeding information into the and practices?

configuration management process and d. Is a single individual named as having overall
iterating the V&V process as necessary? responsibility for the conduct of the software

* Does the V&V plan define the method of safety program? Does this person have
resolving anomalies? adequate authority, training in management,

conflict resolution, and safety and software
4.1.5. Software Safety Plan engineering to actually carry out this job?

e. Does the manager of the software safety
The Software Safety Plan is the basic document used to

organization, and the organization itself, have
make sure that system safety concerns are properly sufficient autonomy from the development
considered during the software development, organization to ensure proper conduct of the

Without a Software Safety Plan (SSP), it will be software safety program?
f. Does a mechanism exist for any persondifficult or impossible to be sure that safety concerns

have been sufficiently considered and resolved. Some involved with the development project to
matters are likely to be resolved by different people in communicate safety concerns directly to the

software safety organization? Does thedifferent inconsistent ways. Other matters are likely to
mechanism protect such a person frombe overlooked, perhaps because people may assume

that others have accepted those responsibilities, management reprisals?
2. Resource Questions.

4.1.5.1. Recommendation a. Does the SSP identify the resources that will

A safety-related software project should have a be required to implement the plan? These
Software Safety Plan. The size, scope, and contents of include:
this plan should be appropriate to the size and m Financial resources.
complexity of the software system and the potential m Schedule resources.

risk should the software system fail. Detailed -- Safety personnel.

requirements for a Software Safety Plan are provided -- Other personnel.
in Section 3.1.5. The plan should be under

Computer and other equipment support.
configuration control.

Tools.

4.1.5.2. Guideline b. Are the resources adequate?

3. Staff Qualification and Training Questions.
The SSP may be organized according to IEEE Draft
Standard 1228, as shown in Figure 3-7. The software
safety organization may be a separate organization, or

65 NUREG/CR-6101

Section 4. Recommendations

a. Does the SSP specify personnel qualifications a. Does the SSP identify the safety-related
for personnel performing the following safety- records that will be generated, maintained,
related tasks? and preserved?

Defining safety requirements, b. Are these records sufficient to provide

Performing software safety analysis adequate evidence that the software safety
tasks, program has been properly carried out during

Testing safety-critical features of the each phase of the software life cycle?
protection system, c. Does the SSP identify a person responsible for

Auditing and certifying SSP preserving software safety program records?
implementation, d. Does the SSP specify the tracking system to

Performing process certification, be used to monitor the status of safety-related
documents?

b. Are the qualifications sufficient to ensure the
tasks are c .arried out correctly and that the 7. Software Configuration Management Questions.
safety concerns are adequately addressed? (These questions could be addressed in the

Software Configuration Management Plan instead
c. Does the SSP define on-going training of here.)

requirements for personnel with safety-related
responsibilities? a. Does the SSP describe the process by which

d. Does the SSP specify methods for changes to safety-critical software items will
accomplishing these training objectives? be authorized and controlled?

e. Are the training requirements sufficient to b. Does the SSP describe the role and
ensure that these people have the knowledge responsibility of the safety personnel in
and ability to carry out their defined safety- change evaluation, change approval and
related activities? change verification?

4. Software Life Cycle Questions. c. Is this sufficient to ensure that no new hazards
are introduced into the protection system

a. Does the SSP relate safety activities to the through changes to the protection software?
software development life cycle? (Note that

d. Does the SSP describe how configuration
this question may be addressed in the
Software Development Plan rather than in the management requirements will be met for

software development tools, previously
SSP.) developed software, purchased software, and

b. Does the SSP provide a mechanism to ensure subcontractor.developed software?

that known safety concerns are adequately 8. Software Quality Assurance Questions.
addressed during the various life cycle
activities? a. Does the SSP describe the interactions

5. Documentation Questions. between the software safety organization and
the quality assurance organization?

a. Does the SSP describe what safety-related b. Does the SSP require that the software safety
documents will be produced during the organization have primary responsibility for
development life cycle? ensuring safety, not the quality assurance

b. Are the contents of these documents organization?
described, either here or in some other

development plan? 9. Tool Support and A.r_provalQuestions.

c. Are the contents sufficient to ensure that a. Does the SSP specify the proce.ss of
known safety concerns are addressed in the approving and controlling software tool use?

appropriate places within the development life b. Does this process provide a means to ensure
cycle? that tool use is appropriate during the different

d. Is a means of document control described in development life cycle activities?

the SSP? c. Does the SSP specify the process of obtaining

e. Is the document control system sufficient to approval for tool use, for installing approved
ensure that required documents are preserved tools, and for withdrawing tools?
for development assessors? d. Does the person or persons who have

6. Software Safety Program Records Questions. authority to approve tool use, install tools, and

NUREG/CR-6101 66

Section 4. Recommendations

withdraw tools have adequate knowledge to f. If the answer to the previous question is "no,"
make approval decisions in such a way that do equivalent analyses, test, and
safety will not be compromised? demonstrations by the vendor of the PDP

e. Does the person with this authority have an software exist that show its adequacy for use
enforcement mechanism to ensure that in a safety-critical application?

limitations imposed on tool use are followed 11. Subcontract Management Questions.
by the development team?

a. Does the SSP provide a means to ensure that
10. Previously Developed or Purchased (PDP) safety-critical software developed by a

Software Questions. subcontractor meets the requirements of the
a. Does the SSP define the role of the software software safety program?

safety organization in approving PDP b. Does the SSP provide a means to ensure that
software? the subcontractor is capable of developing

b. Does the software safety organization have safety-critical software?
authority to approve or disapprove the c. Does the SSP provide a means to monitor the I
acquisition or use of PDP software? adherence of the subcontractor to the

c. Does the SSP define an approval process for requirements of the SSP?
obtaining PDP software? d. Does the SSP provide a process for assigning

d. Does this approval process include the responsibility for, and tracking the status of,
following steps? unresolved hazards identified or impacting the

Determine the interfaces to and subcontractor.

functionality of the PDP software, e. Is the subcontractor required to prepare and

Identify relevant documents that are implement a SSP that is consistent with this

available to the obtaining organization, SSP, and obey it?
and determine their status. 12. Process Certification Questions. (This applies only

Determine the conformance of the PDP if the software product is to be certified.)

software to published specifications, a. Does the SSP provide a method for certifying
Identify the capabilities and limitations of that the software product was produced in
the PDP software with respect to the accordance with the processes specified in the
safety requirements of the development SSP?

project. 13. Follow-Through Questions.
Using an approved test plan, test the a. Does evidence exist at each audit that the SSP
safety-critical features of the PDP
software in isolation from any other is being followed?
software. 14. Safety Analysis Questions. Assessment questions

Using an approved test plan, test the relating to safety analyses are discussed below, insections 4.2.2, 4.3.3, 4.4.2, 4.5.2, 4.6.1, and 4.7.1.
safety-critical features of the PDP

software in conjunction with other 4.1.6. Software Development Plansoftware with which it interacts.

Perform a risk assessment to determine if The Software Development Plan is the plan that guides

the use of the PDP software will result in the technical aspects of the development project. It will
undertaking an acceptable level of risk specify the life cycle that will be used, and the various
even if unforeseen hazards result in a technical activities that take place during that life

failure, cycle. Methods, tools, and techniques that are required

e. Does the SSP provide a means to ensure that in order to perform the technical activities will be
PDP software will not be used in a safety- identified.

critical product if (1) it cannot be adequately
tested, (2) it presents significant risk of Without a development plan, there is likely to be
hazardous failure, (3) it can become unsafe in confusion about when the various technical
the context of its planned use or (4) it development activities will tal_,_eplace and how they
represents significant adverse consequence in will be connected to other development activities. The
the event of failure? probability is high that the different team members will

67 NUREG/CR-6101

Section 4. Recommendations

make different assumptions about the life cycle that is d. Is one specific programming language
being used, about what is required for each life cycle required?

phase, and about what methods, tools, and techniques e. If more than one language is permitted, does
are permitted, required, or forbidden, the plan specify a method for choosing which

language to use for each program module?
The differences among the members of the project Does the plan give a technical justification for
technical team can result in a confused, inconsistent, permitting more than one programming
and incomplete software product whose safety cannot language to be used?

be assured, and may not be determinable, f. Does the plan specify what computers,
compilers, libraries, and linkers will be used

4,1.6.1. Recommendation in the software development?

A safety-related project should have a Software g. Is a programming style guide specified?
Development Plan. The plan should describe the 3. Standards Questions.
processes to take place during the development life a. Are the technical standards that will be
cycle, and should describe the methods, tools, and

followed listed in the plan?
techniques that will be used to carry out the

4. Schedule Questions.development processes. Detailed requirements for a
Software Development Plan are provided in Section a. Are the technical milestones listed in the

3.1.6. The plan should be under configuration control, plan?
b. Are the milestones consistent with the

4.1.6.2. Guideline schedule given in the SPMP?

The Software Development Plan may be organized as 5. Technical Documentation Questions.

shown in Figure 3-8. a. Are the technical documents that must be

produced listed?
4.1.6.3. Assessment Questions b. Are these documents consistent with those

1. Life Cycle Process Questions. listed in the SPMP?

a. Is a software life cycle defined? c. Is a principal author listed for each document?
d. Are milestones, baselines, reviews, and sign-

b. Are the defined life cycle processes sufficient offs listed for each document?
to provide confidence that a safe and adequate
product will be produced? 6. Follow-Through Questions.

c. Are the inputs and outputs defined for each a. Does evidence exist at each audit that the

life cycle process? Software Development Plan is being

d. Is the source of each life cycle process input followed?
specified?

e. Is the destination of each life cycle process 4.1.7. Software Integration Plan
output specified? The Software Integration Plan describes the general

f. Does each life cycle phase require a safety strategy for integrating the software modules together

analysis? into one or more programs, and integrating those
g. Does each life cycle phase include a programs with the hardware.

requirement for an audit at the end of the

phase? Without a Software Integration Plan, it is possible that

2. Methods, Tools, and Techniques Questions. the complete computer system will lack important
elements, or that some integration steps will be

a. Are methods specified for each life cycle omitted.
phase?

b. Is an automated or semi-automated 4.1.7.1. Recommendation
requirements tracking tool specified?

c. Are formal requirements and design and A safety-related software project should have a
implementation methods required? Software Integration Plan. The size, scope, and

contents of this plan should be appropriate to the size,

NUREG/CR-6101 68

Section 4. Recommendations

complexity, and safety-critical nature of the project, a, Are the products of each integration step
Detailed requirements for a Software Integration Plan known?

are provided in Section 3.1.7, The plan should be under b. Are there complete instructions on how to
configuration control, carry out each integration step?

c. Is there a contingency plan in case the
4.1.7.2. Guideline integration fails?

The Software Integration Plan may be organized as d. Is there a requirement that the completed
shown in Figure 3.9. product be placed under configuration

control?

4.1.7.3. Assessment Questions e. Is there a procedure for delivering the product
to the configuration management

1. Integration Process Questions. organization?

a. Does the Integration Plan specify the levels of f. Is there a procedure for delivering the product
integration required? Is this consistent with to the V&V organization for integration
the software design specification? testing?

b. Does the Integration Plan specify what objects 5. Follow-Through Questions.
will be included at each level? These may

a. Was the Integration Plan followed?include:

Hardware. 4.1.8. Software Installation Plan
Software.

Instrumentation. The Software Installation Plan governs the process of
installing the completed software product into the

w Data. production environment. There may be a considerable
c. Does the Integration Plan describe each step delay between the time the software product is finished

of the integration process? and the time it is delivered to the utility for installation.
d. Does the Integration Plan describe the

integration strategy to be used for each Without an Installation Plan, the installation may be
integration step? performed incorrectly, which may remain undetected

2. Marginal Conditions Questions. until an emergency is encountered. If there is a long

a. Does the Integration Plan describe the delay between the completion of the development and
the delivery of the software to the utility, the

environment that will be used to perform and development people who know how to install the
test each integration step? software may no longer be available.

b. Are software and hardware tools that will be

used to integrate the computer system listed 4.1.8.1. Recommendation
and described?

c. Is there a priority-based list of the various A safety-related software project should have a
integration steps? Software Installation Plan. The size, scope, and

d. Was a risk analysis performed? contents of this plan should be appropriate to the size,

e. If risks were identified, are preventive complexity, and safety-critical nature of the project.
Detailed requirements for a Software Installation Planmeasures identified to avoid or lessen the
are provided in Section 3.1.8. The plan should be under

risks? configuration control.
3. Integration Organization Questions.

a. Are the integration steps ordered in time? 4.1.8.2. Guideline

b. Are personnel who will be involved in the The Software Installation Plan may be organized as
integration activity listed? shown in Figure 3-10.

c. Is this list up to date?
I

d. Does a mechanism exist to keep the list up-to- 4.1.8.3. Assessment Questions
date?

4. Integration Procedure Questions. 1. Installation Environment Questions.

69 NUREG/CR-6101

Section 4. Recommendations

a. Is the environment within which the software personnel will not be available to answer questions.
will operate fully described? Detailed requirements for a Software Maintenance

2. Installation Package Questions. Plan are provided in Section 3.1.9, The plan should be
under configuration control.

a. Are materials that are required for a

successful integration listed? 4.1.9.2. Guideline
3. Installation Procedures Questions,

The Software Maintenance Plan may be organized as
a. Does a step-by-step procedure exist for shown in Figure 3-11.

installing the computer system in the

operational environment? 4.1,9.3. Assessment Questions
b. Is this procedure complete?

c. Does each step describe what installation 1. Failure Reporting Questions.

items are required, and what is to be done a. Does a procedure exist for collecting
with each installation item? operational failure data from the utilities that

d. Is the expected results from each installation are using the software product?

step described? That is, how can the installer b. Does this procedure ensure that operational
know that a step has been successfully failures are documented?

completed? c. Does this procedure ensure that failure reports
e. Are known installation error conditions are delivered to the maintenance

described, and are recovery procedures fully organization?

described? d. Does the maintenance organization have a
4. Follow-Through Questions. procedure to ensure that failure reports are

a. Was the Installation Plan fully tested? maintained under configuration control?
e. Does the maintenance organization have a

4.1.9. Software Maintenance Plan procedure to ensure that each failure report is
assigned to one individual who is responsible

The Software Maintenance Plan controls the process of for analyzing the failure and determining the
making changes to the completed software product, underlying fault that caused the failure?

There may be a considerable delay between the f. Can the maintenance organization
completion of the development project and changing management and the assessors always
the product. An organization other than the discover the status of each failure report?
development organization, termed the maintenance

2. Fault Correction Questions.
organization here, may actually do the maintenance.

a. Does the maintenance organization have a
Without a Maintenance Plan, it is not easy to know procedure in place to ensure that faults are

bow the product may be changed, and what procedures corrected, or determined not to require
are required in order to make changes. Inconsistencies correction?

and faults may be inserted into the product during b. Does this procedure ensure that the
maintenance changes, and this may not become known documentation related to the fault will be

until the software needs to react to an emergency. In corrected, if this is necessary?
the worst case, maintenance that is camed out in order c. If the fault does not require correction, are the
to improve the reliability of the software product may reasons for this fully documented?

actually lessen its reliability, d. If the fault does not require correction, was a

4.1.9.1, Recommendation risk analysis performed to be sure that the
fault cannot affect safety in any way?

A safety-related software project should have a e. Does the procedure require that acceptance
Software Maintenance Plan. The size, scope, and test cases be created to test for the previously-
contents of this plan should be appropriate to the size, undetected fault?

complexity, and safety-critical nature of the project, f. Does the procedure require that regression
The Plan should assume that maintenance will be testing take place before a new release of the
carded out by some organization other than the software is created?
development organization, and that development

NUREG/CR-6101 70

Section 4. Recommendations

3. Re-Release Questions. 4.2.1.1. Recommendation

a. Do procedures exist to build and test new An SRS should be written for a reactor protection

releases of the software? computer system. It should be correct, consistent,
b. Do these procedures identify the events that unambiguous, verifiable, and auditable. Each

amy trigger the creation of a new release? requirement should be separately identified. Each

c. Do these procedures require that the new requirement should be traceable to the overall system
release be fully tested before release to the design. Detailed requirements for a SRS are provided
utilities? in Section 3.2.1.

d. Is the re-installation procedure fully
documented? 4.2.1.2. Guideline

4. Follow-Through Questions. The SRS may be organized as shown in Figure 3-12. If

a. Is there evidence, during periodic operational available, an automated or semi-automated
audits, that maintenance procedures are being requirements tracking system should be used so that

followed by the utility and the maintenance the software requirements can be traced through the
organization? design, implementation, integration, and validation

stages of the development project. The use of a CASE

4.2. Requirements Activities tool to document the requirements is recommended.
The use of a formal mathematics-based requirements

The activities associated with the requirements stage specification language is recommended for the
result in a complete description of what the software functional, performance, reliability, and security
system must accomplish as part of the reactor requirements.
protection system.

4.2.1.3. Assessment Questions

There are a number of risks to not documenting the In addition to the list of questions given here, the
software requirements. Some requirements might be assessor may wish to consult other lists. In particular,
omitted from the design and implementation. Some IEC 880, Appendix A, contains a list of requirements
requirements might be misunderstood, o, interpreted characteristics, and Redmill 1989 contains assessment

differently by different members of the development questions.
team. Some hazards might not be covered by the

requirements. 1. User Characteristics Questions.

If a particular requirement is omitted, but is necessary a. Is each category of user identified in the SRS?

to the design, then the designers or programmers are b. Is the expected experience level of each
likely to explicitly or implicitly invent a requirement, category of user def'med?

An example of this is a missing timing requirement-- c. Are the training requirements for each
say, that a pump must be turned on within two seconds category of user def'med?

of a particular signal being received from a sensor. If 2. General Constraint Questions.
this requirement is not specified, the programmer
might implicitly assume that there is no real timing a. Are known legal restrictions placed on the
issue here, and write the code in such a way that it software development either described fully in
takes five seconds to start the pump. This would be the SRS, or referenced in the SRS?
unacceptable, but would still meet the written b. Are known hardware limitations described in
requirement, the SRS?

c. Are the SRS audit requirements specified?

4.2.1. Software Requirements d. If special support software is required (such as
Specification operating systems, compilers, programming

The Software Requirements Specification (SRS) languages, or libraries), is the support
software fully described?documents the software requirements. These come

from the protection system design and the protection e. Are any required communications protocols
system hazard analysis, defined?

f. Are the critical safety considerations listed?

71 NUREG/CR-6101

Section 4. Recommendations

g. Are the critical security considerations listed'? -- Possible range of values.

3. Assumptions and Dependency Questions. m Units of measurement.

a. Do any assumptions exist that are not listed in -- Resolution of measurement,
the SRS? -- Error bounds on measurements for the

4. Impact Questions. range of measurement.
Instrument calibration.

a. If changes are required to existing hardware
Conversion algorithms---analog/digital or

or buildings, are these documented in the physical units.SRS?
b. Is the possible output to each actuator fullyb. If the system described in the SRS must be described? This can include:

used with an existing system, are any required
changes to that existing system fully -- Type of actuator (analog, digital).
documented? -- Possible range of values and units.

c. If the system will be deployed in an existing -- Units of measurement.
reactor, are known organizational and -- Resolution of measurement, if analog.

operational impacts described? -- Calibration requirements.

5. Functional Requirement Questions. -- Conversion algorithms.

a. Are the functional requirements individually -- Any error responses.
identified? 8. Computer System Interface Questions. (Applies

b. Is each requirement unambiguously stated? only if the protection system software must
communicate with other software systems.)c. Do the functional requirements, taken as a

whole, completely specify what the software a. Are the interfaces between software systems
must do? fully defined?

d. Do the functional requirements specify what b. Is the form of each interface deso'ibedm

the software must not do? subroutine call, remote procedure call,
e. Are the functional requirements, taken as a communication channel?

i

whole, mutually consistent? c. Is each interface message format and content
f. Is each functional requirement verifiable, defined?

either through inspection or testing of the d. Is the transmission method and medium

completed software product? defined for each message?

g. Can each requirement imposed by the e. Are error detection methods defined for
protection system design be traced to a communication lines?

software requirement? f. Are communication protocols defined?

h. Are the functional requirements complete? 9. Performance Requirements Questions.
6. Operator Interface Questions.

a. Are the static performance requirements fully
a. Is every interaction between an operator and described?

tim software system fully defined? b. Are the protection system timing requirements
b. Are requirements for control panel and included in the SRS?

display layouts described? c. Are the timing requirements specified
c. Are requirementsfor human reactions to numerically?

software-generated messages described, d, Are timing requirements expressed for each
including the amount of time available for mode of operation'?
making decisions?

e. Are the performance requirements
d. Are error messages described, with corrective individually identified?

actions that should be taken? f. Are the performance requirements, taken as a
7. Instrumentation Interface Questions. whole, mutually consistent?

a. Is the possible input from each sensor fully g. Is each performance requirement testable?

described? This can include: 10. Reliability and Safety Questions.
Type of sensor (analog, digital).

NUREG/CR-6101 72

Section 4. Recommendations

a. Is each reliability and safety requirement and to identify system safety considerations not
individually identified? addressed in the SRS.

b. Can each hazard identified in the system

hazard analysis be traced to one or more The risk of not performing a safetyanalysis is that
software requirements that will prevent, some hazards may be overlooked in the SRS, and that
contain, or mitigate the hazard? additional hazards may be added.

c. Axe backup, restart,and recovery 4.2.2.1. Recommendation
requirementsfully defined?

d. If the software must continue to operate in the A Requirements Safety Analysis should be performed
presence of faults, are the fault tolerance and documented. The analysis should determine which
requirements fully defined? software requirements are critical to system safety, that

e. Axe reliability and safety requirements all safety requirements imposed by the protection

specified for each possible mode of system design have been correctly addressed in the
operation? SRS, and that no additional hazards have been created

f. Axe reliability requirements specified by the requirements specification.
numerically?

g. If the software is required to diagnose 4,2.2.2. Guideline

hardware or software failures, are the classes The four analyses recommended in Section 3.2.2 may
of failures that will be detected identified? be performed.

h. Is the required response to any identified

hardware or software failure described? 4.2.2.3. Assessment Questions

i. If the software is required to recover from
hardware or software failures, are the 1. General Question.

recovery requirements fully described? a. Does the safety analysis present a convincing
j. Are the reliability and safety requirements, argument that the system safety requirements

taken as a whole, mutually consistent? are correctly included in the SRS, and that no

k. Is each reliability and safety requirement new hazards have been introduced?
verifiable, either through inspection, analysis 2. Criticality Questions.
or testing of the completed software product?

a. Have the requirements that can affect safety
11. Security Questions. been identified?

a. AXethe access restrictions imposed on b. Is there convincing evidence that the
operators, managers, and other personnel fully remaining requirements (if any) have no
defined? effect on :,_afety?

b. Do requirements exist to prevent unauthorized 3. Requirements Tracing Questions.
personnel from interacting with the software
system? a. Can each system safety requirement be traced

to one or more software requirements?
c. Do requirements exist to prevent unauthorized

changes to the software system? b. Can each software requirement be traced to
one or more system requirements?

d. AXethe security requirements individually
identified? c. Is there a requirement that the software not

execute any unintendexl function? (Note: this
e. Can each security requirement be verified, may be very difficult to verify.)

either through inspection, analysis or test of
4. Specification Questions.

the completed software product?

f. Are the security requirements, taken as a a. Is there convincing evidence that there are no
whole, mutually consistent? missing or inconsistently specified functions?

b. Is there convincing evidence that there are no
4.2.2. Requirements Safety Analysis incorrect, missing, or inconsistent input or

output specifications?
The purpose of the safety analysis is to identify any
errors or deficiencies that could contribute to a hazard

73 NUREG/CR-6101

Section 4. Recommendations

c. Can timing and sizing requirements be met -- Computers.

under normal, off-normal, and emergency -- File systems.
operating conditions? Sensors and actuators.

4.3. Design Activities -- Terminals.-- Communication networks.

The software design activities translate the software b. Does the design architecture show how the
requirements specifications into a hardware/software various hardware elements are connected
architecture specification and a software design together?

specification. 2. Software Questions.

a. Are known independent software elementsThe primary risks of not creating and documenting a
shown in the "design architecture? Thisformal software design are that it may be impossible to

be sure that all requirements have been implemented in includes:
the design, and that no design elements exist that are -- Processes, which perform computations.
not required. Either of these cases can create a hazard. -- Files and databases, which store

information.

4.3.1. Hardware/Software Architecture -- Input and output messages, which receive
Specification and transmit information.

The design architecture will show a hardware w Screen, which display information.
architecture, a software architecture, and a mapping -- Communication, which moves
between them. The hardware architecture shows the information among processes, files and

various hardware devices and the ways in which they databases, input and output channels, and
are connected. The software architecture shows the screens,

executable software processes and logical b. Does the design architecture shew how the
communication paths between them. The mapping various software elements are logically
shows which processes operate in which hardware connected together?

devices, and how the logical communication paths are 3. Software to Hardware Mapping Questions.
implemented in the hardware communication paths.

a. Does the design architecture show how each
software element is mapped to a hardwareIt may happen that the design architecture cannot be

completed until the software design, hardware design, element?

and system design have been completed. The relative 4.3.2. Software Design Specificationtiming and overlap among these design descriptions is

not specified here; that is the developer's The Software Design Specification shows exactly how
responsibility, the software requirements are implemented in the

software modules and programs.
4.3.1.1. Recommendation

A hardware/software architecture description should be 4.3.2.1. Recommendation

prepared. It should be correct, consistent, A formal software design specification should be
unambiguous, verifiable, testable, and implementable, developed and documented. It should be correct,
All major hardware devices and all major software complete, internally consistent, consistent with the
processes should be included in the description. A software requirements, unambiguous, verifiable,
mapping of sofw,are to hardware should be provided, testable, and implementable. Each design element
A mapping of logical communication paths to physical should be traceable to one or more specific

communication paths should be provided, requirements, and each software requirement should be
traceable to one or more design elements.

4.3.1.2. Assessment Questions

1. Hardware Questions. 4.3.2.2. Guideline

a. Are known major hardware elements shown The use of a CASE system to document the design and
in the design architecture? This includes: the use of a formal mathematics-based design

NUREG/CR-6101 74

Section 4. Recommendations

specification language is recommended. The use of an m Interrupts, except for periodic timer
automated or semi-automated requirements tracking interrupts.

system is also recommended so that the software -- Multi-processing on a single processor.
requirements can be traced through the design to the Dynamic memory management.
implementation stage of the development project, m Event-driven communications between

4.3.2.3. Assessment Questions processes.
b. If more than one formal design method is

In addition to the list of questions given here, the used, are they mutually consistent?

assessor may wish to consult other fists. In particular, c. Is the input to each modules checked for
IEC 880, Appendix B, contains a list of design validity?
characteristics, and Redmill 1989 contains assessment

questions. 4.3.3. Design Safety Analysis

Some of the assessment questions listed here should The purpose of the safety analysis is to identify any
also be asked of the implemented system (code and errors or deficiencies in the design that could
data), contribute to a hazard.

1. General Questions. The risk of not performing a safety analysis is that
some hazards that were identified in the requirements

a. Can every requirement given in the SRS be specification may be overlooked in the design, and that
traced to one or more specific design elements additional hazards may be added.
that implement the requirement?

b. Can every design element be traced to one or 4.3.3.1. Recommendation
more specific requirements that the design
element implements? A Design Safety Analysis should be performed and

c. Is there sufficient evidence to demonstrate documented. The analysis should determine v,nich

that there are no unintended functions in the software design elements are critical to system safety,

design? that all safety requirements imposed by the protection
system design have been correctly implemented in thed. Is the design complete, consistent, correct,
design, and that no additional hazards have been

unambiguous, and simple? created by the design specification.
2. Software Structure Questions.

a. Are the static and dynamic structures simple, 4.3.3.2. Guideline

with minimal connections between design The five analyses recommended in Section 3.3.3 may
elements? be performed.

b. Is the software structure hierarchical in

nature? 4.3.3.3. Assessment Questions
c. If stepwise refinement is used to create the

software structure, is each level of the Some of the assessment questions listed here should

refinement complete, internally consistent, also be asked of the implemented system (code and
and consistent with the immediately higher data).
level (if any)?

d. Is the design such that safety-critical functions 1. Logic Questions.

are separated from normal operating a. Do the equations and algorithms in the
functions, with well-defined interfaces software design correctly implement the
between them? safety-critical requirements?

3. Design Element Questions. b. Does the control logic on the software design

a. If any of the following concepts are used in completely and correctly implement the
the design, is adequate justification given for safety-critical requirements?
their use? c. Does the control logic correctly implement

Floating point arithmetic, error handling, off-normal processing, and
Recursion. emergency processing requirements?

