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ABSTRACT

A classic model of aerosol scrubbing from bubbles rising through water is applied to the
decontamination of gases produced during core debris interactions with concrete. The model,
originally developed by Fuchs, describes aerosol capture by diffusion, sedimentation, and inertial
impaction. This original model for spherical bubbles is modified to account for ellipsoidal
distortion of the bubbles. Eighteen uncertain variables are identified in the application of the
model to the decontamination of aerosols produced during core debris interactions with concrete
by a water pool of specified depth and subcooling. These uncertain variables include properties
of the aerosols, the bubbles, the water and the ambient pressure. Ranges for the values of the
uncertain variables are defined based on the literature and experience. Probability density
functions for values of these uncertain variables are hypothesized. The model of
decontamination is applied in a Monte Carlo sampling of the decontamination by pools of
specified depth and subcooling. Results are analyzed using a nonparametric, order statistical
analysis that allows quantitative differentiation of stochastic and phenomenological uncertainty.
The sampled values of the decontamination factors are used to construct estimated probability
density functions for the decontamination factor at confidence levels of 50%, 90% and 95%.
The decontamination factors for pools 30, 50, 100, 200, 300, and 500 cm deep and subcooling
levels of 0, 2, 5, 10, 20, 30, 50, and 70°C are correlated by simple polynomial regression.
These polynomial equations can be used to estimate decontamination factors at prescribed
confidence levels.
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FOREWORD

The U.S. Nuclear Regulatory Commission (NRC) has released a Draft Report for Comment,
"Accident Sourc_ Terms for Light-Water Nuclear Power Plants," NUREG-1465. The
information in NUREG-1465 will be considered by the NRC staff in the formulation of updated
accident source terms for light water reactors to replace those given in TID-14844, "Calculations
of Distance Factors for Power and Test Reactor Sites." These source terms are used in the

licensing of nuclear power plants to ensure adequate protection of the public health and safety.

The revised source term report (NUREG-1465) outlines the rates at which various groups of
fission products are expected to emerge from the degrading core into the containment atmosphere
as a postulated severe accident advances in time. Simultaneously, the action of certain
intentionally install,ed safety systems, together with certain natural fission-product removal
processes, will tend to reduce the airborne radioactive inventory in the containment atmosphere.

If, during the accident, the reactor vessel fails and molten core debris comes into contact with
structural concrete, highly refractory fission products may be released from the fuel. If a pool
of water is present above the core debris, the amount of radioactivity released to containment
will be reduced, thus lowering the radiological source term. This final report, "A Simpli_ed
Model of Aerosol Scrubbing by a Water Pool Overlying Core Debris Interacting with Concrete"
(NUREG/CR-5901) supports the revised source-term document (NUREG-1465) by providing
a detailed analysis of aerosol decontamination by overlying water pools. In addition the report
presents simplified mathematical expressions that may be used to approximate the degree of
aerosol scrubbing.

This final report has benefitted from the comments provided by several reviewers on an earlier
draft. The authors thank those who took the time to read and comment on the draft version of

the report.
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I. BACKGROUND

The uninterrupted progression of a severe nuclear reactor accident will eventually lead to the
expulsion of core debris from the reactor coolant system and interaction of this core debris with
the structural concrete of the reactor containment building. Analyses of the interaction of core
debris with concrete [1] have shown that the interactions pose a threat of long-term
overpressurization of the containment and contribute to the threats posed by hydrogen
combustion to containment integrity. It has also been shown by both experiment and analysis
[2-6] that core-debris interactions with concrete contribute to the inventory of radioactive
material that would escape from a nuclear plant in the event of the loss of containment integrity.

Assessments of core debris interactions with concrete in severe nuclear reactor accidents have

not routinely considered the effects water might have on these interactions. Overlying pools of
water may be present during core debris interactions with concrete either as a natural
consequence of accident events or as a result of deliberate measures taken to mitigate the effects
of core debris interactions with concrete [7,8].

There has been a significant debate on what effects overlying water pools might have on core
debris-concrete interactions.* Most of the debate has focused on whether the water will augment
hydrogen production [9] or will quench the core debris and terminate the attack on concrete.
The one well-recognized and universally accepted effect water will have is to sharply attenuate
the magnitude of aerosol production and radionuclide release to the reactor containment
atmosphere during core debris interactions with concrete. This effect has been demonstrated
experimentally [10] and sophisticated models of the physical phenomena responsible for the
attenuation process are available [6]. The reduction in radionuclide release occurs whether or
not the overlying water is able to quench the core debris.

Aerosol production is affected by water because aerosol-laden gases produced by the core-debris
attack on concrete must sparge through the water. Aerosols within gas bubbles can diffuse,
sediment or inertially impact the gas-water interface. Surface tension and van der Waals forces
assure that when an aerosol particle reaches the gas-water interface, it will be trapped in the
aqueous phase. This trapping is somewhat similar to the aerosol trapping that occurs when
aerosol-laden gases sparge through steam suppression pools in boiling water reactor accidents
[11-13]. There are, however, significant differences in the two situations particularly with
regard to the composition of the carrier gas, its temperature and the mode of injection into the
water pool. Some eleboration on these differences is provided in the discussion of scrubbirlg
phenomena preselited in Chapter II of this report.

Computer models of the detailed processes involved in aerosol trapping by water pools have
become familiar. The effects of water on aerosol production predicted by these computer
models are profound. It would be useful, then, to have a simplified description of the effects
of water on aerosol production during core debris-concrete interactions for engineering

* E. R. Copus and D. A. Powers, "A Study of the l.imits of Core Debris Coolability During
Interactions with Concrete," Sand]a National Laboratories, Albuquerque, NM, unpublished.



evaluations or bounding analyses. This document describes such a simplified representation of
water effects on aerosol generation during core-debris interactions with concrete.

The approach adopted here to prepare the simplified representation is to fit a polynomial to the
results obtained with a detailed model of the processes. The physical phenomena considered in
the detailed, mechanistic model of the aerosol trapping process are described in Chapter II of
this report. The detailed model is used to calculate aerosol trapping by water pools of various
depths and temperatures. Aerosol trapping is reported in terms of the decontamination factor
(DF)"

DF = Mass of aerosol entering the water pool
Mass of aerosol escaping the water pool

Many of the models and parameters used to calculate decontamination factors are uncertain. A
variety of techniques have been advanced in the nuclear safety community to address
phenomenological uncertainties and uncertainties propagated from analyses of earlier phases of
severe reactor accidents. A quantitative analysis of uncertainty is an essential step in preparing
a simplified model of decontamination by water pools. It is difficult to anticipate how a
simplified model will be used. Bounding or conservative analyses for one situation may not be
bounding or conservative for other situations. A quantitative uncertainty analysis using the
mechanistic model of decontamination by an overlying water pool is presented in Chapter III of
this report. The uncertainty analysis is done using a Monte Carlo method that produces detailed
probability distribution functions for the decontamination achieved by water pools. Medians of
the distributions and other quantiles of the distributions are fit to polynomial expressions in
Chapter IV to produce simple expressions that can be used to estimate the decontamination by
water pools.



I1 DESCRIPTION OF THE PHYSICAL PHENOMENA

In this chapter, the physical phenomena that result in trapping of aerosols by an overlying water
pool during core debris interactions with concrete are described. These phenomena are modeled
in the POOL subroutine of the VANESA model of aerosol generation and radionuclide release
during the interactions of core debris with concrete [6].

A. Models of Deposition Processes

In a gas bubble containing aerosols that is thermally and chemically equilibrated with a water
pool, the aerosols will:

(1) inertially impact the bubble walls,
(2) diffuse to the bubble walls, and
(3) sediment to the bubble walls.

Inertial impaction of aerosol particles with the bubble walls occurs because gases within a rising
bubble circulate. The nature of the gas circulation depends on the bubble size and the purity of
the system. When gas circulation does occur, excessively large aerosol particles cannot follow
the stream lines of the gas flow. Because of inertia, these particles will cross the streamlines
and impact the bubble walls. Particles larger than about 0.5 #m are most affected by inertial
impaction.

Diffusion of aerosol particles within the bubbles is, of course, the result of Brownian motion
brought on by the stochastic nature of gas molecule collisions with the particles. Diffusion
significantly affects only very small particles--particles with sizes less than about 0.1 _m. There
has been little experimental validation of diffusion models for the situations of interest here.
Powers [14] has criticized the available models.

Sedimentation is the gravitational settling of particles within the bubbles. Typically,
sedimentation is important only for particles larger than 1 /_m.

Fuchs [15] articulated quantitative .models for aerosol deposition processes within spherical
bubbles. Moody and coworkers [16] have published expressions for the deposition rates in
ellipsoidal bubbles. Powers has derived and discussed these models for non-spherical bubbles
[14].

Aerosols within rising bubbles will also coagulate. Growth of the aerosol particles within the
bubbles will, in principle, affect the deposition of aerosols. But, for aerosols of interest here,
aerosol growth by coagulation is expected to be slow in comparison to the time it takes a bubble
to rise through a water pool. Consequently, aerosol coagulation within bubbles is neglected
here.

Other mechanisms of aerosol deposition can be imagined. For instance, in the analysis of
aerosol trapping in steam suppression pools thermophoresis and diffusiophoresis are thought to
be important mechanisms of deposition. Interest in these mechanisms in the analysis of



scrubbing by suppression pools comes about because the gases expelled to the pool can be quite
hot and have very high partial pressures of steam. Further, gas flow to the suppression pool can
be quite high under reactor accident conditions.

The cartier gas flow to the water pool during core debris concrete interactions is thought to be
quite different. Gases evolved during the high temperature melt attack on concrete cool as they
pass through a solidified crust of debris that separates the molten core debris from the water.
Gas production rates associated with the attack of melt on concrete are expected to be low in
comparison to the rates of steam production at the water crust interface. The gases produced
by attack on the concrete are expected to have low partial pressures of steam because of the
chemical reactions of steam with core debris to form hydrogen. Consequently, gas bubbles
formed at the water crust interface will be undersaturated in steam and essentially isothermal
with the surroundings. It is expected that diffusiophoresis and thermophoresis during formation
of bubbles are negligible. (But, note that diffusiophoresis is not negligible once a bubble
detaches and begins to rise through a subcooled pool.)

The dynamic events of bubble formation, collapse, and coalescence associated with high velocity
gas injection into steam suppression pools are not expected to be important during core debris
concrete interactions with an overlying water pool. Gas injection into the pool in the case of
core debris/concrete interactions is dominated by steam formation and there are no engineered
orifices for injection. Bubble formation is expected to be limited by hydrodynamic forces of the
pool rather than gas flow.

Hydrodynamic phenotnena in the pool are expected to be simplified since gas injection is
expected to take place over the entire bottom of the pool. Complicated plume effects that arise
around local gas injection sites in steam suppression pools do not need to be considered.

Aerosol trapping by water pools is described, then, by the deposition of aerosols within bubbles.

The deposition rate models consider the mass of particles having diameters dp. The mass
removed per unit rise of a bubble through a water pool is given by:

dM(dp,x) _
 (ha,,o 1M(d/)dx

where

M(dp,x) = mass of aerosol particles in the bubble at a distance x above the point of
bubble generation

_(D,dp,D b) = coefficient for particle diffusion

a(S,dp,D b) _ coefficient for particle sedimentation

a(l,dpd9 b) = coefficient for inertial impaction of particles
Db - diameter of the spherical bubble having the same volume as the bubble in

question



The additive treatment of the three deposition processes follows a tradition in aerosol science
to treat deposition processes as independent. The processes are certainly not actually
independent and there have been some attempts made to examine the interrelationships [18]. It
will be shown below that most aerosol particles are affected significantly by only one of the
three processes considered here. Only in very narrow size ranges will the interactions among
two or more of the processes affect the magnitude of the decontamination factor. Any error in
assuming additivity is probably small.

