I

STl

]
—_—
=

L

e

I
I

e

91

81

—_—
:
—
PrEE

EEfE

7 ”‘eﬁ

0¢

(A4

7

vy
Ho

Il

T

sll

o

i

&

NUREG/GR-0010
R5

Hybrid Digital Signal Processing
and Neural Networks for
Automated Diagnostics Using

NDE Methods

Manuscript Completed: October 1993
Date Published: November 1993

Prepared by
B. R. Upadhyaya, W. Yan

Department of Nuclear Engineering
The University of Tennessee
Knoxville, TN 37996-2300

Prepared for

Division of Engineering

Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

FIN G2058

DISTRIBUTION OF THIS

MASTER
DOCUMENT IS UNLIMITED

T

ABSTRACT

The primary purpose of the current research was to develop an integrated approach by
combining information compression methods and artificial neural networks for the monitoring
of plant components using nondestructive examination data. Specifically, data from eddy current
inspection of heat exchanger tubing were utilized to evaluate this technology. The focus of the
research was to develop and test various data compression methods (for eddy current data) and
the performance of different neural network paradigms for defect classification and defect
parameter estimation. Feedforward, fully-connected neural networks, that use the back-
propagation algorithm for network training, were implemented for defect classification and defect
parameter estimation using a modular network architecture. A large eddy current tube inspection
database was acquired from the Metals and Ceramics Division of ORNL. These data were used
to study the performance of artificial neural networks for defect type classification and for
estimating defect parameters. A PC-based data preprocessing and display program was also
developed as part of an expert system for data management and decision making. The results
of the analysis showed that for effective (low-error) defect classification and estimation of
parameters, it is necessary to identify proper feature vectors using different data representation
methods. The integration of data compression and artificial neural networks for information
processing was established as an effective technique for automation of diagnostics using

nondestructive examination methods.

iii

CONTENTS

SECTION PAGE
ABSTRACT . . . e e iii
LIST OF TABLESt e e e e viii
LISTOF FIGURESttt ettt e e e e e e e e e e ix
ACKNOWLEDGMENTS et e e i Xii
SUMMARY . i e e e e Xiii
1. INTRODUCTION i e e 1
1.1 Background and Scope of Current Research 1
1.2 Summary of Approach - General Features 2
1.3 Definitionof Tasks 4
1.4 Summary of Significant Results, 5
2. REVIEW OF EDDY CURRENT INSPECTION TECHNIQUE 6
2.1 Principle of Eddy Current Testing 6
2.2 AnalysisMethods 9
2.3 Measurement Methods, 11
24 Data Analysis e e 12
2.5 Test Property Variations in Steam Generator Tubing 12

2.6 Metal Crack Growth Prediction Problem and Application
to Component Agingt 14
3. EDDY CURRENT INSPECTION DATA AND DATA CALIBRATION 18
3.1 Eddy Current InspectionData 18

3.2 Data Calibration

....................................

REPRESENTATION OF EDDY CURRENT DATA

..................

4.1 Nonparametric Data Representation Methods
4.1.1 Direct Compressed Raw Data Representation (RAW)
4.1.2 Substraction from a Reference Data (SRAW)
4.1.3 Compressed Magnitude and Phase Representation (MP)
4.1.4 Compressed Integral Signal Representation (CINT)
4.1.5 Radii from the Center of Gravity (CG)

4.2 Parametric Representation Methods

4.2.1 Fourier Descriptor Representation (FD)
4.2.2 Autoregression (AR) Modeling of Object Contour

NEURAL NETWORKS MODELS FOR DEFECT CLASSIFICATION

AND PARAMETER ESTIMATION e
5.1 Description of Artificial Neural Networks

52 Learning Methods
5.3 Learning Algorithms
5.4 Training of Neural Networks Using the Back-Propagation Algorithm .

5.5 Optimal Back-Propagation Networks for Eddy Current Inspection
Data Analysis e

5.6 Probabilistic Neural Networks (PNN)
RESULTS OF DEFECT DIAGNOSTICS USING EDDY CURRENT DATA . .

6.1 Estimation of Tube Defect Parameters
6.2 EC Defect Type Identification
DEVELOPMENT OF THE EXPERT SYSTEM "EDDYANN"
7.1 Imtroduction e

7.2 Knowledge Base

vi

7.3 The Expert System Rule Base 73
7.4 UserlInterface e e 74
7.5 Executing EDDYANN e e 74

8. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH .. 78

8.1 Concluding Remarks 78

8.2 Recommendations for Future Research 78

LIST OF REFERENCES e e e 81

APPENDIX A EDDYANN COMPUTERCODE 85
APPENDIX B GUIDELINES FOR THE IMPLEMENTATION OF

ARTIFICIAL NEURAL NETWORKS 123

vii

LIST OF TABLES

TABLE PAGE
3.1(a) Linear Regression Parameters for x Component 25
3.1(b) Linear Regression Parameters fory Component 25
5.1 Training Networks Using Delta-Rule or Non-Cum Delta-Rule 53
5.2 Training Networks with Noise or without Noise 53
6.1 BPN’s for Eddy Current Defect Distance Estimation 59
6.2 BPN'’s for Eddy Current Defect Depth Estimation 61
6.2 BPN’s for Eddy Current Defect Type Identification 64

viii

LIST OF FIGURES

FIGURE PAGE

1.1 Schematic showing eddy current NDE data analysis
using artificial neural networks

2.1 Principle of eddy current testing,
2.2 Test properties that vary during a steam generator inspection
3.1 ASME Section XI standard test specimen with OD artifacts

..............

3.2 Description of multi-frequency eddy current tube inspection data
from Oak Ridge National Laboratory (ORNL)

3.3 A typical impedance plane trajectory of data from
an eddy current probe transducer

3.4 X-component of B data and C data before data calibration
3.5 X-component of B data and C data after data calibration
4.1(a) The eddy current impedance plane plot of raw data D111.dat (frequency 1)

4.1(b) The eddy current impedance plane plot of compressed
data D11l.dat (frequency 1)

4.2(a) Complex impedance plot of the reference data
4.2(b) Data D111.dat (freq. 1) complex impedance plot
4.2(c) Substraction of the data D111.dat complex impedance plot
4.3(a) Data D111.dat (freq. 2) integral plot
4.3(b) Data D211.dat (freq. 2) integral plot
4.3(c) Data D311.dat (freq. 2) integral plot

4.4 Radii from the center of gravity of aclosedcontour

4.5 Representation of a closed curve by a complex contour function u(l)

defined as a function of the arc length 1 35
5.1 A typical nonlinear processing element of a neural network 40
5.2 Sigmoidal function used for transfer function of neural processing element 42

5.3 Architecture of a multi-layer neural network used in eddy current

pattern identification and for the estimation of defect parameters 43
5.4 Probabilistic Neural Networks (PNN) architecture [26] 55
6.1(a) Recall result of BPN using center of gravity trainingdata 60
6.1(b) Recall result of BPN using compressed raw data substraction training data 60
6.2 Recall result of BPN using phase angle training data for depth estimation 62
6.3 Recall result of BPN using center of gravity training data for depth estimation .. 62
6.4(a) Output 1 recall result of BPN using compressed integral testing data 65
6.4(b) Output 2 recall result of BPN using compressed integral testing data 65
6.4(c) Output 3 recall result of BPN using compressed integral testing data 65
6.5(a) Output 1 recall result of BPN using center of gravity testing data 66
6.5(b) Output 2 recall result of BPN using center of gravity testing data 66
6.5(c) Output 3 recall result of BPN using center of gravity testing data 66
6.6(a) Output 1 recall result of PNN using compressed integral testing data 67
6.6(b) Output 2 recall result of PNN using compressed integral testing data 67
6.6(c) Output 3 recall result of PNN using compressed integral testing data 67
7.1 Architecture of the EDDYANN expert system 70
7.2 Structure of neural networks in the knowledge base 72

7.3 The first monitor screen of the EDDYANN system (Enter data file information) . 75

7.4

The results and information display screen of the EDDYANN system

Xi

ACKNOWLEDGMENTS

This research and development work was made possible by a University Grant sponsored
by the U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. The
authors acknowledge the assistance of Dr. Joseph Muscara of the NRC Office of Nuclear
Regulatory Research. The assistance of Dr. C. V. Dodd, Metals and Ceramics Division of

ORNL, for technical discussion and providing eddy current tube inspection data is gratefully

acknowledged.

Xii

SUMMARY

The primary purpose of the current research was to develop an integrated approach by
combining information compression methods and artificial neural networks for the monitoring
of plant components using nondestructive examination (NDE) data. Specifically, data from eddy
current inspection of heat exchanger tubing were utilized to evaluate this technology. The focus
of the research was to develop and test various data compression methods (for eddy current data)
and the performance of different neural network paradigms for defect classification and defect
parameter estimation. Feedforward, fully-connected neural networks, that use the back-
propagation algorithm for network training, were implemented for defect classification and defect
parameter estimation using a modular network architecture. The defect classification was also
performed using probabilistic neural networks. A large eddy current tube inspection database
was acquired from the Metals and Ceramics Division of ORNL. These data were used to study
the performance of artificial neural networks for defect type classification and for estimating
defect parameters. Most of the study has been made using the NeuralWorks Professional II/Plus
software. A PC-based data preprocessing and display program was also developed as part of
an expert system for data management and decision making.

The results of the analysis showed that for effective (low-error) defect classification and
estimation of parameters, it is necessary to identify proper feature vectors using different data
representation methods. The integration of data compression and artificial neural networks for
information processing was established as an effective technique for automation of diagnostics

using nondestructive examination methods.

xiii

SECTION 1

INTRODUCTION

1.1 Background and Scope of The Research

A nuclear power plant is a complex system with the various components fulfilling the
needs of process control and plant safety. Continued operation of these systems has both safety
and economic implications. Near-term operation through proper maintenance and long-term
plant life with consideration to component aging are important aspects of nuclear plant design
and operation. Nondestructive examination (NDE) methods are being increasingly applied to
the monitoring of critical comporents. Eddy current inspection, ultrasonic inspection, and
thermographic inspection are the most commonly used methods.

The research performed at the University of Tennessee (during 1991-93) focused on the
problem of automating NDE data analysis using an integration of artificial neural networks and
digital signal processing techniques. In recent years research in neural networks has been
advanced to the point where several real-world applications have been successfully demonstrated
[3,6,8,23]. These include automated pattern classification, signal validation, nuclear plant
monitoring, plant state identification during transients, estimation of performance related
parameters, underwater acoustic signature classification and text recognition. The University
of Tennessee Nuclear Engineering Department has been very active in the research and
developmént of neural network architectures and applications to nuclear power plant monitoring,
diagnostics, and control. The integration of neural petworks and digital signal processing

techniques for the automation of NDE signature analysis is a unique feature of this research.

This research will also provide a technology base for the safety assessment of system and
subsystem technologies used in nuclear power applications of neural networks.

Nondestructive testing methods include (a) eddy current inspection, (b) ultrasonic
inspection, (c) radiographic inspection, (d) thermographic inspection, (e) acoustic emission
inspection, (f) penetrant testing, and (g) visual inspection. Among these methods, eddy current
inspection has been applied for crack and flaw detection; corrosion, thickness, and coating
monitoring; and for monitoring changes in metallurgical properties. Three of the important
areas of applications are pressure vessel, steam generator tubes, and turbine-generators. Eddy
current technique is used extensively for steam generator tubing inspection [1,4,5]. The
primary objective of this research is the development of an automated method for eddy current

signature analysis.

1.2 Summary of Approach - General Features

The general approach for automated anomaly classification and defect parameter
estimation is shown in Figure 1.1. This integrates data representation and compression, and the
development of artificial neural networks for anomaly detection and estimation. The key issues
for the development of the automated system for NDE diagnostics include the following: (1)
Digital data representation and information compression. (2) Development of robust neural
networks with low probability of misclassification. (3) Correlation of neural networks results
to failure or fault modes. (4) Correlation of data trending to aging-related problems, and hence
forecast incipient behavior in plant components. (5) Provide guidelines for assessing neural

networks technology as related to nuclear safety issues. A two-step approach consisting of

EDDY CURRENT NDE DATA
INSPECTION DATA | REPRESENTATION

(NDE OF STEAM AND
GENERATOR TUBING) COMPRESSION
NEURAL NETWORKS NEURAL NETWORKS
FOR DEFECT DEPTH [ooR DEFECT TYPE

ESTIMATION IDENTIFICATION

NEURAL NETWORKS

FOR DISTANCE —
ESTIMATION

INFORMATION
DISPLAY

Figure 1.1 Schematic showing eddy current NDE data analysis using artificial neural
networks

defect classification and defect parameter estimation has been developed. Because of the large

number of defect types, a modular approach was used in establishing neural network models.

During the course of this project, the University of Tennessee worked in cooperation with

the Metals and Ceramics Division of ORNL and the Electric Power Research Institute NDE

Center in acquiring data from the eddy current inspection of steam generator tubing and for

continued technical discussion.

1.3 Definition of Tasks

The following research & development tasks were established in order to accomplish the

objectives of this research project. The period of research grant was 9/30/91 - 9/29/93.

Task 1.

Task 2.

Task 3.

Task 4.

Task 5.

Review of the NDE data analysis with emphasis on eddy current
inspection.

Develop a methodology for optimum representation of eddy current data
from steam generator tube inspection and develop appropriate signatures
using digital data compression methods.

Develop and implement artificial neural networks for the estimation of
defect characteristics and for defect classification. Quantify the error of
misclassification.

Evaluate the performance of the developed technology using eddy current
inspection data from ORNL.

Develop guidelines for automating this technology and provide technology
base for NRC safety assessment of technologies used in the application of
artificial neural networks to nuclear power plant systems.

1.4 Summary of Significant Results

Several important milestones were accomplished during the course of this research project

(9/30/91 - 9/29/93). These are discussed in the sections to follow. A summary of

accomplishments is given below.

1.

Development of parametric and nonparimetric data representation methods with
emphasis on eddy current inspection signatures and data calibration.

Development of an optimal neural networks architecture with modular approach
for managing various defect types.

Integration of defect type classification and estimation of defect parameters.

Application of the methodology to the analysis of eddy current tube inspection
data. These data were acquired from the Metals and Ceramics Division, ORNL.

Development of a data preprocessing, managemént and decision-making expert
system called EDDYANN for implementation in a PC.

Presentation of papers at the following conferences

- EPRI Computer Assisted Technologies for NDE and Plant
Monitoring Workshop, Philadelphia, August 1992.

- International Conference on Artificial Neural Networks,
Amsterdam, The Netherlands, September 1993.

SECTION 2

REVIEW OF EDDY CURRENT INSPECTION TECHNIQUE

2.1 Principle of Eddy Current Testing
More than 150 years ago, Michael Faraday and Joseph Henry independently discovered
that a changing magnetic field produces an electric current in a conducting material. Ten years
earlier, Hans Christian Oversted had observed that an electric current produced its own magnetic
field [28]. Interactions between magnetic and electric fields occur in all electromagnetic devices,
and they have been applied to many fields.
The interaction between magnetic fields and electrical phenomena is described by three

of Maxwell’s equations:

VxE=-6B/ ot 2.1
VxH=J 2.2
V-B=0, (2.3)

where E is the electric field produced by a change in magnetic flux density B, and H is the
magnetic intensity of the field produced by a current density J. The first equation is a form of
Faraday’s law; the second, Ampere’s law; and the third, Gauss’s law for magnetism, which
reflects the fact that there are no point sources of magnetic flux [28].

Eddy current method of nondestructive examination (NDE) is based on the principle of

electromagnetic induction between the inspection coil and the object under study.

When an alternating current is used to excite a coil, an alternating magnetic field is
produced and magnetic lines of flux are concentrated at the center of the coil. As this coil is
brought near an electrically conductive material, the alternating magnetic field penetrates the
material and generates continuous, circular eddy currents as shown in Figure 2.1 [11]. Larger
eddy currents are produced near the test surface; as the penetration of the induced field
increases, the eddy currents become weaker. The induced eddy currents produce an opposing
(secondary) magnetic field. This opposing magnetic field, coming from the material, has a
weakening effect on the primary magnetic field and this change can be sensed by the test coil.
In effect, the impedance of the coil is reduced proportionally as eddy currents are increased in
the test piece.

A crack in the test material obstructs the eddy current flow, lengthens the eddy current
path, reduces the secondary magnetic field, and increases the coil impedance. The inductive
reactance of the coil continues to increase as the severity of the defect increases. If a test coil
is moved over a crack or defect in a metal plate, at a constant clearance and constant rate, a
momentary change will occur in coil reactance and coil current. This change can be amplified,
detected, and displayed by electronic instruments.

Eddy current testing can be used to identify changes in the physical, structural, and
metallurgical conditions in both ferromagnetic and nonferromagnetic conducting materials. This
nondestructive method has a wide variety of applications including detection of cracks, voids and

inclusions; measurement of the thickness of coating; sorting dissimilar metals, and others.

————H-primary

*r— H-secondary
P ~)
QU LS

R)————Test Coail

)

SERRAAE

Test Part

Figure 2.1 Principle of eddy current testing. The primary field of test coil enters test part,
generates an eddy current that gives rise to a secondary field. The strength of
eddy currents decreases with the depth of penetration.

2.2 Analysis Methods

The eddy current NDE data are related to changes in material properties, probe lift-off,
and excitation frequency. This NDE method has been used with success for predicting presence
of defects in metal parts such as tubing. The very nature of this technique leads, in general, to
three-dimensional, nonlinear, partial-differential equations with very complicated boundary
conditions; if the probe is moving, the solutions are functions of both time and position.
Experimental, analytical, and numerical models have been used for the solution of
electromagnetic field problems [10].

Experimental models are those based on data obtained from measurements on simulated
or actual eddy current NDE test rigs. As a result, the models are empirical in nature and cannot
be readily extended to the wide variety of test configurations and defect shapes needed for the
development of realistic defect characterization schemes.