75 NUREG/CR-6101

Section 4. Recommendations

d. Is the design logic such that design elements or coding errors may add additional hazards. Most of
that are not considered safety critical cannot the assessment effort on implementation products
adversely affect the operation of the safety- involves code walk-throughs, inspections, and testing.
critical design elements? Those topics are covered in Barter 1993 and Thomas

2. Data Questions. 1993.

a. Are safety-critical data items identified, with 4.4.1. Code Listings
their types, units, ranges, and error bounds?

b. Is it known what design elements can change Coding may require the use of programming
each safety-critical data item? languages, database design languages, screen design

c. Is there convincing evidence that no safety- languages, and other languages. The language level
critical data item can have its value changed may vary from assembler to high level block
in an unanticipated manner, or by an languages.
unanticipated design element?

4.4.1.1. Guideline
d. Is there convincing evidence that no interrupt

will change the value of a safety-critical data Assembly language should not be used in a safety-
item in an unanticipated manner? critical application without convincing justification.

3. Interface Questions. The programming language should be block-structured
and strongly typed.

a. Are the control linkages between design

elements correctly and consistently designed? 4.4.1.2. Guideline
b. Has it been demonstrated that all parameters

passed between design elements are consistent Certain coding practices should not be used in a safety-
in type, structure, physical units, and direction critical application without convincing justification.
(input/output/input-output)? This justification should substantiate that the use of the

c. Is there convincing evidence that no safety- coding practice in a particular instance is safer than not
critical data item is used before being using it. For example, not using the practice may, in
initialized? some cases, require much additional coding, or obscure

4. Constraint Questions. module structure, or increased probability of coding
errors for some other reason. The following list of

a. Have the design constraints listed in the practices is indicative, not exhaustive. The ordering of
requirements specification been followed in the list contains no implication of severity.
the design?

b. Have known external limitations on the • Floating point arithmetic.
design been recognized and included in the • Recursion.
design? This includes hardware limitations,

instrumentation limitations, operation of the • Interrupts, except for periodic timer interrupts.
protection system equipment, physical laws,

• Use of pointers and indirect addressing.and similar matters.

c. Will the design meet the timing and sizing • Event driven communications.

requirements? • Time-slicing by the operating system.
d. Will equations and algorithms work across the

complete range of input data item values? • Dynamic memory management.

e. Will equations and algorithms provide • Swapping of code into and out of memory.
sufficient accuracy and response times as

• Loops that cannot guarantee termination.specified in the requirements specification?
• Storing into an array in such a way that the index

4.4• Implementation Activities cannot be guaranteed to fall within the index
bounds of the array.

Implementation consists of the translation of the • Unconditional branches.
completed software design into code and data stores.

The risks involved in writing the code are that the • Branches into loops or modules.
design may not be correctly implemented in the code,

NUREG/CR-6101 76

Section 4. Recommendations

• Branching out of loops other than to the statement 4.4.2.3. Assessment Questions

following the end of the loop, or to error
processing. In addition to the questions listed here, the questions

given above in Section 4.3.4.3 should be considered as
• Nesting 'if' statements more than 3-4 levels deep. well, as far as they apply to the code.

• Use of default conditions in a 'case' statement.
1. Logic Questions.

• Use of multiple entry points in a subroutine.
a. Does the code logic correctly implement the

• Overloading of variables (using the same variable safety-critical design criteria?

for more than one purpose), b. Are design equations and algorithms corrected

• Dynamic instruction modification, implemented in the code?

• Implicit typing of variables, c. Does the code correctly implement the errorhandling design?

• Use of 'equivalence' statements in FORTRAN. d. Does the code correctly implement the off-
normal and emergency operatiops design?° Modules with side effects other than output to an

actuator, terminal or file. e. Is there convincing evidence that no code
considered non-critical can adversely impact

• Passing procedures as parameters to subroutines, the function, timing, and reliability of the

• Testing floating point numbers for exact equality, safety-critical code?

4.4.1.3. Assessment Questions f. Is there convincing evidence that any
interrupts that may be included in the code

Some assessment questions given in Section 4.3.2.3 will not take precedence over or prevent the

also apply to the code. Additional questions will arise execution of safety-critical code modules?
through the V&V activity. No additional questions are 2. Data Questions.
suggested here. a. Are the definition and use of data items in the

4.4.2. Code Safety Analysis code consistent with the software design?
b. Is each data item in the code explicitly typed?

The purpose of the safety analysis is to identify any c. Is there a convincing argument that no safety-
errors or deficiencies in the code that could contribute critical data item can have its value changed
to a hazard, in an unanticipated manner, or by an

unanticipated module?

The risk of not performing a safety analysis is that d. Is there a convincing argument that no
some hazards that were identified in the requirements interrupt can destroy safety-critical data
specification and covered by the design may be items?
overlooked in the coding activity, and that additional

3. Interface Questions.
hazards may be added.

a. Have parameters that were passed between
4.4.2.1. Recommendation code modules been analyzed for consistency,

including typing, structure, physical units, and
A Code Safety Analysis should be performed and number and order of parameters?
documented. The analysis should determine that the

b. Is the direction of parameters consistent, both
code correctly implements the software design, that the internally in the code and externally with the
code does not violateany safety requirements and that

software design?
no additional hazards have been created by the coding
activity, c. Have external interfaces been evaluated for

correct format of messages, content, timing,

4.4.2.2. Guideline and consistency with the Software Interface
Design Description?

The five analyses recommended in Section 3.3.3 may 4. Constraint Questions.
be performed.

a. Is there adequate memory space in the target
computer for the safety-critical code and data

77 NUREG/CR-6101

Section 4. Recommendations

structures? This should consider normal, off- b. Is there evidence that the system that is built
normal, and emergency operating modes, and made ready for verification was actually

b. Is the actual timing of events in the code built in accordance with the build
consistent with the timing analysis perfc,rmed specification?
as part of the software design?

4.5.2. Integration Safety Analysisc. Can timing requirements actually be met?

d. Is there a convincing argument that the target The Integration Safety Analysis ensures that no
computer will not be halted if an error occurs, hazards have been introduced during the integration
unless such halting cannot impose a hazard? activity.

e. Is it known what will happen if actual input
values exceed the design specification in 4.5.2.1. Recommendation
terms of values and frequency of occurrence?

An Integration Safety Analysis should be performed

4.5. Integration Activities and documented. The analysis should determine thatthe complete system does not violate any safety

Yntegration consists of the activities that combine the requirements and that no additional hazards have been
created by the integration activity.various software and hardware components into a

single system. The risk to an incorrect integration
activity is that the system will not operate as intended, 4.5.2.2. Assessment Questions

and that this will not be discovered until actual 1. General Questions.
operation, possibly during an emergency.

a. Is there convincing evidence that the system

Verifying that the integration activity has been meets protection system safety requirements?
successfully completed is part of the V&V inspection, b. Is there convincing evidence that the system
analysis, and test activities. This is discussed in Barter does not introduce any new hazards?
1993.

4.6. Validation Activities
4.5.1. System Build Documents

Validation consists of the activities that ensure that the

The System Build Documents describe precisely how protection computer system, as actually implemented
the system hardware and software components are and integrated, satisfies the original externally-imposed
combined into an operational system, requirements. This is discussed further in Barter 1993.

4.5.1.1. Recommendation 4.6.1. Validation Safety Analysis

A System Build Specification should be written. It The Validation Safety Analysis examines the entire
should describe precisely how the system is assembled, system and the process of developing that system to
including hardware and software component names ensure that system safety requirements have been met
and versions, the location of particular software and that no hazards have been introduced at any point
components in particular hardware components, the in the development process.
method by which the hardware components are

connected together and to the sensors, actuators, and 4.6.1.1. Recommendation
terminals, and the assignment of logical paths
connecting software modules to hardware A Validation Safety Analysis should be performed and
communication paths, documented. The analysis should determine that the

complete system does not violate any safety
4.5.1.2. Assessment Questions requirements and that no additional hazards have been

created during the development process.
1. General Questions.

a. Has it been verified that the System Build 4.6.1.2. Assessment Questions
Specification actually works to build a correct

1. General Questions.
system?

NUREG/CR-6101 78

Section 4. Recommendatiens

a. Is there convincing evidence that the 4.7.1.2. Assessment Questions
completed protection computer system meets
protection system safety requirements? 1. General Questions.

b. Is there convincing evidence that no new a. Has the hardware been installed correctly?

hazards were introduced during the b. Are hardware communication paths installed
development process? correctly?

c. Is the software installed correctly?

4.7. Installation Activities d. Have configuration tables been correctly

Installation is the process of moving the complete initialized, if such are used?
system from the developer's site to the operational site, e. Are operating documents present, correct,
possibly after considerable time delays. Only the safety complete, and consistent?
analysis is discussed here.

4.7.1. Installation Safety Analysis

This final safety analysis verifies that the installed
system operates correctly.

4.7.1.1. Recommendation

An Installation Safety Analysis should be performed
and documented. The analysis should verify that the
system was installed correctly, that it operates
correctly, that the installed system does not violate any
protection system safety requirements, and that the
installed system does not introduce any new hazards.

79 NUREG/CR-6101

Appendix

APPENDIX: TECHNICAL BACKGROUND

This appendix contains information on certain systems designers are unfamiliar with fault tolerance
technical issues that are pertinent to this report. This ideas and techniques, this is discussed in Sections
appendix begins with a discussion of two prominent A. 1.1-A. 1.3.
techniques that are occasionally recommended for

software fault tolerance. This is followed by a section In spite of the developer's best efforts, computer
describing some of the modeling techniques that may system failure may occur. If this does happen, the
be used to model reliability in general, and software computer should fail in such a way as to not cause
reliability in particular. The final section briefly harm or lose information. This can be called graceful

discusses software reliability growth models, degradation, or graceful failure, and usually requires
both hardware and software facilities. For example,

A.1. Software Fault Tolerance sufficient battery power may be provided to permit a

Techniques controlled shut-down by the software system.

Anderson (1985) and Laprie (1985) point out that the Of course nothing can be done by the computer system
reliability of a computer system is determined by three to overcome some types of failures (such as those
different phases. First, one tries to keep faults out of caused by fire, flood, or lightening strikes); other
the system. Second, since some faults will escape this techniques such as seismic hardening or
effort, one tries to identify and eliminate them. Finally, Uninterruptible power supplies may be required.
since neither design nor elimination is perfect, and

since some failures will occur during operation due to A fault-tolerant computer system requires fault-tolerant
operational faults, one attempts to cope with them once hardware and fault-tolerant software. The former is
they appear. There is a useful analogy here to the considered to be beyond the scope of this report. The
security of a bank. Bankers try to keep most robbers following sources discuss hardware fault tolerance.
out; stop those that get in the door; and recover the loot The August 1984 and July 1990 issues of IEEE
from those that get away. The underlying philosophy is Computer are both devoted to fault tolerant hardware
that of defense in depth, systems. Additional material can be found in the

following papers and books listed in the References:

Fault avoidance is concerned with keeping faults out Anderson 1985, Maxion 1987, Nelson 1987, Pradhan
of the system. It will involve selecting techniques and 1986 and Siewiorek 1982.
technologies that will help eliminate faults during the
analysis, design, and implementation of a system. This Nelson (1990) points out that the reliability of a system
includes such activities as selecting high-quality, can be written as
reliable people to design and implement the system,
selecting high-quality, reliable hardware, and using R = Prob[no fault] + Prob[correct action I fault] *

formal conservative system design principles in the Prob[fault].

software design. The first term represents the probability that the system
is free from fault, and is achieved by high-quality

Fault removal techniques are necessary to detect and design and manufacturing. If it is good enough, then
eliminate any faults that have survived the fault fault tolerance may be unnecessary.
avoidance phase. Analysis, review, and testing are the

usual techniques for removing faults from software. The second term represents the fault tolerance built
Review and testing principles and procedures are well into the system. It is the probability that faults may
known, and are discussed in detail in Barter 1993 and occur and the system continue to function.
Thomas 1993.

Fault tolerance always has a cost attached, in terms of
Fault tolerance is the last line of defense. The intent is development time and money and operating time and
to incoqgorate techniques that permit the system to money. This cost must be weighed against the costs of
detect faults and avoid failures, or to detect faults and system failure. (See Berg 1987, Krishna 1987.)
recover from the resulting errors, or at least to warn the
user that errors exist in the system. Since many

81 NUREG/CR-6101

Appendix

Operator interaction with a computer system may not the results compared and one chosen that is
always be correct, so fault tolerance is applicable to deemed most likely to be correct.

creating a robust man-machine interface. This is • Temporal redundancy. Operations can be repeateddiscussed further in Maxion 1986.
to permit recovery from transient faults. A sensor
can be re-_'ead, a message can be retransmitted, or

This section begins with a brief general discussion of
a record can be re-read from a disk. This technique

the use of redundancy in achieving fault tolerance. This is not useful, of course, if the fault is permanent or
is followed by an outline of the general process of if there are hard real-time constraints.
recovering from software failures. The section ends
with a description of two methods of achieving • Human redundancy. It is possible to require that

software fault tolerance that are frequently mentioned two or more individuals independently authorize
in the literature. Other commonly-available methods, action. This is sometimes called a "two-man rule."
such as the use of formal methods in software

• Mixed redundancy. Combinations of the
specification and design, or exception handling techniques just listed can be quite effective in
facilities within a programming language, are not achieving redundancy. For example, one could
discussed, require that hardware, software, and an operator

A.I.1. Fault Tolerance and Redundancy all agree that a system is not in a hazardous state
before permitting a potentially dangerous

Fault tolerance is always implemented by some form operation to take place.

of redundancy. Nelson and Carroll (1987) identify four None of these techniques covers all possible situations,
forms of redundancy; several others have been added all have potential flaws, and all have associated costs.
here. In practice, a variety of techniques must be used, either

at different levels within a system or in different
• Hardware redundancy. Extra hardware is used to subsystems (Bihari 1988).

achieve some aspects of fault tolerance. In triple

modular redundancy (TMR), for example, three A.1.2. General Aspects of Recovery
processors perform the same computation, and the
results are compared. If all agree, it is assumed A fault-tolerant computer system must be capable of
that all three processors are operating correctly. If recovering from failures (by definition). Since the
two agree, it is assumed that the other processor failure is just a symptom of one or more underlying
has failed. This idea can be extended to faults that caused one or more errors, this recovery
communication paths, disk drives, memories, process must deal with these factors. Note that nothing
sensors, and other parts of the hardware system, is said here about how the techniques are to be
The technique cannot compensate for design errors implemented. The operating system, the application
or for common-mode failures, program, or a separate recovery system are among the

• Information redundancy. Redundant bits can be possibihties.
used to permit both detection and (in some cases)

The recovery process consists of the following generalcorrection of errors in data or instructions.

Information can also be duplicated by saving the steps. Each is discussed further below.

result of a calculation in two variables, by 1. Detect the failure.
maintaining duplicate fries, or by redoing
calculations. This can be effective in overcoming 2. Treat the error.
certain types of operational faults, but cannot
overcome errors in the calculation itself. (See also a. Locate the error.
Ammann 1988.) b. Assess the damage.

c. Recover from the error.
• Software redundancy. Extra software can be

provided to assist in detecting and recovering from 3. Treat the underlying fault.
failures.

a. Locate and confine the fault.

• Computational redundancy. A calculation can be b. Diagnosis the fault.
carried out using several different algorithms, with c. Repair and reconfigure the system.

d. Continue normal operation.

NUREG/CR-6101 82

Appendix

A.1.2.1. Failure Detection reinitialized before its time period is exhausted. It then
does off and signals that a failure has occurred.

There are two major classes of failure detection

techniques---off-line detection and on-line detection A.1.2.2. Error Treatment
(Maxion 1987). The former is generally easier, but
may not be possible if continuous operation of a There are three aspects to coping with errors once a
system is required, failure has occurred: error detection, damage

assessment, and recovery.
• Diagnostic programs can be run in an attempt to

detect hardware faults, either periodically or 1. Error Detection. The success of all fault tolerance
continuously as a background process, techniques is critically dependent upon the

effectiveness of detecting errors. This activity is
• Duplication of a calculation can be effective in highly system dependent, so it is difficult to give

detecting a failure. A calculation is performed two general rules. The following suggestions are
or more times, and the results are compared. Two offered by Anderson (1985).
CPUs could be used, two communication paths or

two different algorithms. The technique can be -- Replication Checks. It may be possible to
duplicate a system action. The use of triply-

quite effective in many circumstances, although redundant hardware is an example. A
there are a few potential problems that must be calculation is carried out by at least three
avoided. Identical failures (caused, for example, separate computers and the results are
by design faults) often cannot be detected, and compared. If one result differs from the other
failures in the comparison unit may mask failures two, the idiosyncratic computer is assumed to
elsewhere or give a spurious indication of failure, have failed.

• Error detecting codes can be used to detect failures -- Timing Checks. If timing constraints are

and to detect errors caused by failures. Parity involved in system actions, it is useful to

checks, checksums, and cyclic codes are all check that they are satisfied. For example a

applicable. This technique is particularly time-out mechanism is frequently used in

applicable to communication lines, memory, and process-to-process communications.
external file data. -- Reversal Checks. A module is a function

from inputs to outputs. If this function is 1-1
• Watchdog timers can be used to help ensure that a

(has an inverse) it may be possible to
calculation has completed. The watchdog can be reproduce the inputs from the outputs and
implemented in hardware or software, but must be compare the result to the original inputs.
distinct from the operation being controlled. The

latter has a three-step algorithm: -- Coding Checks. Parity checks, checksums,
cyclic redundancy codes, and other schemes

1. Set timer, can be used to detect data corruption. This is

2. Carry out operation, particularly important for communication
lines and permanent file storage.

3. Upon successful completion, cancel timer.
-- Reasonableness Checks. In many cases the

If the time period elapses without the cancel, it is results of a calculation must fall within a

assumed that a failure has occurred, and the timing certain range in order to be valid. While such
process will interrupt the controlled operation, checks cannot guarantee correct results, they
Examples where this technique proves useful include can certainly reduce the probability of
detecting a process in an infinite loop, detecting a undetected failures.
process that has aborted prematurely, detecting that no
acknowledgment has been received from the recipient -- Structural Checks. In a network of
of a message, and detecting the failure of an I/O event cooperating processes it is frequently useful to
to complete. In many cases the timer is initialized at perform periodic checks to see which
the beginning of a cycle and then reinitialized each processes are still running.

time the cycle is re-started. Thus the time stays on until 2. Damage Assessment. Once an error has been
some time when, for whatever reason, it isn't detected it is necessary to discover the full extent

83 NUREG/CR-6101

Appendix

of the damage. Calculations carded out using a copy are lost. In some cases this is
latent error can spread the damage quite widely, sufficient.

Design techniques can be used to confine the * Restarting. When all else fails the
effect of an error, and are therefore quite useful, system can be re-started from an initial
One method is to carefully control the flow of known state.

information among the various components of the -- Error Compensation. This technique is

system. Note that these methods are almost possible if the erroneous state contains
impossible to retrofit to a system; this issue must enough redundancy to enable the delivery of
be considered at the design stage, an error-free service from the erroneous

3. Error Recovery. The final step is to eliminate all (internal) state.
errors from the system state. This is done by some
form of error recovery action. Two general A,1.2.3. Fault Treatment

approaches are available. It may be possible to continue operation after error
Forward Error Recovery. In a few cases a recovery. Although transient faults can possibly be
sufficient amount of correct state is available ignored, nontransient faults must be treated sooner or

to permit the errors to be eliminated. This is later. Nelson and Carroll (1987) suggest four stages to
quite system dependent. If a calculation was fault treatment.
performed on incorrect input (spreading the
damage), and the correct input can be 1. Fault Location and Confinement. One begins by
recovered, the calculation can simply be isolating the fault by means of diagnostic checking
redone. Forward error recovery can be quite (or some other technique). Whether or not the fault

cost effective when it is possible, is immediately repaired after it has been located, it
is generally wise to limit its effects as much as

Backward Error Recovery. If forward error possible so that the remainder of the system can be
recovery is not possible, one must restore the
system to a prior state that is known to be protected. Where high availability is required, the

component containing the fault may be replaced so
correct. There are three general categories of that operation may continue; in such cases the next
such techniques, and they are usually used in
combination, two steps take place off-line.

• Checkpointing. All (or a part) of the 2. Fault Diagnosis. Once the fault has been isolated
it will be necessary to uncover the exact cause.

correct system state is saved, usually in a This could be a hardware operational fault, a
disk file. software bug, a human mistake, or something else.

• Audit Trails. All changes that are made The technique to use depends on the source of the
to the system state are kept in a fault.
transaction log. If the system fails it can
be reset to the latest checkpoint (or to the 3. System Repair and Reconfiguration. If there is
initial correct state), and the audit trail sufficient redundancy this can take place during

can be used to bring the system state (possibly degraded) operation. Otherwise the
forward to a correct current state. This system must be stopped and repaired or

technique is frequently used in database reconfigured.

management systems (Date 1983) and 4. Continued Service. The repaired system is
can also be quite effective in application restored to a working condition and restarted.
systems. Careful planning is necessary.

• Recovery Cache. Instead of logging A.1.3. Software Fault Tolerance
every change to a system, it is possible to Techniques
incrementally copy only those portions of

the system state that are changed. The Software can be used to compensate for failures in
system can be restored only to the latest other portions of a computer system (such as hardware

incremental copy unless an audit trail is or operators) and to tolerate faults in the software
also kept. Without the audit trail all portion of the system. This section is devoted to the
transactions since the latest incremental latter problem. The assumption is that faults remain in

NUREG/CR-6101 84

Appendix

the software despite all the care taken in design, (Avizenis 1985; Bishop 1985; Kelly 1986; Saglietti
coding, and testing. 1986; Strigini 1985; Tso 1986).

Two techniques are discussed here that have been used N-version programming achieves redundancy through
in attempts to achieve software fault tolerance: n- the use of multiple versions. Failures are detected by
version programming and recovery blocks. In each comparing the results of the different versions. Error
case, the technique is described, advantages and location is done by assuming that versions whose
disadvantages are discussed, and explanations are results do not "win" the vote contain an error. No
given as to how the technique implements the general damage can occur so long as each version uses only
recovery process described in the previous section, local storage, and recovery is automatic. Faults are

assumed to be located in the versions that are in error;

It must be recognized that either of these techniques diagnosis and repair must be done off-line.
may actually decrease reliability, due both to the fact
that more software has been written and to the added N-version programming can be used to make decisions
complexity of the software system. For example, as to a course of action, but cannot be used to
suppose a fixed budget is available for testing. If three implement an action. That is, one would not want a
algorithms are written instead of one, then it is possible motor to be activated by multiple pieces of software
that only one-third as much testing will be done on before voting occurs.
each of the three. It is generally better to create a
software system that is sufficiently simple so the The voting mechanism is critical to n-version
design and code can be understood by competent programming, since failure here can be much more

people and declared safe; adding all the layers that are serious than failures of the individual versions. Three
claimed to add fault tolerance and self-diagnosis may types of faults must be considered: faulty
be self defeating, implementation of the voting module, acceptance of

incorrect results, and rejection of correct results.
Both techniques need watchdog timers to cope with Brilliant (1989) points out that comparing floating
errors (such as infinite loops) that cause an algorithm point calculations in a voting algorithm must be done
to fail to terminate. Both require a protection very carefully. Knight and Ammann (1991) give a
mechanism to avoid those errors caused when an error hypothetical (and plausible) example of a 3-version
in one module corrupts the global state in unanticipated system giving three different but acceptable answers,
ways. These may be required in any case, so may not which would complicate voting.
actually increase costs much.

There are a number of problems with this approach. To
The two techniques have been compared and analyzed begin with the cost of programming and program
in a number of articles: Abbott I990, Arlat 1990, maintenance is multiplied, since several versions are
Knight 1991, Laprie 1990, F_urtilo 1991, and Shimeall being written. Errors in the specification will not be
1991. detected (but ambiguities may be easier to f'md).

Additional design is required to prevent serious errors
A.1.3.1. N-Version Programming Technique in any of the versions fro_aacrashing the operating

system, and to synchronize the different tasks in order
In the n-Version Programming Technique (Pradhan to compare results. Czxle must also be written to do the
1986) a program specification is given to n different comparison. Finally, there is some reason to believe
programmers (or groups of programmers), who write that programmers _._oindeed ,,nake the same sorts of
the programs independently. Generally n must be at mistakes so that the assumption of independence is
least 3 (and should be odd). The basic premise is that incorrect (Knight 1985; Knight 1986; Knight 1990;
the errors that programmers make are independent; Brilliant 1990; Leveson 1990). This point is somewhat
consequently the multiple versions are unlikely to go controversial; if it proves to be true, it is a fatal flaw.
wrong in the same way. In execution, all versions are

executed concurrently and voting is used to select the Note that specification errors, voting errors,
preferred answer if there is disagreement. Whenever contamination of shared state data, and non-

possible different algorithms and programming independent design and coding errors are all common-
languages are used, in the belief that this will further mode failures.
reduce the likelihood of common errors. The technique
has been described in a series of papers from UCLA

85 NUREG/CR-6101

Appendix

N-version programming has the potential of increasing programmers is not required, but independence of the
the reliability of some aspects of a program, provided various fall-back algorithms and the checking routine
that development and testing time and funding are is required. There is an assumption that succeeding
increased to cover the extra costs. However, the algorithms are more likely to be simpler, and therefore

probability of common-mode failures must be factored more likely to be correct; since they are presumably
into any calculation of increased reliability, and one executed less frequently, this assumption must be
should show that the extra time and money couldn't be verified.
better spent improving a single version.

The critical aspect of this technique is the acceptance

A.1.3.2. Recovery Block Technique test. It must be possible to distinguish correct from
incorrect results or the technique cannot be used. It

The Recovery Block Technique uses redundancy in a may happen that the acceptance test is as complex as
different way (Cha 1986; Kim 1989; Pucci 1990). Here the algorithm, in which case little may be gained.
there is just one program, but it incorporates algorithms Indeed, an alternative algorithm may be the only
to redo code that proves to be in error. The program available acceptance test, which again leads to n-
consists of three parts. There is a primary procedure version programming.
that executes the algorithm. When it has finished, an

acceptance test is executed to judge the validity of the As discussed for n-version programming, recovery
result. If the result is judged to be valid that answer is blocks can be used to decide on a course of action, but

passed back as the correct answer. However if the not to implement the action. The problem here, though,
acceptance test judges the answer to be incorrect, an is not one of having multiple pieces of software
alternative routine is invoked. This alternative will attempting to control the same instrument. With
generally be simpler to code, but is likely to run slower recovery block, the failure of an acceptance test
or use a different algorithm. The idea can be nested, requires that the system state be returned to its
The effect is to have a program module structured as condition prior to the execution of the block. If
follows: external devices are being controlled, this implies that

they must be returned to their positions prior to the
answer = primary algorithm block, which may not be possible.
if answer is valid then return (answer)

else {answer - second algorithm Common-mode failures exist here as well:

if answer is valid then return specification errors, acceptance test errors,
(answer) contamination of common state data, and common

else {answer = third algorithm design and coding errors. Failures of this type will
..... invalidate the assumption that the various versions are

} independent.
}

Another problem with recovery block is the time
Usually only the fu'st algorithm will be required. One required to execute the back-up versions. In a hard
result of failure is to slow down the program's real-time system this time may not be available, or
execution, so this technique may not always be usable, execution timing may not be predictable The developer

must verify that all timing restrictions can be met under
In this technique, failures are detected by the all circumstances.
acceptance test. The location of the error is determined

by assuming that an algorithm is defective if the The conclusion is much the same as for n-version

acceptance test fails for that algorithm. No damage can programming, since the costs and benefits are
occur provided that the defective algorithm uses only approximately the same. There is little reason to
local storage, and recovery is done by trying a different choose one over the other, except that the recovery

algorithm. Faults are assumed to be located in the block method probably requires less execution time
versions in error; diagnosis and repair must be done when errors are not found. This may be balanced by
off-line, the increase in execution time when an acceptancetest

is failed.
Many of the criticisms offered for the n-Version
Programming Technique apply here as well, in one
form or another. The independence assumption among

NUREG/CR-6101 86

Appendix

A.2. Reliability and Safety Analysis analysis, and must be performed as part of that larger

and Modeling Techniques analysis.