Note that, as written, the bubble rise is assumed to be steady. Transient effects during bubble
formation are not considered, nor are secondary motions of larger bubbles ct,_'_i.9.red [17].
More quantitative discussions of these phenomena will be presented below.

The coefficient for particle diffusion in an ellipsoidal bubble of eccentricity E is given by [14]:

o_(D,dp,Db) = 61 80 (E 2 - 1) f(E)
_UrD_ 1 + V/4 + 2(E 2- 1)

where:

m

0 : kTc/3nl_dp

k = Boltzmann/s constant

: 1.3807 x lO-16ergs/molecule-K

T = absolute temperature
u

c = Cunningham slip correction =

=1+ (2--d_r_[1.257+0.4 exp. (-0.55dp/k)]

= mean free path of a gas molecule =

: [_ n d_ NA P/82.06T] -1 (cm)



dg = effective diameter of a gas molecule (cm)

NA = Avogadro/snumber = 6.022x I023

P = absolute pressure (arms)

P8 = gas viscosity (Poises)

E = bubble eccentricity (see discussion below)

1u2 E2 tan-n(_/E2 -1)1"76E2 (v_ ' - 1
f(E) = E 2 -1 x/(E2 -1)

Note that fiE) approaches 1.625/(E2-1) as E approaches 1.

The coefficient for deposition by sedimentation of particles within a bubble is given by"

¢_(S,dp,D_ 1 5E2/3j/-= . a, DbUr

where

pp = material density of the aerosol particles
Ur = terminal rise velocity of the bubbles

The coefficient for aerosol deposition by inertial impaction is given by'

6U r xg(E)
aft'dp_gb): 2

Db

where

z = ppd2 c/18p.,

g(E) = E413[(E2 - 1)2 + (E2 - 1)3/2(E2 -2)tan-l(_/E2 - 1)]
[_/(e2- 1)- E 2 ta/l-l(V(E _- 1)] 2

g(E:l) : 3



For spherical bubbles (E=I) these equations become"

1.8180/uro1

a(S,dp,Db) = 1.5gr./ObU r

a(l, dp,Dt,) : 18UrzlD 2

The reduction of the complex formulas for eccentric bubbles to lhese simple expressions for
spherical bubbles is easily seen by expanding tan-l(x) as x - x3/3 for x < 1.

From these equations, it is evident that the aerosol trapping is a strong function of the depth of
the water pool. Pool depth is treated here as an independent variable as is the temperature of
the water. The equations also show that the trapping is quite dependent on:

- the size o_"the gas bubbles,
- the shape of the gas bubbles,
- the sizes of the aerosol particles,
- the properties of the liquid phase, and
- the properties of the gas phase.

These and other factors that affect aerosol trapping are discussed in the balance of this chapter.

B. Bubble Shapes
I

The formulae for the coefficients of the major deposition processes all include as a variable the
eccentricity of the bubble, E. A general bubble is considered to have an envelope well
approximated by an oblate ellipsoid:

v 2 u 2 y2
+ _ + --'1

a 2 a 2 b 2

where

v,u,y = Cartesian coordinates
a = major axis of the ellipsoid
b : minor axis of the ellipsoidI

By recognizing axi-symmetry, this equation for the envelope can be rewritten as:



X 2 2
_+Y -1
a 2 b 2

where a and b are the lengths of the major and minor axes of an ellipse, respectively. Then,

E = a/b

The diameter of the spherical bubble ha lng the same volume as the ellipsoidal bubble in
question is:

Db = 2a/E 1/3

Eccentricities of gas bubbles rising in water are correlated by [19]:

1 for Ta<l

{0.81 + 0.206 tanh[2(0.8 - logxoTa)]P
I/E =

for 1 < Ta _ 39.8

0.24 for Ta > 39.8

where

Ta = Tadaki number = ReM °23
M = Morton number

4 3
= gill /PlOl

Re = Reynolds number
: UrPtDbll_ t

a I = surface tension of the liquid

_ = liquid viscosity

Pt = liquid density

g : gravitational acceleration = 980 cm[s 2

C. Terminal Velocities of Bubbles

The terminal velocity of a rising bubble depends on the nature of the bubble and the medium.
For very clean water, the terminal velocity can be found from [20]:

_ 2 2
Eo"5/M'r z : Re2Co Ur P_D_Co/I_,



where

2
Eo = Eotvos number= gptDb/%

CD = the drag coefficient which is given by:

l_lE l"s for spherical bubbles in' which gas does not circulateCD = 576M .-o

CD = 83.8MO'3O331E°'9_9for spherical bubbles in which gas does circulate

CD = EJ(2.14 + 0.505E,,)for ellipsoidal bubbles (E > 1)

CD = 8/3 for spherical-cap bubbles (E _ 4.1)

For bubbles in contaminated water [21]"

UT _ _l M-°'149 (Jo "_0"857"I
PtDb

where
i

l I 757Jo = 0.9_3EoM-°149(l_ /IXw)-0'14

for2< Ho _ 59.3

Jo =3"4214Eo M-°'149 (l'k//itw)-0'14 I "441

for Ho > 59.3

1to = 4/3EoM-O.X49(Ixt/ixw) -°'14

It,,, = 0.009 Poises

D. Bubble Size

The diameter of the bubble that forms at the interface between core-debris and an overlying
water pool depends on the superficial gas velocity and the nature of the surface. At very low
gas production rates, the crust of frozen core debris resembles a porous plate. The size of
bubbles produced on a porous plate can be derived from the Fritz equation [22]:



Db = 0.0105 _[ot/g(pl - pg)]l_

where _ is the contact angle (in degrees) between the liquid and the crust of frozen core debris.

It is usually thought that water will wet the crusts poorly so • = 120°.

With increasing gas generation rates the initial bubble diameter grows as described by the low
viscosity form of the Davidson-Schuler equation [24]"

v,o,Db = 1.11 gO.2 (cm)

where Vs is the superficial gas velocity in cm/s.

At very high gas velocities the size of the bubbles is dictated by the Rayleigh-Taylor instability
of a gas-liquid interface [23]:

Db : 2Cot/(pt _ pg)l/2

where C can have values between 1.9 and 4.

For the analyses presented below, the Davidson-Schuler equation is used to calculate the bubble
size. The smallest bubble diameter is limited by what would be predicted by the Fritz equation.
The largest bubble size is limited by the prediction obtained from the Taylor instability model.

As bubbles rise through the water pool they will grow as a result of the loss of hydrostatic head
from the water pool. Again, considering conditions in which the gas in the bubble does not
dissolve in tile liquid or liquid does not vaporize into the bubble, the variation in the volume-
equivalent spherical bubble diameter as the bubble rises through the liquid is given by:

Db(O) Pat,_ + gpt(H-x)/1033"3

D_(x) Patm . gPl H/1033.3

where

10



Db(0) : initial bubble diameter

Db(x) : bubble diameter a distance x<H above the point of bubble formation

H = depth of the liquid pool (cm)

Pa_ = atmospheric pressure

Bubbles cannot, however, grow to unlimited sizes. The envelope defining a bubble is unstable.
Disturbances continually develop, grow and are swept away as the bubble rises. If a bubble
grows too large, a disturbance in the gas-liquid interface can grow to be of bubble dimensions
before it is swept away as the bubble rises. When this happens, the bubble will split. A simple
criterion for the maximum, stable, bubble size is given by Levich [25]:

o; : 1so,/utp,pfi/

where D_ is the critical diameter of the volume equivalent spherical bubble. Levich used

intuitive arguments to develop this criterion for the largest stable bubble. Analyses using

stability theory yield somewhat smaller values for D_ [6].

E. Gas Properties

The evaluation of the aerosol deposition models requires data on the density and the viscosity
of the gas phase in the bubble. The gas phase, as is discussed further below, is composed
mostly of H20, H2, CO, and CO2. Pressures in the bubble are low, typically
(< 10 atmospheres). The density of the gas phase is fairly well described by the ideal gas law:

P(H2)2.016 P(H20)I8.O15 P(CO)2S.O0 P(C02)44.001= + + +

Pg RT RT RT RT

where

Pe : density of the gas (g/cm 3)

P(i) : partial pressure of the species in the gas phase (atmospheres)

R = gas constant (82.06 cm3-atms[mole-l_q

T = absolute temperature (K)

Powers et al. [6] utilize the Herning-Zipperer correlation [26] to derive gas viscosity values for
mixtures from data for the pure, constituent gases:

11



N

_, P(_)l_s(i)M(i)tt2
i=1

lae (mixture) - N

E P(i)M(i) vz
i:1

where

I_e(mixture) : viscosity of the gas mixture

I_s(i) = viscosity of the i th constituent gas in the mixture

P(O = partial pressure of the i t* constituent gas in the mixture

M(O = moleculear weight of the i t* constituent gas in the mixture

N = number of gases in the mixture

For gases of interest here [6]:

14.15 lx10 -_T°5_°t 2
la(CO) = (Poises)

(1 + 117.178//)

15.957x10-6T °497212
I_(CO2)= (Poises)

(1 + 246.744//')

1.5769x10-6T o.7o57n
I_(H2) = (Poises)

(1 - 3.378//)

0.950xI0-6T 0.a9291z
I_(H20) = (Poises)

(1 + 207.219//)

Predictions of the Herning-Zipperer correlation agree with measurements for CO-H 2 mixtures
at 298 K to within 2% [6].

F. Liquid Properties

Properties of the liquid phase are also needed to evaluate aerosol trapping by a water pool. The
liquid phase is considered to be a continuum and its properties are found considering the effects
of both dissolved and suspended solids. The properties of interest are:

- liquid density
•- liquid surface tension
- liquid viscosity.
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These properties are, of course, well-known for pure water. Uncertainty in the properties of
the liquid phase are caused by the presence of dissolved and suspended materials. Experimental
evidence from tests of combined core debris-concrete-coolant interactions [10] show that a water
pool quickly becomes heavily contaminated with suspended solids. Only a small fraction of the
suspended material comes from trapped aerosols. Much of the material is the restllt of actions
of the hot water on concrete and solidified core debris. Suspended solids concentrations ot 0.2
to 0.05 g/kg water were observed in the SWISS tests [10]. Some of tile chemical species tbund
in the water are listed in Table 1.

Table 1

Solids Found Suspended in Water Overlying
the Melt Interacting with Concrete in Test

SWISS 2

ZrO 2

SiO 2

MgCa(CO3) 2

NaA1SiO4

A12Si205OH

CaCO;_

Note that because solid carbonates are found in the water pool it is apparent that the pool is
saturated in carbon dioxide. Transport of carbon dioxide within bubbles to the bubble surface
and the consequent effect on aerosol trapping can obviously be neglected.

The properties of pure water are shown in Table 2. Dissolution and suspension of materials in
water will affect these properties. The density of water with dissolved and suspend,_ solids can
be estimated from:

s ](1 -¢,) + p(s)¢,p(w)+ -/)

where

Pl = density of the liquid
p(w) = density of pure water

Sly(f) : mass of solute per unit volume of water
dps = volume fraction of suspended solids

p(s) = density of the suspended solid material.