Analytical models are those derived from the interaction between magnetic field and
electrical phenomena described by equations 2.1, 2.2, and 2.3. There are two approaches for
solving this system of equations. One is to manipulate the partial differential equations to obtain
other differential equations that are easier to solve. Such differential formulations can be very
useful. But these partial differential equations have many solutions, and it is not always easy
to find the particular solution that fits the boundary conditions for a specific problem. The other
approach is to construct integral formulations of the problem. The integral formulations
incorporate the boundary conditions in the mathematical description of the system. This can
provide closed-form solutions in only a limited number of cases [28]. In order to obtain an

analytical result, simplifying approximations are made with regard to the number of dimensions,

linearity of material properties, symmetry, boundary conditions, and defect shape. Even with
such simplifying assumptions, the mathematics is very complex and the results tend to be limited
to a single geometry.

To overcome the limitations of analytical methods, various numerical calculational
methods have been devised. Numerical models and analytical models are both based on the
same field equations; however, instead of seeking to solve the equations directly by invoking
simplifying assumptions, discretization procedures are used in the numerical model which
ultimately lead to a matrix equation whose solution satisfies the original field equations point by
point.

Two types of numerical techniques are commonly used. One is the finite difference
method (FDM). The other is the finite element method (FEM). The FDM approach focuses
on the behavior of the system at specific points, defined by the mesh used to discretize the field
region. The drawback to FDM is that it lacks the flexibility needed to accommodate irregular
geometries and singularities that do not coincide with constant coordinate surface, and some
finite difference techniques require many computational cycles to arrive at a solution. FEM, in
contrast, consider the behavior of the system within the discrete elements of the mesh, and then
assembles the element equations into a description of overall system. Thus, it can be applied
to a much wider class of problem [28].

Several efforts have been made to develop computer modeling tools for EC inspection
by many investigators. Pate and Dodd of Oak Ridge National Laboratory have developed
several Fortran programs to aid in the design of EC tests and probes. The modeling is based

on the Burrows point defect theory. Philipp of Washington State University has developed a 2-D

10

finite element computer modeling program for EC inspection.

Numerical techniques are not limited by material nonlinearities or awkward defect shapes
but rather by the core storage available on computers. The major disadvantage of numerical
models is that one does not end up with an actual equation as the solution but rather with flux,

current density, and phase plot, or impedance plane trajectories [10].

2.3 Measurement Methods

Three major measurement methods (multi-frequency, pulse, and microwave) may be used
to study different aspects of the eddy current phenomena.

Microwave testing is better suited for precise measurement of surface defects because of
the higher frequency. But the method has usually been considered too complex for most
applications.

Pulsed systems are applied most advantageously to detect defects below the surface.
They extract information about the test material by analyzing the shape of the transient
waveform. However, pulsed techniques are limited at present by insufficient theoretical and
equipment development.

Multiple-frequency techniques are among the most widely used. These techniques benefit
from advances in single-frequency analysis, and by their nature present a greater number of
measurement variables for use in data analysis. The increased degrees of freedom allow for the

elimination of unwanted tests and focus on the characteristics of interest [4].

11

2.4 Data Analysis

The most difficult part of the eddy current inspection method is the analysis of
experimental data. The following methods may be used for experimental data representation and
analysis.

® Data transformation and display.

® Pattern recognition methods.

® Digital signal processing methods.

® Statistical models to interpret data.

® Artificial neural networks for defect classification and characterization.

2.5 Test Property Variations in Steam Generator Tubing

A number of variables in a steam generator produce signal changes in an eddy current
test. Some of them are shown in Figure 2.2. A steam generator consists of a large number of
tubing. The tubes are fixed at each end to a tube sheet and anchored (or restrained) at intervals
by tube supports. The tubing is usually thin wall (less than 10 percent of its diameter) and can
be inspected from the bore side when the generator head is removed. Nonferromagnetic tubing
with high electrical resistivity such as Inconel 600 or Type 304 stainless steel are common in
nuclear plant steam generators. The properties that vary and can affect the readings are (a)
defect size, (b) defect location in the tube wall, (c) tube wall thickness, (d) tube-to-tube support
distance, and (e) coil-to-coil distance [4].

We are primarily concerned with the changes in the first three parameters, but the last

two parameters produce the largest signal changes.

12

Figure 2.2 Test properties that vary during a steam generator inspection (From Ref. 4).

13

2.6 Metal Crack Growth Prediction Problem and Application to Component Aging

One of the goals of this research project is to study the possibility of establishing a
procedure for the prediction of crack growth using neural networks. Metal crack growth is a
basic problem of metal fatigue life study. In nuclear and fossil-fueled power plants, metal
fatigue is a potential life limiting mechanism for pressure retaining components. Fatigue
cracking may occur at high stress locations, such as steam generators, due to the thermal
transients and the accumulation of start-shutdown cycles or load cycles during plant operation
[29]. Several studies have been made in the area of crack growth prediction. Some standard
procedures have been developed for stress and fatigue analysis, such as the ASME Standard.
The following is a brief review of some papers published on the subject of fatigue lifetime

estimation and crack growth prediction.

Theoretical Analysis Methods for Fatigue Crack Growth

The fatigue crack growth process in a metallic material is divided in to two phases: crack
initiation and crack propagation. Usually the crack initiation stage is defined according to an
arbitrarily specified crack length: the crack length ranging from a size of grain diameter to about
50 to 100 um.

Crack propagation is related to many factors. These relations are formulated in terms
of external and internal constraints [30]:

(a). External constraints: the load and displacement boundary conditions, the component and
crack geometry, the chemical and thermal environment, and their variation in time.

(b). Internal constraints: the microstructure of the material; chemical composition, the spatial

arrangement of the constituent atoms, the type , configuration and distribution of defects,
and their variation in time.

14

The Griffith theory of fracture mechanics and fracture kinetics are the theories for crack
growth problem. The Griffith theory (developed in 1920s) is the source of the modern fracture
theories. It establishes that crack growth originates at defects which are inherent in all real
materials. This growth occurs when the energy needed for the creation of new surfaces (and
a plastic zone) is exceeded by the energy that is available from the change in the stored elastic
energy. When this condition is satisfied, the crack grows catastrophically, at a significant
fraction of the velocity of sound [30].

Since 1950s, fracture mechanics was developed as the theory that defines the mechanical
state of a crack. Fracture mechanics is rooted in the Griffith theory, it modified and corrected
some shortages of Griffith theory. Fracture mechanics established that a definite condition must
exist in the crack-tip zone; extended the linear elastic model to non-linear and to plastic solid
continuum; and developed a mathematical formulation that provides the rigorous basis for the
practical measurements of the characteristic values which represent the overall, general
characteristic fracture resistance of a specific material. However, because fracture mechanics
is a continuum mechanics theory, it cannot be used to enquire into the complex physical process
at the microscope level where crack growth is controlled. More details of this theory can be
found in reference [31].

The theory of fracture kinetics was originated in the 1960s. It was derived from the
understanding of the atomic-level physical processes that control crack growth. Essentially,
fracture kinetics is the method of establishing (1) the rate of each of the component steps of a
crack growth process; (2) the quantitative effects of the associated loading, geometrical boundary

conditions, thermal and chemical environment, and material characteristics; and, most

15

importantly (3) the complete description of the crack growth velocity - that is, the constitutive
equation of time-dependent fracture [31, pp. 43]. The fracture kinetics theory includes rate
theory, deterministic fracture kinetics theory, deterministic constitutive laws, probabilistic

fracture kinetics theory, and probabilistic constitutive laws.

Fatigue Lifetime Predictive Techniques

Fatigue life prediction of components involves the study of creep crack growth under a
range of stress and temperature and selection of a suitable parameter to describe the same. Based
on this parameter the life of the component can be estimated.

Newman et al [32] discussed the problem in the assessment of residual life prediction.
The stress-intensity factor range AK is used as the characteristic parameter. Liaw et al [33]
analyzed the life estimation of stream pipes of alloy steel based on the Ct energy rate integral
approach. Radhakrishnan et al [34] has found that among the various parameters tried to
correlate the creep crack growth, the energy rate linear integral C* gives the best description of

the crack growth rate.

Related Applications in the Nuclear Industry

Reference [29] describes the development of an automated fatigue lifetime monitoring
technology that utilizes nuclear or fossil-fueled power plant process data to perform a continuous
prediction of fatigue damage accumulation in critical components. The methodology has been
incorporated into a PC-based computer program called FatiguePro. This program acquires plant

process computer data (temperature, pressures, flows, valve positions, etc.) and interprets them

16

to predict local loads and temperatures in the monitored components. Green’s functions are then
used to determine transient thermal stresses at high stress locations in these components and to
account for thermal history effects. A fatigue evaluation is then made based on the computed
transient stress history. The fatigue based on Miner’s Rule, is accomplished in accordance with
ASME Boiler and Pressure Vessel Code stress and fatigue analysis procedures. This research
was sponsored by the Electric Power Research Institute (EPRI).

Reference [35] describes some of the state-of-the art engineering techniques utilized for
the remaining life assessment and condition improvement of steam turbine/generator components
in service. These include the finite element method for thermal and stress analysis, the inelastic

strain-based fatigue analysis, and fracture mechanics for remaining life assessment.

17

SECTION 3

EDDY CURRENT INSPECTION DATA AND DATA CALIBRATION

3.1 Eddy Current Inspection Data

A large multi-frequency eddy current (EC) inspection database from laboratory testing
of typical tube material was acquired from the Metals and Ceramics Division of Oak Ridge
National Laboratory. The data were recorded from two series of measurements on an ASME
section XI standard specimen, shown in Figure 3.1. The OD artifacts simulate tube support/tube
sheet, ferrite and copper. The database structure is shown in Figure 3.2. The OD artifact rings
on the standard are moveable, so that the effect of changing their location with respect to tube
defect location may be studied. The database was organized into 900 individual files according
to artifact type, defect depth, and the distance from the center of the defect to the artifact.

A typical impedance plane (resistance versus inductive reactance) trajectory of data from
a differential eddy current probe transducer is shown in Figure 3.3. The artifact is the tube
support and the defect is at a distance of 2.0 inches from the artifact and has a depth of 20% of
the tube thickness. The phase plane plot shows the trajectory corresponding to an AC source
of frequency 60 kHz.

Two computer programs have been developed to display EC tube inspection data. A
Fortran program displays impedance plane trajectory, and plots of integration and differentiation
of impedance trajectory. A LOTUS 1-2-3™ program displays different descriptors (EC signal
compression). These tools are very helpful in providing a "quick-look" at the data as a function

of AC source frequency, defect type, and defect parameters. Also, the database management

18

oy o=

ASME Section XI Std.

Nonconductive
Nonmagnetic Filler

Figure 3.1 ASME Section XI standard test specimen with OD artifacts.

19

Copper

Ferrite

Tube - Support

DEFECT DEPTH IN % WALL THICKNESS
DISTANCE

...

Multiple Frequencies
For Each Entry

Figure 3.2 Description of multi-frequency eddy current tube inspection data from Oak Ridge
National Laboratory (ORNL).

20

800

400 A

200

O-

=200+

~4001

—600

_800 T T T T T T T
-600 -500 -400 -300 -200 -100 0 100 200

Figure 3.3 A typical impedance plane trajectory of data from an eddy current probe
transducer. The defect is in the tube support at a depth of 20% and the distance
from the defect to artifact is 2.0 inch. The AC source frequency is 60 kHz.
(ORNL).

21

program EDDYANN may be used to display the data.

3.2 Data Calibration

Two sets of eddy current inspection data have been obtained from ORNL. The data
S11RDGS8F.dat (C data) were used for neural network training, and the data SEC11RDG.dat (B
data) were used for testing the trained neural networks.

The B data and C data were obtained from two series of independent measurements on
an ASME Section XI Standard specimen. Since the equipment setup for these two measurements
were different, the impedance plane values in the above two data files were also different.
Figure 3.4 shows the x component of C data and B data (AC source of frequency 60 kHz) for
the tube support artifact, 20% depth, and 0.1 inch distance. It is necessary to calibrate these
data to make them compatible.

The measurement data, in general, will have different scaling and orientation (displaced
origin) for different equipment setup. The relationship between different measurement data sets

can be described using a linear regressica model

Y=aX + b (61)

where
Y = one measurement data
X = another measurement data
a = scaling factor

b

shifting factor.

22

600

400

200

B data

C data

o
N

X component
[
)
o
o

|
I
o
(e]

-600

-800 -
1 21 41 61 81 101 121 141 161 181 201 221
Number of points

Figure 3.4 X-component of B data and C data before data calibration

23

For two independent measurements, if parameters a and b can be obtained , then one
measurement will be compatible with the other measurement.

Eight data files from C data set and B data set were used to perform the linear regression
to determine the parameters a and b. Table 3.1 shows the parameters a, b for x and y
component of different frequency signals. The average values of a and b were used to calibrate
the B data set. Figure 3.5 shows the comparison of the x components of the C data and the B
data (AC source of frequency 60 kHz) for tube support, 20% depth, and 0.1 inch distance after

calibration.

24

Table 3.1(a). Linear regression parameters for x component

Frequency 1 Frequency 2 Frequency 3
(600 kHz) (200 kHz) (60 kHz)
| — 1

clll.dat
vs. 1.656905 -3960.26 1.695312 784.2246 1.669225 179.9337
bl1l.dat
¢1120.dat
vs. 1.614711 -3977.65 1.689191 783.4582 1.666433 182.39488
b1120.dat
¢1520.dat
vs. 1.68538S -3944.38 1.688804 782.3544 1.644389 179.7189
b1520.dat
c211.dat
vs. 1.623865 -3971.84 1.69297 778.1585 1.681263 188.6133
b211.dat
Average 1.645 -3963.5 1.692 182.7

Frequency 2 Frequency 3
(200 kHz)
(|

clll.dat
Vvs. 1.670121 1098.628 1.674005 -1486.04 1.679496 -28.5989
blll.dat
c1120.dat
vs. 1.640697 1091.948 1.671087 -1486.35 1.680279 -28.1667
b1120.dat
c1520.dat
vs. 1.68945 1105.464 1.655070 -1498.05 1.661505 -27.8862
b1520.dat
c211.dat
vs. 1.577619 1073.787 1.679900 -1476.59 1.680279 -28.1667
b211.dat
Average 1.645 1092.4 1.670 -1486.8 1.674 28.3

— ==

25

600

400

200 A

o
|

|
N
o
o

X component

-400

=600

-800
0

10

15 20 25 30 35 40 45 50
Number of point

B data

C dato

Figure 3.5

X-component of B data and C data after data calibration

26

SECTION 4

REPRESENTATION OF EDDY CURRENT DATA

For the artificial neural network approach to be effective in defect classification and
defect parameter estimation, the information input to the network must have certain features.
These are (a) size of data vector, (b) invariance to data scaling, (c) invariance to data
orientation, and (d) sensitivity of the defect type and defect size parameters to input signatures.
The data representation (and compression) may be classified into nonparametric and parametric

techniques.

4.1 Nonparametric Data Representation Methods
Nonparametric representation methods involve reorganizing the raw measurement data
using (1) direct compression of raw data, (2) subtraction from a reference data, (3) magnitude
and phase of the raw data, (4) integral value of the raw data, and (5) sequence of radii from the

center of gravity to the closed contour of the shape.

4.1.1 Direct Compressed Raw Data Representation (RAW)
The current neural networks (NNET) software has the following requirements.
(a) All data files must have the same number of elements in the input vector.
(b) The total number of elements in the input vector, hidden layer and output
layer vector must not exceed 350.

(c) All training and testing data files must be normalized.

27

The size of the EC inspection raw data changes from 225 lines to 421 lines. Therefore,
the raw data files must be compressed to yield small and equal size data files. The information
in the original data files, must be reflected in the compressed data files.

A direct data compression method has been used. Based on the NNET requirement, the
size of the compressed data vector is set as 50. The new vectors are determined by skipping
n points, where n is an integer (total length of the raw data divided by 50). Figure 4.1(a) shows
the eddy current impedance plane trajectory of raw data D111.dat (frequency 1). Figure 4.1(b)
shows the corresponding compressed data plot. By comparing them, we can see that the
compressed data file contains sufficient information to describe the impedance plane trajectory.

The direct compressed raw data is not very effective for characterization using neural
networks, because the experimental eddy current signals suffer from instrument gain drift and
zero fluctuations. However, this approach can be used to compress the size of the raw data to
satisfy the requirements of neural networks. This is the preliminary step in undertaking other

nonparametric data representation methods.

4.1.2 Subtraction From a Reference Data (SRAW)

The difference in the complex impedance plots of eddy current data between normal and
defect cases shows only in portions of the two signal. The raw data subtraction method is the
subtracting of test data from a normal reference data. Thus, the common portions are removed,
and the defect is enhanced. Figure 4.2(a) shows the impedance plane plot of the reference data.
Figure 4.2(b) shows the plot of compressed data D111.dat. The subtraction of reference data

from D111.dat is shown in Figure 4.2(c). Generally, this treatment can increase the sensitivity

28

-230
240 {:*\\
~250 1 ‘

—~260 1 K‘%

—-270 A

—-280 A

-290

—-300

-310 A

_320 T T T Y Y
-520 =500 -480 —460 —-440 -420 -400

Figure 4.1(a) The eddy current impedance plane plot of raw data D111.dat (frequency 1).

-230

~240 4

-250 A

—260

~270 A

—280

—~290 7

-300 1

~310 -

“‘320 v T T T T
-520 -500 -480 ~460 —-440 —420 ~-400

Figure 4.1(b) The eddy current impedance plane plot of compressed data D111.dat (freq. 1).

29

~40 . , . r : : . y
~40 =30 =20 -10 0 10 20 30 40 50 BO

Figure 4.2(a) Impedance plot of the reference data

40 -20 0 20 40 80 80

Figure 4.2(b) Data D111.dat (freq.1) impedance plot

25

201

-10 0 10 20 30 40 50 50 70

Figure 4.2(c) Subtraction of the data D111.dat impedance plot

30

of the test signal.