Section A. 1 presented some ideas for developing The three techniques considered in Sections A.2.2
software that must have unusually high reliability, This through A.2.4 all involve hazards, triggering events,

section examines a variety of techniques for and system components. They differ in emphasis, and
understanding the reliability and safety of such all are generally required, in order to reduce the

software. These techniques are variously referred to as chances of missing important aspects of the system.
"analyses" or "models," but this distinction is
somewhat pedantic. An analysis (such as fault tree Fault tree analysis (FTA) and event tree analysis
analysis) is carried out by creating a model (the fault (ETA) were developed for use in the aerospace
tree) of a system, and then using that model to industry during the 1950s and 1960s. The techniques
calculate properties of interest, such as reliability, are complementary. FTA starts by assuming that some
Likewise, a model (such as a Petri net model) may be undesirable event (such as a particular type of

created for a system in order to analyze some property accident) has occurred, and works backward
(such as reachability), attempting to uncover potential causes of the event.

ETA assumes that an initiating event (such as a fault)

Many techniques have been created for analyzing the has occurred and works forward, tracing the effects of
reliability and safety of physical systems. Their that event. In both cases, the intent is to calculate the
extension to software is somewhat problematical for probability that consequences such as loss of life or
two reasons. First, software faults are design faults, property damage may occur. Failure modes and effects
while most well-known analysis techniques are analysis (FMEA) starts with the system components
directed primarily at operational faults (equipment and investigates the effect of a failed component on the
breakage or human error). Second, software is rest of the system. FMEA and ETA are related.
generally much more complex than physical systems,
so the methods may be very difficult to use when Modeling generally requires computer assistance. A
applied to software. However, the techniques are well survey of software tools that can be used to evaluate
understood, and there appear to be few alternatives, reliability, availability and serviceability can be found

in Johnson 1988. See also Bavuso 1987, Berg 1986,

The discussion begins by examining an elementary Feo 1986, Goyal 1986, Mainini 1990, Mulazzani 1985,
technique known as reliability block diagrams, It then Sahner 1987, Sahner 1987a, and Stiffler 1986.
moves to three classical techniques for analyzing
system safety. Many models can be converted to A.2.1. Reliability Block Diagrams
Markov models, so this is discussed next. The section

Reliability block diagrams are easy to construct and
ends with an introduction to Petri nets, a modeling analyze, and are completely adequate for many cases
technique specifically developed for software. The involving the operational reliability of simple systems.
descriptions given here are necessarily simplified, and For a more complete discussion, see Bishop 1990,
the reader will need to consult the references given in Chae 1986, Dhillon 1983, Frankel 1984, Kim 1989,
each section for more detail. Many more techniques are Lloyd 1977, Pages 1986, and Phillis 1986.
available; see Bishop 1990 for brief summaries of

many of them. One interesting approach not discussed Consider a system S composed of n components

here is that of formal proofs of correctness; see C1, C2 C,,. Each component will continue to
Atkinson 1991, Bishop 1990, Bloomfield 1991, and
Linger 1979 for more information, operate until it fails; repair is not carried out. The

question is: what is the reliability of the entire system?

Safety analysis must be done for a system as a whole,

not just for software. The word system includes Suppose that component Cj has constant failure rate

computer hardware, software and operators; equipment _,/(and, therefore, a mttf of 1/ Aj). The reliability of

being controlled by the computer system; system the component at time t is given by R./(t) = e -x/. For
operators, users, and customers; other equipment; and example, a computer system might consist of a CPU
(in some cases) the environment within which the

with a failure rate of .23 (per thousand hours), a
system operates. This implies that software safety
analysis will be only a portion of a larger safety memory with a failure rate of .17, a communication

line with a failure rate of .68 and an application

87 NUREG/CR-6101

Appendix

program with a failure rate of. 11. For these same). Figure A-3 is interpreted to mean that failure of

components, the mean time to failure is 6 months, 8 the system will occur if the CPU fails, if the memory
fails, if both communication lines fail, or if the

months, 2 months, and 12 months, respectively, application prograni fails. Failures in real systems are
sometimes more complex than can be represented byIn the reliability block diagram, blocks represent

components. These are connected together to represent simply building up diagrams from series and parallel
failure dependencies. If the failure of any of a set of parts. Figure A-4 gives an example.
components will cause the system to fail, a series
connection is appropriate. If the system will fail only if Analysis of a reliability block diagram is, in the most
all components fail, a parallel connection is general cases, rather complex. However, if the graph
appropriate. More complex topologies are also can be constructed from series and parallel
possible, components, the solution is quite easy.

In the example, this system will fail if any of the Toe advantages of the reliability block diagram are its
components fail. Hence, a series solution is simplicity and the fact that failure rates can frequently
appropriate, as shown in Figure A-1. be calculated rather simply. The reliability block

diagram is frequently similar to the system block
The failure rate for a series system is equal to the sum diagram. Severe limitations are the assumptions that
of the failure rates of the components: failures of components are statistically independent,

and that failure rates are constant over time. Complex

nonrepairable systems are better analyzed using a faultA s = ,;t,; tree, while analysis of repairable systems requires the
i=1 use of a Markov model.

For the example, the failure rate is 1.19 per thousand

hours, giving a mttf of 840 hours (1.15 months). Notice A.2.2. Faul t Tree Analysis
that this is significantly smaller than the mtff for the
least reliable component, the communication line. The use of fault tree models has developed out of the

missile, space, and nuclear power industries.
The failure rate for a parallel system is more complex: Additional discussion on general fault tree analysis

(FI'A) and its application to computer software can be

1__ found in Altschul 1987, Belli 1990, Bishop 1990,
- Bowman 1991, Connolly 1989, Dhillon 1983, Frankel

_s -- 1984, Guarro 1991, Hansen 1989, Henley 1985,
Suppose the _m,-.aan/,cation line is made dually or Kandel 1988, Leveson 1983, McCormick 1981, and

triply redundant. Communication line failure rates are Pages 1986.
now .68, .34. ',a'_d.23, respectively, yielding a mttf of 2

months, " r,i_ms,and 6 months. The reliability block One begins by selecting an undesirable event, such as
diagram t ,,lst ',he communication line portion is the failure of the computer system. In more complex
shown in : lgure A-2.

systems that use computers as subsystems, the failure
could involve portions of the larger reactor system as

If the dually redundant communication line is now well.
inserted into the original system reliability block

diagram, Figure A-3 results. The fault tree is developed by successively breaking

This improves the failure rate to .85 per thousand down events into lower-level events that generate the
upper-level event; the tree is an extended form of

hours, for a mttf of 1.6 months. Making the AND-OR tree, shown in Figure A-5.
communication line triply redundant gives a failure

rate of .74 per thousand hours, improving the mtff to This diagram means that event E1 occurs only if both
1.85 months, of events E2 and E3 occur. E2 can occur if either of E4

The comlecting lines in a reliability block diagram or E5 occur. Event E3 will occur if any two of E6, E7,
reflect failure dependencies, not any form of and E8 occur. Fault trees are generally constructed
information transfer (although these are sometimes the using AND, OR, and R-of-N combinations.

NUREG/CR-6101 88

Appendix

i ii i i i ,,,

CPU I-'-"-" Memory Comm. ApplnLiam Program

.23 .17 .68 .11

Figure A-I. Reliability Block Diagram of a Simple System

Comm.
Line

,.. ,,

Comm.
Line

Comm.
Line

Comm.
Line

Comm.
Line

Comm.
Line

Figure A-2. Reliability Block Diagram of Single, Duplex, and Triplex Communication Line

89 NUREG/CR-6101

ululllll--I1111
iIILl_

!IIIi_llIll_IIIII__o

Appendix

q omm.

Line

CPU Memory Appln
Program

q Comm.
.23 .17 Line .11

Figure A-3. Reliability Block Diagram of Simple System with Duplexed Communication Line

I t E I,

I I I
Figure A-4. Reliability Block Diagram that Cannot Be Constructed from Serial and Paralh.,!Parts

_;or _1_,1
Figure A-5. Simple Fault Tree

NUREG/CR-6101 90

Appendix

The fault tree is expanded "downwards" until events i I

are reached whose probability can be given directly. [E1 I
Note the assumption that the occurrence o Fthe events
at the bottom of the tree are mutually independent. In
many cases, the actual probabilities of these evenLs are

estimated (or simply guessed); this is particularly true l I
if they represent human failures, uncontrollable or
external events, software failures or the like. In

general, the same event may occur several times at the [_ I _E3]

lowest level if it can contribute to the main failure in I']
several ways. 1::9

The fault tree can be evaluated from bottom to top.

Consider the tree shown in Figure A-6, in which the Figure A-7. OR Node Evaluation in a Fault Tree

lowest level events are not replicated. Suppose Connolly gives an example of a software fault tree for
pj (t)denotes the probability that event Ej will occur a patient monitoring system. A portion of the tree is

by time t, and an AND node is to be evaluated, shown in Figure A-8, modified from Connolly 1989.
The various evenLs in the tree are described as follows:

Here, p_ (t) = P2 (t). P3(t); probabilities at AND
El. The patient monitor incorrectly reports the

nodes multiply. If there is an OR node, as shown in patient status.

Figure A-7, have E2. Faulty data algorithms

Pl (t) = 1 -(1- P2 (t)). (1 - P3(t)). Generalization E3. Faulty patient data detection and
to AND and OR nodes with more than two events reporting algorithms

should be clear. An R-of-N node represents a Boolean E5. Failure to accurately report

combination of AND and OR nodes, so its evaluation patient data over specified input

is straightforward, though tedious, range.
E51. ECG accuracy.

In practice, fault trees tend to have thousands of basic E52. Pressure accuracy.

events, and replication of basic events is common. E53. Temperature accuracy.

Analysis of such a tree requires computer assistance. E54. Sat2 accuracy.

Some minor generalizations of fault trees are possible; E55. NIBP accuracy.
in particular, common mode failures can be handled
with some difficulty. E56. CO accuracy.

E57. ECG resp accuracy.

E6. Failure to update patient data

values within specified response time

Ii::11 E61. ECG response time.E62. Pressure response time.

E63. Temperature response time.

E64. Sat2 response time.

J] E65. NIBP response time.

and E66. CO response time.

E67. ECG resp response time.
E4. Faulty alarm detection and reporting

E7. Failure of each supported
parameter to alarm within specified

Figurl_ A..6. AND Node Evaluation limit.
_,na Fault Tree E71. ECG alarm limit.

91 NUREG/CR-6101

Appendix

E72. Pressure alarm limit. Fault trees provide a systematic and widely-used

E73. Temperature alarm limit, method for analyzing failures. Provided that one has
E74. SaO2 alarm limit, accurate knowledge of the probabilities of the basic

events, calculation of the probability of the top event isE75. NIBP alarm limit.
straightforward. Computer programs exist that can do

E76. CO alarm limit, this computation.
E77. ECG resp alarm limit.

ES. Failure of each supported On the other hand, fault trees tend to become very
parameter to alarm within specified large, particularly for software. Fault trees do not
time. handle dynamic time-dependent events very well, and

E81. ECG alarm time. may not reveal the consequences of events occurring in

E82. Pressure alarm time. the middle of the tree.

E83. Temperature alarm time.
E84. SaO2 alarm time.

E85. NIBP alarm time.

E86. CO alarm time.

E8 J. ECG resp alarm time.

Figure A-8. Example of a Software Fault Tree

NUREG/CR-6101 92

Appendix

A.2.3. Event Tree Analysis Some of the terminal events will constitute system

Event tree,s are similar to fault trees, except that an failures, such as accidents. The probability of ending
event trerz is used to analyze the consequences of an up in a system failure state can be calculated by adding
event instead of its cause. The author has not seen any up the probabilities of the events in the set. Suppose

literature on the use of event trees for software. Brief E 4, E 6 and Eg represent accidents. Then the

general descriptions are given in Bishop 1990 and probability of having an accident is just
McCormick 1981. The discussion here is

correspondingly brief, prob[acc ide nt] = prob[E4] + prob[E 6] + prob[Eg]

To construct an event tree, an initiating event is = S O • F1 + F 0 . F 2 + F 0 •S 2 •F 5
selected in some system component, such as a wire

breaking, an operator giving an incorrect command, or Event trees are easy to draw and easy to understand.
a software bug being executed. The component may However, it is difficult to take different failure modes
react in a way that will be considered successful or into account, particularly those involving dependent
unsuccessful. The system reacts by entering a success failures, common mode failures and subsystem
state or a failure state. This new state may itself cause interactions. This should not be the only analysis
a system reaction that can again be labeled as success method used.

or failure. Some states may have no successors if no
further response to the initiating event can occur. For A.2.4. Failure Modes and Effects Analysis
example, complete recovery from the fault or the

Failure modes and effects analysis (FMEA), and its
occurrence of an accident may have no successor extension to failure modes, effects and criticality

states, analysis (FMECA), are used to analyze the
consequences of component failures. They are

This results in a tree called the event tree. An example frequently performed during the design of a system in
is shown in Figure A-9, where the Ej are events, Sj is order to identify components that require extra care in
the probability that the system will react successfully design and construction. The technique can also be

to Ej and Fj is the probability that the system will used to identify portions of a system in which redesign

react unsuccessfully. Note that Sj + Fj = 1. can yield significantly improved reliability and safety.
The author has not seen either of these techniques

The probability of the f'mal outcomes can be calculated suggested specifically for software. For more

by multiplying the probabilities of the path from E 0 to information, see Bishop 1990, Frankel 1984, Kara-

the terminal event. For example, Zaitri 1991, McCormick 1981, McKinney 1991, and

prob[ET] = Fo "$2 "$5 Wei 1991.

SO [_ FO

S,____F,

Figure A-9. Simple Event Tree

93 NUREG/CR-6101

Appendix

FMECA is largely a qualitative analysis procedure, b. Use a consistent coding system so that each
The results will be a worksheet documenting failure component can be uniquely identified. This is

modes, their effects and proposed corrective actions, typically done by numbers separated by
Wei suggests the following procedure, decimal points: for example, a motor

assembly could be number 3.4; the motor in
1. Define the ground rules. The following items the assembly, 3.4.5; and a fuse in the motor,

should be considered: 3.4.5.2.

a. Determine the level of detail to which c. Construct a functional block diagram (FBD)

components will be divided. During the early of the system and a reliability block diagram.
design phase, not much detail will be known, These illustrate the flow of materials through
so the analysis will be carried out at a the system, the flow of information through
relatively high level. Later on, when more the system, system interfaces,
detail is known about the structure of the interrelationships and interdependencies of

system, the FMECA can be redone at the new the various components.
level. At some point, software may become a d. Identify potential failure modes for all
system component, components and interfaces. Define the effects

b. Define the conditions under which the system of such failures on the operation of the
will operate. For electrical and mechanical system.

equipment, this would include operating e. Classify each failure in terms of the severity
temperature, humidity, and cleanliness. For of the worst potential consequences of the
software it could include the computer system failure and the probability of the failure
on which it will run, I/O equipment, occurring.
communication equipment, and operating
systems and compilers, f. Calculate the criticality factor for each failure,

as the product of the probability of failure and
c. Define extraordinary environmental the severity of the consequences. Furtherconditions that must be considered. For

analysis using fault trees, event trees, or other
hardware, this includes water, wind, fire, and methods may be necessary for failures with
earthquake. For software, this might be a

large criticality factors.hardware failure, such as a stuck bit in a

register, g. Identify changes to the design that can
eliminate the failure or control the risk.

d. Define successful operation. That is, how will
one know that the system is operating h. Identify the effects of such design changes,
correctly? and make recommendations as to carrying out

the changes.e. Define failure. That is, how will one know

that the system is performing incorrectly? i. Document the entire analysis, and discuss all
problems that could not be resolved.

2. Prepare the FMECA plan. Wei states that the
following should be included in the plan: Severity may be determined by a four-level
worksheet formats, ground rules (discussed classification scheme. Each failure mode is assigned a
above), analysis assumptions, identification of the number from 4 to 1, according to the following list.

lowest level components, methods of coding, a
description of the system, and definitions of 4 Catastrophic failures can lead to loss of life,
failures, severe reduction of the system's potential

3. Execute the plan. The following steps will be output, or failures of high level components.
carried out. 3 Critical failures can lead to personal injury,

severe reduction in the output of a portion of
a. Determine the breakdown of the system the system, or serious degradation of systemstructure, and document it. This can be done

using a Functional Level Breakdown performance.
Structure (FLBS), Work Breakdown Structure 2 Minor (or marginal) failures cause some
(WBS), or any equivalent method, degradation of system performance or output,

but they cannot lead to death or injury.

NUREG/CR-6101 94

Appendix

1 Insignificant (safe) failures have negligible Straightforward block diagram models and fault tree
effect on the system's performance or output, models can be evaluated using Boolean algebra, as

described earlier. More complex models are generally
The probability of occurrence factor may also be translated into Markov models first. Systems whose
defined using a scale. Again, assign a number chosen components are repairable and systems where
from the following list, or assign the estimated component failures have interactions are usually
probability of failure, modeled directly by Markov models, with cycles. A

number of examples are given here.
5 Frequent failures, defined as a single failure

mode probability during an operating time Throughout this section, a hardware system S with
interval that is greater than 0.20. components C1, C2..... C,, is considered; there may be

4 Reasonable failures, defined as a single failure more than one instance of each component.

mode probability between 0.10 and 0.20. Component Cj has constant failure rate ,_,i and

3 Occasional failures, clef'mealas a single failure constant repair rate [tj.
mode probability between 0.01 and 0.10.

Begin with a system that contains three CPUs. Only
2 Remote failures, defined as a single failure one is required for operation; the other two provide

mode probability between 0.001 and 0.01. redundancy. Only one repair station is available, so

1 Extremely unlikely failures, defined as a even if more than one CPU is down, repairs happen
single failure mode probability less than one at a time. If state k is used to mean "k CPUs are
0.001. operating," the Markov model is shown in Figure

A-10.
FMEA and FMECA are systematic methods that are

widely used to analyze failures and to discover the top This has a striking resemblance to a performance
events for fault trees. They can be used early in the model of a single queue with three servers and limited
system design stage, and can thus affect the design in queue size and can be solved in the same way to yield
such a way as to reduce hazards. This analysis does the probabilities of being in each of the four states
tend to be quite expensive and time consuming, (Sauer 1981). The interpretation is that the system is
although that must be weighed against the operational except in state 0.
consequences of accidents and other failures that might

be missed. Now, suppose two memories are added to the system.

A.2.5. Markov Models Failure rates are _c and _,_ for the CPUs and

memories, respectively, and similar notation is used for

Markov models are used to capture the idea of system repair rates. The label "k,l" for states, means "k CPUs
state, and a probabilistic transition between states.

and l memories are operational." The system is
Here, the state represents knowledge of which
components are operational and which are being operational except in states "0,0," "0,i," and "j,0." The
repaired (if any). See Aldemir 1987, Amer 1987, diagram is given in Figure A-11.
Bishop 1990, Bobbio 1986, Cheung 1980, Geist 1986,
Pages 1986, Siegrist 1988, Siegrist 1988a, and Smith
1988 for a more complete introduction.

3_ 2X ;_

Figure A-IO. A Simple Markov Model of a System with Three CPUs

95 NUREG/CR-6101

Appendix

2Km Km

_rn _m

Figure A-11. Markov Model of a System with CPUs and Memories

It is clearly possible to model the case where failure transition period, the failure rate will return to the
rates vary with circumstances. In the first example normal value. Transient failures frequently show a
(with three CPUs), it might happen that each CPU has similar pattern: a memory unit will show no failures for
a failure rate of k when all three are available, K' if two months; then a day with hundreds of transient faults

are available and _," if only one is available. This might will occur; the next day, the situation is back to
reflect a situation where the load is shared among all normal, even though no repair was done. Such

operational CPUs; increased load causes an increased situations cannot be modeled with reliability block
failure rate for some reason: k < _,' < k". The diagram diagrams or fault trees, but can easily be modeled

is modified as shown in Figure A-12. using Markov chains. The next example shows four
slates, modeling the memory problem. State 1 is the

Failure rates in computer systems vary over time. In normal operational slate and slate 0 represents a "hard"
particular, failures tend to be more frequent memory failure. The failure rate from slate 1 is _, and
immediately after preventive maintenance; after this the memory lepair rate from slate 0 is kt.

NUREG/CR-6101 96

Appendix

There is, however, a very small chance of changing to A.2,6. Petri Net Models
state 3, where frequent transient memory errors are
possible. Once there, memory faults occur with rate K' A Petri net is an abstract formal model of information

flow. Petri nets are used to analyze the flow of>> X. Since these are transient, "repair" happens very
information and control in systems, particularlyrapidly (within milliseconds). Eventually the system

returns to state 1 and normality resumes. Note that hard systems that may exhibit asynchronous and concurrent
failures can also occur in state 3; it is assumed that the activities. The major use of Petri nets has been the

process of repairing these will abort the period of modeling of systems of events in which it is possible
transient faults, so a transition is made to state 0. Other for some events to occur concurrently, but there are

models are possible, of course. See Figure A-13. constraints on the concurrence, precedence, or
frequency of these occurrences. One application, for

This technique can be used to fit a variety of problems, example, is to analyze resource usage in
ranging from simple to complex. Parametric studies multiprogramming systems. Extensions have been
can be carried out, which can be used to uncover the created to permit performance analysis, and to model

impacts of different system configurations, different time in computer systems. See Peterson 1977 for a
activity rates, and different repair strategies. However, general introduction to Petri nets, and the foUowing for
large Markov models are difficult to solve analytically, applications to reliability and safety: Bishop 1990,
so simulation becomes necessary. Most Markov Geist 1986, Hansen 1989, Hura 1988, Jorgenson 1989,

Kohda 1991, Leveson 1987, Ostroff 1989, Shieh 1989.models of real systems have very many states, so are

large. Solving Markov models usually requires much
computer assistance, and computer programs do exist
to help.

3_ 2k' K"

i

Figure A-12. Simple Markov Model with Varying Failure Rates

Figure A-13. Markov Model of a Simple System with Transient Faults

97 NUREG/CR-6101
i

Appendix

A Petri net is a marked bipartite directed graph. The some of the previous conditions to cease holding, and

graph contains two types of nodes: circles (called causing other conditions to begin to hold.

places) and bars (called transitions). These nodes,
For example, suppose the following two conditions

places, and transitions are connected by directed arcs hold: a disk drive is needed and a disk drive is

from places to transitions and from transitions to available. This might cause the event allocate the disk
places. If an arc is directed from node i to nodej (one drive to occur. The occurrence of this event results in

of which is a place and the other of which is a the termination of the condition a disk drive is

transition), then i is an input toj andj is an output of i. available and the beginning of the event no disk drive
is available.

In Figure A-14, place Pl is an input to transition t2,

while places P2 and P3 are outputs of transition t2.. The Petri net models conditions by places and events
by transitions. The occurrence of an event is modeled

The execution of a Petri net is controlled by the by the firing of the corresponding transition.
position and movement of markers (called tokens) in

the net. Tokens, indicated by black dots, reside in the Another example involves the mutual exclusion

circles representing the places of the net. A Petri net problem. This is a problem of enforcing coordination
with tokens is a marked Petri net. Figure A- 15 shows of processes in such a way that particular sections of
an example of a marked Petri net; it is just the former code called critical regions, one in each process, are
example, with a marking added, mutually excluded in time. That is, if Process 1 is

executing its critical region, then Process 2 may not
The use of tokens is subject to certain rules. Tokens are begin the critical region until Process 1 has left its

moved by the firing of the transitions of the net. A critical region.

transition is enabled for firing only if there is at least

one token in each of its input places. The transition This problem can easily be solved by using P and V
synchronization operations. They operate on

fires by removing one token from each input place, anO
semaphores, and P and V are the only instructions

placing a new token in each output place. In Figure A- allowed to execute on a semaphore. A semaphore can
15, transition t 2 is the only one enabled. If it fires, be thought of as a variable that takes integer values. P
Figure A-16 results, and V are defined as follows; each of these definitions

describes a primitive instruction, which is carried out

The result of the firing is to remove the token from pl by the computer without interruption.

and add tokens to P2 and P3. As a consequence, t_, P(S) wait until S > 0; then set S = S--1
t3 and t5 are enabled. If tx and then t2 now fire,

notice that place P3 will have two tokens. As a result, V(S) S = S + 1

t5 may now fire, followed by t3. Notice that a process executing a P instruction must
wait until the semaphore is positive before it can

On the other hand, if t3 fires, only t_ remains enabled, decrement it and continue. Code for both processes
t5 cannot f'tre, since the token in its input place P3 has looks like this:

been used up. P(mutex)

This brief discussion encompasses the components of execute critical region

basic Petri nets. V(mutex)

Consider a computer system that permits concurrent or where mutex is a global mutual exclusion semaphore
parallel events to occur. Petri nets can be used to model used by both processes.
(among other things) two important aspects of such
systems: events and conditions. In this view, certain To model this as a Petri net, consider the semaphore to
conditions will hold in the system at any moment in be a place. A V operation places a token in the
time. The fact that these conditions hold may cause the semaphore; a P operation removes a token. The
occurrence of certain events. The occurrence of these solution to the mutual exclusion problem is shown in

events may change the state of the system, causing Figure A-17.

NUREG/CR-6101 98

Appendix

pl p4

I
t6

Figure A-14. An Unmarked Petri Net

pl p4

p2 I p5,, t5

t6

Figure A-15. Example of a Marked Petri Net

99 NUREG/CR-6101

Appendix

pl p4

p2 _ p5, • t5

p6 /

I
t6

Figure A-16. The Result of Firing Figure A-15

x
p2 _) p4

Figure A-17. A Petri Net for the Mutual Exclusion Problem

NUREG/CR-6101 100

Appendix

Finally, Figure A-18 shows an example of a Petri net This standard reliability model is satisfactory for
that models a computer-controlled railroad crossing systems whose components remain unchanged for long

gate, taken from Leveson 1987. Notice that Pl fires as periods of time, so sufficient faults occur to permit a
the train approaches the crossing. At this point, P2 and failure rate to be determined. It does not apply to
P5 are marked, so transitions t2 and t4 may fire. If t 2 systems that are undergoing design changes. In many
fires first, the train is located within the crossing and cases, faults in software systems are fLxed as they are
the gate is still up, which is a hazard, discovered, so there is never enough experience to

directly calculate a failure rate.
Petri nets can be very useful in modeling system state
changes that are caused by triggering events. They can From an application viewpoint, software and hardware
be analyzed to show the presence or absence of safety faults are different in kind. As a general rule, all
properties, such as hazardous conditions, system hardware faults that users see are operational or
deadlock, or unreachable states. Concurrency control transient in nature. All application software faults, on
and resource allocation can be modeled, and mixed the other hand, are design faults. When a system failure

process, computer hardware, computer software, and is traced to a software fault (bug), the software is
operator components can be included in the model, repaired (the bug is fixed). In a sense, ",hisresults in a
Extensions exist that incorporate timing, both new program--certainly the failure rate has changed.
deterministic and stocha.,_tic As a consequence, too few faults are executed to

permit a failure rate to be calculated before the

A.3. Reliability Growth Models program is changed.

The models considered in the last section all implicitly Consider a software system S. Failures occur at

assume that the system being modeled doesn't change, execution times t 1,t 2..... t,. After each failure the
If, for example, the failure rate of a component is fault that caused the failure may be repaired; thus,
changed by replacing it with a new model, the there is a sequence of programs S = S o, S 1..... S,,

reliability model must be re-evaluated, where Sj represents a modification of Sj 1,
1< j < n If the bug couldn t be found be'fore another

failure occurs, it could happen that S) = S)_ 1.

pproach

t4 p9

p2
A _fore P

crossing

t2 p7 t6 / plY-up "_
p3
within t7

crossing
13

(_ t5 pl0 p12 - down

Railroad
pe Crossingp4

past Gate

Train Computer

Figure A-18. Petri Net for a Railroad Crossing

101 NUREG/CR-6101

I ' '

Appendix

A technique was developed several decades ago in the A reliability growth model can be used on data such as
aerospace industry for modeling hardware reliability shown in the figure to predict future failure rates from
during design and test. Such a model is called a past behavior of the program, even when the program
Reliabili_' Growth Model. A component is tested for a is continually changing as bugs are fixed. There are at
period of time, during which failures occur. These least three important applications of an estimate of
failures lead to modifications to the design or future failure rates.
manufacture of the component; the new version thea
goes back into test. This cycle is continued until design • As a general rule, the testing phase of a software
objectives are met. A modification of this technique project continues until personnel or money are
seems to work quite well in modeling software (which, exhausted. This is not exactly a scientific way to
in a sense, never leaves the test phase), determine when to stop testing. As an alternative,

testing can continue until the predicted future
Software reliability growth is a very active research failure rate has decreased to a level specified
area, and no attempt is made here to list all models that before testing begins. Indeed, this was an original
have been described. The book by Musa 0Vlusa 1987) motivation for the development of reliability
is an excellent starting point for additional information, growth models.