The surface tension of the liquid phase ought not be affected much by suspended solids.
Materials likely tc, dissolve in water during core debris interactions with concrete are not
especially powerful surface active agents. Changes in the surface tension of water caused by
various inorganic solutes [29] are shown in Figure 1. The results shown in this figure are
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intended merely to be illustrative of the changes in surface tension that can be caused by
inorganic solutes. The solutes can either increase or decrease the surface tension. There are
no data for the effects on surface tension likely to be caused by solutes produced during core
debris interactions with concrete. For concentrations of solutes expected to develop during core
debris interactions with concrete, changes in the surface tension of water will be less than
+/-10%.

Table 2

Properties of Pure Water

Density (g/cm3):

p(w) -- 0.849397 + 1.29812x10-3T- 2.69223x10-_T 2

Viscosity (Poises):

log_01.t(/) = logl0(0.01002 ) + [1.3272(293-7) .- 1.52x10-3(T-293) 2] / (T-168")

Surface Tension (dyne/cm):

o t - 34.6(T / 704) -0.8373

The viscosity of water will be affected by both the dissolved and the suspended solids. The
effect of low concentrations of dissolved materials can be estimated from the Einstein equation:

I_(solution) = 1 + 2.5_
l_(pure)

where

la(solution) = viscosity of the solution

I_(pure) = viscosity of pure water

d_ = ratio of ions and neutral molecules to the molecules of water

Thus, for 1 molal concentrations of dissolved, neutral molecules 0 = 1/55.5 moles
H20/KgH20 = 0.018. For one molal concentrations of a strong electrolyte that produces one
cation and one anion upon dissolution, such as NaOH, 0 = 2/55.5 = 0.036. As shown by data
in Figure 2, at higher concentrations, the effect of solutes on viscosity is more dramatic.
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Figure 2. Effects of NaOH and NaCI on the Viscosity of Water. The unit of
viscosity in this figure is centiPoises = 10-3pa-S.



A variety of models appear in the chemical engineering literature on the effects of suspended
solids on the viscosity of liquids. These models all yield similar results for conditions in which
the soltds constitute less than 30 volume percent of the liquid phase. The model adopted here
is [28]:

I_(slurry) = 0.403

_t(solution) 0.403 - _s

where

_(slurry) = viscosity of the liquid with suspended solids

l_(solution) = viscosity of the liquid including the effects of dissolved solids

dps = volume fraction of suspended solids

This model is useful for conditions in which 6s < 0.1. The model fails if _s exceeds 0.403.
Volume fractions of solids in excess of 0.1 can, in principle, arise if overlying water pools
evaporate to near dryness during core debris/concrete interactions. A variety of other issues
arise if such extensive evaporation takes place. Consequently, the discussions here are restricted
to conditions for which Cs < 0.1.

G. Gas Generation..Rates and Superficial Gas Velocities

The gas generation of interest for the analysis of aerosol scrubbing by an overlying water pool
comes from two processes:

- gas production by core debris attacking concrete, and
- boiling of water at the interface with the core debris.

Gases produced by the thermal attack of core debris on concrete are steam and carbon dioxide.
Steam comes primarily from water in the cementitious phase of concrete. The water contents
of concretes depend, then, on the cement in the concretes and these cements are nearly the same
in all reactors. The water content does, however, depend on the ambient, relative humidity that
the concrete is exposed to prior to interaction with the core debris [30]. Typically, concretes
are found to have between 5 and 8 weight percent water.

Carbon dioxide evolved from concrete is the product of thermal decomposition of carbonates in
the concrete. All concretes contain a certain amount of carbonate. Carbon dioxide in the

atmosphere will react with Ca(OH)2 in the cement phase of concrete to form carbonates:

Ca(OH)2(s)+ C02(g)-.CaCOs(s)+ n,O(g)

Because of this type of reaction, which starts when the concrete is first placed and continues
slowly throughout the existence of the concrete, the concrete will have at least 1 weight percent
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carbon dioxide. Much more carbon dioxide will be present in the concrete if carbonates such
as limestone (CaCO3) or dolomite (CaMg(CO3)2) are used as aggregate_. Up to 36 weight
percent of the concrete can be carbon dioxide trapped as carbonates. Typically, however, a
carbonate-rich concrete will have about 22 weight percent carbon dioxide.

The carbon dioxide and steam evolved from concrete as it is attacked by core debris react
especially with metals in the core debris to form carbon monoxide and hydrogen:

+ +
2C0 2 + Zr-. ZrO 2 + 2C0

CO 2 + Fe -. FeO + CO

There is thermodynamic evidence that CO2 can be reduced completely to carbon by zirconium
(and perhaps by chromium):

co2 +Zr-. ZrG + [Cl,oo.

where [C] solution denotes carbon dissolved in core debris. Experimental evidence for this
complete reduction of carbon dioxide is, however, not strong and the complete reduction is
discounted here.

The extent to which steam and carbon dioxide are reduced to hydrogen and carbon monoxide
depends on the composition of the core debris. Early in the attack on concrete when highly
reducing metals such as Zr and U can be present, nearly complete reduction can take place.
That is, water vapor evolved from the concrete is nearly all reduced to hydrogen and CO2 is
nearly completely reduced to CO if not to carbon. The equilibrium hydrogen-to-steam partial
pressure ratio in gases escaping from the core debris is [6]:

P(H9 ~~ 10
e(n20)

If the reactive metals are completely oxidized, as they would be late in the course of core debris
attack on concrete so that the metal phase is essentially iron, the reduction of evolved gases is
much less. The equilibrium hydrogen-to-steam partial pressure ratio is [6]:

p(H9 ~~2
(H20)

The situation is complicated if core debris is replenished by flesh material draining from the
reactor coolant system. Detailed scenarios are needed then to predict the amount of reduction
that occurs when debris is replenished.
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The reduction of steam and carbon dioxide is not independently variable. Repeated experimental
evidence shows that the so-called "shift gas" equilibrium prevails in gases produced by core
debris attack on concrete [32-33]:

+ co +x2o

Experimental evidence indicates that this equilibrium is maintained until gas temperatures fall
below about 1300-1100 K. The equilibrium constant,, K(T), for the above reaction can be
calculated from readily available thermodynamic data for the four gas species [27]. Thus, the
partial pressures of the four constituent gases are related by:

P(CO)P(H20)p(co)P(I-I_)[ -4078.3K(T) = -----2------ = exp T + 3.705

at least until these gases produced by attack on the concrete mix with steam produced by the
boiling of water.

The gases produced by core debris attack on concrete are the result of thermal decomposition
processes that take place in the concrete at temperatures much less than the ablation temperature
of concrete [31]. "Gel" water within the pore structure of concrete begins to evaporate rapidly
at temperatures above 378 K. Water coordinated with metal ions in the concrete vaporizes
rapidly at about 400 K. Chemically constituted water such as water in Ca(OH) 2 is vaporized
at about 673 K. Carbon dioxide begins to evolve from carbonates at about 900 K. Ablation
temperatures of concrete vary from about 1350 to over 1800 K [31]. It has, however, been
repeatedly shown by experiments [see for example reference 10] that thermal fronts marking the
onset of these various rapid gas generation processes will propagate into the concrete at rates
that are equal to the ablation rate at least as long as the core debris is molten. When the core
debris solidifies, the conduction of heat into the concrete progresses faster than ablation.

The period of greatest interest in evaluating the decontaminating potential of water pools is when
core debris is molten and radionuclide releases from the core debris can be extensive. During
this period, the rates of gas production from the concrete can be taken as proportional to the rate
of concrete ablation. These ablation rates vary from about 3 cm/hr when the core debris is just
starting to solidify to about 35 cm/hr when the core debris is very hot [31]. The constant of
proportionality between ablation rates and gas generation rates is determined by the concrete
composition. Thus, from the concrete composition, the shift gas equilibrium and the total
pressure (including the hydrodynamic heads provid_ by core debris and water) the composition
of the gas evolved from the concrete can be calculated.

Gas production as a result of water being in contact with core debris is controversial. Early in
the discussion of the effects of water on core debris-concrete interactions it was hypothesized
by workers at Brookhaven National Laboratory [9] that water pools overlying core debris might
lead to enhanced hydrogen production. Experiments seem to show that this will not happen
[10,33,34]. As long as a crust of frozen core debris separates the water from molten core
debris, temperatures are too low to promote reaction of stearn with constituents of core debris
to produce any substantial amount of hydrogen.

19



:Gas production due to the water pool is then just steam :production as a result of boiling. The
nature of the boiling process is, however, controversial. At first examination, it might be
thought that the boiling rate would be determined by film-boiling heat fluxes. Depending on the
surface temperatures of the crust, film boiling heat fluxes can vary from very low values
associated with the minimum film boiling heat flux [5]:

L = 1.88 P°'S_/[l +0.00758P 0"9_] W/cm 2

where P is the local pressure in atmospheres to values given by:

(I -- qc4rJ]_lt13 + qr

where

: heat flux

qc : qLI [Tc,_n - T_at,,]/A TL}3/4

ATL : 85.6p°'S4S/[l +0.138P °'°75]

q, :
T_,_ - crust surface temperature

Tw_ , = saturation temperature of water at the local pressure

o a = Stefan-Boltzmann constant

= 5.67 x 10-12 (14qcm2-K 4)

The "barbotage" effect of gases produced from the concrete and subcooling of the water can
further affect the film-boiling heat flux.*

Others have argued that water on a frozen crust of core debris will be in nucleate boiling [35].
It has been suggested, in fact, that film boiling will be unstable on solidified core debris.
Nucleate boiling produces much higher heat fluxes and consequently much higher steam
generation rates than does film boiling.

Experimental evidence obtained to date suggests that very high heat fluxes consistent with
nucleate boiling can be obtained only for a short period of time when water first contacts core
debris. In the SWISS tests [10] of combined core debris-concrete-coolant interactions, heat
fluxes with subcooled water were 70 to 80 W/cm 2. In the MACE scoping test [37] similar heat
fluxes were obtained though periodic bursts of heat transfer up to perhaps 160 W/cm z were
recorded. A recent criterion for the design of advanced light water reactors suggests a heat flux
of 50 W/cm 2 [36].

* D. R. Bradley, "Modifications to the Coolant Heat Transfer Models in CORCON," Sandia
National Laboratories, Albuquerque, NM, unpublished.
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H. The Effect of Subcooling

The conceptual model adopted here for the behavior of aerosols involves complete mixing of the
aerosol-laden gas, produced during core debris interactions with concrete, and steam, produced
by the boiling of water in contact with the core debris. Whether the mixing occurs in a gas film
separating the water pool from a crust of solidified core debris or occurs during vaporization of
water into a bubble of gas developing on a crust is not described by the model. It is, however,
assumed that water adjacent to the crust is at the saturation temperature whether or not the bulk
water is at this temperature.

A gas bubble formed at the interface with the water pool detaches, enters the water pool and
begins to thermally equilibrate with the pool. If the bulk water pool is subcooled, there will be
a higher than equilibrium partial pressure of steam in the bubble initially. Condensation of this
steam will sweep aerosols out of the bubble into the water pool. This diffusiophoretic deposition
of particles from the bubble into the pool will have an efficiency that is independent of the
aerosol particle size. That is, the decontamination caused by condensation of excess steam is
given approximately by considering the volume of the bubble before and after equilibration with
the pool.