The drawback of this method and other nonparametric representation techniques is that
they suffer from the effects of instrument gain drift, zero fluctuation, and the starting point of
the data. Therefore, it is necessary to ascertain the accuracy of raw data. Deeds and Dodd [1]
have developed a procedure to calibrate the measurement data with a standard data. Therefore,

the calibration data can be considered as the correct data.

4.1.3 Compressed Magnitude and Phase Representation (MP)
This method converts the compressed complex impedance values to magnitudes and

phases so that magnitude and phase can be normalized separately.

4.1.4 Compressed Integral Signal Representation (CINT)

By observing the plots of integrated raw data, it is seen that the line integration of
impedance data is sensitive to certain frequencies, and may be used to identify the defect type.
Figures 4.3(a), 4.3(b), and 4.3(c) show integrated data plots for files D111.dat, D211.dat, and
D311.dat. These correspond to the artifact types of tube support, ferrite magnetite, and copper,

respectively, and for a 20% defect depth and 0.1 inch defect size.

4.1.5 Radii From the Center of Gravity (CG)
Since the defect parameters will influence the center of gravity of the complex impedance
plot, a sequence of radii from the center of gravity to the contour of the shape is used to train

the neural networks to estimate defect parameters. Figure 4.4 illustrates the definition of radii

31

250

200 t
150

N

-
0\ i——-—

100 200 300 400 S00 600 700

Figure 4.3(a) Data D111.dat (freq. 2) integral plot

350

300 44'".&
W B
200 - — .'a"
150 f

0 50 100 150 200 250 300 350 400 450

Figure 4.3(b) Data D211.dat (freq.2) integral plot

200 -—{
A

-200

BWIER NN RN

~600 : \ N

-800 =

~1000 \—'* .
<] ®

~1200 n

g e
~1400

-200 0 200 400 600 800 1000 1200

Figure 4.3(c) Data D311.dat (freq.2) integral plot

32

Figure 4.4. Radii from the center of gravity of a closed contour.

33

from the center of gravity of the closed contour.

4.2 Parametric Representation Methods
Parametric representation methods compress the data using certain "feature vectors" and
searching the parameter space for the best fit between the measurement and the computed
signature. These techniques include (1) Fourier descriptor method, and (2) autoregression

modeling.

4.2.1 Fourier Descriptor Representation (FD)

The Fourier descriptor method is widely used in pattern recognition and applied artificial
intelligence. This technique generates a feature vector called the Fourier descriptors whose
elements are a function of the shape of the signal. These descriptors have the property of being
invariant under scaling, rotation, and translation operations. In addition, they offer a significant
amount of data compression. Udpa and Udpa [6] applied this method for the classification of
EC signals.

The Fourier descriptor technique is based on the fact that the eddy current defect signal
represents a closed contour. It involves the representation of the eddy current signal as a
periodic function, with the arc length / serving as the independent variable, as shown in Figure
4.5. Consider a simple closed clockwise-oriented smooth curve v and let [x(l), y(I)] be the
coordinates of a point P that is / arc length units away from an arbitrary starting point P,.
Representing the point P by the complex contour function u(/) and expanding it in a Fourier

series gives

34

Figure 4.5. Reprentation of a closed curve by a complex contour function u(l) defined as a
function of the arc length 1

35

b - ¥ e, el @

where

1
C"—-i

O S

u(l)exp(’}%ﬂ) 4.2)

and L is the total arc length of the curve.
By approximating the curve by a polygon of m sides with vertices at V,, V,, ..., V_,,

the Fourier coefficients can be computed as

L « -j2nnl,
cy = B,y - by exp() 4.3)
" 4nn? ,,2; k1 Tk L
where
k
=Y | V.-V, | k>01,=0 4.4)
i=1
and
b = ki e @.5)
l Vk«x - Vl: |

The Fourier descriptor set {d,} is defined as

c c
d, = —-1* (4.6)
¢

Generally, 8 to 10 Fourier descriptors are sufficient to represent the information of a closed

contour. We chose eight descriptors to represent an original eddy current signal.

36

Based on our experience in training neural networks, the Fourier descriptors were found
to be not very sensitive in identifying the difference among EC signatures for parameter
estimation for different defect types. This may be because (1) only a limited number of terms
are used in Fourier series to approximate the periodic signal, (2) portions of the impedance plot
do not bear useful information. and (3) the Fourier descriptors have difficulties in describing
local information and discriminating symmetrical shapes [2].

A subtraction technique similar to the raw data subtraction from a reference data is used
to increase the sensitivity of the Fourier descriptors. The Fourier descriptor d, can be divided
into two parts: d (defect) indicates the information from the defect data, and d,(normal)
represents the information from the non-defect reference data. The d,(defect) can be obtained
by subtracting the d (normal) from d,. The requirement of this treatment is that all the data set

should have the same starting point.

4.2.2 Autoregression (AR) Modeling of Object Contours

This approach is to represent the EC defect data using autoregression model parameters.
The procedure is described briefly.

The approaci» to represent a 2-D shape with a 1-D signal is to use a sequence of radii

from the center of gravity to the closed contour. The radii sequence r(l) is:

r() =rf@¢-DL + 0, 1 = -(M-1),...,L. 4.7

The autoregression model is a simple prediction of the current radius by a linear

combination of M previous radii plus a constant term and an error term:

37

M
) = asy 870 + o I=l.l, 4.8)
Jj=1
The feature vector is

X = [8nrnBypa]’ (4.9)

with dimension M +1.
The use of AR parameters as a feature vector can characterize shapes in a very systematic
manner, and the feature vectors are proved to be translation and scale invariant. The major

disadvantage is that these schemes are very sensitive to shape occlusion [2].

38

SECTION §
ARTIFICIAL NEURAL NETWORK MODELS FOR DEFECT

CLASSIFICATION AND PARAMETER ESTIMATION

5.1 Description of Artificial Neural Networks

Artificial neural networks provide general mapping between two sets of information.
This nonlinear mapping from data to data is very useful in associating information pairs where
a clear mathematical relationship is not available. Artificial neural networks have been applied
to the problems of pattern classification, signal validation, plant monitoring, transient state
identification in power plants, underwater acoustic signature recognition, and many others [24].

Artificial neural networks are developed to simulate the most elementary functions of
neurons in the human brain, based on the present understanding of biological nervous systems.
These network models attempt to achieve good human-like performance such as: learning from
experiments and generalization from previous samples. The network models are composed of
many nonlinear computational units which are called as processing elements (PE) or nodes that
operate in a parallel distributed processing architecture.

A typical nonlinear processing element is shown in Figure 5.1. A processing element
is analogous to a neuron in that it has many inputs from input signals or from other PEs and
combines (sum up) the values of the inputs, adjusted by their weights. This sum is then
subjected to a nonlinear transformation, often called a transfer function, that controls the output
in accordance with the prescribed nonlinear relationship. If the transfer function is a threshold

function, output signals are generated only if the sum of the weighted inputs exceeds the

39

N
y=f(£ wiX; -0

i=1

Figure 5.1 A typical nonlinear processing element of a neural network.

40

threshold value. If the transfer function is a continuous nonlinear (or linear) relationship, the
output is a continuous function of the combined input. The most commonly used transfer

func:ion is the sigmoid function with the form

1

F(x) = ,
1 + e

p>0 (5.1)

The sigmoid function changes smoothly from zero (for large negative values) to one (for large
positive values) with a value of 1/2 for zero input. This sigmoidal relationship is shown in
Figure 5.2.

Artificial neural systems are usually organized into layers of PE’s. The layer which
receives the input signals from the environment is called the input layer, or input buffer. The
layer which emits the signals to the environment is called the output layer. The output signals
from the output layer maybe in the form of a signature vector, or a pattern classification index.
Any layer between the input layer and the output layer is called a hidden layer. Hidden layers
play an important role in processing signals. These layers are used to represent the nonlinear
relationships between the two sets of information. A general architecture of a multi-layer neural
network is shown in Figure 5.3.

The operation of an artificial neural network involves two processes: learning and recall.
Learning is the process of adapting the connection weights in response to external stimuli
presented at the input layer. During the learning process, each processing element receives
weighted inputs, it combines them and computes an output. If the calculated output of the
network is equal to the target output, then learning will stop; if there is a significant difference

between those two values, an adjustment of weights must be made to minimize the difference

41

0.8 dom b WL BT
B=0.5
0.6_.. --
= p=0.2
Q.4 H---rrrrrrmmr e T AL / ..
p=5.0
=7 (
0.2 - L b
1.5 ,
0 ' ; ;
-6 -4 -2 0 2 4 6
X
-bX
Fx) = 1/(1+ ¢ °%)
Figure 5.2

Sigmoidal function used for transfer function of neural processing element

42

ey

Pattern Type or Pattern Parameters

Output

....
T4
bR

Hidden Layer 2

Hidden Layer 1

Figure 5.3 Architecture of a multilayer neural network used in eddy current
pattern classification and for estimating defect parameters.

[36]. Recall is the process of using or testing the trained network.

There is a variety of neural network architectures: Hopefield network, multi-layer
feedforward network, perceptron network, bi-directional associative memory networks, adaptive
resonance theory networks, Kohonen self-organization feature map, probabilistic neural network,
counter-propagation network, and others. In this study, multi-layer feedforward networks and
probabilistic neural networks were used. A detailed discussion of these two algorithms is given

in the following sections.

5.2 Learning Methods

Several different kinds of learning methods are used for establishing ANN’s. These
learning methods may be classified into three categories: supervised learning, unsupervised
learning, and random learning.

Supervised learning is the most commonly used method. In supervised learning, a
stimulus presented at the input buffer of the network generates an output at the output buffer and
is then compared with the known desired output to produce an error signal. The system then
uses a learning algorithm to convert the difference (error signal) into an adjustment of the
connection weights. The key to the development of a successful supervised neural network is
to provide supervised information to the network and estimate the connection weights such that
the error between the desired output and the network output is minimized. In this study, only
supervised learning is used.

In unsupervised learning, only the input stimuli are applied to the input layer of the

network. The network then organizes itself internally so that a particular hidden processing

element responds strongly to a particular type of input stimulus [37].

Random learning introduces random incremental changes into the weighting functions,
then either retains or drops the changes depending whether or not the output is improved or not
(based on arbitrary criteria set by the user). This process continues until the error approaches

a minimum value.

5.3 Learning Algorithms

The most common learning algorithms are: Hebbian learning, Delta-rule learning, and
competitive learning.

The Hebbian learning occurs when a connection weight on an input path to a PE is
incremented if both the input and the desired output are high. This is analogous to the biological
process in which a neural pathway is strengthened each time it is used.

The Delta-rule learning occurs when the error signal (difference between the desired
output and the actual output) is minimized using a least-squares process. The back-propagation
is the most common implementation of the Delta-rule.

The competitive learning occurs when the processing elements compete; only the
processing element yielding the strongest response to a given input can modify itself, and

become more like the input.

5.4 Training of Neural Networks Using Back-Propagation Algorithm
Back-propagation algorithm is the most widely used systematic method for supervised

learning in multiple (three or more) layer artificial neural networks. The application of this

45

training algorithm in 1986 by Rumelhart, Hinton, and Williams [25] was the key step in making
neural networks practical in many real world situations. The mathematical basis for the back-
propagation training of ANN’s is straightforward but involves several steps. It is well described
in Ref. [25].

The goal of the back-propagation algorithm is to teach the network to associate specific
output patterns (target patterns) by adjusting the connection weights in order to minimize the
error between the target output and the actual output of the network. To accomplish this, the
network is usually trained with a large number of input/output pairs. A gradient descent
algorithm is generally used to perform the optimization.

The back-propagation training process is composed of two types of passes: the forward
pass and the reverse pass. In the forward pass the input signals propagate from the network
input to the output. In the reverse pass, the calculated error signals propagate backward through
the network where they are used to adjust the weights. The calculation of the output is carried
out, layer by layer, in the forward direction. The output of one layer is the input to the next
layer. In the reverse pass, the weights of the output layer are adjusted first since the target value
of each output node is available to guide the adjustment of the associated weights, using a
modification of the Delta Rule. Next, the weights of the middle layers are adjusted. Since the
middle layers have no target values, the error must be propagated back through the network,
layer by layer.

Consider a typical PE as shown in Figure 5.1, with inputs x;, weight w,., The summation

of the weighted inputs designated by I is given by

46

n
I=xw +xw+~+xw = E xw, (5.2)
i

The nonlinear function used is the typical sigmoid and the output of the processing element is

given by

yi = —1 (5.3)

1 + e-o0*®

where 6 is a nodal bias.

In Equation (5.3) the parameter o describes the shape of the sigmoidal function. The
effect of different values of « is illustrated in Figure 5.2. The bias is used to shift the activation
function along the X-axis. As the forward pass completes, the error between the network output
and the target values are calculated.

In the reverse pass, the connection weights are corrected to reduce the error found after
the forward pass. This error-correction procedure is made from the output layer to the hidden
layer. The Generalized Delta Rule is utilized to adjust the interconnection weights so as to
reduce the square of the error for each pattern. In this process, the local error 6 is calculated
for each node. It reflects the amount of error associated with that unit. The local error for node

q in the output layer k is defined as:

Ogp = 20 [T, — fold fop [1 — fl (5.4)
where
T, = desired output of node q
f,x = actual output of node g.

The local error for node p in the hidden layer j is defined as:

47

8,; = Z @ 8y Wogk f;’.i 1 —pr] (5-3)

pJ
q=1

where
W« = the weight between the node p in the hidden layer j and the node q in the output
layer k

f,; = output of node p.
Then, according to the General Delta Rule, the weight adjustments are made as
AW, =n34,f (5.6)

where
AW,, = the weight adjustment between lower layer node a and upper layer node b

6, = local error of node b

active value of lower layer node a

fa
n = learning rate.

The learning rate defines the step size of training.
A common technique to reduce training time and reduce the probability of being trapped

in a local minimum is to use a momentum term which enhances the stability of the training
process. This technique involves adding to the weight adjustment a term which is proportional
to the amount of the previous weight change.

The step-by-step procedure of back-propagation training is as follows:

(1) Randomize the weights to small random values (both positive and negative) to
assure that the network is not saturated by large values of weights.

(2) Select a training pair from the training set.

48

3
C)

(%)

)
)
®

Apply the input vector to network input.

Propagate the input vector in a forward fashion through the network using
Equations (5.2) and (5.3) until the final network outputs are calculated.

Calculate the network output and the error (the difference between the network
output and the desired output).

Calculate the local errors using Equations (5.4) and (5.5).
Adjust the weights of the network using Equation (5.6) to minimize the error.

Repeat steps 2-7 for each pair of input/output vectors in the training set until the
error for the entire system is acceptably low.

5.5 Optimal Back-propagation Networks for Eddy Current Inspection Data Analysis

Back-propagation neural networks (BPN) were used to develop the neural network models

for artifact classification and defect parameters estimation. The preprocessed eddy current

impedance data were used as input feature to back-propagation neural networks, with the output

map providing artifact type and estimates of defect parameters (depth and distance). Different

data compression methods are implemented here and are ranked according to their effectiveness

in producing a proper mapping. Separate networks for artifact classification and parameter

estimation have been developed. A PC-based software called the NeuralWorks Professional

II/Plus is used in most of the implementation.

There are several issues that need to be considered when utilizing the back-propagation

algorithm to train a neural network. The following discusses the selection of hidden layers and

nodes, and the learning options.

49

5.5.1 Selection of Number of Hidden Layers and Nodes

The selection of number of hidden layers and hidden nodes is one of the most important
issues in back-propagation network applications. There have been various studies related to this
topic, but there is no definite solution to this problem. However, it has been concluded that
using only one hidden layer is sufficient to solve the problems in the area of signal processing,
plant monitoring, parameter estimation, and sensor validation {23]. In this project, it has been
found that one hidden layer is sufficient for the training of the center of gravity data and integral
data for defect parameter estimation.

The selection of hidden nodes for a fully-connected, feedforward networks with one

hidden layer is based on the following rules [16]:

Rule-of-thumb 1: The more complex the relationship between the input data and the
desired output, the more nodes are normally required in the hidden
layer.

Rule-of thumb 2: The upper bound for the number of nodes in the hidden layer is

__cases _ (5.7)
10x(m + n)
where
cases is the number of rows or vectors in the training file.
m is the number of nodes in the output layer.

n is the number of nodes in the input layer.

h is the number of nodes in the hidden layer.

50

5.5.2 Selection of Learning Options

The most important learning options for back-propagation network training is selected
as follows.

1. Learning coefficient

Learning coefficient is the rate at which weights adjust to correct for errors. In our
application, it is set to 0.4 for the first 10000 iterations, and 0.1 for other iterations.

2. Momentum Term

Momentum term is a factor used to smooth the learning. Here it is set to 0.5.

3. The nonlinear transfer function

The nonlinear transfer function transfers the internally generated sum for each node to
an output value. Available transfer functions in back-propagation network are: linear, sigmoid,
hyperbolic tangent, and Gaussian cumulative distribution. Through several trials of network
training, it is found that hyperbolic tangent transfer function facilitates faster and more accurate
network training. This is because the output range of hyperbolic tangent is from -1 to +1, as
compared to the sigmoid range of 0 to 1. The output of the transfer function is used as a
multiplier in the weight update equation, a range of O to 1 means a smaller multiplier when the
summation is a low value, and a higher multiplier for higher summation. This could lead to a
bias in learning higher desired output. The hyperbolic tangent gives equal weight to low and
high end values [16].

4. The learning rule

The learning rule in back-propagation network specifies how connection weights are

changed during the learning process. Three learning rules are commonly used in BPN: Delta-

51

Rule, Cumulative Delta-Rule, and Normalized-Cumulative Delta-Rule.