Figure A-19 shows some typical failure data (taken When used for this purpose, it is important to note that
the testing environment is generally quite different

from Musa 1987, p. 305) of a program running in a from the production environment. Since testing is
user environment. In spite of the random fluctuations intended to force failures, the failure rate predicted

shown by the data (pluses in the figure), it seems clear during testing should be much higher than the actual
that the program is getting better--the time between failure rate that will be seen in production.
failures appears to be increasing. This is confirmed by
the solid curve, showing a five point moving average.

7000

__ 6000 +

+ +

= 5000

4000 -t-
a_

 ooo + + ++
2000

= -+ _ + + +

+ + + .a.A.*+A.. +

4- . + + +-1- ,-I-j
-.._ **

.-_P, __T'-_."r .-I-.-,; -I- "j. ,,
0 -'...., . _+..,.+___T.-I..+ I

0 20 40 60 80 100 120 140

Failure Number

Figure A-19. Execution Time Between Successive Failures of an Actual System

NUREG/CR-6101 102

Appendix

• Once into production, the failure rate can be A.3.1. Duane Model
monitored. Most software is maintained and

enhanced during its lifetime; monitoring failure The original reliability growth model proposed by
rates can be used to judge the quality of such Duane in 1964 suggests that the failure rate at time t

efforts. The process of modifying software can be given by _, (t) = Ct- t- t _-1 (Healey 1987).

inevitably perturbs the program's structure. Knowing the times ti that the In'st m failures occur

Eventually, this decreases quality to the point that permits maximum likelihood estimates of ct and 13to
failures occur faster than they can be fixed.
Monitoring the failure rate over time can help be calculated:

m-I
predict this point, in time for management to make
plans to replace the program, fl = m + _ In(t,, / ti)

i=1

• Some types of real world systems have (or should m
have) strict legal requirements on failure rates. Ct = ---ff
Nuclear reactor control systems are an example. If tm
a control system is part of the larger system, the Healey pointed out that the Duane model is sensitive to
failure rate for the entire system will require early failures, and suggested a recursive procedure:

knowledge of the failure rate of the computer _'¢4 = 0.25. (t 1 + t 2 + t3 + t4)
portion. However, note that reliability growth

modeling is not a substitute for actual analysis, ?'m = (1 - W)" ?'m-1 + W" (t m - tin_1),
review and testing. The technique can be used to
predict when the software will be ready for for m > 4,
acceptance testing, and can be used to monitor the yielding an estimate of the failure rate as
progress up to that stale. Acceptance testing will 1
still be required if an accurate reliability figure is _"(tm) =
wanted. 7_

Healey recommends a weight of w = 0.25.
There is an important limitation to this technique when

very high reliability is required. As Buffer points out, Using these two methods of calculating a failure rate
reliability growth techniques cannot be used if failure (there are others) on the data of Figure A-19 gives the
rates of less than about 10-4 failures per hour are estimates of failure rate shown in Table A-1.
required (Buffer 1991). For instance, six programs

were examined using data derived from reliability A.3.2. Musa Model
growth testing. These programs would require from
20--65 years of testing to demonstrate failure rates of This model, developed by Musa in 1975, begins by
10-11 assuming that all software faults are equally likely to

occur and are statistically independent. After each
A great variety of reliability growth models have been failure the cause is determined and the software is

developed. These vary according to the basic repaired. Execution does not begin again until after this
assumptions of the specific model; for example, the has happened. Since execution time is the time
functional form of the failure intensity. Choice of a parameter being used, this means that bug fixing it, the

specific model will depend, of course, on the particular model happens instantaneously. It is assumed that n,_
objectives of the modeling effort. Once this is done, new bugs are added during the repair process and that
and failure data is collected over time, the model can all bugs are equally likely to occur.
be used to calculate a point or interval estimate of the
failure rate. This is done periodically--say, after every Consequently, the failure rate takes on an exponential
tenth failure, form:

_,(t)=a.n.e -°"
In the remainder of this section, a few of the early
software reliability growth models will be described, where the software originally had n bugs and ot is a
See Musa 1987 for more information, parameter relating to the failure rate of a single fault.

Integrating gives the number of bugs found by time t:

re(t) = n. (1- e -=t)

103 NUREG/CR-6101

Appendix

Table A-1. Failure Rate Calculation

Failure Time

Number (hh:mm:ss) Duane Healey
i

10 9:31 0.014421 0.015750

20 33:06 0.006730 0.006881

30 1:24:09 0.003369 0.002903

40 1:46:20 0.004079 0.004414

50 2:48:09 0.003004 0.001733

60 3:29:19 0.003028 0.002692

70 4:29:45 0.002726 0.002727

80 5:42:47 0.002409 0.001711

90 8:09:21 0.001734 0.001325

100 11:40:15 0.001236 0.000885

110 13:43:36 0.001168 0.001286

120 15:41:25 0.001133 0.001615

130 20:39:24 0.000876 0.000407
i i

The parameters can be estimated in standard ways after where et and _ are parameters to be determined by
a number of bugs have been found and corrected, maximum likelihood estimates. The expected number

of failures by time t is given by

This model has been rep°rted t° give g°°d results" The (fl._.+t_i + t /
primary difficulty is the assumption that all bugs are m(t) = (n - i). a. In
equally likely to occur. This seems unreasonable. In ti

practice some bugs seem to occur much more often Notice that this function has a step after each failure;
than others; indeed the most common bugs will the failure rate decreases abruptly after each bug is

normally be seen and fixed first. This line of reasoning found. This is supposed to reflect the fact that more
gave rise to the next model, common bugs are found In'st. It has been reported that

A.3.3. Littlewood Model this model gives good results.

A.3.4. Musa-Okumoto Model
Suppose that the program has n faults when testing

begins. Each of these faults will cause a failure after This model (also known as the logarithmic Poisson

some period of time that is distributed exponentially execution time model) is like the Littlewood model in

and independently from any other fault. Instantaneous that the failure rate function decreases exponentially
with the number of failures experienced. The basicdebugging is assumed. Assume that failures occur at
assumptions are the same as those for the Littlewood

times tl, t2.... ,t i. After the ith bug has been found, model. The result is:
Littlewood gives a fail, re rate of O_

X(t) =
_l,(t) = (n - i). a for ti < t < ti+1 Ct .ft. t + 1

fl + ti + t where a is the initial failure rate and _ is a parameter.
The expected number of failures by time t is given by

NUREG/CR-6101 104

Appendix

1 There is also some kind of assumption made about
re(t) _. In(o:. ft. t + 1) demands. For a protection system, the steady state

/.,,
demand requires no action on the part of the system. It

As is indicated by the large variety of models and the is only when things go wrong that important parts of
number of technical papers that are being published, the code are actuated---parts that were never used in
software reliability models are not as mature as the normal operation. So the models need to be augmented
models considered in Appendix A.2. They do appear to take this difference in execution frequency into
very promising, and the need is certainly great. It account.
appears that the models that have been developed so

far are well worth using as part of the software Different kinds of models can be used to solve parts of
development process, provided that they are not used a large problem. For example, a complex problem
to claim that the software system is sufficiently reliable involving repairable and nonrepairable components
for a safety-related application, might be modeled using a Markov technique. The

nonrepairable portion might consist of a submodel
One problem with all the models discussed is that they analyzed by a reliability block diagram. The
assume the number of faults in the software is fixed, application program portion of that could, in turn, by
although the number is not necessarily known. In a modeled by a reliability growth model. This use of
protection system, the environment may affect this combinations of modeling techniques is a powerful
assumption, since things that were not faults at one method of analysis.
time may become faults due to changes in the
environment.

105 NUREG/CR-6101

References

REFERENCES

Standards IEEE 1008. "IEEE Standard for Software Unit
Testing," ANSI/IEEE 1008 (1987).

ANS 7-4.3.2. "Standard Criteria for Digital Computers
in Safety Systems of Nuclear Power Generating IEEE 1012. "IEEE Standard for Software Verification
Stations," ANS 7-4.3.2 draft 7 (1992). and Validation Plans," ANSI/IEEE 1012 (1986).

ANS 8.3. "Criticality Accident Alarm System," IF_E 1016. "IF_EERecommended Practice for

ANSI/ANS 8.3 (1986). Software Design Descriptions," ANSI/IEEE 1016
(1987).

ANS 10.4. "Guidelines for the Verification and

Validation of Scientific and Engineering Computer IEEE 1028. "IEEE Standard for Software Reviews and
Programs for the Nuclear Industry," ANSUANS 10.4 Audits," IEEE 1028 (1988).
(1987).

IEEE 1042. "IEEE Guide to Software Configuration
GFAS 250. "Software Development Standard for the Management," ANSI/IEEE 1042 (1987).
German Federal Armed Forces: V-Model, Software

Lifecycle Process Model," General Directive 250 IEEE 1044. "IEEE StandardClassification for
(February 1991). Software Errors, Faults and Failures," IEEE I044 draft

(198.
IEC 880. "Software for Computers in the Safety

Systems of Nuclear Power Stations," IEC Publication IEEE 1058.1. "IEEE Standard for Software Project
880 (1986). Management Plans," ANSI/IEEE Std 1058.1 (1987).

IEEE 603. "IEEE Standard Criteria for Safety Systems IEEE 1063. "IEEE Standard for Software User
for Nuclear Power Generating Stations," IEEE 603 Documentation," ANSI/IEEE 1063 (1987).
(1991).

IEEE 1074. "IEEE Standard for Developing Life Cycle
IEEE 610.12. "IEEE Standard Glossary of Software Processes," IEEE 1074 (1991).
Engineering Terminology," IEEE 610.12 (1990).

IEEE 1228. "IEEE Standard for Software Safety
IEEE 730.1. "IEEE Standard for Quality Assurance Plans," IEEE Draft 1228 (1993).
Plans," ANSI/IEEE 730.1 (1989)

IEEE 1298. "IEEE Standard Software Quality
IEEE 730.2. :IF_EEGuide to Software Quality Management System, Part 1: Requirements," IEEE
Assurance Planning,: IEEE Draft 730.2 (1993). 1298 (1992) and AS 3563.1 (1991).

IEEE 828. "IEEE Standard for Software Configuration IEEE C37.1. "IEEE Standard Definition, Specification
Management Plans," ANSI/IEEE 828 (1983). and Analysis of Systems Used for Supervisory Control,

Data Acquisition and Automatic Control," ANSI/IEEE
IEEE 829. "IEEE Standard for Software Test C37.1 (1987).
Documentation, ANSI/IEEE 829 (1983).

ISA $5.1. "Instrumentation Symbols and
IEEE 830. "IEEE Guide to Software Requirements Identification," ANSI/ISA Std. $5.1 (1984).
Specification," ANSI/IEEE 830 (1984).

MOD 1989. "Requirements for the Procurement of
IEEE 982.1. "IEEE Standard Dictionary of Measures Safety Critical Software in Defense Equipment," Draft
to Produce Reliable Software," IEEE 982.1 (1988). Defense Standard 00-55, Ministry of Defence,

Glasgow (May 1989) (superseded by a later draft).
IEEE 982.2. "IEEE Guide for the Use of IEEE

Standard Dictionary of Measures to Produce Reliable
Software," IEEE 982.2 (1988).

107 NUREG/CR-6101

References

Books, Articles, and Reports Bavuso 1987. S. J. Bavuso, J. B. Dugan, K. S. Trivedi,
E. M. Rothmann and W. E. Smith, "Analysis of

Abbott 1990. Russell J. Abbott, "Resourceful Systems Typical Fault-Tolerant Architectures Using HARP,"
for Fault Tolerance, Reliability and Safety," IEEE Trans. Rel. 36, 2 (June 1987), 176-185.
Computing Surveys 22, 1 (March 1990), 35--68.

Belli 1990. Fevzi Belli and Plotr Jedrzejowicz, "Fault-

Aldemir 1987. Tunc Aldemir, "Computer-Assisted Tolerant Programs and their Reliability," IEEE Trans.
Markov Failure Modeling of Process Control Rel. 39, 2 (June 1990), 184-102.

Systems," 1EEE Trans. Rel. 36, 1 (April 1987), 133-
144. Berg 1986. Ulf Berg, "RELTREEmA Fault Tree Code

for Personal Computers," in Reliability Technology--
Altschul 1987. Roberto E. Altschul and Phyllis M. Theory and Applications, J. Moltoft and F. Jensen, ed,
Nagel, "The Efficient Simulation of Phased Fault Elsevier (1986), 433-440.
Trees," Proc Annual Rel. and Maint. Symp. (January
1987), 292-295. Berg 1987. Menachem Berg and Israel Koren, "On

Switching Policies for Modular Redundancy Fault-
Amer 1987. Hassanein Amer and Edward J. Tolerant Computing Systems," IEEE Trans. Comp. 36,
McCluskey, "Weighted Coverage in Fault-Tolerant 9 (September 1987), 1052-1062.
Systems," Proc. IEEE Annual Rel. and Maint. Symp.
(January 1987), 187-191. Bihari 1988. Thomas E. Bihari and Karsten Schwan,

"A Comparison of Four Adaptation Algorithms for
Anderson 1983. Thomas Anderson and John C. Increasing the Reliability of Real-Time Software,"
Knight, "A Framework for Software Fault Tolerance in Proc. Real.Time Systems Syrup. (December 1988),
Real-Time Systems," IEEE Trans. Soft. Eng. 9, 3 (May 232-241.
1983), 355-364.

Bishop 1985. P. G. Bishop, D. Esp, M. Barnes, P.
Anderson 1985. Thomas Anderson, "Fault Tolerant Humphreys, G. Dahil, J. Lahti, and S. Yoshimura,
Computing," in Resilient Computing Systems, T. "Project On Diverse SoftwaremAn Experiment in
Anderson, ed, Wiley (1985), 1-10. Software Reliability," Safety of Computer Control

Systems (SafeComp) (October 1985), 153-158.
Atkinson 1991. Will Atkinson and Jim Cunningham,

"Proving Properties of a Safety-Critical System," Soft. Bishop 1990. P. G. Bishop, ed, Dependability of
Eng. J. 6, 2 (March 1991), 41-50. Critical Computer Systems 3: Techniques Directory,

Elsevier (1990). Guidelines produced by the European
Avizenis 1985. A. Avirienis, P. Gunningberg, J. P.J. Workshop on Industrial Computer Systems, Technical

Kelly, R. T. Lyu, L, Strigini, P. J. Traverse, K. S. Tso, Committee 7 (EWICS TC7).
and U. Voges, "Software Fault-Tolerance by Design

Diversity DEDIX: A Tool for Experiments," Safety of Bloomfield 1991. R. E. Bloomfield, P. K. D. Froome
Computer Control Systems (SafeComp) (October and B. Q. Monahan, "Formal Methods in the
1985), 173-178. Production and Assessment of Safety Critical

Software," Rel. Eng. and System Safety 32, 1 (1991),
Babich 1986. Wayne A. Babich, Software 51--66.
Configuration Management, Coordination for Team
Productivity, Addison-Wesley (1986). Bobbio 1986. Andrea Bobbio and Kishor S. Trivedi,

"An Aggregation Technique for the Transient Analysis
Barter 1993. Robert Barter and Lin Zucconi, of Stiff Markov Chains," IEEE Trans. Comp. 35, 9

"Verification and Validation Techniques and Auditing (September 1986), 803-814.
Criteria for Critical System-Control Software,"
Lawrence Livermore National Laboratory, Livermore, Boehm 1988. Barry W. Boehm, "A Spiral Model of

CA (1993). Software Development and Enhancement," IEEE
Computer (May 1988), 61-72.

NUREG/CR-6101 108

References

Bowman 1991. William C. Bowman, Glenn H. Evans 1983. Michael W. Evans, Pamela Piazza and

Archinoff, Vijay M. Raina, David R. Tremaine and James B. Dolkas, Principles of Productive Software
Nancy G. Leveson, "An Application of Fault Tree Management, John Wiley (1983).
Analysis to Safety Critical Software at Ontario Hydro,"
Probabilistic Safety Assessment and Management, G. Evans 1987. Michael W. Evans and John J. Marciniak,
Apostolakis, ed (1991), 363-368. Software Quality Assurance and Management, Wiley

(1987).

Brilliant 1989. Susan S. Brilliant, John C. Knight and
Nancy G. Leveson, "The Consistent Comparison Feo 1986. T. Feo, "PAFT F77, Program for the
Problem in N-Version Software," IEEE Trans. Soft. Analysis of Fault Trees," IEEE Trans. Rel. 35, 1 (April
Eng. 15, 11 (November 1989), 1481-1485. 1986), 48-50.

Brilliant 1990. Susan S. Brilliant, John C. Knight and Frankel 1984. Ernst G. Frankel, Systems Reliability
Nancy G. Leveson, "Analysis of Faults in an N- and Risk Analysis, Martinus Nijhoff (1984).
Version Software Experiment," IEEE Trans. Soft. Eng.
16, 2 (February 1990), 238-247. Geist 1986. Robert M. Geist, Mark Smotherman,

Kishor Trivedi, and Joanne B. Dugan, "The Reliability

Buffer 1991. Ricky W. Buffer and George Finelli, "The of Life-Critical Computer Systems," Acta lnformatica
Infeasibility of Experimental Quantification of Life- 23, 6 (1986), 621-642.
Critical Software Reliability," A CM SIGSOFT Conf.

on Soft. for Critical Systems (December 1991), 66-76. Goyal 1986. A. Goyal, W. C. Carter, E. de Souza, E.
Silva and S. S. Lavenberg, "The System Availability

Cha 1986. Sung D. Cha, "A Recovery Block Model Estimator," IEEE Annual Int'l Syrup. on Fault-Tolerant
and its Analysis," Safety of Computer Control Systems Computer Systems (July 1986), 84--89.
(SafeComp_ (October 1986), 21-26.

Guarro 1991. S. B. Guarro. J. S. Wu, G. E. Apostolakis

Chae 1986. Kyung C. Chae and Gordon M. Clark, and M. Yau, "Embedded System Reliability and Safety
"System Reliability in the Presence of Common-Cause Analysis in the UCLA ESSAE Project," in
Failures," IEEE Trans. Rel. 35, 1 (April 1986), 32-35. Probabilistic Safety Assessment and Management, G.

Apostolakis, ed (1991), 383-388.
Cheung 1980. Roger C. Cheung, "A User-Oriented
Software Reliability Model," IEEE Trans. Soft. Eng. 6, Hansen 1989. Mark D. Hansen, "Survey of Available
2 (March 1980), 118-125. Software-Safety Analysis Techniques," Proc. IEEE

Annual Rel. and Maint. Syrup. (January 1989), 46-49.

Connolly 1989. Brian Connolly, "Software Safety Goal
Verification Using Fault Tree Techniques: A Critically Hatley 1987. Derek J. Hatley and lmtiaz A. Pirbhai,
I11Patient Monitor Example," Computer Assurance Strategies for Real-Time System Specification, Dorset

(Compass) (1989), 18-21. House (1987).

Date 1983. Christopher J. Date, An Introduction to Healy 1987. John Healy, "A Simple Procedure for
Database Systems, vol. 2, Addison-Wesley (1983). Reliability Growth Modeling," Proc. IEEE Annual Rel.

andMaint. Symp. (January 1987), 171-175.
Dhillon 1983. Balbir S. Dhillon, Reliability

Engineering in Systems Design and Operation, Van Henley 1985. E. J. Henley and H. Kumamoto,
Nostrand (1983). Designing for Reliability and Safety Control, Prentice

Hall (1985).

Dhillon 1987. Balbir S. Dhillon, Reliability in

Computer System Design, Ablex Pub. Co. (1987). Hura 1988. G. S. Hum and J. W. Atwood, "The Use of
Petri Nets to Analyze Coherent Fault Trees," IEEE

EPRI 1990. Advanced Light Water Reactor Utility Trans. Rel. 37, 5 (December 1988), 469-473.

Requirements Document. Volume III, ALWR Passive
Plant. Chapter 10, Man-Machine Interface Systems,
Electric Power Research Institute, Palo Alto, CA

(1990).

109 NUREG/CR-6101

References

Johnson 1988. A. M. Johnson and M. Malek, "Survey Krishna 1987. C. M. Krishna, Kang G. Shin and
of Software Tools for Evaluating Reliability, Inderpal S. 13handari, "Processor Tradeoffs in
Availability and Serviceability," ACM Comp. Surv. 20, Distributed Real-Time Systems," IEEE Trans. Comp.
4 (December 1988), 227-269. 36, 9 (September 1987), 1030--1040.

Jorgensen 1989. Paul C. Jorgensen, "Using Petri Net Laprie 1985. Jean-Claude Laprie, "Dependable
Theory to Analyze Software Safety Case Studies," Computing and Fault Tolerance: Concepts and

Computer Assurance (Compass) (1989), 22-25. Terminology," Annual lnt'l Syrup. on Fault-Tolerant
Computing (1985), 2-11.

Kandel 1988. Abraham Kandel and Eitan Avni,

Engineering Risk and Hazard Assessment, CRC Press Laprie 1990. Jean-Claude Laprie, Jean Arlat, Christian
(1988), 2 volumes. B6ounes and Karama Kanoun, "Definition and

Analysis of Hardware- and Software-Fault Tolerant
Kara-Zaitri 1991. Chakib Kara-Zaitri, Alfred Z. Keller, Architectures," IEEE Computer 23, 7 (July 1990),

Imre Barody and Paulo V. Fleming, "An Improved 39-51.
b'MEA Methodology," Proc. IEEE Annual ReL and
Maint. Syrup. (January 1991), 248-252. Lee 1992. H. Grady Lee and Paul J. Senger, Software

Safety Analysis, Vitro Corp. (July 15, 1992).

Kelly 1986. John P. J. Kelly, A. Avizienis, B. T. Ulery,
B. J. Swain, R. T. Lyu, A. Tai and K. S. Tso, "Multi- Leveson 1983. Nancy G. Leveson and Peter R. Harvey,
Version Software Development," Safety of Computer "Analyzing Software Safety," IEEE Trans. Soft. Eng.
Control Systems (SafeComp) (October 1986), 43-49. 9, 5 (September 1983), 569-579.

Kim 1989. K. H. Kim and Howard O. Welch, Leveson 1987. Nancy G. Leveson and Janice L. Stolzy,
"Distributed Execution of Recovery Blocks: An "Safety Analysis Using Petri Nets," IEEE Trans. Soft.

Approach for Uniform Treatment of Hardware and Eng. 13, 3 (March 1987), 386-397.
Software Faults in Real-Time Applications," IEEE

Trans. Comp. 38, 5 (May 1989), 626-636. Leveson 1990. Nancy G. Leveson, S. S. Cha, John C.
Knight and T. J. Shimeall, "The Use of Self Checks

Knight 1985. John C. Knight and Nancy G. Leveson, and Voting in Software Error Detection: An Empirical
"Correlated Failures in Multi-Version Software," Study," IEEE Trans. Soft. Eng. 16, 4 (April 1990),

Safety of Computer Control Systems (SafeComp) 432--443.
(October 1985), 159-165.

Leveson 1991. Nancy G. Leveson, "Safety," in

Knight 1990. John C. Knight and Nancy G. Leveson, Aerospace Software Engineering, Christine Anderson
"A Reply to the Criticisms of the Knight & Leveson and Merlin Dorfman, ed, AIAA (1991), 319-336.
Experiment," Soft. Eng. Notes 15, 1 (January 1990),
24-35. Linger 1979. Richard Linger, Harlan D. Mills and

Bernard I. Witt, Structured Programming, Theory and

Knight 1991. John C. Knight and P. E. Ammann, Practice, Addison-Wesley (1979).
"Design Fault Tolerance," Rel. Eng. and System Safety
32, 1 (1991), 25-49. Lloyd 1977. D. K. Lloyd and M. Lipow, Reliability:

Management, Methods and Mathematics, Prentice-Hall
Kohda 1991. Takehis_ Kohda and Koichi Inoue, "A (1977).

Petri Net Approach to Probabilistic Safety Assessment
for Obtaining Event Sequences from Component Macro 1990. Allen Macro, Software Engineering
Models," in Probabilistic Safety Assessment and Concepts and Management, Prentice-Hall (1990).

Management, G. Apostolakis, ed (1991), 729-734.
Mainini 1990. Maria T. Mainini and Luc Billot,

Kopetz 1985. H. Kopetz, "Resilient Real-Time "PERFIDE: An Environment for Evaluation and
Systems," in Resilient Computer Systems, T. Anderson, Monitoring of Software Reliability Metrics during the
ed, Wiley (1985), 91-101. Test Phase," Soft. Eng. J. 5, 1 (January 1990), 27-32.

NUREG/CR-6101 110

References

Maxion 1986. R. A. Maxion, "Toward Fault-Tolerant Preckshot 1992. George G. Preckshot, "Real-Time

User Interfaces," Safety of Computer Control Systems Systems Complexity and Scalability," Lawrence
(SafeComp) (October 1986), 117-122. Livermore National Laboratory, Livermore, CA

(1992).
Max.ion 1987. R. A. Maxion, D. P. Siewiorek and S. A.

Elkind, "Techniques and Architectures for Fault- Preckshot 1992a. George G. Preckshot,
Tolerant Computing," Annual Review Computer "Communication Systems in Nuclear Power Plants,"
Science (1987), 469-520. Lawrence Livermore National Laboratory, Livermore,

CA (1992).
McCall 1977. James A, McCall, Paul K. Richards and

Gene F. Waiters, Factors in Software Quality, RADC- Pressman 1987. Roger S. Pressman, Software
TR-77-369, Rome Air Development Center Engineering: A Practitioner's Approach, 2nd ed,
(November 1977). McGraw-Hill (1987).

McCormick 1981. N. J. McCormick, Reliability and Pucci 1990. Geppino Pucx:i, "On the Modeling and
Risk Analysis, Academic Press (1981). Testing of Recovery Block Structures," lnt'l Syrup.

Fault-Tolerant Comp. (June 1990), 356-363.

Mulazzani 1985. M. Muiazzani, "Reliability Versus
Safety," Safety of Computer Control Systems Purtilo 1991. James M. Purtilo and Jankaj Jalote, "An
(SafeComp) (October 1985), 141-145. Environment for Developing Fault-Tolerant Software,"

IEEE Trans. Soft. Eng. 17, 2 (February 1991), 153-

Musa 1987. John D. Musa, Anthony Iannino and 159.
Kazuhira Okumoto, Software Reliability:
Measurement, Prediction, Application, McGraw Hill Randell 1978. B. P. A. L. RandeU and P. C. Treleaven,
(1987). "Reliability Issues in Computing System Design,"

ACM Comp. Surv. 10, 2 (June 1978), 123-165.
Nelson 1987. Victor A. Nelson and Bill D. Carroll,

"Introduction to Fault-Tolerant Computing," in Redmill 1988. F. J. Redmill, ed, Dependability of

Tutorial: Fault-Tolerant Computing, Nelson and Critical Computer Systems 1, Elsevier (1988).
Carroll, ed (1987), 1-4. Guidelines produced by the European Workshop on

Industrial Computer Systems, Technical Committee 7
Nelson 1990. Victor P. Nelson, "Fault-Tolerant (EWICS TC7).

Computing: Fundamental Concepts," IEEE Comp. 23,
7 (July 1990), 19-25. Redmill 1989. F. J. Redmill, ed, Dependability of

Critical Computer Systems 2 Elsevier (1989).

Ostroff 1989. J. S. Ostroff, "Verifying Finite State Guidelines produced by the European Workshop on
Real-Time Discrete Event Processes," Proc. lnt'l Conf. Industrial Computer Systems, Technical Committee 7
Dist. Sys. (1989), 207-216. (EWICS TC7).

Pages 1986. A. Pages and M. Gondran, System Rumbaugh 1991. James Rumbaugh, et al, Object
Reliability Evaluation and Prediction in Engineering, Oriented Modeling and Design, Prentice-Hall (1991).

Springer-Verlag (1986).
Saglietti 1986. F. Sagietti and W. Ehrenberger,

Peterson 1977. J. L. Peterson, "Petri Nets," ACM "Software Diversity--Some Considerations About its

Comp. Surv. 9, 3 (September 1977), 223-252. Benefits and Its Limitations," Safety of Computer
Control Systems (SafeComp) (October 1986), 27-34.