The diffusiophoretic deposition of aerosols into the water pool is not especially large. What is
significant is that the bubble that remains after condensation is smaller. Inspection of the
coefficients for aerosol deposition by sedimentation, diffusion and inertial impaction shows that
the efficiencies of the deposition processes increase with decreasing bubble size. The
equilibration of the bubble with the subcooled pool, then, has two effects. It removes some
fraction of the particles as the bubble shrinks. It also increases the efficiency of the other
deposition processes as the shrunken bubble rises through the water pool.

The virtue of this model is that it can be used to successfully predict aerosol decontamination
observed in the SWISS-II test of core debris-concrete-coolant interactions [!0]. (See Figure 3.)
These data are sparse. Alternate models can be invoked that will also describe the test results.
It might, for instance, be argued that the decontamination observed in the SWISS test was caused
by the crust of solidified core debris and that bubbles rising through the pool were equilibrated
with the pool from the time of formation. Such a model would predict an initial decontamination
but would not predict enhanced removal of aerosols as the bubbles rise through the pool.

For bubbles of the size that is of interest here (see Levich criterion above), the condensation of
steam and the equilibration of the bubble with the pool is rapid. Pigford et al. indicate that the
molar mass transfer rate associated with the change of phase is given by [as cited in 13]:

dN _ P(H20) A km lnl 1 - Peq(H20)/P
dt RT [ 1 P(H20)/P

where
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Figure 3. Aerosol Source Rates in the SWISS-II Test Before and After Water Addition. Note change
in the vertical sc.ale after water addition. Solid lines were calculated with the VANESA model.



dN
- mass transfer rate

dt

R : gas constant

A = surface area of the bubble

P,q(H20) = equilibrium partial pressure of steam at the water pool temperature

P(H20) = actual partial pressure of steam in the bubble

km = mass transfer rate in the gas bubble

Mass transfer coefficients within the bubble are difficult to estimate. A lower bound on this

mass transfer rate used in the VANESA model [6]:

where q) is the diffusion coefficient of the condensing species. Theoretical estimates for the
mass transport rate for bubbles under creeping flow conditions are [20]:

17.66
km - q) for bubbles with internal gas circulation

Db

6.58
km - tp for bubbles without internal gas circulation

Db

Numerical values show that bubbles of the size of interest here will reach about 90%
equilibration in less than a second. For pool depths greater than a few tens of centimeters this
is essentially instantaneous equilibration. Kinetics of condensation can be neglecte_.

Apparently for much larger bubbles the kinetics of steam condensation is important [13]. Such
large bubbles are, however, unstable and will tend to disintegrate. Disintegration will rapidly
accelerate equilibration of the bubbles with the subcooled pool.

Steam within the bubble could, in principle, condense on the bubble walls, condense on particles
or homogeneously nucleate. Condensation of excess steam on particles is of concern because
it will make the particles larger. Inspection of the deposition formulae presented above shows
that deposition rates are strong and complicated functions of particle size.

Water can condense in the concave interstices of particle agglomerates. This will cause aerosol

particles to behave more as spheres and might reduce the effective material density of the
particle but will not greatly alter the deposition characteristics of the particle. In the early stages
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of core debris interactions with concrete, the aerosol mass evolved is predominantly constituents
of concrete. Experiments by Adams [45] have shown that the aerosols, produced by
vaporization of concrete are not greatly affected by condensing steam. Apparently such aerosols
are not sufficiently hygroscopic to grow significantly by water condensation on their external
surfaces.

Water condensation on aerosol particles is neglected in the analyses presented here except insofar
as internal condensation affects shape factors.

I. Aerosol Size Distribution and Aerosol Properties

The size distribution of aerosols produced during core debris interactions with concrete have
only been measured in cases where there was no overlying water pool. The data for tile mean
aerodynamic diameter of the aerosol are correlated in the VANESA model by [6]"

= ] (_m)dp(mean) 0.266{--_p1/3

where

A = mass concentration of aerosol in the gas (g]m 3)

pp = aerosol material density (g/cm 3)

The VANESA moael was constructed assuming the aerosol size distributions to be lognormal
with a mean given by the above equation and a geometric standard deviation of 2,3. It is
difficult to predict the spread of aerosol size distributions produced during large-scale core debris
interactions with concrete. The spreads in the distributions usually arise from heterogeneity in
the precise details of condensation and coagulation processes throughout the area involved in the
generation of condensible vapors. The geometric standard deviation of aerosols was selected in
the VANESA model as a weighted average of reported values from 1.6 to 3.2 [38].

There is no reason to believe that the size distributions for aerosols observed in experiments
without a water pool present are indicative of the size distributions of aerosol particles that are
formed in cases when a water pool is present. An argument can be advanced that when a water
pool is present, the vapors that condense to form aerosols pass through a much sharper thermal
gradient and have less time to grow than in cases wi!hout a water pool present. Consequently,
aerosols formed initially would have smaller mean sizes and narrower distributions than have
aerosols observed in experiments without water present.

On the other hand, it can equally well be argued that aerosols form from vapors produced during
core debris interactions with concrete belbre the vapors are affected by the presence of the water
pool. Growth of the particles might be complete before the water pool can affect the nucleation
and growth processes. If such an argument were accurate, aerosol size distributions observed
in tests without water present would be quite similar to aerosol size distributions in bubbles just
forming in a water pool.
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III. UNCERTAINTY ANALYSIS

A. Approach and the Uncertain Quantities

There are several types of uncertainty that arise in the phenomenological description of
aerosol scrubbing from bubbles in water pools. An obvious type of possible uncertainty
is, of course, the uncertainty in the material properties and model parameters which are
known with limited accuracy. Another type of uncertainty that arises is the uncertainty
created when alternate models can be used to describe the same observation. Finally, for
the purposes of this work there are uncertainties in the decontamination caused by
uncertainties in the precise nature of the reactor accident such as the type of concrete and
the rates of concrete erosion.

To assess the effects of all of these uncertainties on the overall uncertainty in aerosol
decontamination, a Monte Carlo uncertainty analysis was undertaken. This type of
uncertainty analysis has proven useful in the analysis of other severe reactor accident
source term issues [39-42]. Major steps in the uncertainty analysis are:

• selection of uncertain parameters, properties and models,
• definition of ranges for the uncertain parameters and properties,
• definition of probability density functions for the uncertain parameters and

properties,
• multiple executions of the model while randomly selecting parameter values

according to their respective probability density functions, and
• accumulation of model predictions to define probability density functions for the

predictions.

i The discussions of the phenomena involved in aerosol scrubbing presented in Chapter 1I
of this report identified many of the uncertain features of the model. The uncertainties
considered in the uncertainty analysis are summarized in Table 3. Ranges for parametric
values are also shown in this table. These values are discussed in greater detail below.

The Monte Carlo approach can treat uncertainties in the appropriate model as well as
uncertainties in parametric values. For this work, model uncertainty is handled in two
ways. When there are two similar models of a particular phenomenon that yield different
results, 7r(A) and 7r(B), the value, "Jr,used in the Monte Carlo sampling is obtained from:

=-n(A)¢ + r_(B)(¢ - 1)
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Table 3

Uncertain Parameters and Properties

Parameter or Property Range Probability Density

(1) Ambient Pressure 1-9 atms. uniform

(2) Concrete Erosion Rate 3-35 cm/hr log-uniform

(3) Carbon Dioxide Content of 0.01-0.36 log-uniform
Concrete (wt. frac.)

(4) Water Content of Concrete 0.05-0.08 uniform
(wt. frac.)

.,, ,,,.......... , , j ........

(5a) Hydrogen-to-Steam Partial 2-105 log-uniform
Pressure Ratio

............

(5b) CO/CO 2 Quench Temperature 1000-1300 K uniform

(6) Solute Mass 0.05-100 g/kg log-uniform
H20

7 Volume Fraction Suspended 0-0.1 uniform
Solids

8 Density of Suspended Solids 1-6 g/cm 3 uniform

9 Sign Indicator for Uncertainty 0-1 uniform
in Water Surface Tension

10 Mean Aerosol Particle Size 0.25-2.5 #m log-uniform

11 Geometric Standard Deviation 1.6-3.2 uniform
t_,JParticle Size Distribution

12 Aerosol Material Density 1.5-10.0 g/cm 3 uniform
..................

13a Coefficient in l)avidson- 1-1.54 uniform
Schular Model tor Initial
Bubble Size

13b C,mtact Angle in Fritz 20--120° uniform
/.()rmttla

..........

13c Cocfliclent in the Taylor 1.9-4 uniform
Instability Model for Bubble
Size

14 Multiplier [br Inertial 0-1 uniform
lmpaction

15 Boiling Heat Flux 0.16-1.6 lognormal
MW/m 2 p. = 0.5 = mean

_r = 1.645 = std. dev.
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where

n = value used in the calculation

n(A) - value predicted by model A

n(B) = value predicted by model B

and _ is a random variable with values uniformly distributed over the range of I) to I.

When there are two distinct!v different models, A and B, to describe the same pher_omenon, lhc
value, _r, used in the Monte Carlo system is given by

n(A)for E<0.5-- n(B)for E>0.5

where, again, e is a parameter whose values are uniformly distributed over the interval betw_cen
0 and 1 and _-(A) and _r(B) are predictions of the two models.

The definition of probability density functions for uncertain quantities appears to be an entirely
subjective process. Though some "rules" and guidance for the definitions of these ranges have
been advanced [43], there does not seem to be any uncontestable or mechanical method to dt_
this. The rules for selecting probability density functions used here are as follows:

• in the absence of a strong data base providing indications to the contrary, a uniform
probability density function was assumed for parameters whose range of values did not
span more than one order of magnitude.

• again, barring evidence to the contrary, the natural logarithm of the value of a
parameter was assumed uniformly distributed when the possible range of parametric
values exceeded one order of magnitude.

• a lognormal probability density function was assumed for positive definite values that
were not uniformly distributed.

When Iognormal probability density functions are assumed, the parameter value ranges listed in
Table 3 were assumed to correspond to the 1 and 99 percentiles.

Correlations among uncertainties are the most difficult aspects of quantitative uncertainty
analyses. Some care has been taken here to define phenomenological uncertainties so that they
are uncorrelated. One can only attest that this has been done to the best of the analysts' abilities
within the time constraints of this work.

The uncertain parameters considered in the analysis are discussed below. Many of the bases
used to select ranges for the uncertain parameters were discussed in Chapter II of this report.
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(1) Ambient Pressure. The atmospheric pressure over a water pool can vary from
approximately 1 atmosphere to the pressure at which the reactor containment fails. Failure
pressures of reactor containments depend very much on the design. Ice condenser containments
are quite vulnerable to overpressurization with typical failure pressures of about 5 atmospheres
gauge. Large dry containments are thought to have failure pressures of 7-8 atmospheres gauge.
Mark I boiling water reactor containments are quite strong though the volumes of these
containments are small so they pressurize quickly. Failure pressures can exceed 10 atmospheres
gauge. All estimates of containment failure pressure are quite uncertain. The estimates are
necessarily the results of fairly global analyses of the designs. Experimental studies show,
however, that containment failure occurs at local points of unusual stress. It seems likely, then,
that failure pressures quoted above for reactor containments are upper bounds.

For the purposes of this uncertainty analysis, the ambient pressure was assumed to be uniformly
distributed over the range of 1 to 9 atmospheres absolute.