Some networks have been trained using Delta-Rule and the Normalized-Cumulative Delta-
Rule. The results are listed in Table 5.1. It is seen that the network using the Delta-Rule takes
more iterations to converge and the RMS error can only be reduced to 0.003. The Normalized-
Cumulative Delta-Rule is more effective and should be selected.

5. Gaussian noise and RMS threshold value

The Gaussian noise function adds a random number within a special range to each node
summation value in the layer. Table 5.2 illustrates the network performance for estimating the
distances of the defect from the center of the OD artifact.. It is seen that the network with noise
converges faster than the network without noise during training. However, the network with
noise does not perform as well as the noise-free network in the recall phase.

The root mean-square (RMS) error threshold is the convergence threshold for BPN
training. The training terminates when the RMS is smaller than this threshold. The accuracy
of the network can be controlled by setting a value for this threshold. In neural network
training, it is not desirable to overtrain the network because of poor interpolation or prediction
caused by memorization. Table 5.2 shows the network with different RMS threshold values.

It has been found that the network with an RMS threshold of 0.01 has the best recall result.

5.6 Probabilistic Neural Networks (PNN)
The probabilistic neural network (PNN) is very well suited for feature classification. The

PNN is based on the Bayesian decision boundaries. The "key advantages of the PNN are that

52

Table 5.1. Training Networks Using Delta-Rule or Non-Cum Delta-Rule

RMS Recall Results Error (%) Iterations
0.05 0.764173 1.89 993
Delta 0.01 0.774499 3.27 9630
Rule 0.005 0.800754 6.77 28121
0.003 0.806697 7.56 102659
0.05 0.743972 0.80 431
Nor-Cum 0.01 0.745801 0.60 6549
Delta-Rule 0.005 0.741182 1.18 8272
0.001 0.743269 0.90 10039
Table 5.2. Training Networks with Noise or without Noise
RMS Recall Results Error (%) Iterations
0.05 0.656779 12.43 449
Noise 0.01 0.685313 8.62 2065
0.005 0.689318 8.09 3939
0.003 0.694373 7.42 6489
0.05 0.743972 0.80 431
No Noise 0.01 0.745801 0.60 6549
0.005 0.741182 1.18 8272
0.001 0.743269 0.90 10039

53

the training requires only one single pass and that the decision surface is guaranteed to approach
the Bayes-optimal decision boundary as the number of training samples grows" [26]. The main
"disadvantage of PNN is that all training sample must be stored and used in classifying new
patterns."

Let us assume that there are M patterns to be classified. Let P, i=1,2,..., M be the a
priori probability of these classes. Let p(X/6)), 1=1,2,..., M be the probability density function
of feature vector X belonging to class i. Then the Bayes decision rule states that class i is

chosen over class j if

Pp(X/6)2Pp(X/8) (5.8)

Thus the best choice among the M features is made such that class i satisfies the condition

max P,p(X/6,) (5.9)
i=12,.. .M

In most cases the feature vector X has a Gaussian distribution and has the form

PX/B) expl- (X-X,) "0, " X-X,)] (5.10)

© @)
where Q is the covariance matrix, or in the present context called the smoothing parameter.
The PNN reflects the Bayesian decision making in a feedforward network fashion.
Figure 5.4 shows a typical probabilistic neural network. The input units are components of each
training feature vector. The pattern unit performs a weighted sum of feature vector components.
The number of pattern units for each class corresponds to the number of training patterns for

that class. The density functions of class A and class B (in this case) are formed a. the

54

CINPUT
ot

. PATIERN

By OUTRLY

Figure 5.4 Architecture of the Probabilistic Neural Network (PNN) [26].

55

summation units. A binary output unit is used to decide whether the i-th pattern belongs to class
A or class B.

The training of PNN takes only one pass and is a very effective network for feature
classification problems. One of the disadvantages of the PNN is that it requires all the patterns

for updating the network when new patterns are included. For further details see Ref. [26].

56

SECTION 6

RESULTS OF DEFECT DIAGNOSTICS USING EDDY CURRENT DATA

6.1 Estimation of Tube Defect Parameters

The defect parameters include defect depth and the distance from the defect to the center
of the artifact. In order to make the networks perform effectively, separate networks were
established to estimate defect depth and distance from the artifact.

For distance estimation, in order to compare the effects of the different data
representation techniques, the data corresponding to defect in tube-support, 20% depth, 0.1 to
2.0 inch sizes were used. In defect depth estimation, the defect in tube-support, at 20% to
100% depths were used.

Generally, the Mean-Squared Error (MSE) is used to evaluate the accuracy of the

network. The MSE is defined as

N
E= > 15,0 - 5,07 6.1)

where
N = Number of patterns.
X,(k) = the network predicted value for pattern k, and
xn(k) = the measured value for pattern k.
In parameter estimation, an Averaged Absolute Scale Error (AASE) was also used to

judge the accuracy of the network. This is defined as

57

| 6.2)

1 100(x,(k) - x, (k)
AASE(%) = ¥ g (@

where N, x,(k), and x;,(k) are the same as in Equation (6.1).

For EC distance estimation, different back-propagation networks (BPN) have been tried
using different number of hidden layers, hidden elements, number of iterations, an ‘raining
coefficients. Through the training, the trained networks with center of gr» .CG) and
compressed raw subtraction data (CRS) were found to be the most . for distance
estimation. Table 6.1 lists the information for the back-propagation networks obtained from
training for these two data representation techniques. Figure 6.1(a) shows the recall result of
distance estimation using the center of gravity training data. Figure 6.1(b) shows the recall
result of distance estimation using compressed raw subtraction training data.

From the above results, it can be seen that the AASE for the compressed raw substraction
data is 0.998%, and for the center of gravity data is 0.156%. Therefore, both of them can be
used to estimate the distance from the EC defect to the artifact.

Many networks were trained for the eddy current defect depth estimation. Through
training, it was found that only the networks trained using phase angle (PHS) data and the center
of gravity data have low mean-squared errors (MSE). Table 6.2 lists the information for the
back-propagation networks obtained from training for these two data representation techniques.
Figure 6.2 shows the recall results from one 'of the BPN’s trained using phase angle training
data. Figure 6.3 shows the recall results from one of the BPN’s trained using the radii from the
center of gravity data.

From the results, it can be seen that the estimated depths are very close to the desired

58

Table 6.1. BPN’s for EC Defect Distance Estimation

Input Signal

No. of Input

No. of Hidden Layers

No. of Hidden Elements 35 60
" Learning Coefficient 0.4 0.4
" Transfer Function’s Shape 0.7 0.7
" Momentum Term 0.5 0.5 "
| No. of Iterations 12051 29987
Mean Squared Error (MSE) 0.0027 0.0041
Avg. Abso. Scale Error (AASE) (%) 0.998

CG: center of gravity training data

CRS: compressed raw data subtraction training data

59

DISTANCE

DISTANCE

|

s

10
NUMBER OF PATTERNS

1S

20

Figure 6.1(a). Recall result of BPN using CG testing data

for distance estimation

=

ok

&

10
NUMBER OF PATTERNS

15

20

Figure 6.1(b). Recall result of BPN using CRS testing data

for distance estimation

60

Table 6.2. BPN’s for EC Defect Depth Estimation

Input Signal
No. of Input
No. of Hidden Layers 1 1
No. of Hidden Elements 35 35
Learning Coefficient 0.4 0.4
Transfer Function’s Shape 0.7 0.7
Momentum Term 0.5 0.5
No. of Iterations 22051 19889
0.0078 0.0054 "

Mean Squared Error (MSE)

Avg. Abso. Scale Error (AASE) (%)

CG: center of gravity training data
PHS: phase angle training data

61

1.1

0.8

0.8

0.7

0.6

DEPTH

0.5

0.4

0.3

0.2 1

0.1
0

10

20 30 40 50

60 70

NUMBER OF PATTERNS

80 90

-

Desired Qutput —€— Network Output ’

100

Figure 6.2 Recall result of BPN using phase angle testing data for depth estimation

DEPTH
o
o

.1’ -1221.

™Y

NUMBER OF PATTERNS

T

'””:’:3

vvvvvv

-

Desired Output © Network Output]

Figure 6.3 Recall result of BPN using CRS testing data for depth estimation

62

values. Therefore, phase angle data representation method and the center of gravity radii
signatures are good for defect depth estimation. The BPN’s trained using other data
representation methods did not work very well for defect depth estimation. This is because only
phase angle representation and radii from the center of gravity representation emphasize the
phase angle information about the EC inspection data. A fact to be noted is that the accuracy
of defect depth estimation using phase angle data and CG data is very sensitive to the data
orientation and scaling. Hence other data representation methods are expected to be tried in the

future.

6.2 EC Defect Type Identification

The three defect type or artifacts used in this study were tube support, ferrite magnetite,
and copper. Some back-propagation networks were developed to identify them using (1) Fourier
descriptors (FD), (2) compressed magnitude and phase signatures (MP), (3) radii from the center
of gravity (CG), and (4) compressed integral signal (CINT). One probabilistic neural network
(PNN) was also developed using compressed integral signal(CINT).

The networks trained using center of gravity data and compressed integral data were
found to be effective for defect type identification. Table 6.3 lists the information for the best
networks obtained for these two signatures. In the training data, the tube support, ferrite
magnetite, and copper are presented as (0.1, 0.1, 0.9), (0.1, 0.9, 0.1), and (0.9, 0.1, 0.1)
respectively. Figures 6.4(a), 6.4(b), and 6.4(c) show the recall results of the BPN using the
compressed integral signal. Figures 6.5(a), 6.5(b), and 6.5(c) show the recall results of the BPN

using the center of gravity signal. Figure 6.6 shows the recall results using the probabilistic

63

Table 6.3. BPN’s for EC Defect Type Identification

Input Signal

H No. of Input
No. of Hidden Layers

No. of Hidden Elements 35 50
Learning Coefficient 0.4 0.4
Transfer Function’s Shape 1.0 0.7
Momentum Term 0.5 0.5
No. of Iterations 51241 12561
Mean-Squared Error for Output 1 0.02 0.04

|| Mean-Squared Error for Output 2
ILMean—Squared Error for Output 3

0.15
0.18

CINT: compressed integral training data
CG: radii from the center of gravity data

TYRE

<] 20 40 60 80 100

TRTREISTIIN
120 140 160 180 200 220 240 260 280
NUNBER OF PATTERNS

[-—P—Du:roa Output 3 Network Output I

Figure 6.4(a). Output 1 recall result of BPN using CINT testing data

¥
wn

0 20 40 €0 80 100 120 140 160 180
NUMBER OF PATTERNS

200 220 240 260 280

[—0— Oesired Output O Netuork Output |

Figure 6.4(b). Output 2 recall result of BPN using CINT testing data

1.2

TYPE

0
15h0o

-0.2
0 20 40 60 80 100 120 140 160 180
NUMBER OF PATTERNS

wrirm
200 220 240 260 280

l—-!- Desired Output 2 Netuork Output l

Figure 6.4(c). Output 3 recall result of BPN using CINT testing data

65

T

-0.2 ' y o wrh
0 20 40 60 80 120 140 160 180 200 220 240 260 280
NUMBER OF PATTERNS

r—-o»Duxr'u Output (3 Netuwork Output]

Figure 6.5(a). Output 1 recall result of BPN using CG testing data

120 140

160 180 200 220 240 260 280
NUMBER OF PATTERNS

F—'—-—anrm Output [J Netuork Outpu! J

Figure 6.5(b). Output 2 recall result of BPN using CG testing data

0.6
&
z

0.4

0,2

0 “lﬁu*
-0.2 RENTIRTIRY

0 200 40 60 B0 100 120 14 220 240 260 280

140 160 180
NUMBER OF PATTERNS

|—4— Desired Output [Network OQutput

Figure 6.5(c). Output 3 recall result of BPN using CG testing data

66

) 15 0 48 03 120 138

60 7% 80
NUMBER OF PATTERNS

[-“-'—Dn:reu Output (3 Network Jutput |

Figure 6.6(a). Output 1 recall result of PNN using CINT testing data

0 aaal T CTRTTIIrTTYITTY
0 13 30 45 €0 7% 90
NUMBER OF PATTERNS

108 120 138

[—— Desired Output 0 Netuork Output]

Figure 6.6(b). Output 2 recall result of PNN using CINT testing data

YT TITTTYTY T
¥} 15 30 15 108 120 135

60 75 90
NUMBER OF PATTEANS

l—-—-— Desired Qutput (I Netuork Output I

Figure 6.6(c). Output 3 recall result of PNN using CINT testing data

67

neural networks.
The results indicated that both the BPN and the PNN networks are efficient in classifying

tube defect types, using either the CG or the CINT data.

68

SECTION 7

DEVELOPMENT OF THE EXPERT SYSTEM "EDDYANN"

7.1 Introduction

One of the objectives of the research under this project is to develop a neural network-
based expert system. The system developed for the PC platform is called "EDDYANN". The
software combines all the analysis into a user-friendly, PC-based diagnostics system.
EDDYANN consists of a user interface, a rule base, a knowledge base, and supporting modules.
The user interface provides choice of eddy current inspection data file, display of related
information, and presentation of data analysis results. The knowledge base consists of trained
neural networks for defect type identification and defect parameter estimation. The rule base
consists of logical steps for data analysis and rules for decision making. The overall system
would perform the analysis of multi-frequency eddy current testing (ECT) data analysis
automatically. Figure 7.1 shows the major functional blocks of the EDDYANN expert system.
These are

] Multi-frequency, tube inspection ECT data base.

. Data representation.

° Knowledge base.

. Rule base.

° User interface.

69

User Interface

Eddy
Current

Uncertainty Analysis
Analysis Contral

Making
Dicisions

Figure 7.1 Architecture of the EDDYANN expert system

70

7.2 Knowledge Basc

The knowledge base is the heart of an expert system. EDDYANN uses the trained neural
networks as its knowledge base. These trained neural networks embody the knowledge
contained in the eddy current (EC) data. When a new set of EC inspection data were passed
through these networks, the information about defect type, defect depth, and the distance from
defect to artifact is obtained.

The knowledge base of EDDYANN has three levels of neural networks as shown in
Figure 7.2. The first level is a network for artifact type identification. This network identifies
the artifact type (tube support, ferrite, or copper). The second level contains networks for defect
depth estimation for each artifact type. The depth varies from 20 to 100 percent through wall
thickness. The third level consists of networks for distance estimation. The distance from a
defect (at certain depth) to an artifact is between 0.1 to 2.0 inch.

Since the trained networks from NeuralWorks software cannot be used outside the
NeuralWorks platform, it is necessary to convert a trained network into a general C source code.
This external code is then used in the EDDYANN knowledge base. One of the accomplishments
of this project is to develop such a general C code. This code has two parts: (1) a C source
code callable function, and (2) a main program. The C source code callable function is
generated using the Flash Code function of the NeuralWorks software. It contains the weight
values of the trained network. The main program can read the recall input data file, execute the

callable function, and write the recall results into an output file.

71

Type Identification

20% Depth

40% Depth

60% Depth 80% Depth

100% Depth

Figure7.2 The structure of neural networks in the knowledge base

72

7.3 The Expert System Rule Base

The EDDYANN rule base has the rules to control the data analysis process and to make

decisions. These rules are written in the

"

if..., then..." forms. The rules can be loosely

classified into two categories: type identification and depth estimation rules.

Artifact Type Identification Rules

Three parameters atype, btype, and ctype are used to describe the artifact types. There

are three rules for artifact type identification and data flow.

Rule 1:

Rule 2:

Rule 3:

If atype is larger than 0.5, and btype is smaller than 0.5, and ctype is
smaller than 0.5,

Then the artifact type is "Tube Support", and program goes to tube-
support category to execute networks for depth estimation.

If btype is larger than 0.5, and atype is smaller than 0.5, and ctype is
smaller than 0.5,

Then the artifact type is "Ferrite", and program goes to ferrite category
to execute networks for depth estimation.

If ctype is larger than 0.5, and atype is smaller than 0.5, and btype is
smaller than 0.5,

Then the artifact type is "Copper", and program goes to copper category
to execute networks for depth estimation.

Defect Depth Estimation Rules

The parameter "depth” is used to describe the defect depth. There are five rules for

defect depth estimaticn.

Rule 1:

Rule 2:

If depth is between 0 and 0.29,
Then the depth is 20%, and program goes to 20% depth category to
execute networks for distance estimation.

If depth is between 0.5 and 0.49,
Then the depth is 40%, and program goes to 40% depth category to

73

execute networks for distance estimation.

Rule 3: If depth is between 0.5 and 0.69,
Then the depth is 60%, and program goes to 60% depth category to
execute networks for distance estimation.

Rule 4: If depth is between 0.7 and 0.89,
Then the depth is 80%, and program goes to 20% depth category to
execute networks for distance estimation.

Rule §: If depth is between 0.9 and 1.0,

Then the depth is 100%, and program goes to 100% depth category to
execute networks for distance estimation.

7.4 User Interface
The user interface allows the user to enter the EC data file name, displays related
information, and summarizes final data analysis results. Figure 7.3 shows the first monitor
screen of the program. It has the data input interface and provides some general information.
The second screen displays the final results from network recall and the waveforms of each data

pattern. This display is shown in Figure 7.4.

7.5 Executing EDDYANN
This report also includes disks containing the EDDYANN expert system program and
three test data files. The test data files are : d111.dat, d2310.dat, and d3520.dat.
The executing steps are:
1. Load the program from the system prompt, type "eddyann" and press the "Return" key.
Then the first screen will appear.