Phillis 1986. Yannis A. Phillis, Henry D'Angelo and
Gordon C. Saussy, "Analysis of Series-Parallel Sahner 1987. R. A. Sahner and Kishor S. Trivedi,
Production Networks Without Buffers," IEEE Trans. "Reliability Modeling Using SHARPE," IEEE Trans.
Rel. 35, 2 (June 1986), 179-184. Rel. 36, 2 (June 1987), 186-193.

Pradhan 1986. D. J. Pradhan, ed, Fault Tolerant

Computing: Theory and Practice, Prentice-Hall (1986).

111 NUREG/CR-6101

References

Sahner 1987a. R. A. Sahner and Kishor S. Trivedi, Stepney 1987. S. Stepney and S. Lord, "Formal
"Performance and Reliability Analysis Using Directed Specification of an Access Control System,"

Acyclic Graphs," IEEE Trans. Soft. Eng. 13, 10 Software--Practice and Experience 17, 9 (1987), 575-
(October 1987), 1105-1114. 593.

Sauer 1981. Charles H. Sauer and K. Mani Chandy, Stiffler 1986. J. J. Stiffler, "Computer-Aided
Computer Systems Performance Modeling, Prentice- Reliability Estimation," in Fault-Tolerant Computing,
Hall (1981). Theory and Techniques, D. K. Pradhan, ed, Prentice

Hall (1986), 633-657.

Shieh 1989. Yuan-Bao Shieh, Dipak Ghosal, Prasad R.
Chintamaneni and Satish K. Tripathi, "Application of Strigini 1985. L. Strigini and A. Avizienis, "Sof,'ware
Petri Net Models for the Evaluation of Fault-Tolerant Fault-Tolerance and Design Diversity: Past Experience

Techniques in Distributed Systems," Proc Int'l Conf. and Future Evolution.." Safety of Computer Control
Dist. Syst. (1989), 151-159. Systems (SafeComp) (October 1985), 167-172.

Shimeall 1991.Timothy J. Shimeall and Nancy G. Thomas 1993. Booker Thomas, "Testing Existing
Leveson, "An Empirical Comparison of Software Fault Software for Safety-Related Applications," Lawrence
Tolerance and Fault Elimination," IEEE Trans. Soft. Livermore National Laboratory, Livermore, CA

Eng. 17, 2 (February 1991), 173-182. (1993).

Siegrist 1988. Kyle Siegrist, "Reliability of Systems Tso 1986. K. S. Tso, A. Avizienis and J. P. J. Kelly,
with Markov Transfer of Control," IEEE Trans. Soft. "Error Recovery in Multi-Version Software," Safety of
Eng. 14, 7 (July 1988), 1049-1053. Computer Control Systems (SafeComp) (October

1986), 35--40.

Siegrist 1988a. Kyle Siegrist, "Reliability of Systems
with Markov Transfer of Control I1," IEEE Trans. Soft. Vincent 1988. James Vincent, Albert Waters and John

Eng. 14, 10 (october 1988), 1478-1481. Sinclair, Software Quality Assurance. Volume I,
Practice and Implementation, Prentice-Hall (1988).

Siewiorek 1982. D. P. Sieriorek and R. S. Swarz, the

Theory and Practice of Reliable System Design, Digital Wei 1991. Benjamin C. Wei, "A Unified Approach to
Press (1982). Failure Mode, Effects and Criticality Analysis

(FMECA)," Proc. IEEE Annual Rel. and Maint. Syrup.
Smith 1972. David J. Smith, Reliability Engineering, (January 1991), 260-271.
Pitnam (1972).

Williams 1992. Lloyd G. Williams, "Formal Methods
Smith 1988. R. M. Smith, Kishor S. Trivedi and A.V. in the Development of Safety Critical Software

Ramesh, "Performability Analysis: Measures, an Systems," SERM-014-91, Software Engineering
Algorithm, and a Case Study," IEEE Trans. Comp. 37, Research, Boulder, CO (April 1992).
4 (April 1988), 406-417.

Yourdon 1979. Edward Yourdon and Larry L.
Constantine, Structural Design, Fundamentals of a

Discipline of Computer Program and Systems Design,
Prentice-Hall (1979).

NUREG/CR-6101 112

Bibliography

BIBLIOGRAPHY

The bibliography below contains a list of articles, Thomas Anderson and John C. Knight, "A Framework
books and reports that relate to software reliability and for Software Fault Tolerance in Real-Time Systems,"
safety. IEEE Trans. Soft. Eng. 9, 3 (May 1983), 355-364.

Russell J. Abbott, "Resourceful Systems for Fault Thomas Anderson, "Fault Tolerant Computing," in
Tolerance, Reliability and Safety," Computing Surveys Resilient Computing Systems, T. Anderson, Ed, Wiley
22, 1 (March1990), 35-68. (1985), 1-10.

Abdalla A. Abdel-Ghaly, P. Y. Chan, and Bey Thomas Anderson, Peter A. Barrett, Dave N. Halliwell,
Littlewood, "Evaluation of Competing Software and Michael R. Moulding, "Software Fault Tolerance:
Reliability Predictions," IEEE Trans. Soft. Eng. 12, 9 An Evaluation," IEEE Trans. Soft. Eng. 11, 12
(September 1986), 950-967. (December 1985), 1502-1509.

K. K. Aggarwal, "Integration of Reliability and Peter Andow, "Real Time Fault Diagnosis for Process
Capacity in Performance Measure of a Plants," in Probabilistic Safe_' Assesslnent and
Telecommunication Network," IEEE Trans. Rel. 34, 2 Management, G. AIx_stolakis. Ed (1991), 461-466.
(June 1985), 184-186.

George Apostolakis, "The Concept of Probability in
Prathima Agrawal, "Fault Tolerance in Multiprocessor Safety Assessments of Technological Systems,"
Systems Without Dedicated Redundancy," IEEE Science 250 (December 7, 1990), 1359-1364.
Trans. Comp. 37, 3 (March 1988), 358-362.

Jean Arlat and Karama Kanoun, "Modeling and
Air Force Inspection and Safety Center, Software Dependability Evaluation of Safety Systems in Control
System Safety, AF-qSCSSH 1-1 (September 5, 1985). and Monitoring Applications," Safety of Computer

Control Systems (Safecomp) (October 1986), 157-164.
Air Force Systems Command, Software Independent
Verification and Validation, Wright-Patterson Air Jean Arlat, Karama Kanoun and Jean-Claude Laprie,
Force Base (May 20, 1988). ' "Dependability Modeling and Evaluation of Software

Fault-Tolerant Systems," lEEE Trans. Comp. 39, 4
Tunc Aldemir, "Computer-Assisted Markov Failure (April 1990), 504-512.
Modeling of Process Control Systems," IEEE Trans.
Rel. 36, 1 (April 1987), 133-144. Pasquale Armenise, "A Structured Approach to

Program Optimization," IEEE Trans. Soft. Eng. 15, 2
Roberto E. Altschul and Phyllis M. Nagel, "The (February 1989), 101-108.
Efficient Simulation of Phased Fault Trees," Proc.

IEEE Annual Rel. and Maint. Syrup. (January 1987), ti.R. Aschmann, "Broadcast Remote Procedure Calls
292-295. for Resilient Computation," Safety of Computer

Control Systems (Safecomp) (October 1985), 109-115.
Hassanein Amer and Edward J. McCluskey,

"Weighted Coverage in Fault-Tolerant Systems," Proc. Noushin Ashrafi and Oded Bennan, "Optimization
IEEE Annual Rel. and Maint. Syrup. (January 1987), Models for Selection of Programs, Considering Cost
187-191. and Reliability," IEEE Trans. Rel. 41, 2 (June 1992),

281-287.

Nina Amla and Paul Ammann, "Using Z Specifications
in Category Partition Testing," Computer Assurance Will Atkinson and Jim Cunningham, "Proving
(Compass) (June 1992), 3-10. Properties of a Safety-Critical System," Soft. Eng. J. 6,

2 (March 1991), 41-50.

Paul E. Ammann and John C. Knight, "Data Diversity:
An Approach to Software Fault Tolerance," IEEE
Trans. Comp. 37, 4 (April 1988), 418--425.

113 NUREG/CR-6101

Bibliography

Joanne Atlee and John Gannon, "State-Based Model Lewis Bass and Daniel L. Martin, "Cost-Effective

Checking of Event-Driven System Requirements," Software Safety Analysis," Proc. IEEE Annual Rel.
ACM Sigsofl Conf. On Soft. for Critical Systems and Maint. Syrup. (January 1989), 35--40.
(December 1991), 16-28.

F. B. Bastani and C. V. Ramamoorthy, "Input-Domain-
Terje Aven, "Some Considerations On Reliability Ba:c,ed Models for Estimating the Correctness of

Theory and Its Applications," Reliabil.ity Engineering Process Control Programs," in Serra, A., and R. E.
and System Safety 21, 3 (1988), 215-223. Barlow, Ed., Theo_ of Reliability (1984), 321-378.

A. Avirienis, P. Gunningberg, J. P. J. Kelly, R. T. Lyu, Farokh B. Bastani, "On the Uncertainty in the
L. Strigini, P. J. Traverse, K. S. Tso, and U. Voges, Correctness of Computer Programs," IEEE Trans. Soft.
"Software Fault-Tolerance By Design Diversity Dedix: Eng. 11, 9 (September 1985), 857--864.
A Tool for Experiments," Safety of Computer Control
Systems (Safecomp) (October 1985), 173-178 P. Baur and R. Lauber, "Design Verification for

(Safety-Related) Software Systems," Safety of
S. Bagnasco, F. Manzo and F. Piazza. "Requirements Computer Control Systems (Safecomp) (October 1985),
and Design for a Distributed Computerized System for 31-37.
Safety and Control Applications," Safety of Computer
Control Systems (Safecomp) (October 1985), 85-93. S.J. Bavuso, J. B. Dugan, K. S. Trivedi, E. M.

Rothmann and W. E. Smith, "Analysis of Typical

D. S. Bai and W. Y. Yun, "Optimum Number of Errors Fault-Tolerant Architectures Using HARP," IEEE
Corrected Before Releasing a Software System," IEEE Trans. Rel. 36, 2 (June 1987), 176-185.
Trans. Rel. 37, 1 (April 1988), 41-44.

Salvatore J. Bavuso, Joanne B. Dugan, Kishor Trivedi,

F. Baiardi and M. Vanneschi, "Structuring Processes as Beth Rothmann and Mark Boyd, "Applications of the
a Sequence of Nested Atomic Actions," Safety of Hybrid Automated Reliability Predictor," NASA
Computer Control Systems (Safecomp) (October 1985), Technical Paper (1987).
1--6.

Salvatore J. Bavuso and Joanne Bechta Dugan, "HiRel:
John H. Bailey and Richard A. Kowalski, "Reliability- Reliability/Availability Integrated Workstation Tool,"
Growth Analysis for An Ada-Coding Process," Proc. Proc. Annual Rel. Maint. Syrup. (January 1992), 491-
Annual Rel. and Maint. Syrup. (January 1992), 280- 500.
284.

G. Becker and L. Camarinopoulos, "A Bayesian
C. T. Baker, "Effects of Field Service on Software Estimation Method for the Failure Rate of a Possibly

Reliability," IEEE Trans. Soft. Eng. 14, 2 (February Correct Program," IEEE Trans. Soft. Eng. 16, 11
1988), 254-258. (November 1990), 1307-1310.

Michael O. Ball, "Computational Complexity of Thomas Becker, '"Keeping Processes Under
Network Reliability Analysis: An Overview," IEEE Surveillance," Syrup. on the Rel. of Dist. Systems
Trans. Rel. 35, 3 (August 1986), 230-239. (1991), 198-205.

Prithviraj Banerjee and Jacob A. Abraham, "A Mohamed Belhadj, Mahbubul Hassan, and Tunc
Probabilistic Model of Algorithm-Based Fault Aldemir, "The Sensitivity of Process Control System
Tolerance in Array Processors for Real-Time Interval Reliability to Process DynamicsmA Case
Systems," Proc. Real-Time Systems Syrup., (December Study," in Probabilistic Safety Assessment and
1986), 72-78. Management, G. Apostolakis, Ed (1991), 533-538.

Richard E. Barlow, Jerry B. Fussell and Nozer D. R. Bell and S. Smith, "An Overview of IEC Draft
Singpurwalla, Ed, Reliability and Fault Tree Analysis, Standard: Functional Safety of Programmable
Siam (1974). Electronic Systems," Computer Assurance (Compass)

(June 1990), 151-163.

NUREG/CR-6101 114

Bibliography

Fevzi Belli and Plotr Jedrzejowicz, "Fault-Tolerant Thomas E. Bihari and Karsten Schwan, "A

Programs and Their Reliability," IEEE Trans. Rel. 39, Comparison of Four Adaptation Algorithms for
2 (June 1990), 184-102. Increasing the Reliability of Real-Time Software,"

Proc. Real-Time Systems Syrup. (December 1988),
Daniel Bell, Lisa Cox, Steve Jackson and Phil 232-241.

Schaefer, "Using Causal Reasoning for Automated
Failure Modes and Effects Analysis (FMEA)," Proc. Brian Billard, "Improving Verification Tools," Trusted

Annual Rel. Maint. Syrup. (January 1992), 343-352. Computer Systems, Electronics Research Laboratory,
Australian Defence Science and Technology

Fevzi Belli and Piotr Jedrejowicz, "Comparative Organization, Salisbury, South Australia (1990).

Analysis of Concurrent Fault Tolerance Techniques for
Real-Time Applications," Int'l Symp. on Soft. Rel. Eng. Peter G. Bishop, D. Esp, M. Barnes, P. Humphreys, G.
(1991), 202-209. Dahil, J. Lahti, and S. Yoshimura, "Project on Diverse

SoftwaremAn Experiment in Software Reliability,"

Steve G. Belovich and Vijaya K. Konangi, "An Safety of Computer Control Systems (Safecomp)
Algorithm for the Computation of Computer Network (October 1985), 153-158.
Reliability in I.inear-Time," Proc. Phoenix Conf.
Computers and Comm. (March 1990), 655--660. Peter G. Bishop, David G. Esp, Mel Barnes, Peter

Humphreys, Gustav DahiU and Jaakko Lahti, "Pods--
Tony BendeU, "An Overview of Collection, Analysis A Project on Diverse Software," IEEE Trans. Soft.
and Application of Reliability Data in the Process Eng. 12, 9 (September 1986), 929-940.
Industries," IEEE Trans. Rel. 37, 2 (June 1988), 132-
137. Peter G. Bishop, Ed, Dependability of Critical

Computer Systems 3: Techniques Directory, Elsevier
P. A. Bennett, "Forwards to Safety Standards," Soft. (1990). Guidelines Produced By the European

Eng. J. 6, 2 (March 1991), 37.-40. Workshop on Industrial Computer Systems, Technical
Committee 7 (EWICS TC7).

H. Claudio Benski and Emmanuel Cabau,

"Experimental-Design Techniques in Reliability- R.E. Bloomfield, "Application of Finite State Models
Growth Assessment," Proc. Annual Rel. Maint. Syrup. for System Design and Reliability Assessment," Safety

(January 1992), 322-326. of Computer Control Systems (Safecomp) (September
1983), 23-28.

Ulf Berg, "RELTR.EE--A Fault Tree Code for
Personal Computers," in Reliability Technology-- R.E. Bloomfield, P. K. D. Froome and B. Q.
Theory and Applications, J. Moltoft and F. Jensen, Ed, Monahan, "Formal Methods in the Production and
Elsevier (1986), 433--440. Assessment of Safety Critical Software," Rel. Eng. and

System Safety 32, 1 (1991), 51-66.
Menachem Berg and Israel Koren, "On Switching
Policies for Modular Redundancy Fault-Tolerant Andrea Bobbio and Kishor S. Trivedi, "An

Computing Systems," IEEE Trans. Comp. 36, 9 Aggregation Technique for the Transient Analysis of
(September 1987), 1052-1062. Stiff Markov Chains," IEEE Trans. Computers 35, 9

(September 1986), 803-814.
B. Bergman, "On Some New Reliability Importance
Measures," Safety of Computer Control Systems John B. Bowles and Venkatesh Swaminathan, "A
(Safecomp) (October 1985), 61--64. Combined Hardware, Software and Usage Model of

Network Reliability and Availability," Proc. Phoenix
Bernard Berthomieu and Michel Diaz, "Modeling and Conf. Computers and Comm. (March 1990), 649--654.

Verification of Time Dependent Systems Using Petri
Nets," IEEE Trans. Soft. Eng. 17, 3 (March 1991), William C. Bowman, Glenn H. Archinoff, Vijay M.
259-273. Raina, David R. Tremaine and Nancy G. Leveson, "An

Application of Fault Tree Analysis to Safety Critical
Software at Ontario Hydro," Probabilistic Safety
Assessment and Management, G. Apostolakis, Ed
(1991), 363-368.

115 NUREG/CR-6101

Bibliography

Klaus-Peter Brand and Jurgen Kopainsky, "Principles Manfred Broy, "Experiences With Software
and Engineering of Process Control With Petri Nets," Specification and Verification Using LP, the Larch
1EEE Trans. Automatic Control 33, 2 (February 1988), Proof Assistant," DEC Systems Research Center Rpt.
138-149. 93.

Lionel C. Briand, Victor R. Basili and Christopher J. Julia V. Bukowski and William M. Goble, "Practical
Hetmanski, "Providing an Empirical Basis for Lessons for Improving Software Quality," Proc. IEEE
Optimizing the Verification and Testing Phases of Annual Rel. and Maint. Syrup. (January 1990), 436-
Software Development," Third Int'l Syrup. on Soft. Rel. 440.
Eng. (October 1992), 329-338.

Julia V. Bukowski, David A. Johnson and William M.

Susan S. Brilliant, John C. Knight and Nancy G. Goble, "Software-Reliability Feedback: A Physics-of-
Leveson, "The Consistent Comparison Problem in N- Failure Approach," IEEE Annual Rel. and Maint.
Version Software," IEEE Trans. Soft. Eng. 15, 11 Syrup. (January 1992), 285-289.
(November 1989), 1481-1485.

A. Burns, "The HCI Component of Dependable Real-
Susan S. Brilliant, John C. Knight and Nancy G. Time Systems," Soft. Eng. J. (July 1991), 168-174.
Leveson, "Analysis of Faults in an N-Version Software
Experiment," IEEE Trans. Soft. Eng. 16, 2 (Februar3' A. Burns, J. McDermid and J. Dobson, "On the
1990), 238-247. Meaning of Safety and Security," the Comp. J. 35, 1

(January 1992), 3-15.
Susan S. Brilliant, John C. Knight and P. E. Ammann,

"On the Performance of Software Testing Using Ricky W. Butler, "An Abstract Language for
Multiple Versions," lnt'l Syrup. on Fault-Tolerant Specifying Markov Reliability Models," IEEE Trans.
Computing (June 1990), 408--415. Rel. 35, 5 (December 1986), 595--601.

Sarah Brocklehurst, P. Y. Chan, Bev Littlewood and Ricky W. Buffer and Allan L. White, Sure Reliability
John Snell, "Recalibrating Software Reliability Analysis, NASA Tech. Paper 2764 (1988).
Models," IEEE Trans. Soft. Eng. 16, 4 (April 1990),
458--4"/0. Ricky W. Buffer and Sally C. Johnson, the Art of

Fault-Tolerant System Reliability Modeling, NASA
Sarah Brocklehurst and Bey Littlewood, "New Ways Tech. Memo. 102623 (March 1990).
to Get Accurate Reliability Measures," IEEE Software
9, 4 (July 1992), 34-42. Ricky W. Buffer, James L. Caldwell, and Ben L. Di

Vito, "Design Strategy for a Formally Verified
Michael L. Brown, "Software Safety for Complex Reliable Computing Platform," Computer Assurance
Systems," IEEE Annual Conf. of Eng. in Medicine and (Compass) (June 1991), 125-133.
Biology Societ); (1985), 210-216.

Ricky W. Buffer and Jon A. Sjogren, "Formal Design
Michael L. Brown, "Software Systems Safety and Verification of Digital Circuitry," Rel. Eng. and System
Human Errors," Computer Assurance (Compass) Safety 32, 1 (1991), 67-93.
(1988), 19-28.

Ricky W. Buffer and George B. Finelli, "The
Michael J. D. Brown, "Rationale for the Development Infeasibility of Experimental Quantification of Life-
of the UK Defence Standards for Safety-Critical Critical Software Reliability," ACM Sigsofl Conf. on
Computer Software," Computer Assurance (Compass) Soft. for Critical Systems (December 1991), 66-76.
(June 1990), 144-150.

Ricky W. Buffer, "The Sure Approach to Reliability
David B. Brown, Robert F. Roggio, James H. Cross Analysis," IEEE Trans. Rel. 41, 2 (June 1992), 210-
and Carolyn L. McCreary, "An Automated Oracle for 218.
Software Testing," IEEE Trans. Re141, 2 (June 1992),
272-279.

NUREG/CR-6101 116

Bibliography

Michel Camot, Clara DaSilva, Babak Dehbonei and Albert Mo Kim Cheng and Chia-Hung Chen,
Fernando Mejia, "Error-Free Software Development "Efficient Response Time Bound Analysis of Real-
for Critical Systems Using the B-Methodology," Third Time Rule-Based Systems," Computer Assurance
lnt'l Syrup. on Soft. ReL Eng. (October 1992), 274- (Compass) (June 1992), 63-76.
281.

H. B. Chenoweth, "Soft Failures and Reliability,"
W. C. Carter, "Hardware Fault Tolerance," Resilient Proc. IEEE Annual Rel. and Maint. Symp. (January
Computing Systems, T. Anderson (Ed), Wiley (1985), 1990), 419-424.
11-63.

H. B. Chenoweth, "Reliability Prediction, in the

Joseph Caruso and David W. Desormeau, "Integrating Conceptual Phase, of a Processor System With Its
Prior Knowledge With a Software Reliability Growth Embedded Software," Proc. IEEE Annual Rel. and

Model," Proc IEEE Int'l Conf. Soft. Eng. (May 1991), Maint. Syrup. (January 1991), 416--422.
238-245.

Vladimir Cherkassky, and Miroslaw Malek, "A
Joseph P. Cavano, "Toward High Confidence Measure of Graceful Degradation in Parallel Computer
Software," IEEE Trans. Soft. Eng. 11, 12 (December Systems," IEEE Trans. Rel. 38, 1 (April 1989), 76--81.
I985), 1449-1455.

John C. Chemiavsky, "Validation Through Exclusion:
Sung D. Cha, "A Recovery Block Model and Its Techniques for Ensuring Software Safety," Computer
Analysis," Safety of Computer Control Systems Assurance (Compass) (1989), 56-59.
(Safecomp) (October 1986), 21-26.

Roger C. Cheung, "A User-Oriented Software
Kyung C. Chae and Gordon M. Clark, "System Reliability Model," IEEE Trans. Soft. Eng. 6, 2 (March
Reliability in the Presence of Common-Cause 1980), 118-125.
Failures," IEEE Trans. Rel. 35, 1 (April 1986), 32-35.

Morey J. Chick, "Interrelationships of Problematic
P. Y. Chan, "Adaptive Models," in Software Reliability Components of Safety Related Automated Information
State of the Art Report 14, 2, Pergamon Infotech Systems," Computer Assurance (Compass) (June
(1986), 3-18. 1991), 53--62.

P. Y. Chan, "Stochastic Treatment of the Failure Rate Dong-Hae Chi, Hsin-Hui Lin and Way Kuo, "Software

in Software Reliability Growth Models," in Software Reliability and Redundancy Optimization," Proc. IEEE
Reliability State of the Art Report 14, 2, Pergamon Annual Rel. and Maint. Syrup. (January 1989), 41--45.
Infotech (1986), 19-29.

Ram Chillarege, Wei-Lun Kao, and Richard G. Condit,

K. Mani Chandy, "Representing Faulty Distributed "Defect Type and Ills Impact on the Growth Curve,"
Systems as Nondeterministic Sequential Systems," Proc IEEE Int'l Conf. Soft. Eng. (May 1991), 246-255.
Proc. Syrup. on Rel. in Dist. Soft. & Database Systems,
IEEE/ACM (March 1987), 171-173. Mario D. Cin, "Availability Analysis of a Fault-

Tolerant Computer System," IEEE Trans. ReI. 29, 3

Chi-Ming Chen and Jose D. Ortiz, "Reliability Issues (August 1980), 265-268.
With Multiprocessor Distributed Database Systems: A
Case Study," IEEE Trans. Rel. 38, 1 (April 1989), Kent C. Clapp, Ravishankar K. Iyer and Ytzhak
153-158. Levendel, "Analysis of Large System Black-Box Test

Data," Third Int'l Symp. on Soft. Rel. Eng. (October
Albert Mo Kim Cheng, James C. Browne, Aloysius K. 1992), 94-103.

Mok, and Rwo-Hsi Wang, "Estella: A Facility for
Specifying Behavioral Constraint Assertions in Real- Douglas B. Clarkson, "Estimates for the Generalized F
Time Rule-Based Systems," Computer Assurance Distribution in Reliability/Survival Models,"
(Compass) (June 1991), 107-123. Directions 6, 2 (1989), 2--4.

117 NUREG/CR-6101

Bibliography

Brian Connolly, "Software Safety Goal Verification Miachael K. Da_!_alantonakis, "A Practical View of
Using Fault Tree Techniques: A Critically Ill Patient Software Measurement and Implementation
Monitor Example," Computer Assurance (Compass) Experiences Within Motorola," IEEE Trans. Soft. Eng.
(1989), 18-21. 18, 11 (November 1992), 998-1010.

Donna K. Cover, "Issues Affecting the Reliability of H.T. Daughtrey, S. H. Levinson and D. M. Kimmel,
Software-Cost Estimates," Proc. IEEE Annual Rel. and "Developing a Standard for the Qualification of
Maint. Symposium (1988), 195-201. Software for Safety System Applications," in

Probabilistic Safety Assessment and Management, G.
Randy Cramp, Mladen A. Vouk and Wendell Jones, Apostolakis, Ed (1991), 687-692.
"On Operational Availability of a Large Software-
Based Telecommunications System," Third Int 'l Symp. J.W. Day, "The Reliability of the Sizewell 'B'
on Soft. Rel. Eng. (October 1992L 358-366. Primary Protection System," Reactor Protection

Equipment Group (January 19, 1990).
Larry H. Crow, "New International Standards on
Reliability Growth," Proc. IEEE Annual Rel. and R. De Lemos, A. Saeed and T. Anderson, "A Train Set
Maint. Syrup. (January 1991), 478-480. as a Case Study for the Requirements Analysis of

Safety-Critical Systems," the Comp. J. 35, 1 (January
Attila Csenki, "Bayes Predictive Analysis of a 1992), 30--40.
Fundamental Software Reliability Model," IEEE

Trans. Rel. 39, 2 (June 1990), 177-183. Bob De Santo, "A Methodology for Analyzing
Avionics Software Safety," Computer Assurance

W. J. Cullyer, S. J. Goodenough and B. A. Wichmann, (Compass) (1988), 113-118.
"The Choice of Computer Languages for Use in
Safety-Critical Systems," Soft. Eng. J. 6, 2 (March Edmundo De Souza, E Silva and H. Richard Gail,
1991), 51-58. "Calculating Cumulative Operational Time

Distributions of Repairable Computer Systems," IEEE
P. Allen Currit, Michael Dyer, and Harlan D. Mills, Trans. Computer 35, 4 (April 1986), 322-332.
"Certifying the Reliability of Software," IEEE Trans.
Soft. Eng. 12, 1 (January 1986), 3-11. Edmundo De Souza E Silva, and H. Richard Gail,

"Calculating Availability and Performability Measures
Edward W. Czeck and Daniel P. Siewiorek, of Repairable Computer Systems Using
"Observations on the Effects of Fault Manifestation as Randomization," J. ACM 36, 1 (January 1989), 171-
a Function of Workload," IEEE Trans. Comp. 41, 5 193.
(May 1992), 559-565.

Norman Delisle and David Garlan, A Formal
Siddhartha R. Dalai and Colin L. Mallows, "Some Specification of an Oscilloscope, Tech. Report Cr-88-
Graphical Aids for Deciding When to Stop Testing 13, Tektronix, Inc. (October 27, 1988).
Software," IEEE J. Sel. Areas in Comm. 8, 2 (February
1990), 169-175. Balbir S. Dhillon, and C. Singh, Engineering

Reliability: New Techniques and Applications, Wiley
C. Dale, "Software Reliability Models," in Software (1981).
Reliability State of the Art Report 14, 2, Pergamon
Infotech (1986), 31--44. Balbir S. Dhillon, "Life Distributions," IEEE Trans.