(2) Concrete Erosion Rate. The rate at which concrete erodes depends on the temperature of
the core debris and the enthalpy of ablation of the concrete. Thus, the erosion rates vary
throughout the interaction with concrete. For the purposes of this work, the concrete erosion
rate is taken as an uncertain quantity. It is assumed that the natural logarithm of the erosion rate
is uniformly distributed over the range of In (3 cm/hr) = 1.10 to in (35 cm/hr) = 3.56. The
density of the concrete is taken to be 2.35 g/cm 3.

(3) Carbon Dioxide Content of th_ Concrete. As discussed above, all concretes will contain
some carbon dioxide in the form of carbonates and this carbon dioxide is thermally released as
core debris attacks the concrete. It is assumed here that the natural logarithm of the weight
fraction of carbon dioxide in concrete is uniformly distributed over the range of In (0.01) =
-4.61 to In (0.36) = -1.02.

(4) Water Content of the Concrete. The weight fraction of water in concrete is assumed here
to be uniformly distributed over the range of 0.05 to 0.08.

(5) Equilibriu.m Hydrogen-to-Stea.m. Partial Pressure Ratio. Carbon dioxide and steam vaporized
from the concrete will react with the metallic phases of core debris to form carbon monoxide
and hydrogen. When the metal phase of the core debris is rich in zirconium the reduction of
carbon dioxide and steam is nearly complete. Hydrogen-to-steam partial pressure ratios are
expected to be on the order of 105. As zirconium is depleted, the most reactive remaining

elements in the metallic phase of core debris are silicon (produced by Zr reactions with SiO2)
and chromium from stainless steel. The equilibrium hydrogen-to-steam partial pressure ratio is
expected to be between l0 3 and l0 2. Once the chromium has been oxidized, the hydrogen-to-
steam partial pressure ratio is controlled by the oxidation of iron to be about 2.

For the purposes of this uncertainty study, the natural logarithm of the hydrogen-to-steam partial
pressure ratio is assumed to be uniformly distributed over the range of In (2) = 0.69 to
In (105) = 11.51. The carbon monoxide-to-carbon dioxide partial pressure ratio is assumed here
to be perfectly correlated with the hydrogen-to-steam partial pressure ration through the "shift
gas" equilibrium. The correlation depends on temperature. An equilibrium constant can be
calculated from known thermodynamic properties of the gases until the gases cool to below the
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so-called "quench" temperature. At temperatures below this quench temperature the kinetics of
gas phase reactions among CO, CO:,, H2, and H20 arc too slow to _naintain chemical
equilibrium on useful time scales. In the sharp temperature drop created by tile water pool, very
hot gases produced by the core debris are suddenly cooled to temperatures such that the gas
composition is effectively "frozen" at the equilibrium composition for the "quench" temperature.
Experimental evidence suggest that the "quench" temperature is 1300 to 1000 K. The value of
the quench temperature was assumed to be uniformly distributed over this temperature range for
the calculations done here.

(6) Solute Mass. The mass of solutes in water pools overlying core debris attacking concrete
has not been examined carefully in the experiments done to date. It is assumed here that the
logarithm of the solute mass is uniformly distributed over the range of ln(0.05 g/kilogram
H20) = -3.00 to In(100 g/kilogram H20 ) = 4.61.

(7) Volume Fraction Suspend_ Sglids. The volume fraction of suspended solids in the water
pool will increase with time. Depending on the available facilities for replenishing tile water,
this volume fraction could become quite large. Models available for this study are, however,
limited to volume fractions of 0.1. Consequently, the volume fraction of suspended solids is
taken to be uniformly distributed over the range of 0 to 0. I.

(8) Density of Suspended Solids. Among the materials that are expected to _nake tip the
suspended solids are Ca(OH) 2 ( p = 2.2 g/cm 3) or SiO2 ( p = 2.2 g/cm 3) from the concrete and
UOz(p = 10 g/cm 3) or ZrO 2 (p = 5.9 g/cm 3) from the core debris or any of a variety of
aerosol materials. It is assumed here that the material density of the suspended solids is
uniformly distributed over the range of 2 to 6 g/cm 3. The upper limit is chosen based on the
assumption that suspended UO2 will hydrate, thus reducing its effective density. Otherwise, gas
sparging will not keep such a dense material suspended.

(9) Surface Tension of Water. "['he surface tension of the water can be increased or decreased
by dissolved materials. The magnitude of the change is taken here to be So(w) where S is the
weight fraction of dissolved solids. The sign of the change is taken to be minus or plus
depending on whether a random variable _ is less than 0.5 or greater than or equal to 0.5.
Thus, the surface tension of the liquid is:

= l°(w) (l-S) for e < 0.501

t o(w) (I_S) for E _ 0.5

where or(w) is the surface tension of pure water.

(10) Mean Aerosol Particle Size. The mass mean particle size for aerosols produced during
melt/concrete interactions is known only for situations ill which no water is present. There is
reason to believe smaller particles will be produced if a water pool is present. Examination of
aerosols producec during melt/concrete interactions shows that the primary particles are about
0.1 _rn in diameter. Even with a water pool present, smaller particles would not be expected.
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Consequently, the natural logarithm of the mean panicle size is taken here to be uniformly
distributed over the range from In (0.25/_m) = -1.39 to In (2.5 tzm) = 0.92.

(11) Geometric Standard Deviation of the P_,rticl¢ Size Distribution. The aerosols produced
during core debris-concrete interactions are assumed to have lognorlnal size distributions.
Experimentally determined geometric standard deviations for the distributions in cases with no
water present vary between 1.6 and 3.2. An argument can be made that the geometric standard
deviation is positively correlated with the mean size of the aerosol. Proof of this correlation is
difficult to marshall because of the sparse data base. It can also be argued that smaller
geometric standard deviations will be produced in situations with water present. It is unlikely
that data will ever be available to demonstrate this contention. The geometric standard deviation
of the size distribution is assumed to be uniformly distributed over the range of 1.6 to 3.2. Any
correlation of the geometric standard deviation with the mean size of the aerosol is neglected.

(12) _Aerosol Material Density. Early in the course of core debris interactions with concrete,
UO 2 with a solid density of around 10 g/cm 3 is the predominant aerosol material. As the
interaction progresses, oxides of iron, manganese and chromium with densities of about
5.5 g/cm 3 and condensed products of concrete decomposition such as Na20, K20, A1203 SiO 2,
and CaO with densities of 1.3 to 4 g/cm 3 become the dominant aerosol species. Condensation
and reaction of water with the species may alter the apparent material densities.
Coaggiomeration of aerosolized materials also complicates the prediction of the densities of
materials that make up the aerosol. As a result the material density of the aerosol is considered
uncertain. The material density used in the calculation of aerosol trapping is taken to be an
uncertain parameter uniformly distributed over the range of 1.5 to 10.0 g/cm 3.

Note that the mean aerosol particle size predicted by the VANESA code [6] is correlated with
the particle material density to the -1/3 power. This correlation of aerosol particle size with
particle material density was taken to be too weak and insufficiently supported by experimental
evidence to be considered in the uncertainty analyses done here.

(13) Initial Bubble Size. The initial bubble size is calculated from the Davidson-Schular
equation:

(6),,,Db = E cm
g O.,_

where _ is assumed to be uniformly distributed over the range of 1 to 1.54. The minimum
bubble size is limited by the Fritz formula to be:

Db : 0.0105 1t'[oI/g(pt-'pe)] lrz

where the contact angle is assumed to be uniformly distributed over the range of 20 to 120° .
The maximum bubble size is limited by the Taylor instability model to be:
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Db = 2Call(pl-ps) 112

where C is uniformly distributed over the range of 1.9 to 4. The maximum bubble size is also
limited by the Levich criterion:

Db(max) : 1.8o,/U/(pgp_) '/3

When a bubble is calculated to exceed this critical size, the bubble is assumed to instantaneously
divide into two, equal-volume, bubbles.

(14) Bubble Circu!ation a,nd Inertial Impaction. The interface between the gas in a bubble and
the water is an energetic surface that will accumulate suspended solids. It is thought that these
suspended solids will retard internal circulation of gases and consequently the efficiency of
inertial impaction of aerosol particles. Consequently, inertial impaction of aerosols within
bubbles is uncertain. This uncertainty is considered here by multiplying the coefficient for
inertial impaction by a parameter uniformly distributed over the range from 0 to I.

, (15) Boiling He_t Flux. The heat flux involved in boiling is quite controversial. The data base
that is developing suggests fluxes are in the neighborhood of 0.5 MW/m 2. Values as low as
0.3 MW/m 2 have been suggested. However, periodic eruptions as large as 1.6 MW/m 2 have
been observed in steady state melt/concrete interaction.tests. It is assumed here that the boiling
heat flux is lognormally distributed. The mean heat flux is taken to be 0.5 MW/m 2 and the
geometric standard deviation is taken to be 1.645. The range developed here from experimental
data implicitly accounts for accentuation of the boiling heat flux by subcooling and barbotage
effects.

B. Results of the Monte Ca_rloUnc.¢rtainty Analysis

The POOL model ;from the VANESA code [6] was modified to conduct the uncertainty analyses.
This model is based on a fourth-order Runge-Kutta solver of the differential equation for aerosol
deposition in rising bubbles. Aerosols size distributions were divided into 20 size ranges such
that each size range contained 5 % of the initial mass of aerosol. Aerosols within each bin were
characterized by the mass median diameter of particles classed in the bin. The Runge-Kutta
solver was applied then to each of these representative particles. Results for each bin were
accumulated to determine the overall decontamination factor. Step sizes in the Runge-Kutta
solution method were controlled so that in any one step no more than 10% of the aerosol mass
in the bubble deposited.

Uncertain quantities used in the analyses were selected according to their respective probability
density functions. The selection of values was done with a random number generator. Random
numbers were obtained with a congruent sequential generator algorithm. These numbers were
then "shuffled" to avoid the cyclical behavior of the random number generator [44].

Because of all the uncertainties, the decontamination factor calculated with the model described

above is uncertain. Values of the decontamination factor are distributed over a range. The
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range and the probable distribution of values in the range are not known a _. A single
calculation of the decontamination factor with a prescribed pool depth, a prescribed pool
temperature and sampled values of the uncertain parameters constitutes a sample of the unknown
distribution for the decontamination factor. By collecting enough samples of the distribution an
approximate description of the distribution can be constructed using the statistical methods
described in Appendix A. The approximation can be carried to any desired level of accuracy
simply by increasing the number of samples. For the purposes of this work, samples were taken
until it was at least 95 % certain that 95 % of the range of values for the decontamination factor
produced by a pool of given depth and subcooling had been sampled. In general, more than 300
samples were taken for any one case. For some cases more than 1400 samples were taken. The
samples obtained in the calculations were ordered and analyzed by non-parametric statistics as
described in Appendix A. These analyses yield cumulative probability distributions for the
natural logarithm of the decontamination factor. Though the sample sizes used in these analyses
are large, they are still quite finite. Consequently, there is some uncertainty in the distribution
functions derived from the samples. These uncertainties were characterized again using non-
parametric statistics as described in Appendix A.

1. Saturated Pool Results

For the cases involving a saturated pool, it was assumed that the depth of the water pool was
known exactly. Analyses were done for pool depths of 30, 50, 100, 200, 300, and 500 cm.
The results of the calculations are summarized in Tables 4 to 9. Note that the natural logarithms

of the calculated decontamination factors are listed in these tables. The samples are
characterized in term_ of a mean and a standard deviation"

N

Mean = _, x(i)/N = x
i=1

]Standard Deviation = (x(i) x)21(N 1)
i

where

x(i) = i th sample value of ln(DF)
N - sample size
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Table 4

Summary of Results for a Saturated Pool 30 cm Deep

,,,,, _ ,,,,,, .... , ,, : : , , , ,,, ,,,

Pool Pool Range for In DF at a Confidence Level (%) of
Depth Temp Quan- ........
(cm) (K) tile 50 80 90 95

(%)
_,,,,,,, .......... ,, ,, ....