2. Enter the data file name, for example, "d111.dat", and then press the "Return" key.

74

CUONPULICIUL BT RIRD 0D WAISAS NNV AT DU 30 UA2IDS JOIUOWE I 2]y 2 2andt g

i Lo

R R e A e I R A R B AR IR BB B
YR E RN E R R R RN B B I S RS BN R R BN A

._ &mmmnmmmmm z.—._ m: :..xo:z

.‘mcasmmcgmsm JeajonN Jo e:msasmmmn
wmmwmzsma“ao‘my_wsu>—==.msh,

- | :oﬁaommmsm masp .,‘
novmﬁuzmw smmam cv :o-aﬁo.—mmc

| Bl SHHOMLAN THHNAN TYIOIAILHY'
._,. ;xﬁmvlﬁaﬁw _4Ameazm~ﬁu‘au¢=me.. w..............4..j.......4.1_

...-AI-..-"..--I......

s . Rlaae0 wweada
uaoomg:aozpzm==<,,.,_W.,.__w.@iu......ﬂ,}.w.....w..

e ...mczmm:ﬁm:m.sum-uzz,ao e\:msv&mmmn.. IEREPE : ‘.,,_,._....T.‘ .
' oossauual jo fijfsuaniuf) ayl ! An e SN Gy a0

||~ 28

48y

68y

;Bﬁx

|| 108 |
18 85 - 8 85 1.8

|| TYPE= tubesp DEPTth);“Za_ DISTﬁHCEfin5= JQI?B;

&> RAW DATA <~ o '

B> cravity <-§

> ivteGRaL <
B> sus-rour <f§
> sup-Ray <
- | FOURIER < ,

Figure 7.4 The results and information display screen of the EDDYANN system

After receiving the name of the data file, EDDYANN will perform data compression and
representation, form the recall files for network recall, consult the knowledge base, and

find the final results. This process will take about 10 to 20 seconds.

77

SECTION 8
CONCLUSIONS AND RECOMMENDATIONS FOR

FUTURE RESEARCH

8.1 Concluding Remarks
The research performed under this NRC grant demonstrated the effectiveness of
integrating digital signal processing and artificial neural networks for automating the diagnostics
of defects in plant components. The defect parameters were estimated using modular neural
networks. The following is a summary of the significant results achieved under this project.

o Eddy current data representation techniques and signature transformation to
minimize the effects of scaling and translation.

° Development of modular, multi-layer perceptron networks for defect type
classification and defect parameter estimation.

. Development of a neural network based PC expert system computer code
EDDYANN.

. Application of the technology to the analysis of eddy current tube inspection data.

8.2 Recommendations for Future Research
The research and development performed under this NRC University Grant established
the feasibility of automating diagnostics of nuclear plant component anomalies using the
integration of data processing and artificial neural networks. Further research and development
is necessary for the analysis of large NDE database and for increasing the reliability of decision
making for anomaly detection and quantification. The following topics are recommended for

further research that could result in an industry implementable system.

78

Principal component analysis (PCA) for data compression and dimensionality
reduction. This is an information preserving transformation.

Hybrid neural networks estimation and fuzzy-logic uncertainty analysis.

A PC-based expert system devélopment for managing large databases and for
interactive analysis.

A large-scale testing of the technology using steam generator tube inspection data
from commercial power plants. (Data acquisition from EPRI NDE Center)

Development of detailed guidelines for in-plani implementation.

79

LIST OF REFERENCES

81

10.

11.

12.

13.

14.

W. E. Deeds and C. V. Dodd, "Eddy Current Inspection of Steam Generator Tubing,"
Electromagnetic Methods of Nondestructive Testing, Vol. 3 of Nondestructive Testing
Monographs and Tracts, W. Lord, Ed., Gordon and Breach, New York, 1985.

Y. He and A. Kundu, "2-D Shape Classification Using Hidden Markov Model," IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 13, No. 11, November
1991.

Y. Yao et al, "Pattern Recognition by a Distributed Neural Network: An Industrial
Application," Neural Networks, Vol. 4, pp 103-121, 1991.

C. V. Dodd and W. E. Deeds, "In-Service Inspection of Steam Generator Tubing Using
Mutltiple-Frequency Eddy-Current Techniques," Special Technical Publication, American
Society for Testing and Material, Philadelphia, PA., 1981.

C. V. Dodd et al, "Three-Frequency Eddy-Current Instrument," Oak Ridge National
Laboratory, May 1988.

L. Udpa and S.S. Udpa, "Neural Networks for the Classification of Nondestructive
Evaluation Signals," IEE Proceedings-F, Vol. 138, No. 1, February 1991.

T. Pavlidis, "Algorithms for Shape Analysis of Contours and Waveforms," IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-2, No. 4, July
1980.

Y. Liu, B. R. Upadhyaya, and M. Naghedolfeizi, "Chemometric Data Analysis Using
Artificial Neural Networks," Applied Spectroscopy, Vol. 47, No. 1, pp 12-23,1993.

"Eddy Current Characterization of Materials and Structures,” A Symposium sponsored
by ASTM, American Society for Testing and Materials, Gaithersburg, MD, 5-7 Sept.
1979.

"Eddy Current Nondestructive Testing," U.S. National Bureau of Standards Special
Publication 589, 1981.

P. E. Mix, "Introduction to Nondestructive Testing," John Wiley, New York, 1987.

"Transactions of the Eighteenth Water Reactor Safety Information Meeting," Office of
Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, Washington, 1990.

C. V. Dodd et al, "An Eddy Current Laboratory Test System Using Commercial
Equipment," Oak Ridge National Laboratory, April 1987.

E. Persoon, K. S. Fu, "Shape Discrimination Using Fourier Descriptors," IEEE Trans.,

82

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

SMC-7, pp 170-179, March 1977.

G. H. Granlund, "Fourier Preprocessing for Hand Print Character Recognition," IEEE
Trans., C-21, pp 195-201, February 1972.

"Using Nworks," NeuralWorks Professional II/PLUS and NeuralWorks Explorer
Softerware, Neural Ware, Inc., 1991.

"Eddy-Current Characterization of Materials and Structures,” American Society for
Testing and Materials, 1981.

"Eddy Current Nondestructive Testing," NBS Special Publication 589, U.S. Department
of Commerce / National Bureau of Standards, 1977. Special Technical Publication,
American Society for Testing and Material, Philadelphia, 1981.

"Neural Computing," NeuralWorks Professional II/PLUS and Neural Works Explorer
Software, NeuralWare, Inc., 1991.

"Nondestructive Evaluation Program," EPRI NP-3347-NR, March 1984.

R. C. McMaster, P. McIntire, and M. L. Mester (Eds), "Nondestructive Testing
Handbook," Vol. 4 (Electromagnetic Testing), Am. Soc. for Nondestructive Testing,
1987.

D. F. Specht, "Probalilistic Neural Networks," Neural Networks, Vol. 3, No. 1, pp
109-118, Jan. 1990.

B. R. Upadhyaya, E. Eryurek, "Application of Neural Networks for Sensor Validation
and Plant Monitoring," Nuclear Technology, Vol. 27, No. 2, pp 170-176, 1992.

R. P. Lippmann, "An Introduction to Computing with Neural Nets," IEEE ASSP
Magazine, Vol. 4, No. 2, pp 4-22, April 1987.

D. Rumelhart and J. McClelland, Paralled Distributed Processing, Vol. 2, Bradford
Books/MIT Press, Cambridge, MA, 1986.

D. F. Specht, "Probabilistic Neural Networks and the Polynomial Adaline as
Complementary Techniques for Classification," IEEE Trans. Neural Networks, Vol. 1,
No. 1, pp 111-121, March 1990.

W. Yan and B. R. Upadhyaya, "Hybrid Digital Signal Processing and Neural Networks
for Automated Diagnostics Using Eddy Current Inspection," Proc. Intl. Conf. Artificial
Neural Networks, ICANN ’93, Amsterdam, The Netherlands, pp 799-804, September
1993.

83

28.

29.

30.

31.

32.

33.

34.

35.

37.

E. E. Kriezis et al, "Eddy Current: Theory and Applications," Proceedings of IEEE,
Vol. 80, No. 10, October 1992.

P. C. Riccardella, A. F. Deardorff, and Timothy J. Griesbach, "Fatigue Lifetime
Monitoring in Power Plants," Advances in Fatigue Lifetime Predictive Techniques,
ASTM STP 1122, American Society for Testing and Materials, Philadelphia, pp 460-473,
1992,

A. S. Krausz and K. Krausz, "Fracture Kinetics of Crack Growth," Kluwer Academic
Publishers, The Netherlands, 1988.

K. Hellan, "Introduction to Fracture Mechanics," McGraw-Hill, New York, 1984.

J. C. Newman, Jr., E. P. Phillips, M. H. Swain, and R. A. Everett, Jr., "Fatigue
Mechanics: An Assessment of a Unified Approach to Life Prediction,” Advances in
Fatigue Lifetime Predictive Techniques, ASTM STP 1122, American Society for Testing
and Materials, Philadelphia, pp 5-27, 1992.

P. K. Liaw, A. Saxena, and J. Schaffer, "Estimating Remaining Life of Elevated
Temperature Steam Pipes. Part I and Part II," Engineering Fract. Mech., Vol. 32, No.
S, pp 675-722, 1989.

V. M. Radhakrishnan, M. Kamaraj, and V. V. Balasubramaniam, "Life Estimation of
Cracked Stainless Steel Components Under Creep Conditions," Engineering Materials
and Technology, Vol. 113, pp 303-306, July 1991.

H. R. Jhansale and D. R. McCann, "Fatigue Analysis Techniques for Vintage Steam
Turbine/Generator Components,” Advances in Fatigue Lifetime Predictive Techniques,
ASTM STP 1122, American Society for Testing and Materials, Philadelphia, pp 474-489,
1992.

P. K. Simpson, "Artificial Neural Systems," Pergamonn Press, New York, 1990.
R. E. Uhrig et al, "Application of Neural Networks to Determine the Operability of

Check Valves," Final Report prepared for Electric Power Research Institute, EPRI RP-
8010-12, 1993.

APPENDIX A

EDDYANN COMPUTER CODE

85

l\ﬂl

ST

—
—

I

[R——
=]
e
e

l

JR—
]
———

|||||o

wm\ﬁiﬂ

Rkt etk otk sk sk ookl sk etk sk ek okt ok

OO0 000000

EDDYANN.for PROGRAM

The University of Tennessee
Nuclear Engineering Department
Knoxville TN 37996-2300
September 1993

QO 0000000

kst ok s sfesfe s e s ok sk ook e sk e sk sbeshesk e sk skeake ke sk sk ke e sk sk s sk sk ke ke sk ke sk ek sk

interface to integer*2 function cur_rd [c] ()
end

interface to integer*2 function kb_chk [c] ()
end

interface to integer*2 function system [c]
(string[reference])

character*1 string

end

include ’fgraph.fi’
include ’fgraph.fd’

character*1 y,sy

character*10 fname,fnamel,fname2,fname3,fname4,fname5
character*10 fname6,g6,mtype

character*10 g14

character*5 g5

character*3 g3

character*25 type

character*40 adummy

integer*2 dummy,cur_rd,ktus,kb_chk,inum

integer*4 dummy4

integer idepth,x1(1000),y1(1000),x2(1000),y2(1000)
integer x3(1000),y3(1000),jtype

integer x11(50),y11(50),x22(50),y22(50),x33(50),y33(50)
real xr1(1000),xr2(1000),xr3(1000),yr1(1000),yr2(1000)
real yr3(1000)

integer*2 i,system

character*6 mt(6)

integer md(6)

real as(6)

record /rccoord/ s
dummy =setvideomode(SERESCOLOR)

86

10 idum=0
do j=1,1000
x1(j)=99999
y1(j)=99999
x2(j)=99999
y1()=99999
x3(j) =99999
y3(j) =99999
end do
c--Environment--first screen-----

dummy4 =setbkcolor($BLUE)

dummy =setcolor(8)
dummy =rectangle($gfillinterior,0,0,640,350)

c--information box on the left—

dummy =setcolor(1)

dummy =rectangle($gfillinterior,0,0,320,350)
dummy =setcolor(9)

dummy =rectangle($gfillinterior,5,5,315,345)
dummy =setcolor(15)

dummy =rectangle($gborder,0,0,320,348)

dummy =settextcolor(14)
call settextposition(2,3,s)

call outteXt(’.....oeeerreniniirneniiiiieienees ")
call settextposition(3,3,s)

call outteXt(. .o vvenireinireeennieeieieaeanaans ")
call settextposition(4,3,s)

call QULtEXt(.. ueueereenrnrenenerenieieaanes ")
call settextposition(5,3,s)

call OULtEXt(. .nerrirerenrirernieireenanaaaes ")
call settextposition{6,3,s)

call outtext(’.......... EDDYANN CODE............ M)
call settextposition(7,3,s)

call outteXt(.. .ceveieiieninrrereiiieeanes ")
call settextposition(8,3,s)

call outteXt(’ . .uveireeeiieiriniieee e eiaaeans ")

call settextposition(9,3,s)

call outtext(’....EDDY CURRENT ANALYSIS USING.....")
call settextposition(10,3,s)

call outtext(’....ARTIFICIAL NEURAL NETWORKS...... ")
call settextposition(11,3,s)

call outteXt(....oveieriereriinrnreeniinanennnss)

call settextposition(12,3,s)

87

call outteXt(....ovviviriiiiiiiiiieene ")

call settextposition(13,3,s)

call outtext(’ Application to Steam Generator)
call settextposition(14,3,s)

call outtext(’ Tube Inspection ")
call settextposition(15,3,s)

call outteXt(. ovvrrieiiiiiie s ")
call settextposition(16,3,s)

call outteXt(’....oovvieeiieiiieieiiieeeeeenns ")
call settextposition(17,3,s)

call outtext(. cvvriiiiiiic e ")
call settextposition(18,3,s)

call outteXt(....ocovniieiiiiieniiieeenennnn, ")

dummy =settextcolor(11)

call settextposition(19,3,s)

call outtext’ The University of Tennessee °)

call sc textposition(20,3,s)

call outtext(’ Department of Nuclear Engineering ’)
dummy =settextcolor(10)

call settextposition(21,3,s)

call outtext’ Knoxville TN 37996-2300 ”)

call settextposition(22,3,s)

call outtext(’....covvviriiiiiiiiiiriens ")
call settextposition(23,3,s)
call outteXt(’e.einenierireiiiiee e, ")
call settextposition(24,3,s)
call outteXt(’ . vueriiiiirirrieeireeeienaes)

c--DRAW FANCY STAFF --
C----CONNECtions---===oeeeeemm

ix=435

iy=190

dummy =setcolor(11)

call moveto(ix, iy,s)

dummy = lineto(ix-50,iy +50)

call moveto(ix,iy,s)
dummy = lineto(ix + 50, iy +50)

call moveto(ix, iy,s)
durmmy =lineto(ix + 150,iy +50)

ix=535

iy=190
call moveto(ix,iy,s)

88

dummy =lineto(ix-150,iy + 50)

call moveto(ix,iy,s)
dummy =lineto(ix-50,iy + 50)

call moveto(ix,iy,s)
dummy =lineto(ix +50,iy + 50)

ix=435

iy=290

dummy =setcolor(11)

call moveto(ix,iy,s)
dummy = lineto(ix-50,iy-50)

call moveto(ix,iy,s)
dummy =lineto(ix + 50,iy-50)

call moveto(ix,iy,s)
dummy =lineto(ix + 150,iy-50)

ix=535

iy=290

call moveto(ix,iy,s)

dummy = lineto(ix-150,iy-50)

call moveto(ix,iy,s)
dummy =lineto(ix-50,iy-50)

call moveto(ix,iy,s)
dummy =lineto(ix + 50,iy-50)

C--arrows~--—--

call moveto(435,180,s)
dummy =lineto(435,140)
call moveto(435,140,s)
dummy =lineto(430,145)
call moveto(435,140,s)
dummy =lineto(440,145)

call moveto(535,180,s)
dummy =lineto(535,140)
call moveto(535,140,s)
dummy =lineto(530,145)
call moveto(535,140,s)
dummy =lineto(540,145)

89

call moveto(435,300,s)
dummy =lineto(435,330)
call moveto(435,310,s)
dummy =lineto(430,315)
call moveto(435,310,s)
dummy =lineto(440,315)

call moveto(535,300,s)
dummy =lineto(535,330)
call moveto(535,310,s)
dummy =lineto(530,315)
call moveto(535,310,s)
dummy =lineto(540,315)

c

ellipses

ix=420
iy=180

dummy =setcolor(13)
dummy = ellipse($gfillinterior,ix,iy,ix +30,iy +22)
dummy =ellipse($gfillinterior,ix + 100,iy,ix + 130,iy +22)

iy=230

dummy =ellipse($gfillinterior, ix-50,iy,ix-20,iy +22)
dummy =ellipse($gfillinterior,ix + 50,iy,ix + 80,1y +22)
dummy =ellipse($gfillinterior,ix + 150,iy,ix + 180,iy +22)

iy=280

dummy =ellipse($gfillinterior,ix,iy,ix +30,iy +22)
dummy =ellipse($gfillinterior,ix + 100,iy,ix + 130,iy +22)

iy=180

dummy =setcolor(15)

dummy =ellipse($gborder,ix,iy,ix +30,iy +22)
dummy =ellipse($gborder,ix + 100,iy,ix + 130,iy +22)

iy=230
dummy =ellipse($gborder,ix-50,iy,ix-20,iy +22)
dummy =ellipse($gborder,ix +50,iy,ix + 80,iy +22)
dummy =ellipse($gborder,ix+ 150,iy,ix+ 180,iy +22)
iy=280

dummy =ellipse($gborder,ix,iy,ix +30,iy +22)
dummy =ellipse($gborder,ix + 100,iy,ix + 130,iy +22)