Rel. 30, 5 (December 1981), 457-460.
Chris Dale, "The Assessment of Software Reliability,"
Rel. Eng. and Syst. Safety 34 (1991), 91-103. Balbir S. Dhillon, Systems Reliability, Maintainability

and Management, Petrocelli (1983).
B. K. Daniels, R. Bell and R. I. Wright, "Safety

Integrity Assessment of Programmable Electronic Balbir S. Dhillon, Reliability Engineering m Systems
Systems," Safety of Computer Control Systems Design and Operation, Van Nostrand (1983).
(Safecomp) (September 1983), 1-12.

Balbir S. Dhillon, Reliability in Computer System
Design, Ablex Pub. Co. (1987).

NUREG/CR-6101 118

Bibliography

James H. Dobbins, "Software Safety Management," Ivor Durham and Mary Shaw, Specifying Reliability As
Computer Assurance (Compass) (1988), 108-112. a Software Attribute, Department of Computer

Science, Carnegie-Mellon University (December 6,
Lorenzo Donatiello and Balakrishna R. Iyer, "Analysis 1982).
of a Composite Performance-Reliability Measure for
Fault-Tolerant Systems," J. ACM 34, 1 (January 1987), Michael Dyer, "Inspection Data," in Software
179-199. Reliability State of the Art Report 14, 2, Pergamon

Infotech (1986), 45-54.

E. P. Doolan, "Experience With Fagan's Inspection
Method," Soft. Prac. and Exper. 22, 2 (February 1992), Michael Dyer, "A Formal Approach to Software Error
173-182. Removal," J. Systems and Software 7 (1987), 109-I 14.

Thomas Downs and P. Garrone, "Some New Models Michael Dyer, "An Approach to Software Reliability
of Software Testing With Performance Comparisons," Measurement," Information and Software Technology
IEEE Trans. Rel. 40, 3 (August 1991), 322-328. 29, 8 (October 1987), 415-420.

Thomas Downs and Anthony Scott, "Evaluating the Kenneth H. Eagle and Ajay S. Agarwala, "Redundancy
Performance of Software-Reliability Models," IEEE Design Philosophy for Catastrophic Loss Protection,"
Trans. Rel. 41,4 (December 1992), 533-538. IEEE Annual Rel. and Maint. Syrup. (January 1992), 1-

4.

M. R. Drury, E. V. Walker, D. W. Wightman and A.
Bendell, "Proportional Hazards Modeling in the Dave E. Eckhart and Larry D. Lee, "A Theoretical
Analysis of Computer Systems Reliability," Rel. Eng. Basis for the Analysis of Multiversion Software
and System Safety 21, 3 (1988), 197-214. Subject to Coincident Errors," IEEE Trans. Soft. Eng.

11, 12 (December 1985), 1511-1517.

J. T. Duane, "Learning Curve Approach to Reliability
Monitoring," IEEE Trans. Aerospace 2, 2 (April 1964), V.N. Efanov, V. G. Krymsky and Yu. G. Krymsky,
563-566. "Safety and Integrity of Large-Scale Dynamic Systems

and Control Algorithm Structure: The Design
Joanne B. Dugan, Kishor S. Trivedi, Mark K. Technique," Probabilistic Safety Assessment and
Smotherman and Robert M. Geist, '"Ilae Hybrid Management, G. Apostolakis, Ed (1991), 741-746.
Automated Reliability Predictor," J. Guidance 9, 3
(May-June 1986), 319-331. Willa K. Ehrlich and Thomas J. Emerson, "Modeling

Software Failures and Reliability Growth During
Joanne B. Dugan, "On Measurement and Modeling of System Testing," lnt'l. Conf. on Soft. Eng., (March-
Computer Systems Dependability: A Dialog Among April 1987), 72-82.
Experts," IEEE Trans. ReI. 39, 4 (October 1990), 506-
510. WiUa K. Ehrlich, John P. Stampfel and Jar R. Wu,

"Application of Software Reliability Modeling to
Janet R. Dunham, "Experiments in Software Product Quality and Test Process," Proc. IEEE Int'l
Reliability: Life-Critical Applications," IEEE Trans. Conf. Soft. Safety (March 1990), 108--116.
Soft. Eng. 12, 1 (January 1986), 110-123.

WiUa K. Ehrlich, S. Keith Lee and Rex H. Molisani,

Janet R. Dunham and George B. Finelli, "Real-Time "Applying Reliability Measurement: A Case Study,"
Software Failure Characterization," Computer IEEE Software 7, 2 (March 1990), 57-64.
Assurance (Compass) (June 1990), 39-45.

Alex Elentukh and Ray Wang, "Optimizing Software
William R. Dunn and Lloyd D. Corliss, "Software Reliability Management Procee," Third Int'l Symp. on
Safety: A User's Practical Perspective," Proc. IEEE Soft. Rel. Eng. (October 1992), 34-40.
Annual Rel. and Maint. Syrup. (January 1990), 430-
435. Karen E. Ellis, "Robustness of Reliability-Growth

Analysis Techniques," IEEE Annual Rel. and Maint.
Syrup. (January 1992), 303-315.

119 NUREG/CR-6101

Bibliography

D. E. Embrey, "Human Reliability," in Serra, A., and Phyllis G. Frankl and Elaine J. Weyuker, "Assessing
R. E. Barlow, Ed, Theory of Reliability (1984), 465- the Fault-Detecting Ability of Testing Methods," ACM
490. Sigsoft Conf. on Soft. for Critical Systems (December

1991), 77-91.

Max Engelhardt and Lee J. Bain, "On the Mean Time
Between Failures for Repairable Systems," IEEE James W. Freeman and Richard B. Neely, "A
Trans. Rel. 35, 4 (October 1986), 419--422. Structured Approach to Code Correspondence

Analysis," Computer Assurance (Compass) (June
William W. Everett, "Software Reliability 1990), 109-116.
Measurement," IEEE J. Sel. Areas in Comm. 8, 2

(February 1990), 247-252. K. Frehauf and H. Sandmayr, "Quality of the Software
Development Process," Safety of Computer Control

William W. Everett, "An 'Extended Execution Time' Systems (Safecomp) (September 1983), 145-151.
Software Reliability Model," Third lnt'l Syrup. on Soft.
Rel. Eng. (October 1992), 4-13. G. Frewin, "Program and Process Property Models," in

Software Reliability State of the Art Report 14, 2,
T. Feo, "Part F77, Program for the Analysis of Fault Pergamon Infotech (1986), 55-64
Trees," IEEE Trans. Rel. 35, 1 (April 1986), 48-50.

Michael Friedman, "Modeling the Penalty Costs of
K. C. Ferrara, S. J. Keene and C. Lane, "Software Software Failure," Proc Annual Rel. and Maint. Syrup.
Reliability From a System Perspective," Proc. IEEE (1987), 359-363.
Annual Rel. and Maint. Syrup. (January 1989), 332-
336. Michael A. Friedman and Phuong Tran, "Reliability

Techniques for Combined Hardware/Software
George B. FineUi, "NASA Software Failure Systems," IEEE Annual Rel. and Maint. Symp.
Characterization Experiments," Rel. Eng. and System (January 1992), 290-293.
Safety 32, 1 (1991), 155-169.

Michael O. Fryer, "Risk Assessment of Computer
J. M. Finkelstein, "A Logarithmic Reliability-Growth Controlled Systems," IEEE Trans. Soft. Eng. 11, 1
Model for Single-Mission Systems," IEEE Trans. Rel. (January 1985), 125-129.
32, 5 (December 1983), 508-511.

Eiji Fujiwara and Dhiraj K. Pradhan, "Error Control
Gregory G. Finn, "Reducing the Vulnerability of Coding in Computers," IEEE Computer 23, 7 (July
Dynamic Computer Networks," ISI Research Report 1990), 63-72.
88-201, Information Sciences Institute, University of
Southern California (June 1988). R. Fullwood, R. Lofaro and P. Samanta, "Reliability

Assurance for Regulation of Advanced Reactors,"
Radu A. Florescu, "A Lower Bound for System IEEE Trans. Nuclear Sci. 39, 5 (October 1992), 1357-
Availability Computation," IEEE Trans. Rel. 35, 5 1362.
(December 1986), 619--620.

A. Gana, "Software Reliability Experience in the 5ESS
Maurice Forrest, "Software Safety," Hazard U.S. Project," Second Int'l Conf. on Soft. Quality
Prevention (July/September 1988), 20-21. (October 1992), 210-214.

Ernst G. Frankel, Systems Reliability and Risk Olivier Gaudoin and Jean-Louis Soler, "Statistical
Analysis, Martinus Nijhoff (1984). Analysis of the Geometric De-Eutrophication

Software-Reliability Model," IEEE Trans. Rel. 41, 4
Matthew K. Franklin and Armen Gabfielian, "A (December 1992), 518-524.

Transformational Method for Verifying Safety
Properties in Real-Time Systems," Proc. IEEE Real Olivier Gaudoin, "Optimal Properties of the Laplace
Time Systems Syrup. (December 1989), 112-123. Trent Test for Software-Reliability Models," IEEE

Trans. Rel. 41, 4 (December 1992), 525-532.

NUREG/CR-6t01 120

Bibliography

Robert M. Geist and Kishor S. Trivedi, "Ultrahigh Amrit I_. Goel, "A Surmnary of the Discussion on 'An

Reliability Prediction for Fault Tolerant Computer Analysis of Competing Software Reliability Models,"
Systems," IEEE Trans. Comp. 32, 12 (December IEEE Trans. Soft. Eng. 6, 5 (September 1980), 501-
1983), 1118-1127. 502.

Robert M. Geist, Mark Smotherman, Kishor Trivedi, Amrit L. Goel, "Software Reliability Models:

and Joanne B. Dugan, "The Reliability of Life-Critical Assumptions, Limitations and Applicability," IEEE

i Computer Systems," Acta Informatica 23, 6 (1986), Trans. Soft. Eng. 11, 12 (December 1985), 1411-1423.
621--642.

S. J. Goldsack and A. C. W. Finkelstein,

Robert M. Geist and Kishor Trivedi, "Reliability "Requirements Engineering for Real-Time Systems,"
Estimation of Fault-Tolerant Systems: Tools and Soft. Eng. J. (May 1991), 101-115.

Techniques," IEEE Computer 23, 7 (July 1990), 52-
61. Donald I. Good, "Predicting Computer Behavior,"

Computer Assurance (Compass) (1988), 7.5--83.
Robert Geist, A. Jefferson Offutt and Frederick C.

Harris, "Estimation and Enhancement of Real-Time J. Gorski, "Design for Safety Using Temporal Logic,"
Software Reliability Through Mutation Analysis," Safety of Computer Conlrol Systems (Safecomp)
IEEE Trans. Comp. 41, 5 (May 1992), 550-557. (October 1986), 149-155.

Erol Gelenbe, David Finkel, and Sarah K. Tripathi, Paul Gottfried, "Some Aspects of Reliability Growth,"
"Availability of a Distributed Computer System With IEEE Trans. Rel. 36, 1 (April 1987), 11-16.
Failures," Acta Informatica 23, 6 (1986), 643-655.

Lon D. Gowen, James S. Collofello and Frank W.

Erol Gelenbe and Marisela Hern,_dez, "Enhanced Calliss, "Preliminary Hazard Analysis for Safety-

Availability of Transaction Oriented Systems Using Critical Software Systems," Phoenix Conf. Comp. and
Failure Tests," Third Int 'l Symp. on Soft. Rel. Eng. Comm. (April 1992), 501-508.
(October 1992), 342-350.

A. Goyal, W. C. Carter, E. De Souza E Silva and S. S.

General Accounting Office, "Embedded Computer Lavenberg, "The System Availability Estimator," IEEE
Systems: Significant Software Problems on C-17 Must Annual lnt'l Symp. on Fault-Tolerant Computer
Be Addressed," Report to the Chairman, Subcommittee Systems (July 1986), 84-89.
on Legislation and National Security, Committee on
Government Operations, House of Representatives Ambuj Goyal, "A Measure of Guaranteed Availability
(May 1992). and Its Numerical Evaluation," IEEE Trans. Comp. 37,

1 (January 1988), 25-32.

George L. Gentzler and Nelson M. Andrews, "Data
Stability in An Application of a Software Reliability Robert B. Grady, "Dissecting Software Failures,"
Model," IEEE J. Sel. Areas of Comm. 8, 2 (February Hewlett-Packard J. 40, 2 (April 1989), 57-63.
1990), 273-275.

C. T. Gray, "A Framework for Modeling Software

Luther P. Gerlach and Steve Rayner, "Culture and the Reliability," in Software Reliability State of the Art
Common Management of Global Risks," Practicing Report 14, 2, Pergamon Infotech (1986), 81-94.
Anthropology (1987), 15-18.

A. E. Green, Safety Systems Reliability, Wiley (1983).
Carlo Ghezzi, Dino Mandrioli, Sandro Morasca and

Mauro Pezz_, "A Unified High-Level Petri Net S.B. Guarro, J. S. Wu, G. E. Apostolakis and M. Yau,
Formalism for Time-Critical Systems," IEEE Trans. "Embedded System Reliability and Safety Analysis in
Soft. Eng. 17, 2 (February 1991), 161-172. the UCLA ESSAE Project," in Probabilistic Safety

Assessment and Management, G. Apostolakis, Ed
T. Giammo, "Relaxation of the Common Failure Rate (1991), 383-388.

Assumption in Modeling Software Reliability," in
Software Reliability State of the Art Report 14, 2,

Pergamon Infotech (1986), 65-79.

121 NUREG/CR-6101

Bibliography

Vassos Hadzilacos, "A Theory of Reliability in Xudong He, "Specifying and Verifying Real-Time
Database Systems," J. ACM 35, 1 (January 1988), Systems Using Time Petri Nets and Real-Time
121-145. Temporal Logic," Computer Assurance Conf.

(Compass) (June 1991), 135-14d
Don N. Hagist, "Reliability Testing," Proc. IEEE
Annual Rel. and Maint. Syrup. (January 1989), 347- John Healy, "A Simple Procedure for Reliability
349. Growth Modeling," Proc. IEEE Annual Rel. and

Maint. Syrup. (January 1987), 171-175.
Fred Hall, "Computer Program Stress Testing," Proc.
IEEE Annual Rel. and Maint. Syrup. (January 1985), Herbert Hecht and Myron HechL "Software Reliability
256-261. in the System Context," IEEE Trans. Soft. Eng. 12, 1

(January 1986), 51-58.
P. Hamer, "Types of Metric," in Software Reliability
State of the Art Report 14, 2 Pergamon Infotech Herbe_ llecht and Myron Hecht, "Fault-Tolerant
(1986), 95-103. Software," in Fault.Tolerant Computing, D. K.

Pradhan, Ed, Prentice Hall (1986), 658--696.

Richard Hamlet, "Unit Testing for Software
Assurance," Computer Assurance (Compass) (1989), David I. Heima:m and W. D. Clark, "Process-Related
42-48. Reliability-Growth ModelingmHow and Why," IEEE

Annual Rel. and Maint. Syrup. (January 1992), 316-
Richard Hamlet, "Are We Testing for True 321.
Reliability?" IEEE Software 9, 4 (July 1992), 21-27.

Martin Helander, Ed, Handbook of Human-Computer
Allen L. Hankinson, "Computer Assurance: Security, Interaction, North Holland (1990).
Safety and Economics," Computer Assurance
(Compass) (1989), 1-7. E.J. Henley and H. Kumamoto, Designing for

Reliability and Safety Control, Prentice Hall (1985).
Mark D. Hansen and Ronald L. Watts, "Software
System Safety and Reliability," Proc. IEEE Annual M.A. Hennell, "Testing for the Achievement of

Rel. and Maint. Symp. (January 1988), 214-217. Software Reliability," in Software Reliability State of
the Report 14, 2, Pergamon Infotech (1986), 119-129.

Mark D. Hansen, "Survey of Available Software-

Safety Analysis Techniques," Proc. IEEE Annual Rel. M.A. Hennell, "Testing for the Achievement of
and Maint. Syrup. (January 1989), 46-49. Software Reliability," Rel. Eng. and System Safety 32,

1 (1991), 119-134.
Kirsten M. Hansen, Anders P. Ravn and Hans Rischel,

"Specifying and Verifying Requirements of Real-Time Jun Hishitani, Shigeru Yamada and Shunji Osaki,
Systems," ACM Sigsofl Conf. on Soft. for Critical "Comparison of Two Estimation Methods of the Mean
Systems (December 1991), 44-54. Time Interval Between Software Failures," Proc.

Phoenix Conf. on Computers and Comm. (March
Hans Hansson and Bengt Jonsson, "A Framework for 1990), 418--424.

Reasoning About Time and Reliability," IEEE Real
Time Systems Syrup. (December 1989), 102-111. Per Hokstad and Lars Bodsberg, "Reliability Model for

Computerized Safety Systems," Proc. IEEE Annual
L. N. Harris, "Reliability Prediction: A Matter of Rel. and Mamt. Syrup. (January 1989), 435-440.
Logic," Safety of Computer Control Systems
(Safecomp) (September 1983), 29-.35. Erik Hollnagel, "What Is a Man That He Can Be

Expressed By a Number?" in Probabilistic Safety
L. N. Harris, "Software Reliability Modelingm Assessment and Management, G. Apostolakis, Ed
Prospects and Perspective," in Software Reliability (1991), 501-506.
State of the Art Report 14, 2, Pergamon Infotech
(1986), 105-118.

NUREG/CR-6101 122

Bibliography

M. C, ttsueh, R. K. lyer and Kishor S. Trivedi. Ravishanker K. Iyer and Paola Velardi, "Hardware-
"Performability Modeling Based on Real Data: A Case Related Software Errors: Measurement and Analysis,"
Study," IEEE Trans. Comp. 37, 4 (April 1988), 478- IEEE Trans. Soft. Eng. 11, 2 (February 1985), 223-
484. 231.

Jiandong Huang, John A. Stanovic, Don Towsley and Balakrishna R. lyer, Lorenzo Donatiello and Philip
Krithi Ramamrithan, "Experimental Evaluation of Heidelberger, "Analysis of Performability for
Real-Time Transaction Processing," IEEE Real Time Stochastic Models of Fault-Tolerant Systems," IEEE
Systems Syrup. (December 1989), 144-153. Trans. Comp. 35, 10 (October 1986), 902-907.

R. A. Humphreys, "Software---Correct Beyond Ravishanker K. lyer and Dong Tang, "Software
Reasonable Doubt?" Proc. Advances in Rel. Tech. Reliability Measurements in the Operational
Syrup. (April 1988), 236-246. Environment," in Probabilistic Safety Assessment and

Management, G. Apostolakis, Ed (1991), 479--484.
G. S. Hura and J. W. Atwood, "The Use of Petri Nets

to Analyze Coherent Fault Trees," IEEE Trans. Rel. P.R. Jackson and B. A. White, "The Application of
37, 5 (December 1988), 469-473. Fault Tolerant Techniques to a Real Time System,"

Safe_ of Computer Control Systems (Safecomp)
Anthony Iannino, John D. Musa, Kazuhira Okumoto (September 1983), 75-81.
and Bev Littlewood, "Criteria for Software Reliability
Model Comparisons," IEEE Trans. Soft. Eng. 10, 6 Raymond Jacoby and Yoshihiro Tohma, "Parameter
(November 1984), 687--691. Value Computation By Least Square Method and

Evaluation of Software Availability and Reliability At

Anthony Iannino and John D. Musa, "Software Service-Operation By the Hyper-Geometric
Reliability Engineering At AT&T," in Probabilistic Distribution Software Reliability Growth Model
Safety Assessment and Management, G. Apostolakis, (HGDM)," Proc IEEE lnt'l Conf. Soft. Eng. (May
Ed (1991), 485-491. 1991), 226-237.

Oliver C. Ibe, Richard C. Howe and Kishor S. Trivedi, Raymond Jacoby and Kaori Masuzawa, "Test

"Approximate Availability Analysis of Vaxcluster Coverage Dependent Software Reliability Estimation
Systems," IEEE Trans. Rel. 38, 1 (April 1989), 146- By the HGD Model," Third lnt 'l Syrup. on Soft. Rel.
152. Eng. (October 1992), 193-204.

IEEE, "Software in Safety-Related Systems," Matthew S. Jaffe and Nancy G. Leveson,
Institution of Electrical Engineers and British "Completeness, Robustness and Safety in Real-Time

Computer Society Joint Report (October 1989). Software Requirements Specification," Proc IEEE Int'l
Conf. Soft. Eng. (1989), 302-311.

IEEE, IEEE Software Safety Plans Working Group,
Standard for Software Safety Plans, Working Paper, Matthew S. Jaffe, Nancy G. Leveson, Mats P. E.
Draft H (April 1, 1992). Heimdahl and Bonnie E. Melhart, "Software

Requirements Analysis for Real-Time Process-Control

Toshiyuki Inagaki, "A Mathematical Analysis of Systems," IEEE Trans. Soft. Eng. 17, 3 (March 1991),
Human-Machine Interface Configurations for a Safety 241-25_.

Monitoring System," IEEE Trans. Rel. 37, 1 (April
1988), 35-40. Faruam Jahanian and Aloysius K. Mok, "Safety

Analysis of Timing Properties in Real-Time Systems,"
Infotech, Software Reliability State of the Art Report IEEE Trans. Soft. Eng. 12, 9 (September 1986), 890--

14, 2, Pergamon Infotech (1986). 904.

Ravishankar K. Iyer and David J. Rossetti, "Permanent Farnam Jahanian and Ambuj Goyal, "A Formalism for
CPU Errors and System Activity: Measurement and Monitoring Real-Time Constraints at Run-Time,"
Modeling," Proc. Real-Time Systems Syrnp., (1983), Proc. Int'l Syrup. for Fault-Tolerant Computing (June
61-72. 1990), 148--155.

123 NUREG/CR-6101

Bibliography

Pankaj Jalote and Roy H. Campbell, "Atomic Actions Paul C. Jorgensen, "Early Detection of Requirements

for Fault-Tolerance Using CSP,." IEEE Trans. Soft. Specification Errors," Computer Assurance (Compass)
Eng 12, 1 (January 1986), 59--68. (1988), 44-48.

Menkae Jeng and Howard J. Siegel, "Implementation Paul C. Jorgensen, "Using Petri Net Theory to Analyze
Approach and Reliability Estimation of Dynamic Software Safety Case Studies," Computer Assurance
Redundancy Networks," Proc. Real-Time Systems (Compass) (1989), 22-25.
Syrup. (December 1986), 79-88.

Philip R. Joslin, "Software for Reliability Testing of
Jet Propulsion Lab, "Feasibility Study: Formal Computer Peripherals: A Case History," IEEE Trans.
Methods Demonstration Project for Space Rel. 35, 3 (August 1986), 279-284.
Applications," JPL, Johnson Space Center, Langley
Research Center (October 23, 1992). B.D. Juhlin, "Implementing Operational Profiles to

Measure System Reliability," Third Int'l Syrup. on Soft.

William S. Jewell, "Bayesian Extensions to a Basic Rel. Eng. (October 1992), 286-295.
Model of Software Reliability," in Sen'a, A., and R. E.
Barlow, Ed, Theory of Reliability (1984), 394-404. M. Kahniche and K. Kanoun, "The Discrete Time

Hyperexponential Model for Software Reliability
William S. Jewell, "Bayesian Estimation of Undetected Growth Evaluation," Third Int'l Syrup. on Soft. Rel.
Errors," in Serra, A., and R. E. Barlow, Ed, Theory of Eng. (October 1992), 64-75.
Reliabilit?; (1984), 405-425.

S. H. Kan, "Modeling and Software Development
William S. Jewell, "A General Framework for Quality," IBM Systems J. 30, 3 (1991), 351-362.

Learning-Curve Reliability Growth Models," in Sen'a,
A., and R. E. Barlow, Ed, Theory. of Reliability (1984), Abraham Kandel and Eitan Avni, Engineering Risk
426-449. and Hazard Assessment, CRC Press (1988), 2

Volumes.

William S. Jewell, "Bayesian Extensions to a Basic
Model of Software Reliability," IEEE Trans. Soft. Eng. Karama Kanoun, Marta Rettelbusch De Bastos Martini
11, 12 (December 1985), 1465-1471. and Jorge Moreira De Souza, "A Method for Software

Reliability Analysis and Prediction Application to the

Harry Joe and N. Reid, "On the Software Reliability Tropico-R Switching System," IEEE Trans. Soft. Eng.
Models of Jelinski-Moranda and Littlewood," IEEE 17, 4 (April 1991), 334-344.

Trans. Rel. 34, 3 (August 1985), 216-218.
Krishna Kant, "Performance Analysis of Real-Time

Harry Joe, "Statistical Inference for General-Order Software Supporting Fault-Tolerant Operation," IEEE
Statistics and Nonhomogeneous Poisson Process Trans. Comp. 39, 7 (July 1990), 906.-918.
Software Reliability Models," IEEE Trans. Soft. Eng.
15, 11 (November 1989), 1485-1490. P.K. Kapur and R. B. Garg, "A Software Reliability

Growth Model for An Error-Removal Phenomenon,"

A. M. Johnson and M. Malek, "Survey of Software Soft. Eng. J. 7, 4 (July 1992), 291-294.

Tools for Evaluating Reliability, Availability and
Serviceability," ACM Comp. Surv. 20, 4 (December Chakib Kara-Zaitri, Alfred Z. Keller, Imre Barody and
1988), 227-269. Paulo V. Fleming, "An Improved FMEA

Methodology," Proc. IEEE Annual Rel. and Maint.
Sally C. Johnson and Ricky W. Butler, "Design for Syrup. (January 1991), 248-252.
Validation," IEEE Aerospace and Elect. Syst. J. 7, 1
(January 1992), 38--43. A.P. Karadimce, R. R. Seban and A. L. Grnarov, "A

Fast, General-Purpose Algorithm for Reliability
L. K. Jokubaitis and M. F. Wuinn, "New Army Evaluation of Distributed Systems," Proc. Phoenix

Method Is Stating and Assessing RAM Requirements," Conf. Computers and Comm. (March 1990), 137-146.
lEEE Annual Rel. and Maint. Syrup. (January 1992),
19-27.

NUREG/CR-6101 124

Bibliography

Nachimuthu Karunanithi, Darrell Whitley and Garrison Q. Kenney and Mladen A. Vouk, "Measuring
Yashwant K. Malaiya, "Using Neural Networks in the Field Quality of Wide-Distribution Commercial
Reliability Prediction," IEEE Software 9, 4 (July Software," Third Int 'l Syrup. on Soft. Rel. Eng.
1992), 53-59. (October 1992), 351-357.

Nachimuthu Karunanithi and Y. K. Malaiya, "The Taghi M. Khoshgoftaar and John C. Munson,
Scaling Pn3blem in Neural NetworKs for Software "Predicting Software Development F..,'rorsUsing

Reliability Prediction," Third Int'l Syrup. on Soft. Rel. Software Complexity Metrics," IEEE J. Sel. Areas in
Eng. (October 1992), 76-82. Comm. 8, 2 (February 1990), 253-261.

Krishna M. Kavi and U. Narayan Bhat, "Reliability Taghi M. Khoshgoftaar, Bibhuti B. Bhattacharyya and
Analysis of Computer Systems Using Dataflow Graph Gary D. Richardson, "Predicting Software Errors,
Models," IEEE Trans. Rel. 35, 5 (December 1986), During Development, Using Nonlinear Regression
529-531. Models: A Comparative Study," IEEE Trans. Re141, 3

(September 1992), 390-395.
Samuel J. Keene, "Cost Effective Software Quality,"
Proc. IEEE Annual Rel. and Maint. Symp. (January Taghi M. Khoshgoftaar, Abhijit S. Pandya and Hement
1991), 433--437. B. More, "A Neural Network Approach for Predicting

Software Development Faults," Third Int 'l Syrup. on
Samuel J. Keene, "Assuring Software Safety," IEEE Soft. Rel. Eng. (October 1992), 83-89.
Annual Rel. and Maint. Syrup. (January 1992), 274-
279. K.H. Kim, "Programmer-Transparent Coordination of

Recovering Concurrent Processes: Philosophy and
Karen C. Keene and Samuel J. Keene, "Concurrent Rules for Efficient Implementation," IEEE Trans. Soft.
Engineering Aspects of Software Development," Third Eng. 14, 6 (June 1988), 810-821.
Int'l Syrup. on Soft. Rel. Eng. (October 1992), 51--62.