30 sat'd 5 0.2264-0.2354 0.2164-0.2432 0.2144-0.2482 0.2123-0.2539
10 0.3032-0.3217 0.2949-0.3292 0.2915-0.3348 0.2890-0.3361

mean = 15 0.3668-0.3891 0.3539-0.3928 0.3516-0.3966 0.3474-0.3995
0.928 20 0.4201-0.4465 0.4140-0.4519 0.4070-0.4583 0.4043-0.4603

25 0.4830-0.5169 0.4732-0.5266 0.4628-0.5332 0.4589-0.5370

std. dev. 30 0.5518-0.5781 0.5414-0.5890 0.5368-0.5929 0.5307-0.5990
=0°586 35 0.6110-0.6280 0.5997-0.6391 0.5948-0.64 16 0.5902-0.6485

40 0.6596-0.6861 0.6502-0.6999 0.6409-0.7079 0.6391-0.7166
45 0.7229-0.7478 0.7154-0.7620 0.7044-0.7673 0.6997-0.7732
50 0.7854-0.8158 0.7705-0.8228 0.7645-0.8295 0.7600-0.8382

sample 55 0.8504-0.8805 0.8366-0.9056 !0.8267-0.9119 0.8225-0.9255
size = 60 0.9329-0.9689 3.9234-0.9837 0.9100-0.9927 0.9051-1.0066

1000 65 1.0203-1.0476 1.0093-1.0574 0.9918-1.0661 0.9843-1.0727
70 1.0891-1.1254 1.0775-1.1382 1.0685-1.1575 1.0617-1.1642

L

75 1.1928-1.2400 1.1731-1.2578 1.1615-1.2659 1.1555-1.2685

80 1.3188-1.3741 1.2980-1.4022 1.2702-1.4104 1.2666-1.4138
85 1.4738-1.5207 1.4382-1.5340 1.4322-1.5449 1.4202-1.5628
90 1.7042-1.7496 1.6539-1.8067 1.6267-1.8245 1.6159-1.8534
95 1.9797-2.0714 1.9612-2.0956 1.9566-2.1116 1.9486-2.1177

.... ,
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Table 5

Summary of Results for a Saturated Pool 50 cm Deep

,,,, ,, , , , :

Pool Pool Quan- Range for In DF at a Confidence Level (%) of
Depth Temp. tile ................ '
(cm) (K) (%) 50 80 90 95

,,, ,, ,

sat'd 5 0.3525-0.3712 0.3437-0.3752 0.3402-0.3805 0.3393-0.3823
50 10 0.4629-0.4754 0.4467-0.4842 0.4419-0.4885 0.4362-0.4909

15 0.5382-0.5614 !0.5298-0.5674 0.5223-0.5749 0.5177-0.5815
20 0.6141-0.6416 0.6063-0.6487 0.6031-0.6587 0.6004-0.6623

mean = 25 0.7012-0.7202 0.6878-0.7303 0.6767-0.7348 0.6707-0.7440
1.262

30 0.7699-0.7928 !0.7618-0.8009 0.7537-0.8086 0.7484-0.8143
std. 35 0.8361-0.8626 0.8266-0.8762 0.8203-0.8804 0.8176-0.8855

dev. = 40 0.9068-0.9270 0.8975-0.9386 0.8932-0.9437 0.8855-0.9536
0.689 45 0.9802-1.0038 0.9660-1.0164 0.9578-1.0227 0.9508-1.0316

50 1.0511-1.0763 1.0419-1.0891 1.0365-1.0925 1.0302-1.0979

sample
size = 55 1.1281-1.1636 11.1150-1.1762 1.0994-1.1850 1.0974-1.2030

1455 60 1.2318-1.2660:1.2189-1.2768 1.2071-1.2921 !1.2002-1.2990
65 1.3272-1.3633 1.3164-1.3745 1.3052-1.381011.2991-1.3906
70 1.4194-1.4552 1.4081-1.4680 1.3987-1.4769 1.3918-1.4863
75 1.5328-1.5750 1.5171-1.5907 1.5035-1.6030 rl.4934-1.6063

r

80 1.7091-1.7659 1.6685-1.7863 1.6507-1.7918 1.6482-1.8010
85 1.8747-1.9569 1.8534-1.9749 1.8427-1.9975 1.8306-2.0150
90 2.1647-2.2469 2.1216-2.3118 2.1050-2.3269 2.0951-2.3399
95 2.5977-2.7028 2.5404v2.7312 2.5281-2.7375 2.5156-2.7529

, ,,, , ,,,, ,,, , ,, , ,,,
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Table 6

Summary of Results for a Saturated Pool 100 cm Deep

Pool Pool Quan- Range for In DF at a Confidence Level (%) of
Depth Temp. tile ........
(cm) (K) (%) 50 80 90 95

100 sat'd 5 0.6049-0.6482 0.5949-0.6575 0.5909-0.6631 0.5827-0.6732
10 0.7259-0.7960 0.7497-0.8039 0.7454-0.8135 0.7341-0.8267

mean = 15 0.8920-0.9472 0.8731-0.9668 0.8645-0.9810 0.8478-0.9886
1.826 20 1.0228-1.0635 1.0073-1.0885 0.9956-1.0998 0.9858-1.1072

25 1.1382-1.1990 1.1255-1.2080 1.1049-1.2110 1.0994-1.2152
std. dev.

= 0.947 30 1.2350-1.2890 1.2154-1.3017 1.2109-1,3058 1.2080-1.3115
35 !1.3318-1.3718 1.3107-1.3883 1.3052-1.3915 1.2999-1.4068

sample 40 1.4173-1.4504 1.3922-1.4717 1.3888-1.4810 1.3815-1.4965
size = 45 1.5043-1.5592 1.4814-1.5690 1.4718-1.5810 1.457_-1.5858

838 50 1.5948-1.6251 1.5808-1.6577 1.5685-1.6680 1.5631-1.6742

55 i1.6870-1.7634 1.6674-1.7870 1.6573-1.8077 1.6482-1.8263

60 _1.8383-1.9027 1.8078rl.9392 1.7872-1.9537 1.7781-1.9628
65 1.9815-2.0527 1.9549-2.0771 1.9396-2.0883 1.9260-2.1038
70 2.1174-2.1901 2.0951-2.2110 2.0824-2.2265 2.0737-2.2387
75 2.2564-2.3399 2.2385-2.3932 2.2238-2.4089 2.2115-2.4280

80 2.4872-2.5605 2.4306-2.6005 2.4241-2.6292 2.4073-2.6387
85 2.7340-2.8233 2.6879-2.8750 2.6636-2.9149 2.6458-2.9588
90 3.0832-3.1937 3.0274-3.2636 2.9863-3.2813 2.9770-3.2974
95 3.5186-3.6444 3.4664-3.7427 3.4338-3.7745 3.4139-3.8078

i

!
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Table 7

Summary of Results for a Saturated Pool 200 cm Deep

,, , ,, ........ , ,

Pool Pool Quan- Range for In DF at a Confidence Level (%) of
Depth Temp tile .............................
(cm) (K) (%) 50 80 90 95

200 sat'd 5 1.0174-1.0802 0.9958-1.1196 0.9887-1.1394 0.9808-1.1493
10 1.2552-1.3074 1,2273-1.3350 1.2214-1.3413 1.1830-1.3438
15 1.4174-1.4704 1.3570-1.4966 1.3459-1.5108 1.3426_.1.5274

mean 20 1.5519-1.6513 1.5286-1.6735 1.5123-1.7012 1.4985-1.7083
= 2.696 25 1.7379-1.7881 1.7047-1.8350 1.6847-1.8405 1.661.1-1.8485

std. dev. 30 1.8755-1.9257 1.8401-1.9600 1.8191-1.9711 1.7980-1.9761
= 1.453 35 1.9786-2.0540 1.9651-2.0909 1.9386-2.1046 !1.9276-2.1109

40 2.1096-2.1705 2.0918-2.2103 2.0731-2.2202 2.0527-2.2383

,,ample 45 2,2235-2.2946 2.2093-2.3237 2.1743-2.3372 i2.1673-2.3572
size=626 50 2.3532-2.4236 2.3229-2.4676 2.3057-2.4976 2.2812-2.5070

55 2.5001-2.5888 2.4667-2.6427 2.4370-2.6619 2,4158-2.6770
60 2.6671-2,7536 2.6425-2.7821 2.5971-2.8071 2.5842-2.8213
65 2.8185-2.9152 2.7823-2.9688 2.7724-2.9872 2.7492-3,0043
70 3.0054-3.0925 2,9706-3.1275 2.9626-3.1481 2.9190-3.1845

75 3.2215-3.3226 3.1412-3.3724 3.1158-3.3831 3.0984-3.4222

80 3.4533-3.5749 3.3894-3.6368 3.3760-3.7005 3.3472-3.7377
85 3.7687-3.9238 3.7416-3.9653 3.7006-3.9905 3.6578-4.0159
90 4.25!5-4.3681 4.1133-4.4475 4.0325-4.4659 3.9971-4.4921
95 5.1455-5.4756 5.0488-5,7198 4.9747-5.7888 4.8134-5.8896

,,, I ...... 1
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Table 8

Summary of Results for a Saturated Pool 300 cm Deep

Pool Pool Quan- Range for In DF at a Confidence Level (%) of
Depth Temp. tile -
(cm) (K) (%) 50 80 90 95

300 sat'd 5 1.4561-1.5365 1.3207-1.5769 1.3081-1.6027 1.3021-1.6165
10 1.7294-1.8223 1.6656-1.8436 1.6174-1.8495 1.6025-1.8544
15 1.8555-1.9050 1.8488-1.9786 1.8373-1.9975 1.8280-2.0415
20 2.0180-2.1206 1.9786-2.1517 1.9204-2.1931 1.8944-2.2423

mean = 25 2.1920-2.2956 2.1290-2.3410 2.1143-2.3657 2.0948-2.3884
3.545

30 2.3459-2.4540 2.3054-2.5282 2.2932-2.5460 2.2647-2.5978
std. dev. 35 2.5298-2.6808 2.4658-2.7504 2.4105-2.7652 2.3893-2.7744
= 2.132 40 2.7503-2.7942 2.6795-2.8747 2.6342-2.9005 2.6057-2.9012

45 2.8729-2.9210 2.7924-2.9744 2.7801-3.0095 2.7696-3.0534

sample 50 2.9651-3.1248 2.9197-3.1615 2.9113-3.2035 2.9082-3.2145
size = 351

55 3.1612-3.2511 3.1223-3.3864 3.0810-3.3964 3.0161-3.4098
60 3.3807-3.4723 3.2506-3.5032 3.2361-3.5757 3.2265-3.5896
65 3.5017-3.6545 3.4722-3.6892 3.4385-3.7368 3.3989-3.8269
70 3.6913-3.9590 3.6596-4.0264 3.6479-4.0472 3.5912-4.0618
75 4.0282-4.1220 3.9769-4.2851 3.9023-4.3521 3.8637-4.3703