90

dummy =setcolor(1)
dummy = rectangle($gfiliinterior,330,0,639,85)

dummy =setcolor(9)
dummy =rectangle($gborder,330,0,639,85)

c--LABELS----

dummy = settextcolor(11)

call settextposition(2,435,s)

call outtext(" The University of Tennestee °)

call settextposition(3,45,s)

call outtext(’Department of Nuclear Engineering’)
dummy =settextcolor(15)

dummy =settextcolor(14)

call settextposition(5,45,s)

call outtext’ EDDY-CURRENT MODULE CODE

dummy =setcolor(1) .
dummy =rectangle($gfillinterior,330,87,639,120)

dummy =setcolor(13)
dummy =rectangle($gborder,330,87,639,120)

dummy =settextcolor(13)
call settextposition(8,43,s)

call outtext(’Enter File Name > ")
frlame - "x "
y= "o
c keyboard check
k=0
20 ktus=kb_chk()
idelay =idelay +1
c~—key hit
if(ktus.eq.1) then
ktus=cur_rd()
c-—-exit-—
if(ktus.eq.27) go to 10000
c---enter----

if((ktus.eq.13).and.(k.eq.0)) go to 20

91

if((ktus.eq.13).and.(k.eq.1)) then
k=0

go to 20

end if

if(ktus.eq.13) then
k=0

go to 30

end if

c--backspace---
if(ktus.eq.8) then
fname=" "
dummy =settextcolor(13)
call settextposition(8,45,s)
call outtext("Enter File Name >
y=""
k=0
go to 20
end if

k=k+1

y =char(ktus)

dummy =settextcolor(15)

call settextposition(8,64 +k,s)
write(sy,’(al\)’) y

call outtext(sy)

fname(k:k)=y
end if
c---key hit end-—----—---

c--blink---
if(idelay.eq.500) then
dummy =setcolor(15)
dummy =rectangle($gfillinterior,496,98,499,112)
end if

if(idelay.eq.1000) then

dummy =setcolor(8)

dummy =rectangle($gfillinterior,496,98,499,112)
idelay =0

end if

go to 20

I=SYSTEM(’del *.cog’C)

92

I1=SYSTEM(’del *.int’C)
I=SYSTEM(’del *.frd’C)
I=SYSTEM(’del compress.dat’C)
I=SYSTEM('del *.txt’C)
I=SYSTEM(’del result.dat’C)
I=SYSTEMC(’del resultl.dat’C)
I=SYSTEM(’del sizel.dat’C)
I=SYSTEM(’del size2.dat’C)
I=SYSTEM(’del size3.dat’C)
I=SYSTEM(’del cogl.dat’C)
I=SYSTEM(’del cog2.dat’C)
I=SYSTEM(’del cog3.dat’C)

c--open-read data files-------
30 open(100,file=fname,status ="old’ ,err =70066)

read(100,%)
read(100,’(i2)’,err=7001) jtype
read(100,*)
read(100,’(i4)’,err=7001) idepth
read(100,*)

read(100,’(f6.4)’ ,err=7001) size

m=1
50 read(100,’(6i7)’,end =200,err=7001)
+ x1(m),y1(m),x2(m),y2(m),x3(m),y3(m)
m=m+1
go to 50
200 close(100)

open(10,file="name.txt’,status ="unknown’)
write(10,°(i2)’) jtype

write(10,’(i4)’) idepth

close(10)

m=m-1
go to 2002

c---cannot find file---

70066 fname=" "
dummy =settextcolor(13)
call settextposition(8,45,s)
call outtext(’Enter File Name >
y="x"
k=0

93

go to 20

¢2002 inum=1

0000000

call child(inum)

inum=2
call child(inum)

inum=3
call child(inum)

c--draw new screen
2002 dummy=setcolor(0)
dummy =rectangle($gfillinterior,0,0,640,350)

dummy =setcolor(0)
dummy =rectangle($gfillinterior,0,0,213,350)

c-- FILE STRUCTURE ---—-

c
¢ 1-fnamel
¢ 2-fname2
¢ 3-fname3
¢ 4-fname4
¢ 5-fname5
¢ 6-fname6
c

xxx.dat raw data

xxx.cog center of gravity data
xxx.int integral data

xxx.sfd substracted Fourier Desc.
xxx.srd substracted raw data
xxx.frd fourier descriptor

c—create filenames -~

c- filel

doj=1,6
if(fname(j:j).eq.".") then
fnamel(j:j)=fname(j:j)
jkeep=j+1
go to 9000
end if
fnamel1(j:j) =fname(j:j)
end do

9000 fnamel(jkeep:jkeep)="d"
jkeep=jkeep+1
fnamel(jkeep:jkeep)="a"
jkeep=jkeep+1
fnamel(jkeep:jkeep)="t"
jkeep=0

c--file2

94

doj=1,6
if(fname(j:j).eq.".") then
fname2(j:j) = fname(j:j)
jkeep=j+1
go to 9001
end if
fname2(j:j) = fname(j:j)
end do

9001 fname2(jkeep:jkeep)="c"
jkeep=jkeep+1
fname2(jkeep:jkeep)="o"
jkeep=jkeep+1
fname2(jkeep:jkeep)="g"
jkeep=0

c--file3

doj=1,6
if(fname(j:j).eq.".") then
fname3(j:j) = fname(j:j)
jkeep=j+1
go to 9003
end if
fname3(j:j) =fname(j:j)
end do

9003 fname3(jkeep:jkeep)="i"
jkeep=jkeep+1
fname3(jkeep:jkeep)="n"
jkeep=jkeep+1
fname3(jkeep:jkeep)="t"
jkeep=0

c--filed4

doj=1,6
if(fname(j:j).eq.".") then
fname4(j:j)=fname(j:j)
jkeep=j+1
go to 9004
end if
fname4(j:j) =fname(j:j)
end do

9004 fname4(jkeep:jkeep)="s"
jkeep=jkeep+1
fname4(jkeep:jkeep)="f"

95

jkeep=jkeep+1
fname4(jkeep:jkeep)="d"
jkeep=0

c--file5

doj=1,6
if(fname(j:j).eq.".") then
fname5(j:j) =fname(j:j)
jkeep=j+1
go to 9005
end if
fname5(j:j) =fname(j:j)
end do

9005 fname5(jkeep:jkeep)="s"
jkeep=jkeep+1
fnameS(jkeep:jkeep)="r"
jkeep=jkeep+1
fnameS(jkeep:jkeep)="d"
jkeep=0

c--file6

doj=1,6
if(fname(j:j).eq.".") then
fname(j:j) =fname(j:j)
jkeep=j+1
go to 9006
end if
fname6 =fname

end do

9006 fname6(jkeep:jkeep) = "{"
jkeep=jkeep+1
fname6(jkeep:jkeep)="r"
jkeep=jkeep+1
fname6(jkeep:jkeep)="d"
jkeep=0

open(500, file="namel.txt’,status = 'unknown’)
write(500,’(a10)’) fname2
close(500)

c-++ + ++ Data Representation ++ + ++ +-
c

call four(x1,y1,x2,y2,x3,y3,m,fname6)
c

96

call compress(x1,y1,x2,y2,x3,y3,m,x11,y11,x22,y22,x33,y33)

call cg(x11,y11,x22,y22,x33,y33,fname2)

call int(x11,y11,x22,y22,x33,y33,fname3)

I=SYSTEM('CONVERT.EXE’C)

¢c-+ + + + + calculate results-------

I=SYSTEM(CANALYSIS.EXE’C)

c--grids

iselect=1

dummy =setcolor(2)

dummy =rectangle($gfillinterior,215,0,640,220)
dummy =setcolor(15)

dummy =rectangle($gborder,217,2,638,218)

dummy =setcolor(14)
dummy =rectangle($gfillinterior,262,7,602,175)

dummy =setcolor(0)
iy=35

dok=1,5

call moveto(252,iy,s)
dummy =lineto(602,1y)
iy=iy+28

end do

ix=262

do k=1,21

call moveto(ix,180,s)

if(k.eq.11) dummy =setcolor(12)
if(k.gt.11) dummy =setcolor(0)
dummy =lineto(ix,7)

ix=ix+17

end do

dummy =settextcolor(15)
call settextposition(3,30,s)
call outtext(’20%")

call settextposition(5,30,s)

97

call outtext(’40%")

call settextposition(7,30,s)
call outtext(’60%°)

call settextposition(9,30,s)
call outtext(’80% ")

call settextposition(11,29,s)
call outtext(’100%")

call settextposition(13,32,s)
call outtext(’1.0 0.5 0 0.5 1.0
call settextposition(15,29,s)
call outtext
& (TYPE= DEPTH(%)= DISTANCE(in)=

c~-read from results file

open(350,file ="result.dat’,status ="unknown’)
read(350,’(f5.3)’) asize

read(350,’(i3)’) mdepth

read(350,’(a10)’) mtype

close(350)

dummy =settextcolor(14)
call settextposition(15,35,s)
write(g14,’(a10)’) mtype
call outtext(g14)

call settextposition(15,54,s)
write(g3,’(i3)’) mdepth
call outtext(g3)

call settextposition(15,75,s)
write(g5,’(£5.3)’) asize
call outtext(gs)

c--draw-defect

asize=asize*170./2.0

ix1=432-asize

ix2=432 +asize

iyl =28*mdepth/20-7

iy2=iy1+28

dummy =setcolor(12)

dummy =rectangle($gfillinterior,ix1,iy1,ix2,iy2)

c--message box---—-

98

dummy =setcolor(15)
dummy =rectangle($gborder,346,225,638,348)

dummy =settextcolor(10)
call settextposition(18,55,s)
call outtext’ TYPE DEPTH SIZE’)

dummy =settextcolor(11)
call settextposition(19,45,s)
call outtextCRAW DATA’)
call settextposition(20,45,s)
call outtext(GRAVITY ’)
call settextposition(21,45,s)
call outtextCINTEGRAL’)
call settextposition(22,45,s)
call outtext(’SUB-FOUR’)
call settextposition(23,45,s)
call outtext(’SUB-RAW °)
call settextposition(24,45,s)
call outtextCFOUR)

c- read
open(360,file ="result1.dat’,status ="unknown’)
doj=1,6
read(360,’(a6,i3,f5.3)’) mt(j),md(j),as()
end do
close(360)

dummy =settextcolor(14)

do k=1,6

call settextposition(18+k,56,s)
write(g6,’(a6)’) mt(k)

call outtext(g6)

end do

do k=1,6

call settextposition(18+k,64,s)
write(g3,’(i3)’) md(k)

call outtext(g3)

end do

do k=1,6

call settextposition(18+k,73,s)
write(gS,’(£5.3)’) as(k)

call outtext(g5)

99

end do

dummy =setcolor(15)

iyi=0

do k=1,6

call moveto(346,252 +iyi,s)
dummy =lineto(638,252 +iyi)
iyi=iyi+ 14

end do

ixi=0

doj=1,3

call moveto(430+ixi,225,s)
dummy =lineto(430+ixi,348)
ixi=ixi+72

end do

c-----control box

dummy =setcolor(11)
dummy =rectangle($gfillinterior,215,225,344,350)

dummy =settextcolor(12)
call settextposition(18,29,s)
call outtext(’-> RAW DATA <-)

dummy =settextcolor(11)
call settextposition(19,29,s)
call outtext(’-> GRAVITY <.’

call settextposition(20,29,s)
call outtext(’-> INTEGRAL <-’)

call settextposition(21,29,s)
call outtext(’-> SUB.FOUR <-’)

call settextposition(22,29,s)
call outtext(’-> SUB.RAW <-%)

call settextposition(23,29,s)
call outtext(’-> FOURIER <-’)

call settextposition(24,29,s)
call outtext(’-> EXIT <-)

100

10011 ktus=kb_chk()
if(ktus.eq.1) then
ktus=cur_rd()

if(ktus.eq.72) iselect=iselect-1
if(ktus.eq.80) iselect =iselect+1
if(iselect.lt.1) iselect=7
if(iselect.gt.7) iselect=1

dummy =settextcolor(11)

if(iselect.eq.1) dummy =settextcolor(12)
call settextposition(18,29,s)

call outtext(’-> RAW DATA <-°)

dummy =settextcolor(11)

if(iselect.eq.2) dummy =settextcolor(12)
call settextposition(19,29,s)

call outtext(’-> GRAVITY <-’)

dummy =settextcolor(11)

if(iselect.eq.3) dummy =settextcolor(12)
call settextposition(20,29,s)

call outtext(’-> INTEGRAL <-’)

dummy =settextcolor(11)

if(iselect.eq.4) dummy =settextcolor(12)
call settextposition(21,29,s)

call outtext(’-> SUB-FOUR <-’)

dummy =settextcolor(11)

if(iselect.eq.5) dummy =settextcolor(12)
call settextposition(22,29,s)

call outtext(’-> SUB-RAW <-%)

dummy =settextcolor(11)

if(iselect.eq.6) dummy =settextcolor(12)
call settextposition(23,29,s)

call outtext(’-> FOURIER <-%)

dummy =settextcolor(11)
if(iselect.eq.7) dummy =settextcolor(12)
call settextposition(24,29,s)
call outtext(’-> EXIT <-)
c—draw the selected data---

if((ktus.eq.13).and.(iselect.eq.7)) go to 10009

101

if((ktus.eq.13).and.(iselect.eq. 1)) go to 20001
if((ktus.eq.13).and. (iselect.eq.2)) go to 20002
if((ktus.eq.13).and.(iselect.eq.3)) go to 20003
if((ktus.eq.13).and.(iselect.eq.4)) go to 20004
if((ktus.eq.13).and.(iselect.eq.5)) go to 20005
if((ktus.eq.13).and.(iselect.eq.6)) go to 20006
go to 6009

c
¢c--EXIT TO MAIN MENU---

10009 ik=0
go to 10

¢c--draw fnamel--

20001 open(300,file=fnamel,status="old’,err="7000)
do k=1,7
read(300,’(a40)’ ,err=7001) adummy
end do

ml=0
do j=1,1000
ml=ml+1
read(300,’(6i7)’,end =6001) x1(j),y1G),x2(),y2(),
& x3(),y3(@)
end do
6001 ml=ml-1
close(300)
call draw(x1,x2,x3,y1,y2,y3,ml)
ktus=0
go to 10011

c--draw fname2

20002 open(300,file =fname2,status ="old’,err="7000)
ml=0
do j=1,100
ml=ml+1
read(300,’(6f14.6)’ ,end =6002,err =7001)

& xrl(j),yr1(),xr2(j),yr2(),xr3(),yr3G)

end do

6002 mli=ml-1
close(300)
call drawr(xr1,xr2,xr3,yrl,yr2,yr3,ml)
ktus=0
go to 10011

102

c--draw fname3

20003 open(300,file =fname3,status="old’ ,err=7000)

ml=0

do j=1,100

ml=ml+1

read(300,’(6i7)’,end =6003,err=7001) x1(),y1(),x2(),y2@),

& x3()),y30)

6003

end do

ml=ml-1

close(300)

call draw(x1,x2,x3,y1,y2,y3,ml)
ktus=0

go to 10011

c--draw fname4

20004 open(300,file =fname4,status ="old’ ,err=7000)

ml=0

do j=1,100

ml=ml+1
read(300,’(6f14.6)’ ,end =6004,err =7001)

& xr1(j),yr1G),xr2G),yr2(G),
& xr3(j),yr3()

6004

c--draw fname5

end do

ml=ml-1

close(300)

call drawr(xrl,xr2,xr3,yrl,yr2,yr3,m1)
ktus=0

go to 10011

20005 open(300,file=fname$,status ="old’ err =7000)

ml=0

do j=1,100

ml=mi+1
read(300,’(6f12.5)’ ,end =6005,err =7001)

& xrl(j),yrl(),xr2(),yr2G),
& xr3(j),yr3@)

6005

end do

ml=ml-1

close(300)

call drawr(xrl,xr2,xr3,yrl,yr2,yr3,ml)
ktus=0

go to 10011

103

c--draw fname6

20006 open(300,file=fname6,status ="old’ ,err =7000)
ml=0
do j=1,100
ml=ml+1
read(300,’(6f14.6)’ ,end =6006,err=7001)

& xrl(j),yr1(),xr2(),yr2(),xr3(),yr3G)

end do

6006 ml=ml-1
close(300)
call drawr(xrl,xr2,xr3,yrl,yr2,yr3,ml)
ktus=0
go to 10011

6009 ktus=0
end if

go to 10011

c GO BACK TO THE CONTROL BOX---

c--ERRORS----
7000 dummy =settextcolor(14)

call settextposition(14,2,s)

call outtext(’ ")

call settextposition(15,2,s)

call outtextCCANNOT OPEN DATA FILE !’)
call settextposition(16,2,s)

call outtext(’ ")

call bello()

call settextposition(17,2,s)

call outtext("Hit RETURN to Continue)
call settextposition(18,2,s)

call outtext(’ ")
read(*,*)

go to 10000

7001 dummy =settextcolor(14)
call settextposition(14,2,s)
call outtext(’ B
call settextposition(15,2,s)
call outtextCCANNOT READ DATA FILE ")
call settextposition(16,2,s)
call outtext(’ B

104

call bello()

call settextposition(17,2,s)

call outtext("Hit RETURN to Continue ’)
call settextposition(18,2,s)

call outtext(’)
read(*,*)

go to 10

10000 idum=0
dummy =setvideomode($defaultmode)
end

CXXX XXX XXX XXX XXX XX XX XXX XXX XXX XXX XXX XXX XXX X XXX XXXXXXXXX
subroutine draw(x1,x2,x3,y1,y2,y3,m)

include ’fgraph.fd’

integer x1(1000),x2(1000),x3(1000),y1(1000),y2(1000),y3(1000)
integer*2 dx1,dy1,dx2,dy2,dx3,dy3

real xlinc,x2inc,x3inc,ylinc,y2inc,y3inc,size

integer x1max,x2max,x3max,y1max,y2max,y3max

integer x1min,x2min,x3min,y1min,y2min,y3min

integer*2 dummy

record /rccoord/ s

dummy =setcolor(1)

dummy =rectangle($gfillinterior,2,2,212,348)
dummy =setcolor(15)

dummy =rectangle($gborder,2,2,212,115)
dummy =rectangle($gborder,2,117,212,232)
dummy =rectangle($gborder,2,234,212,348)

dummy =settextcolor(11)
call settextposition(2,2,s)
call outtext(’Freq.1’)

dummy =settextcolor(11)
call settextposition(10,2,s)
call outtext(’Freq.2’)
dummy =settextcolor(11)

call settextposition(19,2,s)
call outtext(’Freq.3’)

x1lmax=x1(1)