K. H. Kim and Howard O. Welch, "Distributed

Peter A. Keiller and Douglas R. Miller, "On the Use Execution of Recovery Blocks: An Approach for
and the Performance of Software Reliability Growth Uniform Treatment of Hardware and Software Faults

Models," Rel. Eng. and System Safety 32, 1 (1991), in Real-Time Applications," IEEE Trans. Comp. 38, 5
95-117. (May 1989), 626--636.

John P. J. Kelly, A. Avizienis, B. T. Ulery, B. J. Swain, B.A. Kitchenham, "Metrics in Practice," in Software

R.-T. Lyu, A. Tai and K.-S. Tso, "Multi-Version Reliability State of the Art Report 14, 2, Pergamon
Software Development," Safe_ of Computer Control Infotech (1986), 131-144.
Systems (Safecomp) (October 1986), 43-49.

George J. Knafl, "Solving Maximum Likelihood
John P. J. Kelly and Susan C. Murphy, "Achieving Equations for Two-Parameter Software Reliability

Dependability Throughout the Development Process: Models Using Grouped Data," Third lnt'l Syrup. on
A Distributed Software Experiment," IEEE Trans. Soft. Soft. Rel. Eng. (October 1992), 205-213.
Eng. 16, 2 (February 1990), 153-165.

John C. Knight and Nancy G. Leveson, "Correlated
John P J. Kelly, Thomas I. McVittie and Susan C. Failures in Multi-Version Software," Safety of
Murphy, "Techniques for Building Dependable Computer Control Systems (Safecomp) (October 1985),
Distributed Systems: Multi-Version Software Testing," 159-165.
lnt'l Syrup. for Fault-Tolerant Computing (June 1990),
400--407. John C. Knight and Nancy G. Leveson, "An

Experimental Evaluation of the Assumption of
Ron Kenett and Moshe Pollak, "A Semi-Parametric Independence in Multiversion Programming," IEEE
Approach to Testing for Reliability Growth, With Trans. Soft. Eng. 12, 1 (January 1986), 96-109.
Application to Software Systems," IEEE Trans. Rel.
35, 3 (August 1986), 304-311. John C. Knight and Nancy G. Leveson, "A Reply to

the Criticisms of the Knight & Leveson ExperimenL"
Soft. Eng. Notes 15, 1 (January 1990), 24-35.

125 NUREG/CR-6101

Bibliography

John C. Knight and P. E. Ammann, "Design Fault Peter Kubat, "Estimation of Reliability for
Tolerance," Rel. Eng. and System Safety 32, 1 (1991), Communication/Computer Networks--
25-49, Simulation/Analytic Approach," IEEE Trans. Comm.

37, 9 (September 1989), 927-933.
Takehisa Kohda and Koichi Enoue, "A Petri Net

Approach to Probabilistic Safety Assessment for V.K. Prasanna Kumar, Salim Hariri and C. S.
Obtaining Event Sequences From Component Raghavendra, "Distributed Program Reliability
Models," Probabilistic Safe_ Assessment and Analysis," IEEE Trans. Soft. Eng. 12, 1 (January

Management G. Apostolakis, Ed (1991), 729-734. 1986), 42-50.

Walter H. Kohler, "A Survey of Techniques for Reino Kurki-Suonio, "Stepwise Design of Real-Time
Synchronization and Recovery in Decentralized Systems," ACM Sigsofl Conf. on Soft. for Critical
Computer Systems," ACM Computing Surveys 13, 2 Systems (December 1991), 120-131.
(June 1981), 149-183.

Jaynarayan H. Lala, Richard E. Harper and Linda S.
B. G. Kolkhorst and A. J. Macina, "Developing Error- Alger, "A Design Approach for Ultrareliable Real-
Free Software," Computer Assurance (Compass) Time Systems," IEEE Computer 24, 5 (May 1991),
(1988), 99-107. 12-22.

H. Kopetz, "Resilient Real-Time Systems," in Resilient M. La Manna, "A Robust Database lbr Safe Real-Time
Computer Systems, T. Anderson, Ed, Wiley (1985), Systems." Safe_. of Computer Control Systems
91-101. (Safecomp) (October 1986), 67-71.

H. Kopetz, H. Kantz, G. Grunsteidl, P. Puschner and J. Naftali Langberg and Nozer D. Singpurwalla, "Some
Reisinger, "Tolerating Transient Faults in Mars," Foundational Considerations in Software Reliability
Fault-Tolerant Computing Syrup. (June 1990), 466- Modeling and a Unification of Some Software
473. Reliability Models," in Sen'a, A., and R. E. Barlow,

Ed, Theory of Reliabili_ (1984), 379-394.
W. Edward Koss, "Software-Reliability Metrics for

Military Systems," Proc. IEEE Annual Rel. and Maint. Naftali Langberg and Nozer D. Singpurwalla, "A
Syrup. (January 1988), 190-193. Unification of Some Software Reliability Models,"

Siam J. Sci. Stat. Comput. 6, 3 (July 1985), 781-790.
C. M. Krishna and Kang G. Shin. "Performance

Measures for Control Computers," IEEE Trans. Jean-Claude Laprie, "Dependability Evaluation of
Automatic Control 32, 6 (June 1987), 467-473. Software Systems in Operation," IEEE Trans. Soft.

Eng. 10, 6 (November 1984), 701-714.
C. M. Krishna, Kang G. Shin and Inderpal S. Bhandari,

"Processor Tradeoffs in Distributed Real-Time Jean-Claude Laprie, "Dependable Computing and
Systems," IEEE Trans. Comp. 36, 9 (September 1987), Fault Tolerance: Concepts and Terminology," Annual
1030-1040. lnt'l Syrup. on Fault.Tolerant Computing (1985), 2-11.

Gregory A. Kruger, "Project Management Using Jean-Claude Laprie, Christian B_unes, M. Kahniche
Software Reliability Growth Models," Hewlett- and Karama Kanoun, "The Transformation Approach
Packard J. 39, 3 (June 1988), 30-35. to the Modeling and Evaluation of the Reliability and

Availability Growth," Int'l Syrup. for Fault-Tolerant
Gregory A. Kruger, "Validation and Further Computing (June 1990), 364-371.
Application of Software Reliability Growth Models,"
Hewlett-Packard J. 40, 2 (April 1989), 75-79. Jean-Claude Laprie, Jean Arlat, Christian B6ounes and

Karama Kanoun, "Definition and Analysis of
Peter Kubat and Harvey S. Koch, "Managing Test Hardware- and Software-Fault Tolerant Architectures,"
Procedures to Achieve Reliable Software," IEEE IEEE Computer 23, 7 (July 1990), 39-51.
Trans. Rel. 32, 3 (August 1983), 299-303.

NLrREG/CR-6101 126

Bibliography

Jean-Claude Laprie, Karama Kanoun, Christian Ytzhak Leveldel, "Reliability Analysis of Large
B_unes and Mohamed Ka,qniche, "The Kat Software Systems: Defect Data Modeling," IEEE
(Knowledge-Action-Transformation) Approach to the Trans. Soft. Eng. 16, 2 (February 1990), 141-152.
Modeling and Evaluation of Reliability and
Availability Growth," IEEE Trans. Soft. Eng. 17, 4 Nancy G. Leveson, "Software Safety: A Definition and
(April 1991), 370-382. Some Preliminary Thoughts," Tech. Rep. 174, Dept. of

Information and Computer Science, Univ. of Cal.,
Jean-Claude Laprie and Karama Kanoun, "X-Ware Irvine (April 1981).
Reliability and Availability Modeling," IEEE Trans.
Sty. Eng. 18, 2 (February 1992), 130-147. Nancy G. Leveson and Peter R. Harvey, "Analyzing

Software Safety," IEEE Trans. Soft. Eng. 9, 5
Jean-Claude Laprie, "for a Product-in-a-Process (September 1983), 569-579.
Approach to Software Reliability Evaluation," Third

Int'l Syrup. on Soft. Rel. Eng. (October 1992), 134- Nancy G. Leveson, "Verification of Safety," Safety of
139. Computer Control Systems (Safecomp) (September

1983), 167-174.

Khiem V. Le and Victor O. K. Li, "Modeling and
Analysis of Systems With Multimode Component and Nancy G. Leveson, "Software Safety," in Resilient
Dependent Failures," IEEE Trans. ReL 38, 1 (April Computing ,_vstems, T. Anderson, Ed, Wiley (1985),
1989), 68-75. 122-143.

Philippe R. Leclerq, "A Software-Reiiability Nancy G. Leveson, "Software Safety: Why, What and
Assessment Model," IEEEAnnualRel. andMaint. How," ACM Comp. Surveys 18, 2 (June 1986), 125-
Symp. (January 1992), 294-298. 163.

Pierre L'Ecuyer and Jacques Malenfant, "Computing Nancy G. Leveson, "An Outline of a Program to
Optimal Checkpointing Strategies for Rollback and Enhance Software Safety," Safety of Computer Control
Recovery Schemes," IEEE Trans. Comp. 37, 4 (April Systems (Safecomp) (October 1986), 129-135.
1988), 491--496.

Nancy G. Leveson and Janice L. Stolzy, "Safety
Gilbert Le Gall, Marie-Fran_;oise Adam, Henri Analysis Using Petri Nets," IEEE Trans. Soft. Eng. 13,
Derriennic, Bernard Moreau and Nicole Valette, 3 (March 1987), 386-397.
"Studies on Measuring Software," IEEE J. Sel. Areas

in Comm. 8, 2 (Februar3' 1990), 234-245. Nancy G. Leveson, S. S. Cha, John C. Knight and T. J.

ShimeaU, "The Use of Self Checks and Voting. in
Kang W. Lee, Frank A. Tillman and James J. Higgins, Software Error Detection: An Empirical Study," IEEE
"A Literature Survey of the Human Reliability Trans. Soft. Eng. 16, 4 (April 1990), 432--443.
Component in a Man-Machine System," IEEE Trans.

Rel. 37, 1 (April 1988), 24--34. Nancy G. Leveson, "Software Safety in Embedded
Computer Systems," Comm. ACM 34, 2 (February

Pen-Lan Lee and Aderbad Tamboli, "Concurrent 1991), 34--46.
Correspondent Modules: A Fault Tolerant

Implementation," Annual lnt'l Phoenix Conf. on Comp. Nancy G. Leveson, "Safety Assessment and
and Comm. (March 1989), 300-304. Management Applied to Software," in Probabilistic

Safety Assessment and Management, G. Apostolakis,
lnhwan Lee and Ravishankar K. Iyer, "Analysis of Ed (1991), 377-382.

Software Halts in the Tandem Guardian Operating
System," Third Int 'l Syrup. on Soft. Rel. Eng. (October Nancy G. Leveson, "Safety," in Aerospace Software
1992), 227-236. Engineering, Christine Anderson and Merlin Dorfman,

Ed, Aiaa (1991), 319-336.

Ann Marie Leone, "Selecting An Appropriate Model
for Software Reliability," Proc. Annual Rel. and Maint.
Syrup. (January 1988), 208-213.

127 NUREG/CR-6101

Bibliography

Nancy G. Leveson, Stephen S. Cha and Timothy J. Bev Littlewood and John L. Verrall, "Likelihood
Shimeall, "Safety Verification of Ada Programs Using Function of a Debugging Model for Computer
Software Fault Trees," IEEE Software (July 1991), 48- Software Reliability," IEEE Trans. Rel. 30, 2 (June
59. 1981), 145--148.

Nancy G. Leveson and Clark S. Turner, "An Bev Littlewood, "Rationale for a Modified Duane
Investigation of the Therac-25 Accidents," UCI Tech. Model," IEEE Trans. Rel. 33, 2 (June 1984), 157-159.
Report 92-108, Information and Computer Science
Dept., University of California, Irvine (November Bey Littlewood, "Software Reliability Prediction," in
1992). Resilient Computing Systems, T. Anderson, Ed, Wiley

(1985), 144-162.

Nancy G. Leveson, Mats P. E. Heimdahl, Holly
Hildreth and Jon D. Reese, "Requirements Bey Littlewood and Ariela Sorer, "A Bayesian
Specification for Process-Control Systems," Tech. Modification to the Jelinski-Moranda Software
Report 92-106, Information and Computer Science Reliability Growth Model," Soft. Eng. J. 2, 2 (March
Dept., University of California, Irvine (November 10 1987), 30--41.
1992).

Bev Littlewood and Douglas R. Miller, "Conceptual
Ken S. Lew, K. E. Forword and T. S. Dillon, "The Modeling of Coincident Failures in Multiversion
Impact of Software Fault Tolerant Techniques on Software," IEEE Trans. Soft. Eng. 15, 12 (December
Software Complexity in Real Time Systems," Safe_' of 1989), 1596-1614.
Computer Control Systems (Safecomp) (September
1983), 67-73. Bey Littlewood and Lorenzo Strigini, "The Risks of

Software," Scientific American (November 1992), 62-
Ken S. Lew, Tharam S. Dillon and Kevin E. Forword. 75.

"Software Complexity and Its Impact on Software
Reliability," IEEE Trans. Soft. Eng. 14, 11 (November Bev Littlewood and Lorenzo Strigini, "Validation of
1988), 1645--1655. Ultra-High Dependability for Software-Based

Systems," Technical Report (1992).
Deron Liang, Ashok Agrawala, Daniel Mosse and
yiheng Shi, "Designing Fault Tolerant Applications in Bev Littlewood, "Sizewell PPS: Software Concerns,"
Maruti," Third Int'l Symp. on Soft. Rel. Eng. (October ACSNlmeeting (June 1992).
1992), 264-273.

D. K. Lloyd and M. Lipow, Reliability: Management,
Butt H. Liebowitz and John H. Carson, Multiple Methods and Mathematics, Prentice-Hall (1977).
Processor Systems for Real- Time Applications,
Prentice-Hall (1985). Roy Longbottom, Computer System Reliabili_, Wiley

(1980).

Hsin-Hui Lin and Way Kuo, "Reliability Cost in
Software Life-Cycle Models," Proc. IEEE Annual Rel. Gan Luo, Gregor V. Bochmann, Behcet Sarikaya and
and Maint. Syrup. (January 1987), 364-368. Michel Boyer, "Control-How Based Testing of Prolog

Programs," Third lnt'l Syrup. on Soft. Rel. Eng.
Bev Littlewood, "Theories of Software Reliability: (October 1992), 104-113.
How Good Are They and How Can They Be
Improved?" IEEE Trans. Soft. Eng. 6, 5 (September Michael R. Lyu, "Measuring Reliability of Embedded
1980), 489-500. Software: An Empirical Study With JPL Project Data,"

in Probabilistic Safety Assessment and Management,
Bev Littlewood, "Stochastic Reliability-Growth: A G. Apostolakis, Ed (1991), 493-500.
Model for Fault-Removal in Computer Programs and

Hardware Designs," IEEE Trans. Rel. 30, 4 (October Michael R. Lyu and Allen Nikora, "Applying
1981), 313-320. Reliability Models More Effectively," IEEE Software

9, 4 (July 1992), 43-52.

NUREG/CR-6101 128

Bibliography

Michael R. Lyu, "Software Reliability Measurements R.A. Maxion, D. P. Siewiorek and S. A. Elkind,
in N-Version Software Execution Environment," Third "Techniques and Architectures for Fault-Tolerant
Int'l Symp. on Soft. Rel. Eng. (October 1992), 254-- Computing," Annual Review Computer Science (1987),
263. 469-520.

Saeed Maghsoodloo, David B. Brown and Chien-Jong Annelise Von Mayrhauser and John A. Teresinski,
Lin, "A Reliability and Cost Analysis of An Automatic "The Effects of Status Code Metrics on Dynamic
Prototype Generator Test Paradigm," IEEE Trans. Rel. Software Reliability Models," Workshop on Software
41, 4 03e,cember 1992), 547-553. Reliability, IEEE Comp. Soc. Tech. Comm. on Soft.

Rel. Eng. (April 13, 1990).
Maria T. Mainini and Luc BiUot, "Perfide: An

Environment for Evaluation and Monitoring of Thomas A. Mazzuchi and Refik Soyer, "A Bayes
p "Software Reliability Metrics During the Test base, Empirical-Bayes Model for Software Reliability,"

Soft. Eng. J. 5, 1 (January 1990), 27-32. IEEE Trans. Rel. 37, 2 (June 1988), 248-254.

S. V. Makam and A, Avizienis, "Aries 81: A Roger L. McCarthy, "Present and Future Safety
Reliability and Life-Cycle Evaluation Tool for Fault- Challenges of Computer Control," Computer
Tolerant Systems," Proc. IEEE Int'l. Syrup. on Fault- Assurance (Compass) (1988), 1-7.
Tolerant Computing (1982), 267-274.

N. J. McCormick, Reliabili_ and Risk Analysis,
Yashwant K. Malaiya, Nachimuthu Karunanithi and Academic Press (1981).

Pradeep Verma, "Predictability of Software-Reliability
Models," IEEE Trans. Rel. 41, 4 (December 1992), John A. McDermid, "Issues in Developing Software
539-546. for Safety Critical Systems," Rel. Eng. and System

Safe_' 32, 1 (1991), 1-24.
Yashwant K. Malaiya, A. Von Mayrhauser and P. K.
Srimani, "The Nature of Fault Exposure Ratio," Third John A. McDermid, "Safety Arguments, Software and
lnt'l Syrup. on Soft. Rel. Eng. (October 1992), 23-32. System Reliability," Int'l Symp. on Soft. Rel. Eng.

(1991), 43--50.
Derek P. Mannering and Bernard Cohen, "The

Rigorous Specification and Verification of the Safety Gerald W. McDonald, "Why There Is a Need for a
Aspects of a Real-Time System," Computer Assurance Software-Safety Program," Proc. IEEE Annual Rel.
(Compass) (June 1990), 68-85. and Maint. Syrup. (January 1989), 30-34.

Giancarlo Martella, Barbara Pernici and Fabio A. Archibald McKinlay, "Software Safety Handbook,"
Schreiber, "An Availability Model for Distributed Computer Assurance (Compass) (1989), 14--17.
Transaction Systems," IEEE Trans. Soft. Eng. 11, 5
(May 1985), 483-491. Archibald McKinlay, "The State of Software Safety

Engineering," in Probabilistic Safety Assessment and
M. R. Bastos Martini, Karama Kanoun and J. Moreira Management, G. Apostolakis, Ed (1991), 369-376.
De Souza, "Software Reliability Evaluation of the
Tropico-R Switching System," IEEE Trans. Rel. 39, 3 Ban'y T. McKinney, "FMECA the Right Way," Proc.
(August 1990), 369-379. IEEEAnnuaIRel. and Maint. Syrup. (January 1991),

253-259.

Francis P. Mathur, "Automation of Reliability

Evaluation Procedures Through CARE--the G.R. McNichols, "Software Development Cost
Computer-Aided Reliability Estimation Program," Models," in Software Reliability State of the Art Report
Afips Conf. Proc. Fall Joint Comp. Conf. (1972). 14, 2, Pergamon Infotech (1986), 145-163.

R. A. Maxion, "Toward Fault-Tolerant User Richard B. Mead, "The Use of Ada PDL as the Basis

Interfaces," Safety of Computer Control Systems for Validating a System Specified By Control Flow

(Safecomp) (October 1986), 117-122. Logic," Computer Assurance (Compass)(June 1992),
77-94.

129 NUREG/CR-6101

Bibliography

P. Mellor, "Software Reliability Data Collection: Jogesh K. Muppala, Steven P. Woolet and Kishor S.
Problems and Standards." in Software Reliability State Trivedi, "Real-Time Systems Performance in the

of the Art Report 14, 2, Pergamon Infotech (1986), Presence of Failures," IEEE Computer 24, 5 (May
165-181. 1991), 37--47.

Douglas R. Miller, "Exponential Order Statistic John D. Musa, "The Measurement and Management of
Models of Software Reliability Growth," IEEE Trans. Software Reliability," Proc. IEEE 68, 9 (September

Soft. Eng. 12, 1 (January 1986), 12-24. 1980), 1131-1143.

Douglas R. Miller and A. Sofer, "A Non-Parametric John D. Musa and Kazuhira Okumoto, "A Logarithmic
Approach to Software Reliability, Llsing Complete Poisson Execution Time Model for Software
Monotonicity," in Software Reliability State of the Art Reliability Measurement," Proc lnt'l Conf. Soft. Eng.
Report 14, 2, Pergamon Infotech (1986), 183-195. (March 19M), 230--238.

Keith W. Miller, Larry J. Morell, Robert E. Noonan, John D. Musa, Anthony Iannino and Kazuhira
Stephen K. Park, David M. Nicol, Branson W. Murrill Okumoto, Software Reliability: Measurentent,
and Jeffrey M. Voas, "Estimating the Probability of Prediction, Application, McGraw Hill (1987).
Failure When Testing Reveals No Failures," IEEE
Trans. Soft. Eng. 18, 1 (January 1992), 33-43. John D. Musa, "Tools for Measuring Software

Reliability," IEEE Spectrum (February 1989), 39--42.
Ministry of Defence, "Requirement._ for the
Procurement of Safety Critical Software in Defence John D. Musa and A. Frank Ackerman, "Reliability,"
Equipment," Draft Defence Stan 'dard00-55, Ministry in Aerospace Software Engineering, Christine
of Defence, Glasgow (May 1989). Anderson and Merlin Dofrman, Ed, Aiaa (1991), 289-

317.

Jean Mirra, Frank McNolty, and William Sherw(w_l,
"A General Model for Mixed Exponential Failure," John D. Musa, "Software Reliability Engineering:
Proc. IEEE Annual Rel. and Maint. Symp. (January Determining the Operational Profile," AT&T Bell
1987), 176-180. Laboratories Tech. Rpt. (October 1992).

M. Granger. Morgan, "Probing the Question of John D. Musa, "The Operational Profile in Software

Technology-Induced Risk," IEEE Spectrum 18, 11 Reliability Engineering: An Overview," Third lnt'l
(November 1981), 58-64 and 18, 12 (December 1983), Syrup. on Soft. Rel. Eng. (October 1992), 140--154.
53-60.

Yutaka Nakagawa and Shuet,su Hanata, "An Error

M. Morganti, "'Reliable Communications," Resilient Complexity Model for Software Reliability
Computing Systems, T. Anderson (Ed), Wiley (1985), Measurement," Proc. lnt'l Conf. Soft. Eng. (1989),
78-90. 230-236.

Louise E. Moser and P. M. Melliar-Smith, "Formal Takeshi Nakajo, Katsuhiko Sasabuchi and Tadashi
Verification of Safety-Critical Systems," Soft. Prac. Akiyama, "A Structured Approach to Software Defect
andExper. 20, 8 (August 1990), 799-821. Analysis," Hewlett-PackardJ. 40, 2 (April 1989), 50-

56.

M. Mulazzani, "Reliability Versus Safety," Safety of
Computer Control Systems (Safecomp) (October 1985), Kyoichi Nakashima, "Redundancy Technique for Fail-
141-145. Safe Design of Systems," Probabilistic Safety

Assessment and Management, G. Apostolakis, Ed
M. Mulazzani and K. Trivedi, "Dependability (1991), 735-740.
Prediction: Comparison of Tools and Techniques,"
Safety of Computer Control Systems (Safecomp) Fares A. Nassar and Dorothy M. Andrews, "A
(October 1986), 171-178. Methodology for Analysis of Failure Prediction Data,"

Proc. Real Time Systems Symp. (December 1985),
160-166.

NUREG/CR-6101 130

Bibliography

Tapan K. Nayak, "Software Reliability: Statistical H.P. Nom'bakhsh and E. G. Cazzoli, "A Simplified
Modeling and Estimation," IEEE Trans. Rel. 35, 5 Approach for Predicting Radionuclide Releases From
(December 1986), 566-570. Light Water Reactor Accidents," Probabilistic Safety

Assessment and Management, G. Apostolakis, Ed
Tapan K. Nayak, "Estimating Population Size By (1991), 693-698.
Recapture Sampling," Biometrika 75, 1 (1988), 113-

120. Mitsuru Ohba and Xioa-Mei Chou, "Does Imperfect
Debugging Affect Software Reliability Growth?" Proc.

Victor A. Nelson and Bill D. Carroll, "Introduction to lnt'l Conf. Soft. Eng. (1989), 237-244.
Fault-Tolerant Computing," in Tutorial: Fault-

Tolerant Computing, Nelson and Carroll, Ed (1987), Hiroshi Ohtera and Shigeru Yamada, "Optimal
1-4. AUocation and Control Problems for Software Testing

Resources," IEEE Trans. Rel. 39, 2 (June 1990), 171-
Victor P. Nelson, "Fault-Tolerant Computing: 176.
Fundamental Concepts," IEEE Comp. 23, 7 (July
1990), 19-25. Kazuhira Okumoto, "A Statistical Method for Software

Quality Control," IEEE Trans. Soft. Eng. 11, 12
Peter G. Neurnann, "The Computer-Related Risk of the (December 1985), 1424-1430.
Year: Computer Abuse," Computer Assurance
(Compass) (1988), 8-12. J.S. Ostroff, "Verifying Finite State Real-Time

Discrete Event Processes,' Proc. Int'l Conf. Dist. Sys.
Peter G. Neumann, "The Computer-Related Risk of the (1989), 207-216.
Year: Misplaced Trust in Computer Systems,"
Computer Assurance (Compass) (1989), 9-13. Martyn A. Ould, "Testing--A Challenge to Method

and Tool Developers," Soft. Eng. J. 6, 2 (March 1991),
Peter G. Neumann, "The Computer-Related Risk of the 59--64.
Year: Distributed Control," Computer Assurance
(Compass) (1990), 173-177. A. Pages and M. Gondran, System Reliability

Evaluation and Prediction in Engineering, Springer-
Ying-Wah Ng and Algirdas Avizienis, "A Model for Verlag (1986).
Transient and Permanent Fault Recovery in Closed
Fault-Tolerant Systems," Proc. lnt'l Symp. Fault- Christopher J. Palermo, "Software Engineering
Tolerant Comp. (1976). Malpractice and Its Avoidance," Third Int 'l Symp. on

Soft. Rel. Eng. (October 1992), 41-50.
Ying W. Ng and Algirdas A. Avizienis, "A Unified

Reliability Model for Fault-Tolerant Computers," D.B. Parkinson, "Reliability Bounds for Dependent
IEEE Trans. Comp. 29, 11 (November 1980), 1002- Failures," IEEE Trans. Rel. 37, 1 (April 1988), 54-56.
1011.

David L. Parnas, A. John Van Schouwen and Shu Po

Victor F. Nicola and F. J. Kylstra, "A Model of Kwan, "Evaluation of Safety-Critical Software,"
Checkpointing and Recovery With a Specified Number Comm. ACM 33, 6 (June 1990), 636-.648.

of Transactions Between Checkpoints," Performance
'83 (1983), 83-99. David L. Parnas, G. J. K. Asmis and J. Madey,

"Assessment of Safety-Critical Software in Nuclear

Victor F. Nicola, V. G. Kulkarni and Kishor S. Trivedi, Power Plants," Nuclear Safety 32, 2 (April-June 1991),
"Queuing Analysis of Fault-Tolerant Computer 189-198.
Systems," IEEE Trans. Soft. Eng. 13, 3 (March 1987),

363-375. V.B. Patld, A. B. Patki and B. N. Chatterji,
"Reliability and Maintainability Considerations in

Victor F. Nicola and Ambuj Goyal, "Modeling of Computer Performance Evaluation," IEEE Trans.
Correlated Failures and Community Error Recovery in Reliability R-32, 5 (December 1983), 433-436.
Multiversion Software," IEEE Trans. Soft. Eng. 16, 3

(March 1990), 350-359. Charles C. Perrow, Normal Accidents: Living With
High Risk Technologies, Basic Books (1984).

131 NUREG/CR-6101

Bibliography

Ivars Peterson, "Finding Fault: The formidable Task of Dev G. Raheja, "Software Reliability Growth
Eradicating Software Bugs," Science News 139 Process--A Life Cycle Approach," Proc. IEEE Annual
(February 16, 1991), 104-106. Rel. andMaint. Syrup. (January 1989), 52-55.

S. PetreUa, P. Michael, W. C. Bowman and S. T. Lira, Chandrashekar Rajaraman and Michael R. Lyu,
"Random Testing of Reactor Shutdown System "Reliability and Maintainability Related Software
Software," in Probabilistic Safety Assessment and Coupling Metrics in C++ Programs," Third Int'l Syrup.
Management, G. Apostol_kis, Ed (1991), 681--686. on Soft. Rcl. Eng. (October 1992), 303-31 I.