80 4.3372-4.5201 4.2143-4.6660 4.1157-4.7664 4.0963-4.4987
85 4.7865-4.9344 4.6484-5.1521 4.5475-5.1661 4.4945-5.3428
90 5.4210-5.9354 !5.1630-6.2323 5.1449-6.3903 4.9749-6.7622
95 7.1595-8.2965 6.8295-9.3387 6.1621-9.3885 5.3965-9.4600
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Table 9

Summary of Results for a Saturated Pool 500 cm Deep

Pool Pool Quan- Range for In DF at a Confidence Level (%) of
Depth Temp. tile .............
(cm) (K) (%) 50 80 90 95

,,, ............. , ........ , , , ,, ,

500 sat'd 5 2.1395-2.2673 12.0833-2.3210 2.0599-2.3560 2.0204-2.4051
10 2.5731-2.6106 2.4574-2.6380 2.4456-2.6467 2.4391-2.6507
15 2.7328-2.8345 2.6869-2.8984 2.6467-2.9065 2.6380-2.9096
20 2.9174-3.004 2.9064-3.0395 2.8974-3.0845 2.8765-3.1348

mean -- 25 3.1348-3.2601 3.0441-3.3965 3.0279-3.4173 3.0031-3.4297
5.086

30 3.4251-3.5594 3.3756-3.6051 3.3195-3.6374 3.2430-3.6834
std. dev. 35 3.6384-3.8268 13.6040-3.8682 3.5611-3.8932 3.5447-3.8990
= 3.185 40 3.8808-3.9942 3.8527-4.0280 3.8268-4.0785 3.7984-4.1016

45 4.0608-4.2350 4.009 -4.2832 3.9924-4.3214 3.9690-4.3404

sample 50 4.3187-4.4998 4.2693-4.5328 4.2097-4.5649 4.1856-4.5936
size =

483 55 4.5408-4.7216 14.5103-4.7661 4.4554-4.7915 4.4340-4.7970
60 4.7742-4.8849 4.7488-4.9324 4.7180-4.9543 4.6936-4.9929
65 4.9512-5.2122 14.9037-5.3576 4.8849-5.3718 4.8633-5.3866
70 5.3719-5.5122 5.2494-5.5863 5.2185-5.6406 5.1056-5.6551
75 5.6481-5.8440 15.5629-5.9537 5.5219-5.9756 5.5046-6.0331

80 6.0245-6.3781 :5.9554-6.3870 5.8722-6.4057 5.8457-6.4158
85 6.4754-6.8767 6.4039-7.1308 6.3867-7.1974 6.3841-7.3955
90 7.8250-8.0354 7.3955-8.7341 7.2146-8.8799 7.1400-9.2984
95 10.0329-11.8123 !9.7581-12.8553 9.5838-13.6204 9.4155-13.8318
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Because the probability distribution functions are not classical normal distribution functions, the
mean and the standard deviation are not especially good descriptors of the distributions. The
best characterization of the probability distribution function is provided by the ranges for quantile

points shown in Tables 4 to 9. Let _p be the point in the real cumulative probability distribution
for In(DF) in a given case. That is, 100p percent of the values obtained for In(DF) will be less

than or equal to _p. _p marks the 100p percent quantile of the real distribution. Thus, the
median or 50% quantile of the distribution is given by 40.5. The value of _p can be bracketed
at a prescribed confidence level by values obtained in the finite sample. The bracketing values

define an uncertainty range for values of G0. In Tables 4 to 9 ranges are given for p equal 0.05
to 0.95 in steps of 0.05.

Distributions for ln(DF) for saturated pool depths of 30, 50, 100, 200, 300, and 500 cm are
shown in Figures 4 to 9. Solid lines and vertical bars in the figures define the 50% confidence
levels for these distributions. Dashed lines define the 90% confidence intervals for the

distributions. In all cases, the distributions are sufficiently narrowly defined for most reactor
safety analyses. That is, the stochastic uncertainty that arises from the finite sample size is small
in comparison to the phenomenological uncertainty in the decontamination factor.

The distributions for In(DF) at all pool depths have similar shapes. The distribution rises
sharply to a linear regime between about the 20% and 80% quantiles. Over this linear region,
the probability density function is sensibly a constant. Often it is found that in the linear region
of a cumulative distribution one uncertain input parameter is a dominant contributor to the
uncertainty in a computed result. No attempt has been made to ascertain if only one of the
ur,ccrtain parameters identified above is responsible for variations in ln(DF) in the cases
examined here.

For quantiles greater than about 80% there is a long decreasing tail in the probability density
function of In(DF). Large uncertainties in the locations of quantile points in this region could
be reduced by using large samples from the Monte Carlo analyses. Unfortunately the
uncertainty ranges decrease with the square root of the sample size so that a great deal of work
is required to reduce the uncertainties in the larger quantiles.

The median (50% quantile) of In(DF) is plotted in Figure 10 against pool depth. For pool
depths up to about 100 cm, the ln(DF) increases rapidly with pool depth. I=or depths greater
than 100 cm, the median In(DF) increases linearly, but slowly with pool depth. This behavior
of the median In(DF) is also seen at least qualitatively in the variations with pool depth of the
other quantiles of the distribution of In(DF). The behavior can be understood as follows:

- inertial impaction and diffusion are responsible for most of the decontamination (see
Figure 11).

- very large and very small aerosol particles are quickly removed from the bubble; results
of the analyses suggest essentially all of the large and small particles are removed
during bubble rise through a 100 cm deep saturated pool.
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Figure 4. Cumulative Probability Distribution for In(DF) Produced by a Saturated Water Pool 30 cm Deep
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Figure 6. Cumulative Probability Distribution for ln(DF) Produced by a Saturated Water Pool 100 cm Deep
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Figure 8. Cumulative Probability Distribution for ln(DF) Produced by a Saturated Water Pool 300 cm Deep



Cumulative % With a Lower In(DF)

Figure 9. Cumulative Probability Distribution for ln(DF) Produced by a Saturated Water Pool 500 cm Deep
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Figure 11. Decontamination Factors Produced by Diffusion,

Inertial Impaction and Sedimentation in a 100 cm Deep, Saturated
Water Pool as Functions of Aerosol Particle Size
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- pools deeper than 100 cm achieve higher decontamination factors by removing aerosol
particles in an intermediate size regime that is not strongly affected by either diffusion
or inertial impaction (see Figure 12).

- because particles in the intermediate size regime are not strongly affected by either
diffusion or inertial impaction, the rate of decontamination after the bubble has risen
about 100 cm slows significantly.

This qualitative behavior raises a significant point about decontamination factors produced by
water pools overlying core debris interacting with concrete. The water pools not only attenuate
the magnitude of aerosol released to the containment, they also alter the size distribution of the
aerosol. Aerosols that emerge from the water pool are distributed in size relatively narrowly
around the maximum pool penetration size regardless of the size distribution of aerosols that
entered the water pool. For most of the cases considered here, the mass median size of particles
emerging from the water pool is 0.3 _+ 0.15/_m.

One consequence of the changes in the particle size distribution caused by water pools is that
decontamination factors for water pools cannot simply be multiplied by decontamination factors
for subsequent processes to obtain overall decontamination factors. Decontamination factors for
subsequent processes such as containment sprays must recognize the narrowed distribution of
aerosol particles that do emerge from the water pools.

2. Subcooled Pool Results

In most reactor accidents, it is likely that the water pool overlying core debris interacting with
concrete will quickly become saturated. There are some reactors for which so much water can
be applied to core debris in the reactor cavity that subcooled water pools can be maintained for
protracted periods. As increased attention is focused on accident management, it is often found
that providing water to the reactor containment to cool:core debris is one of the least expensive
plant modifications that can be made [7,8]. It is, therefore, likely that there will be more need
to consider subcooling of the water pool overlying core debris. Accordingly analyses were done
of the effects of subcooling on the decontamination factors that can be achieved by water pools.

As discussed briefly in Chapter II of this report, subcooling can:

- increase removal of aerosol particles from gases in bubbles by diffusiophoresis as steam
condense_ on the bubble walls, and

- accentuate deposition of particles by diffusion, inertial impaction and sedimentation
because the bubbles in the water pool are smaller once the bubble has equilibrated with
the pool.

The kinetics of steam condensation were neglected in the analyses of the effects of subcooling.
Bubbles expected to form during combined core debris-concrete-coolant interactions are small
enough that condensation of the steam is expected tO be rapid in comparison to the time-scales
of interest here. Neglect of steam condensation kinetics does, however, make it important that
the correlations of results presented here not be extrapolated to pools shallower than about
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30 cm. Steam condensation kinetics may well limit the diffusiophoretic decontamination that
can be achieved before the bubbles burst through the surface of a very shallow water pool.

As bubbles rise through the subcooled water pool, there is a weak mass flux of water vapor into
the bubble. This mass flux was considered to be too small to affect the diffusion, inertial
impaction and sedimentation processes that produce decontamination after the bubble has
equilibrated with the pool.

Results of the analyses of subcooling effects are summarized in Table 10. Detailed probability
distributions for decontamination by pools of depths from 30 to 300 cm with subcooling of 2 to
70 K are collected in Appendix B. The decontamination by a water pool is plotted against pool
depth for various levels of subcooling in Figure 13. Decontamination factor is plotted against
subcooling for various pool depths in Figure 14. The plotted values in these figures are the
medians (50% quantiles) of the distributions at 50% confidence level. The solid curves in the
figures were calculated from the regression equation described below

Note that the logarithm of the decontamination factor increases sharply from the values obtained
for saturated conditions as the subcooling increases from 2 to about 10 degrees. The effects of
subcooling greater than about 10 K are less dramatic. These results parallel in a sense the
shrinkage of the bubble that accompanies condensation of steam in the subcooled pool. There
is significant shrinkage for even small amounts of subcooling. Further subcooling does not
produce proportional reductions in the bubble size. The general dependence of the logarithm
of the decontamination factor on pool depth at constant subcooling is rather similar to that seen
for saturated cases. This dependence is determined by the particles with sizes of about 0.3 _m
that resist decontamination by diffusion, sedimentation, and inertial impaction.
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Table 10

Summary of Results for the Subcooled Cases

......

Pool Sub- 50% Quantile a 90% Quantile a* 10% Quantile o
Depth Cooling of In(DF) at of ln(DF) at of ln(DF) at
(cm) (K) 50% 90%, 90%

Confidence Confidence Confidence

30 0 0.7854-0.8158 1 1,6267-1.8245 2 0.2915-0.3348 1
30 2 2.3629-2.4250 2 3.6861-3.9945 3 1.2111-1.3854 1
30 5 3.0708-3.1175 3 4.7041-5.1801 2 1.7941-2.0150 1
30 10 3.7884-3.8978 2 5.5885-5.9541 3 2.2236-2.4091 2
30 20 4.5743-4.6779 2 6.6050-7.1592 3 2.9425-3.1907 2

30 30_ 5.0977-5.2478 2 7.2795-7.9798 2 3.3269-3.5749 2
30 50 5.7907-5.8814 3 8.3760-8.7992 4 3.8181-4.0992 2
30 70 5.7892-5.9429 2 8.5337-9.3989 2 3.5725-3.9342 2

50 0 1.0511-1.0763 2 2.1050-2.3269 2 0.4419-0.4885 2
50 2 2.7048-2.7805 2 4.2535-4.5795 3 1.4652-1.6618 1
50 5 3.5281-3.6559 1 5.4022-5.8733 3 1.9907-2.2740 1
50 10 4.3825-4.4949 2 6.4373-6.9502 3 2.6093-2.9217 2
50 20 5.0951-5.2448 2 7.7528-8.2354 4 3.0929-3.4076 2
50 30 5.6469-5.7914 2 8.0362-815868 3 3.4996-3.9106 2
50 50 6.4307-6.5659 3 9.3374-10.4523 2 3.9620-4.2385 2
50 70 7.1014-7.2417 3 10.0721-12.4243 1 4.3884-4.9852 1

100 0 1.5948-1.6251 3 2.9863-3.2813 2 0.7454-0.8135 2
100 2 3.4795-3.5774 3 5.4399-5.9751 2 2.0625-2.2355 2
100 5 4.4869-4.5630 2 6.6838-7.3304 2 2.5064-2.9710 1
100 10 5.3401-5.5473 3 8.1638-8.9105 2 3.2765-3.6409 2
100 20 6.4503-6.6214 1 9.6548-10.4686 2 4.1105-4.4486 2
100 50 8.2593-8.4461 2 12.4449-14.0268 3 5,0256-5.4645 1
100 70 8.8291-9.0081 2 13.7746-15.3293 2 5.5658-6.0474 1

200 0 2.3532-2.4236 2 4.0325-4.4659 2 1.2214-1.3413 2
200 10 7.2661-7.4614 2 10.8580-12.9156 1 4.0265-4.7015 1

!