105

x1lmin=x1(1)
x2max =x2(1)
x2min=x2(1)
Xx3max=x3(1)
x3min=x3(1)

ylmax=yl(1)
ylmin=yl(1)
y2max=y2(1)
y2min=y2(1)
y3max=y3(1)
y3min=y3(1)

do j=2,m

x1max =max(x1(j),x 1 max)
x1min=min(x1(j),x1min)
x2max =max(x2(j),x2max)
x2min=min(x2(j),x2min)
x3max =max(x3(j),x3max)
x3min=min(x3(j),x3min)
y1max =max(y1(j),y 1 max)
y1min=min(y1(j),y1min)
y2max =max(y2(j),y2max)
y2min=min(y2(j),y2min)
y3max =max(y3(j),y3max)
y3min=min(y3(j),y3min)

end do
c--increments

ylinc=_80./(y1max-y1lmin)
y2inc=80./(y2max-y2min)
y3inc=80./(y3max-y3min)
xlinc=150./(x1max-x1min)
x2inc=150./(x2max-x2min)
x3inc=150./(x3max-x3min)

c-first drawing—----

dummy =setcolor(14)

do j=1,m-1
dy1=100-(ylmax-y1(j))*ylinc
dx1=(x1max-x1(j))*x1linc+35
call moveto(dx1,dyl,s)
dy1=100-(ylmax-y1(j+1))*ylinc
dx1=(x1max-x1(j+1))*xlinc+35

106

dummy =lineto(dx1,dy1)
end do

c--second drawing

dummy =setcolor(14)

do j=1,m-1

dy2 =100+ 115-(y2max-y2(j))*y2inc
dx2 = (x2max-x2(j)) *x2inc +40

call moveto(dx2,dy2,s)
dy2=100+115-(y2max-y2(j + 1))*y2inc
dx2 =(x2max-x2(j + 1))*x2inc +40
dummy =lineto(dx2,dy2)

end do

c--third drawing

dummy =setcolor(14)

doj=1,m-1

dy3 =232+ 100-(y3max-y3(j))*y3inc
dx3 =(x3max-x3(j))*x3inc+35

call moveto(dx3,dy3,s)

dy3 =232+ 100-(y3max-y3(j+1))*y3inc
dx3 =(x3max-x3(j+1))*x3inc+35
dummy =lineto(dx3,dy3)

end do

dummy =setcolor(15)

dummy =rectangle($gborder,2,2,212,115)
dummy =rectangle($gborder,2,117,212,232)
dummy =rectangle($gborder,2,234,212,348)

dummy =settextcolor(11)
call settextposition(2,2,s)
call outtext(’Freq.1’)

dummy =settextcolor(11)
call settextposition(10,2,s)
call outtext(’Freq.2’)

dummy =settextcolor(11)
call settextposition(19,2,s)
call outtext(’Freq.3’)

return
end

107

CXXXX XXX XXX XXX XXX XXX XX XXX XXX XXX XXX XXX XX XXX XXX XXXXXXXXX
subroutine drawr(xrl,xr2,xr3,yrl,yr2,yr3,m)

include ’fgraph.fd’

real xr1(1000),xr2(1000),xr3(1000),yr1(1000),yr2(1000),yr3(1000)
integer*2 dx1,dyl,dx2,dy2,dx3,dy3

real xlinc,x2inc,x3inc,ylinc,y2inc,y3inc,size

real x1max,x2max,x3max,ylmax,y2max,y3max

real x1min,x2min,x3min,y1min,y2min,y3min

integer*2 dummy

record /rccoord/ s

dummy =setcolor(1)

dummy =rectangle($gfillinterior,2,2,212,348)
dummy =setcolor(15)

dummy =rectangle($gborder,2,2,212,115)
dummy =rectangle($gborder,2,117,212,232)
dummy =rectangle($gborder,2,234,212,348)

dummy =settextcolor(11)
call settextposition(2,2,s)
call outtext(’Freq.1’)

dummy =settextcolor(11)
call settextposition(10,2,s)
call outtext(’Freq.2’)

dummy =settextcolor(11)
call settextposition(19,2,s)
call outtext(’Freq.3’)

xlmax=xrl(1)
x1min=xr1(1)
x2max =xr2(1)
x2min=xr2(1)
x3max=xr3(1)
Xx3min=xr3(1)

ylmax=yrl(1)
ylmin=yrl(1)
y2max =yr2(1)
y2min=yr2(1)
y3max=yr3(1)
y3min=yr3(1)

108

doj=2,m

x1max =max(xrl(j),x 1max)
x1min=min(xr1(j),x1min)
x2max =max(xr2(j),x2max)
x2min=min(xr2(j),x2min)
x3max =max(xr3(j),x3max)
x3min=min(xr3(j),x3min)
y1lmax =max(yrl(j),y1max)
y1min=min(yr1(j),y1min)
y2max =max(yr2(j),y2max)
y2min=min(yr2(j),y2min)
y3max =max(yr3(j),y3max)
y3min=min(yr3(j),y3min)

end do :
open(1000,file="max.dat’,status ="unknown’)
write(1000,*)x 1max,x1min,x2max,x2min,x3max,x3min,
& y1lmax,ylmin,y2max,y2min,y3max,y3min
c--increments

ylinc=_80./(y 1max-y1min)
y2inc =80./(y2max-y2min)
y3inc=280./(y3max-y3min)
xlinc=150./(x1max-x1min)
x2inc=150./(x2max-x2min)
x3inc=150./(x3max-x3min)

c-first drawing--—--

dummy =setcolor(14)

doj=1,m-1
dy1=100-(ylmax-yr1(j))*ylinc
dx1 =(x1max-xrl(j))*x1linc+35
call moveto(dx1,dyl,s)
dy1=100-(yImax-yr1(j+1))*ylinc
dx1=(x1max-xrl(j+1))*xlinc+35
dummy =lineto(dx1,dy1)

end do

c--second drawing

dummy =setcolor(14)

doj=1,m-1

dy2 =100+ 115-(y2max-yr2(j))*y2inc
dx2 =(x2max-xr2(j))*x2inc+40

call moveto(dx2,dy2,s)

dy2 =100+ 115-(y2max-yr2(j + 1))*y2inc

109

dx2 = (x2max-xr2(j+ 1))*x2inc+40
dummy = lineto(dx2,dy2)
end do

c--third drawing

dummy =setcolor(14)

do j=1,m-1

dy3 =232+ 100-(y3max-yr3(j))*y3inc
dx3 =(x3max-xr3(j))*x3inc +35

call moveto(dx3,dy3,s)

dy3 =232+ 100-(y3max-yr3(j+1))*y3inc
dx3 = (x3max-xr3(j+ 1))*x3inc+35
dummy =lineto(dx3,dy3)

end do

dummy =setcolor(15)

dummy =rectangle($gborder,2,2,212,115)
dummy =rectangle($gborder,2,117,212,232)
dummy =rectangle($gborder,2,234,212,348)

dummy =settextcolor(11)
call settextposition(2,2,s)
call outtext(’Freq.1’)

dummy =settextcolor(11)
call settextposition(10,2,s)
call outtext(’Freq.2’)

dummy =settextcolor(11)
call settextposition(19,2,s)
call outtext(’Freq.3’)

return
end

subroutine bello()
character*1 k
ik=7

doj=1,3
k=char(ik)
write(*,’(al\)’) k
end do

return

end

sk FOURIER DESCRIPTOR #Hokkskkokokskoskok ootk etk ook dokok ook ko ook sk

110

subroutine four(x1,y1,x2,y2,x3,y3,m,fname6)

integer m,n

integer x1(450),x2(450),x3(450),y1(450),y2(450),y3(450)
real 11(450),12(450),13(450),d1(25),d2(25),d3(25)
cormplex b1(450),b2(450),b3(450),f1(450),f2(450),f3(450)
real s1,s2,s3,T1,T2,T3,pi,fn

complex v1(450),v2(450),v3(450),w1(50),w2(50),w3(50)
complex ¢1(50),c2(50),c3(50)

character fname6*(*)

c open the fourier descriptor data output file
open(unit =40, file =fname6,status ="unknown’)
c calculate the fourier descriptors

pi=3.14159
do 10 j=1,m+1
if(j.ne.(m+1)) then
v1(j) =cmplx(x1(),y1())
v2(j) =cmplx(x2(j),y2(j))
v3(j) =cmplx(x3(),y3())
else
v1()=cmplx(x1(1),y1(1))
v2(j)=cmplx(x2(1),y2(1)
v3(j)=cmplx(x3(1),y3(1))
endif
10 continue

11(0)=0
12(0)=0
13(0)=0

do 120 k=1,m
fl(k)=vik+1)-vik)
2(k) =v2(k+1)-v2(k)
f3(k)=v3(k+1)-v3(k)

if(f1(k).eq.0.0) then
bl(k)=0.0
else
b1(k)=f1(k)/cabs(f1(k))
endif

if(f2(k).eq.0.0) then
b2(k)=0.0

111

130
120
c

150

else
b2(k) =12(k)/cabs(f2(k))
endif

if(f3(k).eq.0.0) then
b3(k)=0.0
clse
b3(k) =f3(k)/cabs(f3(k))
endif

s1=0
§2=0
s3=0

do 130 i=1,k
11(k)=s1+cabs(v1(i+1)-v1(i))
12(k) =s2+cabs(v2(i+ 1)-v2(i))
13(k) =s3+cabs(v3(i+1)-v3(i))
sl=11(k)
s2=12(k)
s3=13(k)
continue
continue

Tl=sl
T2=52
T3=s3

do 140 n=-25,25
if(n.ne.0) then
s1=0
§2=0
s3=0
do 150 k=2,m+1
w1(n) =cmplx(cos(-2*pi*n*11(k-1)/T1),sin(-2*pi*n*11(k-1)/T1))
w2(n) =cmplx(cos(-2*pi*n*12(k-1)/T2),sin(-2*pi*n*12(k-1)/T2))
w3(n) =cmplx(cos(-2*pi*n*13(k-1)/T3),sin(-2*pi*n*13(k-1)/T3))
cl(n)=s1+(T1/(4*pi*pi*n*n))*(b1(k-1)-bl(k))*wl(n)
c2(n) =s2+(T2/(4*pi*pi*n*n))*(b2(k-1)-b2(k))*w2(n)
¢3(n) =s3+(T3/(4*pi*pi*n*n))*(b3(k-1)-b3(k))*w3(n)
sl=cl(n)
s2=c2(n)
s3=c3(n)
continue
else
goto 140
endif

112

140 continue

do 160 n=2,9
di(n)=(c1(1+n)*c1(1-n))/(cl1(1)**2)
d2(n)=(c2(1 +n)*c2(1-n))/(c2(1)**2)
d3(n)=(c3(1+n)*c3(1-n))/(c3(1)**2)

c
fn=float(n-1)
write(40,110)fn,d1(n),fn,d2(n),fn,d3(n)
110 format(6f14.6)
160 continue
close(40)
return
end

2k sk o ok ok ok ok ke COMPRESS ke ke 2k o 3 ok o e ok ok o ok e she s ok ke e s sk e ke 36 ok ok sk ke ok ke sk e 3k 3k o ke e 3k e ok e ke Dk o 3k e e ok ke e ok e ok ke ok

subroutine compress(x1,y1,x2,y2,x3,y3,m,x11,y11,x22,y22,x33,y33)

c
integer m,n,k
integer x1(500),y1(500),x2(500),y2(500),x3(500),y3(500)
integer x11(50),y11(50),x22(50),y22(50),x33(50),y33(50)
c
c open the compressed output data file
c

open(20,file="compress.dat’,status ="unknown’)

c output the results to the output file

c
n=m/50
k=1

c
do 60 j=1,m

if(j.eq.(k*n).and.k.le.50) then

x11(k)=x1(j)

yl1(k)=y1(G)

x22(k)=x2(j)

y22(k) =y2(j)

x33(k)=x3(j)

y33&)=y3()

write(20,110) x11(k),y11(k),x22(k),y22(k),x33(k),y33(k)

110 format(6i7)

k=k+1
c
end if
60 continue
c
close(20)

113

return
end

*xkkkkkk CENTER OF GRAVITY ok skokskokokok ok ok sk ok seshe ok o ook o oe b s sk e s sk e e b e se e se kel e se ok 3 sk s ske o

subroutine cg(x11,y11,x22,y22,x33,y33,fname2)

character fname2*(*)

real xx1,yyl,r1(100).fj

real xx2,yy2,r2(100)

real xx3,yy3,r3(100)

integer x22(100),y22(100),x33(100),y33(100),m

integer sumx2(100),sumy2(100),sumx3(100),sumy3(100)
integer x11(100),y11(100),sumx1(100),sumy1(100)

(¢

open the output data file
open(30,file=fname2,status = "'unknown’)

sumx1(0)=0
sumy1(0)=0
sumx2(0)=0
sumy2(0)=0
sumx3(0)=0
sumy3(0)=0

do 70 m=1,50

sumx1(m)=x11(m)+sumx1(m-1)
sumyl(m)=y11(m)+sumyl(m-1)
sumx2(m)=x22(m)+sumx2(m-1)
sumy2(m) =y22(m)+sumy2(m-1)
sumx3(m)=x33(m)+sumx3(m-1)
sumy3(m)=y33(m)+sumy3(m-1)

70 continue

xx1 =sumx1(50)/50
yyl=sumy1(50)/50
xx2 =sumx2(50)/50
yy2 =sumy2(50)/50
xx3 =sumx3(50)/50
yy3=sumy3(50)/50

creat the 1-D radiis data file

o

do 80 j=1,50
r1() = sqri((x11G)-xx1)**2 + (y11()-yy1)**2)
12(j) = sqrt((x22(j)-xx2)**2 + (y22(j)-yy2)**2)

114

110
80

c

r3(G) = sqrt((x33()-xx3)**2 + (y33(j)-yy3)**2)
fj =float(j)
write(30,110) fj,r1().£,r2G).f,r3G)
format(6£14.6)

continue

close(30)
return
end

sk e ok ok ok she ok ok INTERGRAL REPRESENTATION e e e ok fe ok she ke o e o e e ok e e o e o she sk dke e e 2k fe dfe e ok ke o ke dfe ok sfe ofe 3¢

(2]

(]

subroutine int(x11,y11,x22,y22,x33,y33,fname3)
integer x11(50),y11(50),x22(50),y22(50)

integer x33(50),y33(50)

integer xx1(50),xx2(50),xx3(50)

integer yy1(50),yy2(50),yy3(50)

character fname3*(*)

open the output file
open(40,ﬁle=fnaine3, status ="unknown’)
integrals

xx1(1)=x11(1)
xx2(1)=x22(1)
xx3(1)=x33(1)
yyl(1)=y11(1)
yy2(1)=y22(1)
yy3(1)=y33(1)

write(40,’(6i7)") xx1(1),yy1(1),xx2(1),yy2(1),xx3(1),yy3(1)
do j=2,50

xx1(j)=xx1G-1)+x11G)

xx2(j) =xx2(j-1) +x22(j)

xx3(j) =xx3(j-1)+x33()

yy1()=yy1G-1)+y11(G)

yy2() =yy2(-1)+y22()

yy33)=yy3G-1)+y33(@)

write(40,’(6i7)’) xx1(),yy1G),xx2(),yy2(),xx3(),yy3()

end do
close(40)

115

return
end

G----——-CONVERT.FOR PROGRAM----~------

real r1(50),r2(50),r3(50)
character*10 fname

real rr(50),max1,minl

real max2,min2,max3,min3

open(10,file="namel.txt’ status = "unknown’)
read(10,’(a10)’)fname
close(10)

c

c—-- OPEN OUTPUT FILE

c
open(40,file="cogl.dat’,status = "unknown’)
open(41,file="cog2.dat’,status="unknown’)
open(42,file="cog3.dat’,status = "unknown’)

c

c--- READ TARGET INPUT

c

open(20,file =fname,status="old’)

max1 =-1000000
min] = 1000000
max2 =-1000000
min2 = 1000000
max3 =-1000000
min3 = 1000000

do kj=1,50
read(20,’(3f12.5)") r1(kj),r2(kj),r3(kj)

if(r1(kj).ge.max1) then
max1=r1(kj)

endif

if(r1(kj).le.min1) then
minl =rl(kj)

endif

if(r2(kj).ge.max2) then
max2 =12(kj)

endif

if(r2(kj).le.min2) then

116

min2 =r2(kj)
endif

if(r3(kj).ge.max3) then
max3 =r3(kj)

endif :
if(r3(kj).le.min3) then
min3 =r3(kj)

endif

end do

close(20)
c
¢---—- NORMALIZW & PREPARE TRAINING DATA FILE ----——---------—-- -
c
call NORM(r1,max1,minl,rr)
write(40,80) (rr(jj).jj=1,50)
80 format (50f12.8)

call NORM(r2,max2,min2,rr)

write(41,81) (rr(jj),jj=1,50)
81 format (50f12.8)

call NORM(r3,max3,min3,rr)

write(42,82) (rr(jj),jj=1,50)
82 format (50f12.8)

close(40)

close(41)

close(42)

end

subroutine NORM(r,max,min,rr)

real rr(50), MM,BM,max,min,r(50)

MM = .8/(max-min)
BM = .9-MM*max

do jk=1,50
rr(jk) = (MM*r(jk)) + BM
end do

end

117

C---—---ANALYSIS.FOR PROGRAM----------- -

INTERFACE TO INTEGER*2 FUNCTION SYSTEM [C]
(STRING[REFERENCE])