Yannis A. Phillis, Henry D'Angelo, and Gordon C. C.S. Ramanjaneyulu, and V. V. S. Sarma, "Modeling
Saussy, "Analysis of Series-Parallel Production Server-Unreliability in Closed Queuing Networks,"
Networks Without Buffers," IEEE Trans. Rel. 35, 2 IEEE Trans. Rel. 38, 1 (April 1989), 90-95.
(June 1986), 179-184.

C. V. Ramamoorthy, A. Prakash, W. T. Tsai and Y.
Patrick R. H. Place, WilLiam G. Wood and Mike Usuda, "Software Reliability: Its Nature, Models and
Tudball, Survey of Formal Specification Techniques Improvement Techniques," in Serra, A., and R. E.
for Reactive Systems, Tech. Rpt. CMU/SEI-90-TR-5 Barlow, Ed, Theory of Reliability, North Holland,
(May 1990). (1984), 287-320.

D. J. Pradhan, Ed, Fault Tolerant Computing: Theoo, Brian P. A. L. Randell, "System Structure for Software
and Practice, Prentice-Hall (1986). Fault Tolerance," IEEE Trans. Soft. Eng. 1, 2 (June

1975), 220--232.
Kevin H. Prodromides and William H. Sanders,

"Performability Evaluation of CSMA/CD and Brian P. A. L. Randell and P. C. Treleaven,
CSMA/DCR Protocols Under Transient Fault "Reliability Issues in Computing System Design,"
Conditions," Tenth Syrup. on Reliable Distributed ACM Comp. Suta,. 10, 2 (June 1978), 123-165.
Systems (September-October 1991), 166-176.

D. M. Rao and S. Bologna, "Verification and
Geppino Pucci, "On the Modeling and Testing of Validation Program for a Distributed Computer System
Recovery Block Structures," lnt'l Syrup. Fault-Tolerant for Safety Applications," Safety of Computer Control
Comp. (June 1990), 356-363. Systems (Safecomp) (October 1985), 39--46.

Geppino Pucci, "A New Approach to the Modeling of Christophe Ratel, Nicolas Halbwachs and Pascal
Recovery Block Structures," IEEE Software 9, 4 (July Raymond, "Programming and Verifying Critical
1992), 159-167. Systems By Means of the Synchronous Data-Flow

Language Lustre," ACM Sigsoft Conf. on Soft. for
James M. Purtilo and Jankaj Jalote, "An Environment Critical Systems (December 1991), 112-119.
for Developing Fault-Tolerant Software," IEEE Trans.
Soft. Eng. 17, 2 (February 1991), 153-159. Steve Rayner, "Disagreeing About Risk: The

Institutional Cultures of Risk Management and
W. J. Quirk, "Engineering Software Safety," Safety of Planning for Future Generations," in Risk Analysis,
Computer Control Systems (Safecomp) (October 1986), Institutions and Public Policy, Susan G. Hadden, Ed.,
143-147. Associated Faculty Press (1984), 150-178.

C. S. Raghavendra and S. V. Makam, "Reliability Steve Rayner, "Risk and Relativism in Science for
Modeling and Analysis of Computer Networks," IEEE Policy," in the Social and Cultural Construction of
Trans. Rel. 35, 2 (June 1986), 156-160. Risk, B. B. Johnson and V. T. Covello, Ed, D. Reidel

Pub (1987), 5-23.
C. S. Raghavendra, V. K. P. Kumar and S. Hariri,
"Reliability Analysis in Distributed Systems," IEEE Steve Rayner, "Muddling Through Metaphors to
1"tans. Comp. 37, 3 (March 1988), 352-358. Maturity: A Commentary on Kasperson Et AI, the

Social Amplification of Risk," Risk Analysis 8, 2
(1988), 201-204.

NUREG/CR-6101 132

Bibliography

Steve R_.yner, "Opening Remarks," Syrup. on Global John Rushby and Friedrich Von Henke, "Formal
Environ,aental Change and the Public, First Int7 Conf. Verification of Algorithms for Critical Systems," ACM
on Ri'x Comm. (October 20, 1988). Sigsoft Conf. on Soft. for Critical Systems (December

1991), 1-15.

Steve Rayner, "Equity Issues in Global Risk
Management: The Case of Climate Change," Amer. John Rushby, Formal Methods for Software and
Anthro. Assoc. Annual Meeting (November1988). Hardware in Digital Flight Control Systems, Computer

Science Laboratory, Sri International (July 1992
Steve Rayner, "Risk in Cultural Perspective," Oak Draft).

Ridge National Laboratory (January 1989).
IO'ishan K. Sabnani, Aleta M. Lapone and M. Unfit

F. J. Redmill, Ed, Dependability of Critical Computer Uyar, "An Algorithmic Procedure for Checking Safety
Systems 1, Elsevier (1988). Guidelines Produced By Properties of Protocols," IEEE Trans. Comm. 37, 9
the European Workshop on Industrial Computer (September 1989), 940-948.
Systems, Technical Committee 7 (EWICS TC7).

F. Sagietti and W. Ehrenberger, "Software Diversity--
F. J. Redmill, Ed, Dependability of Critical Computer Some Considerations About Its Benefits and Its
Systems 2 Elsevier (1989). Guidelines Produced By the Limitations," Safety of Computer Control Systems
European Workshop on Industrial Computer Systems, (Safecomp) (October 1986), 27-34.
Technical Committee 7 (EWICS TC7).

J. S. Sagoo and D. J. Holding, "The Use of Temporal
Andrew L. Reibman and Malathi Veeraraghavan, Petri Nets in the Specification and Design of Systems
"Reliability Modeling: An Overview for System With Safety Implications," Algorithms and Arch. for
Designers, "IEEE Computer 24, 4 (April 1991), 49- Real.Time Control Workshop (September 1991), 231-
56. 236.

David A. Rennels, "Fault-Tolerant Computing-- Robin A. Sahner and Kishor S. Trix edi, "A
Concepts and Examples," IEEE Trans. Comp. 33, 12 Hierarchical, Combinatorial-Markov Method of
(December 1984), 1116-1129. Solving Complex Reliability Models," Proc. Fall Joint

Comp. Conf., (1986), 817-825.
J. Luis Roca, "A Method for Microprocessor Software
Reliability Prediction," IEEE Trans. Rel. 37, 1 (April R.A. Sahner and Kishor S. Trivedi, "Reliability
1988), 88-91. Modeling Using Sharpe," IEEE Trans. Rel. 36, 2 (June

1987), 186-193.

Jorge L. Romeu and Kieron A. Dey, "Classifying
Combined Hardware/Software R Models," Proc. IEEE R.A. Sahner and Kishor S. Trivedi, "Performance and

Annual Rel. and Maint. Symp. (January 1984), 282- Reliability Analysis Using Directed Acyclic Graphs,"
287. IEEE Trans. Soft. Eng. 13, I0 (October 1987), 1105-

1114.

Sheldon M. Ross, "Statistical Estimation of Software

Reliability," IEEE Trans. Soft. Eng. 11, 5 (May 1985), C. Sayet and E. Pilaud, "An Experience of a Critical
479-483. Software DevelopmenL" Int'l Syrup. Fault-Tolerant

Comp. (June 1990), 36-45.
Sheldon M. Ross, "Software Reliability: The Stopping
Rule Problem," IEEE Trans. Soft. Eng. 11, 12 Richard D. Schlichting, "A Technique for 'Estimating
(December 1985), 1472-1476. Performance of Fault-Tolerant Programs," Proc. IEEE

Symp. on Rel. of Dist. Soft. and Database Systems
B. Runge, "Quantitative Assessment of Safe and (October 1984), 62-74.
Reliable Software," Safety of Computer Control
Systems (Safecomp) (October 1986), 7-11. Fred B. Schneider, "Implementing Fault-Tolerant

Services Using the State Machine Approach: A
Tutorial," ACM Comp. Sum. 22, 4 (December 1990),
299-319.

133 NUREG/CR-6101

Bibliography

Norntan F. Schneidewind and Ted W. Keller, Paul V. Shebalin, Sang H. Son and Chun-Hyon Chang,

"Applying Reliability Models to the Space Shuttle," "An Approach to Software Safety Analysis in a
IEEE Software 9, 4 (July 1992), 28-33. Distributed Real-Time System," Computer Assurance

(Compass) (1988), 29-43.
Norman F. Schneidewind, "Minimizing Risk in

Applying Metrics on Multiple Projects," Third lnt'l Frederick T. Sheldon, Krishna M. Kavi, Robert C.
Syrup. on Soft. Rel. Eng. (October 1992), 173-182. Tausworthe, James T. Yu, Ralph Brettschneider and

William W. Everett, "Reliability Measurement: From
F. W. Scholz, "Software Reliability Modeling and Theory to Practice," IEEE Sofnvare 9, 4 (July 1992),
Analysis," IEEE Trans. Soft. Eng. 12, 1 (January 13-20.
1986), 25-31.

Vincent Y. Shen, Tze-Jie Yu, Stephen M. Thebaut and
Werner Schtitz, "On the Testability of Distributed Lord R. Paulsen, "Identifying Error-Prone Software--
Real-Time Systems," Syrup. on Rel. Dist. Syst. An Empirical Study," IEEE Trans. Soft. Eng. 11, 4
(September-October 1991), 52-61. (April 1985), 317-323.

Karsten Schwan, Thomas E. Bihari and Ben A. Blake, Y.S. Sherif and N. A. Kheir, "Reliability and Failure
"Adaptive Reliable Software for Distributed and Analysis of Computing Systems," Comp. & Elect. Eng.
Parallel Real-Time Systems," Proc. IEEE/ACM Symp. 11, 2/3 (1984), 151-157.
Rel. in Dist. Soft. and Database Systems (March 1987),
32-42. Yuan-Bao Shieh, Dipak Ghosal, Prasad R.

Chintamaneni and Satish K. Tripathi, "Application of
R. Keith Scott, James W. Gault and David F. Petri Net Models for the Evaluation of Fault-Tolerant

McAllister, "Modeling Fault-Tolerant Software Techniques in Distributed Systems," Proc lnt'l Conf.
Reliability," Proc. IEEE Symp. Rel. in Dist. Soft. and Dist. Syst. (1989), 151-159.
Database Systems (October 1983), 15-27.

Yuan-Bao Shieh, Dipak Ghosal, Prasad R.
R. Keith Scott, James W. Gault, David F. McAllister Chintamaneni and Satish K. Tripathi, "Modeling of
and Jeffrey Wiggs, "Investigating Version Dependence Hierarchical Distributed Systems With Fault-
in Fault-Tolerant Software," Avionics Panel Symp. Tolerance," IEEE Trans. Soft. Eng. 16, 4 (April 1990),
(May 1984), 21.1-21.11 444--457.

R. Keith Scott, James W. Gault and David F. Timothy J. Shimeall and Nancy G. Leveson, "An
McAllister, "Fault-Tolerant Software Reliability Empirical Comparison of Software Fault Tolerance
Modeling," IEEE Trans. Soft. Eng. 13, 5 (May 1987), and Fault Elimination," IEEE Trans. Soft. Eng. 17, 2
582-592. (February 1991), 173-182.

Richard W. Selby, "Empirically Based Analysis of Kang G. Shin and James W. Dolter, "Alternative
Failures in Software Systems," IEEE Trans. Rel. 39, 4 Majority-Voting Methods for Real-Time Computing
(October 1990), 444-454. Systems," IEEE Trans. Rel. 38, 1 (April 1989), 58--64.

A. Serra and R. E. Barlow, Ed, TheoD' of Reliabilit3', Kang G. Shin, "Harts: A Distributed Real-Time
North-Holland (1984). Architecture," IEEE Computer 24, 5 (May 1991), 25-

35.

Alexander N. Shabalin, "Generation of Models for

Reliability Growth," IEEE Annual Rel. and Maint. Martin L. Shooman, "Software Reliability: A
Syrup. (January 1992), 299-302. Historical Perspective," IEEE Trans. Rel. 33, 1 (April

1984), 48-55.

Sol M. Shatz and Jia-Ping Wang, "Models and
Algorithms for Reliability-Oriented Task-Allocation in Martin L. Shooman, "A Class of Exponential Software

Redundant Distributed Computer Systems," IEEE Reli,_bility Models," Workshop on Soft. Rel., IEEE
Trans. Rel. 38, 1 (April 1989), 16-27. Comp. Soc. Tech. Comm. on Soft. Rel. Eng. April 13,

1990).

NUREG/CR-6101 134

Bibliography

Andrew M. Shooman and Aaron Kershenbatun, R.M. Smith and Kishor S. Trivedi, "A Performability
"Methods for Communication-Network Reliability Analysis of Two Multi-Processor Systems," Proc. lnt'l.
Analysis: Probabilistic Graph Reduction," IEEE Symp. on Fault Tolerant Computing (July 1987), 224-

Annual Rel. and Maint. Syrup. (January 1992), 441- 229.
448.

R. M. Smith, Kishor S. Trivedi and A. V. Ramesl',,

Santosh K. Shrivastava, "Structuring Distributed "Performability Analysis: Measures, an Algorithm, and
Systems for Recoverability and Crash Resistance," a Case Study," IEEE Trans. Comp. 37, 4 (April 1988),
IEEE Trans. Soft. Eng. 7, 4 (July 1981), 436-447. 406-417.

Santosh K. Shrivastava, "Robust Distributed Mark Smothennan, Robert M. Geist and Kishor S.

Programs," in Resilient Computing Systems, T. Trivedi, "Provably Conservative Approximations to
Anderson, Ed, Wiley (1985), 102-121. Complex Reliability Models," IEEE Trans. Comp. 35,

4 (April 1986), 333-338.
David M. Siefert and George E. Stark, "Software
Reliability Handbook: Achieving Reliable Software," Ariela Sofer and Douglas R. Miller, "A Nonparametric
Third Int'l Syrup. on Soft. Rel. Eng. (October 1992), Software-Reliability Growth Model," IEEE Trans. Rel.
126-130. 40, 3 (August 1991), 329-337.

Kyle Siegrist, "Reliability of Systems With Markov R. Soyer, "Applications of Time Series Models to
Transfer of Control," IEEE Trans. Soft. Eng. 14, 7 Software Reliability Analysis," in Software Reliability
(July 1988), 1049-1053. State of the Art Report 14, 2, Pergamon Infotech

(1986), 197-207.

Kyle Siegrist, "Reliability of Systems With Markov
Transfer of Control II," IEEE Trans. Soft. Eng. 14, 10 Debra Sparkman, "Standards and Practices for Reliable
(October 1988), 1478-1481. Safety-Related Software Systems," Third Int'l Symp.

on Soft. Rel. Eng. (October 1992), 318-328.
Daniel P. Siewiorek and R. S. Swarz, the Theor3' and
Practice of Reliable System Design, Digital Press Pradip K. Srimani and Yashwant K. Malaiya, "Steps to
(1982). Practical Reliability Measurement," IEEE Software 9,

4 (July 1992), 10-12.
Daniel P. Siewiorek, "Architecture of Fault-Tolerant

Computers," in Fault-Tolerant Computing, D.K. George E. Stark, "Dependability Evaluation of
Pradhan (Ed), Prentice Hall (1986), 417-466. Integrated Hardware/Software Systems," IEEE Trans.

ReL 36, 4 (October 1987), 440-444.
Daniel P. Siewiorek, "Fault Tolerance in Commercial

Computers," IEEE Computer 23, 7 (July 1990), 26-37. George E. Stark, "The AIAA Software Reliability
Recommended Practice," Third Int'l Symp. on Soft.

Nozer D. Singpurwalla and Refik Soyer, "Assessing Rel. Eng. (October 1992), 131-132.
(Software) Reliability Growth Using a Random
Coefficient Autoregressive Process and Its Susan Stepney and Stephen P. Lord, "Formal
Ramifications," IEEE Trans. Soft. Eng. 11, 12 Specification of An Access Control System," Soft.
(December 1985), 1456-1464. Prac. and Exper. 17, 9 (September 1987), 575-593.

Nozer D. Singpurwalla, "Determining An Optimal J.J. Stiffler, "Computer-Aided Reliability Estimation,"
Time Interval for Testing and Debugging Software," in Fault-Tolerant Computing, Theory and Techniques,
IEEE Trans. Soft. Eng. 17, 4 (April 1991), 313-319. D.K. Pradhan, Ed, Prentice Hall (1985), 633--657.

Paul Slovic, "Perception of Risk," Science 236 (April L. Strigini and A. Avizienis, "Software Fault-
17, 1987), 280-285. Tolerance and Design Diversity: Past Experience and

Future Evolution," Safety of Computer Control Systems
David J. Smith, Reliability Engineering, Pitnam (Safecomp) (October 1985), 167-172.
(1972).

135 NUREG/CR-6101

Bibliography

Byung-Hoon Stria,John Hudak, Dan Siewiorek and W.A. Thompson, "On the Foundations of Reliability,"
Zary Segall, "Development of a Benchmark to Technometrics 23, 1 (February 1981), 1-13.
Measure System Robustness: Experiences and Lessons
Learned," Third Int'l Syrup. on Soft. Rel. Eng. (October Jianhui Tian, Adam Porter and Marvin V. Zelkowitz,

1992), 237-245. "An Improved Classification Tree Analysis of High
Cost Modules Based Upon An Axiomatic Definition of

Gregory F. Sullivan and Gerald M. Masson, "Using Complexity," Third lnt 'l Syrup. on Soft. Rel. Eng.
Certification Trails to Achieve Software Fault (October 1992), 164-172.

Tolerance," Int'l Syrup. for Fault-Tolerant Comp. (June
1990), 423-431. Yoshihiro Tohma, Kenshin Tokunaga, Shinji Nagase

and Yukihisa Murata, "Structural Approach to the
Ushio Sumita and Yasushi Masuda, "Analysis of Estimation of the Number of Residual Software Faults
Software Availability/Reliability Under the Influence Based on the Hypergeometric Distribution," IEEE
of Hardware Failures," IEEE Trans. Soft. Eng. 12, 1 Trans. Soft. Eng. 15, 3 (March 1989), 345-355.
(January 1986), 32-4 1.

Yoshihiro Tohma, Hisashi Yamano, Morio Ohba and

Arnold L. Sweet, Yungtat Lain, and Julian Bott, Raymond Jacoby, "The Estimation of Parameters of

"Computation of Mean Time to Failure for a System the Hypergeometric Distribution and IL,_Application to
With Simple Redundancy," IEEE Trans. Rel. 35, 5 the Software Reliability Growth Model," IEEE Trans.
(December 1986), 539-540. Soft. Eng. 17, 5 (May 1991), 483--489.

K. C. Tat, "Predicate-Based Test Generation for Martin Trachtenberg, "The Linear Software Reliability
Computer Programs," Computer Science Dept., North Model and Uniform Testing," IEEE Trans. Rel. 34, 1
Carolina State Univ. (September 1992). (April 1985), 8-16.

Andrew S. Tanenbaum, "Reliability Issues in Martin Trachtenberg, "A General Theory of Software-

Distributed Operating Systems," Proc. IEEE/ACM Reliability Modeling," IEEE Trans. Rel. 39, 1 (April
Syrup. on Rel. in Dist. Soft. & Database Systems 1990), 92-96.
(March 1987), 3-11.

Martin Trachtenberg, "Why Failure Rates Observe
Dong Tang, Ravishankar K. lyer and Sujatha S. Zipf's Law in Operational Software," IEEE Trans. Rel.
Subramani, "Failure Analysis and Modeling of a 41, 3 (September 1992), 386-389.
Vaxcluster System," lnt'l Syrup. Fault-Tolerant
Computing (June 1990), 244-251. A.M. Traverso, "A Tool for Specification Analysis:

'Complete' Decision Tables," Safety of Computer
Dong Tang and Ravishankar K. Iyer, "Analysis of the Control Systems (Safecomp) (October 1985), 53-56.
VAX/VMS Error Logs in Multicomputer
Environments---A Case Study of Software Kishor S. Trivedi and Robert M. Geist,
Dependability," Third lnt 'l Syrup. on Soft. Rel. Eng. "Decomposition in Reliability Analysis of Fault-
(October 1992), 216-226. Tolerant Systems," IEEE Trans. Rel. 32, 5 (December

1983), 463--468.
David J. Taylor, "Concurrency and Forward Recovery

in Atomic Actions," IEEE Trans. Soft. Eng. 12, 1 Kishor Trivedi, Joanne Bechta Dugan, Robert Geist
(January 1986), 69-78. and Mark Smotherman, "Hybrid Reliability Modeling

of Fault-Tolerant Computer Systems," Comput. &
David J. Taylor, "Error Models for Robust Storage Elect. Eng. 11, 2/3 (1984), 87-108.
Structures," Int'l Syrup. Fault-Tolerant Computing
(June 1990), 416--422. Kishor Trivedi, Joanne Bechta Dugan, Robert Geist

and Mark Smotherman, "Modeling Imperfect
Philip Thambidurai, You-Keun Park and Kishor S. Coverage in Fault-Tolerant Systems," Int'l. Conf. Fault
Trivedi, "On Reliability Modeling of Fault-Tolerant Tolerant Computing (June 1984), 77-82.
Distributed Systems," Proc. International Conf.
Distributed Systems (1989), 136-142.

NUREG/CR-6101 136

Bibliography

Robert Troy and Ramadan Moawad, "Assessment of L.A. Walls and A. Bendell, "An Exploratory
Software Reliability Models," IEEE Trans. Soft. Eng. Approach to Software Reliability MeasuremenL" in
11, 9 (September 1985), 839-849. Software Reliability State of the Art Report 14, 2,

Pergamon Infotech (1986), 209-227.
K. S. Tso, A. Avizienis and J. P. J. Kelly, "Error
Recovery in Multi-Version Software," Safety of Chris J. Walter, "Identifying the Cause of Detected
Computer Control Systems (Safecomp) (October Errors," Int'l Syrup. for Fault.Tolerant Comp. (June
1986), 35-40. 1990), 48-54.

U.S. House of Representatives, Bugs in the Program: Benjamin C. Wei, "A Unified Approach to Failure
Problems in Federal Government Computer Software Mode, Effects and Criticality Analysis (FMECA),"
Development and Regulation, Staff Study By the Proc. IEEE Annual Rel. and Maint. Syrup. (January
Subcommittee on Investigations and Oversight. 1991), 260-271.
Committee on Science, Space and Technology,
(September 1989). Anne S. Wein and Archana Sathaye, "Validating

Complex Computer System Availability Models,"
S. Utena, T. Suzuki, H. Asano and H. Sakamoto, IEEE Trans. Rel. 39, 4 (October 1990), 468--479.

"Development of the BWR Safety Protection System
With a New Digital Control System," Ira'l Syrup. on Stewart N. Weiss and Elaine J. Weyuker, "An
Nuclear Power Plant Instr. and Control (May 1992). Extended Domain-Based Model of Software

Reliability," IEEE Trans. Soft. Eng. 14, 10 (October
V6ronique Valette and Fr6d6rique Vall6e, "Software 1988), 1512-1524.
Quality Metrics in Space Systems," Third Int'l Syrup.
on Soft. Rel. Eng. (October 1992), 296--302. John H. Wensley, "Fault Tolerance in a Local Area

Network Used for Industrial Control," Proc. Real-Time

Anujan Varma and C. S. Raghavendra, "Reliability Systems Syrup. (December 1983), 113-118.
Analysis of Redundant-Path Interconnection

Networks," IEEE Trans. Rel. 38, 1 (April 1989), 130-- John H. Wensley, "The Man-Machine Interface for a
137. Fault Tolerant Control System," Safety of Computer

Control Systems (Safecomp) (September 1983), 95-
Robert L. Vienneau, "The Cost of Testing Software," 99.

Proc. IEEE Annual Rel. and Maint. Symp. (January
1991), 423--427. B.A. Wichmann, "A Note on the Use of Floating Point

in Critical Systems," the Comp. J. 35, 1 (January
Jeffi'ey M. Voas and Keith W. Miller, "Improving the 1992), 41--44.
Software Development Process Using Testability
Research," Third lra'l Syrup. on Soft. Rel. Eng. D.W. Wightman and A. Bendell, "proportional
(October 1992), 114-121. Hazards Modeling of Software Failure Data," in

Software Reliability State of the Art Report 14, 2,
Mladen A. Vouk, "On Back-to-Back Testing," Pergamon lnfotech (1986), 229-242.
Computer Assurance (Compass)(1988), 84-91.

Antonin Wild, "What Is a System Approach to
Dolores R. Wallace, Laura M. Ippolito and D. Richard Prediction?" Proc. IEEE Annual Rel. and Maint. Symp.
Kuhn, "High Integrity Software Standards and (January 1989), 342-346.
Guidelines," NIST Sp. Pub. 500-204, National Inst. of
Std. and Tech. (September 1992). Claes Wohlin and Per Runeson, "A Method Proposal

for Early Software Reliability Estimation," Third Ira'l
Dolores R. Wallace, D. Richard Kuhn and Laura M. Syrup. on Soft. Rel. Eng. (October 1992), 156-163.
Ippolito, "An Analysis of Selected Software Safety
Standards," Computer Assurance (Compass) (June Denise M. Woit, "Realistic Expectations of Random
1992), 123-136. Testing," CRL Rpt 246, Telecommunications Research

Institute of Ontario, McMaster University, Hamilton,
Ontario (May 1992).

137 NUREG/CR-6101

Bibliography

Denise M. Woit, "An Analysis of Black-Box Testing Raif M. Yanney and John P. Hayes, "Distributed

Techniques," CRL Rpt 245, Telecommunications Recovery in Fault-Tolerant Multiprocessor Networks,"
Research Institute of Ontario, McMaster University, IEEE Trans. Comp. 35, 10 (October 1986), 871-879.
Hamilton, Ontario (May 1992).

Wilson D. Yates and David A. Shaller, "Reliability
Michael H. Woodbury and Kang G. Shin, Engineering as Applied to Software," Proc. IEEE
"Measurement and Analysis of Workload Effects on Annual Rel. and Maint. Syrup. (January 1990), 425-
Fault Latency in Real-Time Systems," IEEE Trans. 429.

Soft. Eng. 16, 2 (February 1990), 212-216,
Jong P. Yoon, "Techniques for Data and Rule

M. Xie and M. Zhao, "The Schneidewind Software Validation in Knowledge-Based Systems," Computer

Reliability Model Revisited," Third Int 'l Syrup. on Soft. Assurance (Compass) (1989), 62-70.
Rel, Eng. (October 1992), 184-192.

Michal Young and Richard N. Taylor, "Rethinking the
Y. W. Yak, T. S. Dillon and K. E. Forword, Taxonomy of Fault Detection Techniques," Proc. Int'l
"lncoqx_ration of Recovery and Repair Time in the Conf. Soft. Eng. (1989), 5.'_--62.
Reliability Modeling of Fault-Tolerant System," Safeo,

of Computer Control Systems (Safecomp) (September W.Y. Yun and D. S. Bai, "Optimum Software Release
1983), 45-52. Policy With Random Life Cycle," IEEE Trans. Rel. 39,

2 (June 1990), 167-170.

Y. W. Yak, K. E. Forword and T. S. Dillon, "Modeling
the Effect of Transient Faults in Fault Tolerant Fatemeh Zahedi and Noushin Ashrafi, "Software

Computer System," SafeD' of Computer Control Reliability Allocation Based on Structure, Utility, Price
Systems (Safecomp) (October 1985), 129-133. and Cost," IEEE Trans. Soft. Eng. 17, 4 (April 1991),

345-356.

Y. W. Yak, T. S. Dillon and K. E. Forword, "The

Effect of Incomplete and Deleterious Periodic M. Zhao and M. Xie, "On the Log-Power NHPP
Maintenance on Fault-Tolerant Computer Systems," Software Reliability Model," Third lnt'l Syrup. on Soft.
IEEE Trans. Rel. 35, 1 (April 1986), 85-90. Rel. Eng. (October 1992), 14-22.

Shigeru Yamada, Mitsuru Ohba and Shunji Osaki, "S- Kathlean C. Zinnel, "Using Software Reliability

Shaped Software Reliability Growth Models and Their Growth Models to Guide Release Decisions,"
Applications," IEEE Trans. Rel. 33, 4 (Oct'_ber 1984), Work.vhop on Software Reliability, IEEE Comp. Soc.
289-292. Tech. Comm. on Soft. Rel. Eng. (April 13, 1990).

Shigeru Yamada and Shunji Osaki, "Software
Reliability Growth Modeling: Models and
Applications," IEEE Trans. Soft. Eng. 11, 12
(December 1985), 1431-1437.

Shigeru Yamada, Hiroshi Ohtera and Miroyuki
Narihisa, "Software Reliability Growth Models With
Testing Effort," IEEE Trans. Rel. 35, 1 (April 1986),
19-23.

NUREG/CR-6101 138