CHARACTER*1 STRING

END

character*6 atype

real asize,bsize,csize,size
integer idepth,type
integer*2 LSYSTEM

c*xxkxk Pattern Recognition

100

open(100,file="name.txt’,status ="old’)

read(100,’(i2)’) type
read(100,’(i4)’) idepth

close(100)

if(type.eq.1) then
atype="tubesp’
go to 100

end il

if(type.eq.2) then
atype="FE’

go to 200

end if

if(type.eq.3) then
atype="copper’
go to 300

end if

if(idepth.eq.20) then
I=SYSTEM ('TSIZE21.EXE’C)
I=SYSTEM ('TSIZE22.EXE’C)
I=SYSTEM ('TSIZE23.EXE’C)
end if

if(idepth.eq.40) then
I=SYSTEM ('TSIZE41.EXE’C)
I=SYSTEM ('TSIZE42.EXE’C)
I=SYSTEM (’'TSIZE43.EXE’C)
end if

118

200

if(idepth.eq.60) then
I=SYSTEM ('TSIZE61.EXE’C)
1—C3YSTEM ('TSIZE62.EXE’C)
I=SYSTEM ('TSIZE63.EXE’C)
end if

if(idepth.eq.80) then
I1=SYSTEM ('TSIZE81.EXE'C)
I=SYSTEM ('TSIZE82.EXE’C)
I=SYSTEM ('TSIZE83.EXE’C)
end if

if(idepth.eq.100) then
I=SYSTEM ('TSIZE11.EXE'C)
I=SYSTEM ('TSIZE12.EXE'C)
I=SYSTEM ('TSIZE13.EXE’C)
end if

if(idepth.eq.20) then
I=SYSTEM ('FSIZE21.EXE’C)
I=SYSTEM (’FSIZE22.EXE’C)
I=SYSTEM ('FSIZE23.EXE’C)
end if

if(idepth.eq.40) then
I=SYSTEM (’FSIZE41.EXE’C)
I=SYSTEM ('FSIZE42.EXE’C)
I=SYSTEM ('FSIZE43.EXE’'C)
end if

if(idepth.eq.60) then
I=SYSTEM (FSIZE61.EXE’C)
I=SYSTEM ('FSIZE62.EXE’C)
I=SYSTEM ('FSIZE63.EXE’C)
end if

if(idepth.eq.80) then
I=SYSTEM (’FSIZE81.EXE’C)
I=SYSTEM (’FSIZE82.EXE’C)
I1=SYSTEM ('FSIZE83.EXE’C)
end if

if(idepth.eq.100) then
I=SYSTEM (FSIZE11.EXE’C)
I=SYSTEM (’FSIZE12.EXE’C)
I=SYSTEM ('FSIZE13.EXE’C)

119

end if

300 if(idepth.eq.20) then
I=SYSTEM (’CSIZE21.EXE’'C)
I=SYSTEM (’CSIZE22.EXE’C)
I=SYSTEM (’CSIZE23.EXE’C)

end if

if(idepth.eq.40) then
I=SYSTEM ('CSIZE41.EXE’C)
I=SYSTEM ('CSIZE42.EXE’'C)
I=SYSTEM ('CSIZE43.EXE’C)
end if

if(idepth.eq.60) then
I=SYSTEM ('CSIZE61.EXE’C)
I=SYSTEM (’'CSIZE62.EXE’C)
I=SYSTEM (’CSIZE63.EXE’C)
end if

if(idepth.eq.80) then
I=SYSTEM ('CSIZE81.EXE’C)
I=SYSTEM ('CSIZES82.EXE’C)
[=SYSTEM (’CSIZE83.EXE’'C)
end if

if(idepth.eq.100) then
I=SYSTEM ('CSIZE11.EXE’C)
I=SYSTEM (’CSIZE12.EXE’C)
I=SYSTEM (’CSIZE13.EXE’C)
end if

c**¥kkxk Distance Estimation
open(10,file="sizel.dat’ status = unknown’)
read(10,’(f8.6)") asize
close(10)
open(20,file="size2.dat’,status = "unknown’)
read(20,’(f8.6)") bsize
close(20)
open(30,file="size3.dat’,status = "unknown’)
read(30,’(f8.6)’) csize
close(30)

if(asize.lt.0.0) then

120

asize=0.0
end if

if(bsize.1t.0.0) then
bsize=0.0
end if

if(csize.1t.0.0) then
csize=0.0
end if

size = (asize +bsize +csize)/1.5
write(*,*) asize, bsize, csize, size

open(20,file ="result.dat’ ,status ="unknown’)
write(20,’(f5.3)")size

write(20,’(i3)’)idepth

write(20,’(a6)’)atype

close(20)

open(30,file="result1.dat’,status ="unknown’)
do j=1,6
write(30,(a6,i3,f5.3)")atype,idepth,size

end do

END

121

APPENDIX B

GUIDELINES FOR THE IMPLEMENTATION OF
ARTIFICIAL NEURAL NETWORKS

123

B.1. Introduction

The primary purpose of this research project was to develop an integrated approach by
combining information compression methods and artificial neural networks for the monitoring
of plant components using NDE data. Specifically, data from eddy current (EC) inspection of
heat exchanger tubing were utilized to develop this technology. The focus of the research was
to develop and test various data compression methods (for eddy current data) and the
performance of different neural network paradigms for artifact classification and defect
parameter estimation. Feedforward fully-connected neural networks, that use the back-
propagation algorithm for network training, were implemented for artifact classification and
defect parameter estimation using modular networks. The artifact classification was also
performed using probabilistic neural networks. A large database from eddy current tube
inspection was acquired from the Metals and Ceramics Division of ORNL. These data were
used to study the performance of artificial neural networks for artifact type classification and for
estimating defect parameters. Most of the study was made using the NeuralWare Professional
II/Plus software. A PC based data preprocessing and display program was also developed as
part of an expert system for data management and decision making.

As part of this research project a detailed set of guidelines were developed for the
implementation of neural networks for diagnostics using eddy current testing. These guidelines
were demonstrated for a typical application of eddy current inspection of steam generator tubing.
The guidelines include: (1) selection of artificial neural networks, (2) EC data collection and data

representation, and (3) design of back-propagation neural networks.

124

B.2. Selection of Artificial Neural Networks

Artificial neural networks provide general mapping between two sets of information.
This nonlinear mapping from data to data is very useful in associating information pairs where
a clear mathematical relationship is not available. Artificial neural networks are developed to
simulate the most elementary functions of neurons in the human brain, based on the present
understanding of biological nervous systems. These network models attempt to achieve good
human-like performance such as: learning from experiments and generalization from previous
samples. The network models are composed of many nonlinear computational units which are
called processing elements (PE) or nodes that operate in a parallel distributed processing
architecture.

Selecting a network architecture is the first step for a neural network application. This
step is accomplished by: critically evaluating the application, considering the various
architectures, and reviewing similar applications. A list of neural network applications and
related neural networks is given bellow
Prediction: Use input values to predict output values

(a) Back-propagation,

(b) Digital Neural Network Architecture,

(c) Adaline & Madline,

(d) Perceptron.

Classification: Use input values to predict a categorical output

(a) Back-propagation,

(b) Categorical Learning,

(c) Counter-propagation,

(d) Probabilistic Neural Network,
(e) Learning Vector Quantization.

125

Data Association: Networks learn associations of error-free or ideal data, then classify or
associate data that contain error

(a) Bidirectional Associative Memory,
(b) Hopfield Network,
(c) Hamming Network,
(d) Boltzmann Pattern Completion.
Data Conceptualization: Analyze data and determine conceptual relationships

(a) Adaptive Resonance Theory I,
(b) Self-Organizing Map.

Data Filtering: Smooth an input signal
(a) Recirculation Network.
Optimization: Determine optimal value
(a) Hopfiled Network.
The selection of the type of network is dependent on different applications. In this research
project, back-propagation neural networks and probabilistic neural networks were chosen. A

PC-based software called the NeuralWare Professional II/Plus was used in the implementation.

B.3. EC Data Collection and Data Representation
B.3.1 Collect the Data
Once the neural network architecture has been identified, the next step is to collect and
prepare the data. For this project, a large multi-frequency eddy current (EC) inspection database
from laboratory testing of typical tube material was acquired from the Metals and Ceramics
Division of Oak Ridge National Laboratory. The data were recorded from two series of
measurements on an ASME Section XI standard specimen, shown in Figure B.1. The OD

artifacts simulate tube support/tube sheet, ferrite and copper. The OD artifact rings on the

126

standard are moveable, so that the effect of changing their location with respect to tube defect
location may be studied. The database was organized into 900 individual files according to

artifact type, defect depth, and the distance from the center of the defect to the artifact.

U v = = 1

ASME Section XI Std.

Nonconductive
Nonmagnetic Filler

Figure B.1. ASME Section XI standard test specimen with OD artifacts.

B.3.2 Divide the Data into Two Sets: Training and Testing

The collected data set should be divided into two sets: training data and testing data. The
training set is designed to maximize the learning process. The testing set is designed to provide
the trained network with some real data and test the performance of the network. The training
set should contain only "good" data. For best results, it should be evenly divided between the
various outcomes and be reasonably representative of the entire universe. In this project, one
of the two series EC measurement data set was used as training data and the other was used as

the testing data.

127

B.3.3 Data Representation

For the neural network approach to be effective in artifact classification and defect
parameter estimation, the information input to the network must have certain features. These
are (a) size of data vector, (b) invariance to data scaling, (c) invariance to data orientation, and
(d) sensitivity of the defect type and size parameters to input signature. The data representation
may be classified into nonparametric and parametric techniques.

Nonparametric data representation technique involves reorganizing the raw measurement
data using (1) direct compression of raw data, (2) subtraction from a reference data, (3)
magnitude and phase of the raw data, (4) integral value of the raw data, and (5) sequence of
radii from the center of gravity to the closed contour of the shape. Impedance plane integration,
radii from the center of gravity and phase angle representation were found to be effective in data
representation.
Compressed Magnitude and Phase Representation (MP). This method converts the compressed
complex impedance values to magnitudes and phases so that magnitude and phase can be
normalized separately.
Compressed Integral Signal Representation (CINT). The line integration of impedance data is
sensitive to certain frequencies, and may be used to identify artifact types.
Radii From the Center of Gravity (CG). Since the defect parameters will influence the center
of gravity of the complex impedance plot, a sequence of radii from the center of gravity to the
contour of the shape is used to train the neural networks to estimate defect parameters and
identify artifact types.

The parametric representation technique compresses the data using certain "feature

128

vectors" and searching the parameter space for the best fit between the measurement and the
computed signature. Fourier descriptor method was tried in this project. This technique
generates a feature vector called Fourier descriptors whose elements are a function of the shape
of the signal. These descriptors have the property of being invariant under scaling, rotation, and
translation operations. In addition, they offer a significant amount of data compression.
However, the Fourier descriptors were found to be not sensitive enough to describe the
differences in the EC defects for parameter estimation in our neural network training. This may
be because (1) only limited terms are used in Fourier series to approximate the periodic signal,
(2) portions of the impedance plot do not bear useful information, and (3) the Fourier descriptors
have difficulties in describing local information and discriminating symmetrical shapes.

Some other parametric techniques such as autoregression modeling of object contours,
auto-power spectral densities (APSDs), cross-power spectral densities (CPSDs), coherence
functions, and wavelet transform signals were also used in some other applications.

The results of analysis show that for effective (low-error) defect classification and
estimation of parameters, it is necessary to identify proper feature vectors using various data
compression methods. The center of gravity and phase angle representation methods were found
to be sensitive to defect parameter estimation. The center of gravity and the compressed integral

signature were very effective in artifact type identification.

B.3.4 Scale the Data
Neural networks are very sensitive to absolute magnitudes. If one input ranges from

1,000 to one million and a second from zero to one, fluctuations in the first input will tend to

129

swamp any importance given to the second, even if the second input is much more important
to predict the desired output. To minimize the influence of the absolute scaling, all inputs to
a neural network should be scaled so that they correspond to roughly the same range of values.
Commonly chosen ranges are O to 1 or -1 to +1.

Data scaling can be done by writing a simple computer program to map the desired range
of a variable (with a range between the minimum and the maximum values) to the full range of
the network. An example of such a program can be found in the EDDYANN Code.

Many neural network simulation software systems perform data scaling automatically.
NeuralWare Professional II/Plus software provides the MinMax table function to perform the

data scaling automatically.

B.4. Design of Back-Propagation Neural Networks

Back-propagation neural networks (BPN) were used in this research to develop the neural
network models for artifact classification and defect parameter estimation. The preprocessed
eddy current impedance data were used as input feature to back-propagation neural networks,
with the output map providing artifact type and estimates of defect parameters (depth and
distance). Separate networks for artifact classification and parameter estimation were developed.
The NeuralWorks Professional II/Plus was used in most of the implementation.

There are several issues that need to be considered when utilizing the back-propagation
algorithm to train a neural network. The following discusses the selection of hidden layers and

nodes, the selection of learning options, training and testing, and deploying of networks.

130

B.4.1 Selection of Number of Hidden Layers and Nodes

The selection of the number of hidden layers and the hidden layer nodes is one of the
most important issues in back-propagation network applications. There have been various
studies related to this topic, but there is no definite solution to this problem. However, it has
been concluded that using only one hidden layer is sufficient to solve the problems in the area
of signal processing, plant monitoring, parameter estimation, and sensor validation. In this
project, it has been found that one hidden layer is sufficient for the training of the center of
gravity data and integral data for defect parameter estimation.

The selection of hidden nodes for a fully-connected, feedforward network with one

hidden layer is based on the following rules:

Rule-of-thumb 1: The more complex the relationship between the input data and the
desired output, the more nodes are normally required in the hidden
layer.

Rule-of thumb 2: The upper bound for the number of nodes in the hidden layer is

cases _
10x(m + n)
where
cases is the number of rows or vectors in the training file.
m is the number of nodes in the output layer.
n is the number of nodes in the input layer.

h is the number of nodes in the hidden layer.

131

B.4.2 Set the Network Parameters

The most important learning options for back-propagation network training are selected
as follows.

1) Learning coefficient

The learning coefficient is the rate at which weights adjust to correct for errors. In our
application, it is set to 0.4 for the first 10000 iterations, and 0.1 for the remaining iterations.

) Momentum Term

Momentum term is a factor used to smooth the learning. Here it is set to 0.5.

3) The nonlinear transfer function

The nonlinear transfer function transfers the internally generated sum for each node to
an output value. Available transfer functions in back-propagation network are: linear, sigmoid,
hyperbolic tangent, and Gaussian cumulative distribution. Through several trials of network
training, it is found that the hyperbolic tangent transfer function facilitates faster and more
accurate network training. This is because the output range of hyperbolic tangent is from -1 to
+1, as compared to the sigmoid range of O to 1. The output of the transfer function is used as
a multiplier in the weight update equation, a range of O to 1 means a smaller multiplier when
the summation is a low value, and a higher multiplier for higher summation. This could lead
to a bias in learning higher desired output. The hyperbolic tangent gives equal weight to low
and high end values.

@) The learning rule

The learning rule in back-propagation network specifies how connection weights are

changed during the learning process. Three learning rules are commonly used in BPN: Delta-

132

Rule, Cumulative Delta-Rule, and Normalized Cumulative Delta-Rule. Usually, the Normalized

Cumulative Delta-Rule is more effective and should be selected.

B.4.3 Training and Testing

The goal of the back-propagation algorithm is to teach the network to associate specific
output patterns (target patterns) by adjusting the connection weights in order to minimize the
error between the target output and the actual output of the network. To accomplish this, the
network is usually trained with a large number of input/output pairs. A gradient descent
algorithm is generally used to perform the optimization.

The back-propagation training process is composed of two types of passes: the forward
pass and the reverse pass. In the forward pass the input signals propagate from the network
input to the output. In the reverse pass, the calculated error signals propagate backward through
the network where they are used to adjust the weights. The calculation of the output is carried
out, layer by layer, in the forward direction. The output of one layer is the input to the next
layer. In the reverse pass, the weights of the output layer are adjusted first since the target value
of each output node is available to guide the adjustment of the associated weights, using a
modification of the Delta Rule. Next, the weights of the middle layers are adjusted. Since the
middle layers have no target values, the error must be propagated back through the network,
layer by layer.

A common technique to reduce training time and reduce the probability of being trapped
in a local minimum is to use a momentum term which enhances the stability of the training

process. This technique involves adding to the weight adjustment a term which is proportional

133

to the amount of the previous weight change.

The step-by-step procedure of back-propagation training is as follows:

1)

2
3
C))

&)

(6)
@)
®

Randomize the weights to small random values (both positive and negative) to
assure that the network is not saturated by large values of weights.

Select a training pair from the training set.
Apply the input vector to network input.

Propagate the input vector in a forward fashion through the network until the final
network outputs are calculated.

Calculate the network output and the error (the difference between the network
output and the desired output).

Calculate the local errors.
Adjust the weights of the network to minimize the error.

Repeat steps 2-7 for each pair of input/output vectors in the training set until the
error for the entire system is acceptably low.

B.4.4 Deploy the Networks

Since the trained networks from NeuralWorks software cannot be used outside the

NeuralWorks platform, it is necessary to convert a trained network into a general C source code.

This code has two parts: (1) a C source code callable function, and (2) a main program. The

C source code callable function is generated using the Flash Code function of NeuralWorks

software. It contains the weight values of the trained network. The main program can read the

recall input data file, execute the callable function, and write the recall results into an output

file. The following is an example of a main program. In this program, the input data file is

"COG1.DAT", the output file is "SIZE1.DAT", and the callable function is "NN_Recall()".

134

#include "stdio.h"
#include "math.h"

main()

/*prepare INPUT and OUTPUT files */

{

float NN_Recall();

float Yin[50],Yout;

int i;

FILE *filel,*file2,*fopen();

/* open both files */

filel =fopen("COG1.DAT","t");
file2 =fopen("SIZE1.DAT","w");

for(i=0; i<50; i+ +)
fscanf(filel," %f", &Yin[i]);

Yout=NN_Recall(Yin);
fprintf(file2," %f", Yout),
/* close files */
fclose(filel);

fclose(file2);
exit(0);

135