300 0 2.9651-3.1248 1 5,1449-6.3903 1 1.6174-1.8495 1
300 2 6.4539-6.5348 4 10.2913-11.5347 2 3.8820-4.2937 2
300 5 7.5122-7.8032 1 11.9353-12.9979 3 4.5141-4.9976 2
300 10 9.0310-9.2363 2 13.7013-15.3326 2 5.3783-5.9109 2
300 30 12.0088-12.3872 2 20.0146-22.0593 2 7.1512-7.6963 2

500 0 4.3187-4.4998 1 7.2146-8.8799 1 2.4456-2.6467 2
....

= weight used in regression analysis.
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Figure 13. Natural Logarithm of the Decontamination Factor as a
Function of Pool Depth for Various Levels of Subcooling. The bars denote

the median values of the distribution at 50% confidence level.
The solid lines were calculated from the regression equation.
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Figure 14. Natural Logarithm of the Decontamination Factor as a Function of Subcooling for
Various Pool Depths. The bars denote the median values of the distribution at 50% confidence level.

The solid lines were calculated from the regression equation.



IV. REGRESSION OF THE RESULTS

The results of the Monte Carlo uncertainty analysis are easily used to obtain simplified
expressions for the decontamination of aerosol-laden gases by a water pool overlying core debris
that is interacting k,ith concrete. Simple polynomial regression of the results using as the
independent variable a quantity the analyst will know or can assume provides the necessary
expressions.

A. Saturated Results

For the cases in which the water pool was assumed to be saturated, pool depth was taken as the
independent variable (see Section III.B. 1). Conventional linear least squares regression was
done. Transformed independent variables available for the regression were taken to be:

v/-H,H, H 3/2, H 2, H 5/2, and H 3

where H is the water pool depth. The statistical 'F test' was used to determine how many terms
to include in the polynomial regression equations.

The dependent variables were taken to be the mean values of the uncertainty ranges for
particular quantiles of the distributions for the natural logarithms of the decontamination factors.
These mean values were weighted in the regressions in proportion to the reciprocals of the
widths of the uncertainty ranges.

Only selected quantiles of the distributions have been regressed against the independent variable
and its transforms. Perhaps the most interest will be in the median values of the distribution
(50% quantile). Interest focused on the median values will, it is presumed, not demand high
confidence levels, so the median used in the fitting process were the values obtained at the 50%
confidence level. The uncertainty ranges for the median of the In(DF) at various pool depths
are shown in Table 11 along with the weighting factor used in the regression process. The
regression equation obtained for these results for the median values at 50% confidence is:

In(DF) - -0.195036 + (0.17976+0.00049) (v_

+ (4.68319 ±0.084)x10-gH 3
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Table 11
Results for 50% Quantile at the 50% Confidence bevel

- Saturated Pool Case -

r, , , .... ,, ,,, , .... ,, ,,, ,

Pool Depth (cm) Range for In(DF) Weight in Regression*

30 0.7854-0.8158 12

50 1.0511-1.0763 I4

100 1.5948-1.6251 12

200 2.3532-2.4236 6

300 2.9651-3.1248 3

500 4.3187-4.4998 2

Regression Equation:

In(DF) = -0. 195036 + (0. 17976 +__O.06g)49)

+ (4.68319 +_0.084) x 10-9 H3

Standard Error = 0.00935

Sum of Squares of Residuals = 0.00395

*Integral weights proportional to the reciprocals of the ranges for In (DF)
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Estimates of the median of ttle natural logarithm of the decontamination factor (at 50%
confidence) are compared to the results of the Monte Carlo uncertainty analysis in Figure 15.
The quality of the regression equation fit to the results of the Monte Carlo uncertainty analysis
is indicated in Tables 11 to 13 by the sum of the squares of the residuals given by:

N

$2 = _ Ix(i)-._H(i))] z W(i) = 0.00395
t=l

wherel
!

S 2 : sum of the squares of the residuals

x(i) = ln(DF) for a pool depth H(i) obtained in the Monte Carlo uncertainty analysis

H(i) = pool depth used for the calculation of the i _ result

f(H(i)) : estimate of In(DF) obtained from the regression equation

W(i) :: weighting factor for the results obtained in the case of pool depth H(i)

It is important to remember that the regression equation developed here is a completely empirical
fit to the results of the Monte Carlo uncertainty analysis done with a mechanistic model. No
physical significance should be attached to the functional forms of the transformed independent
variables that appear in the polynomial expression. Similarly, the coefficients in the polynomial
expression ought not be physically interpreted.

It is also important that the regression equation be used only for interpolation for pool depths
in the range 30 _<_H(i) < 500 cm. Uncertainties in the estimates grow rapidly for pool depths
greater than 500 cm. For pool depths less than 30 cm, transient effects associated with the
formation of bubbles, which were neglected in the mechanistic modeling of the decontamination
process, can affect decontamination significantly.

Conservative analysts interested in the amount of aerosol produced by core debris/concrete
interactions that passes through the water pool into the containment atmosphere might find the
10% quantile results for ln(DF) of more interest than the median. For such conservative

purposes, it must be assumed, much higher levels of confidence are required. The 10% quantile
results for In(DF) in the case of a saturated pool at 90% confidence were found to fit well the
regression equation:

In(DF) = -0.1832417 + (0.0879653 +_ 0.00035558) (x/_)

+ _8.192503 + O.125 763) x 10-5 H3/2

- (!.2281546 ± 0.068840)x 10-9 H_
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Figure 15. Comparison of Median In(DF) Values Obtained in the Monte Carlo
Uncertainty Analyses for Various Pool Depths (bars) with Estimates Obtained

from the Regression Equation (continuous curve).
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Table 12

Results for 10% Quantile at the 90% Confidence lx_vel
- Saturated Pool Case -

Pool Depth (cm) Range for In(DF) Weight in Regression*

30 0.2915-0.3348 16

50 0.4419-0.4885 15

100 0.7454-0.8135 10

200 1.2214-1.3413 6

300 1.6174-1.8495 3

500 2.4456-2.6467 3

Regression Fxluation:

InfDF) = -0. 1832417 + _0.0879653 .± 0.00035558) x/-ff

+ (8.192503 +_0.125763)x 10-5 H_/2

- (1.2281546 + 0.068840)x 10-_ H3

Standard Error = 0.00188

Sum of Squares of Residuals = 0.00017

*Integer weights proportional to the reciprocals of the ranges for In (DF)
' .',I,', ' " - "_'.'"'
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Table 13
Results t'(_r9()_:_,Quantilc at the 9()',;4.('(_nfidence l.evei

--Saturated lqn)l ('ase -

7 ...... 7 , , ,,i,,,, ,,, Z:-_ %'' :___: 7::_

Pool Depth (cm) Range for In(DF) Weighl in Regression*

30 1.I'_2_7-1.8245 17

50 " 11)51") _ t) i-"a. )-,..3,c'_

100 2._8_3-3.2813 ) i

200 4.1)325-4.4_59 8

300 5. 1449-0.3903 3

500 7.214_-8.8759 "_

Regression Equation:

ln(DF) = 0.114994 + (0.295,_'71 :t: 0.003Z_8) x/(H)

+ (1.087539 +_ 0.068814)x 10-8 H3

Standard Error = 0.08103

Sum of Squares of Residuals = ().3479t_

*Integer weights proportional to the reciprocals of the ranges for In (DF)

59



The additional term in this regression equation in comparison to that for the median In(DF) was
justified by an F test. Other details of the development of this regression equation are shown
in Table 12.

On the other hand, an analyst interested in the radiation dose to the water pool might find most
useful the 90% quantile results for In(DF). Again, interests in the extremes of the distribution
of the logarithm of the decontamination factor would indicate high confidence level demands.
The regression equation developed for the 90% quantile at the 90% confidence level (see
Table 13) is:

In(DF) = O.114994 + (0.29587 5: 0.003738)

+ (1.087539 + 0.068814)x lO"s H 3

The estimates obtained with this regression equation are compared to results of the Monte Carlo
uncertainty analysis in Figure 16.

Tabulated results of the Monte Carlo uncertainty analysis for saturated cases can be used to
produce regression equations for other combinations of confidence levels and quantiles.
Together, the results could be used to produce a response surface with either constant confidence
level or correlat_ confidence levels.

B. Subcooled Results

A similar regression analysis was done for the cases in which the water pool was considered to
be subcooled. For these cases, the variables assumed to be known to the analyst were pool
depth, H, and subcooling, AT. Transformations of these variables considered in the regression
analyses were:

H 1/2, H3/2, H3, AT, AT1/2, AT3/2, AT2, AT3

HAT, (HAT) 1/2, H3AT, H3(AT) 1/2

Separate regressions were done for the median (50% quantile) results at 50% confidence, 10%
quantile results at 90% confidence, and 90% quantile results at 90% confidence. Results of the
Monte Carlo analyses were weighted in the regression by the reciprocals of the widths of the
uncertainty ranges divided by the respeciive values of the logarithm of the decontamination
factors. Results of the regressions for subcooled pool cases are:
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Figure 16. Comparison of Results of the Monte Carlo Uncertainty Analyses (bars)
to Estimates Obtained wittl the Regression Equations (continuous curves).
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1. Median Values at 50% Confidence Level:

InDF(H, AT) - lnDF(H,O) - 0.084381550

- (0.07040774 _ 0.0042757) AT

+ (8.2346311 + 1.58412)x 10 -5H 3t2

+ (0.8238286 + 0.0453165) ¢_'T

+ (0.0668004 ± 0.0022341) H_

Standard error = 0.2274.

where In DF (H,0) is the calculated value for the natural logarithm of the decontamination
factor, at the same confidence level, for a saturated pool of the same depth.

2. 90% Quantile Results at 90% Confidence:

lnDF(H, AT:) = InDF(H,O) + 0.03437166

- (0.2333505 ± 0.0346206)AT

+ (1.4415216 ± 0.140201) v/_T

+ (0.01234607 ± 0.0027294) AT 3/2

+ (3.92396212 ± 0.650023)x 10-4HAT

+ (0.075810892 ± 0.00889012) q_H-_T

+ (1.3850581 ± 0.105336)x 10-s H3_/_"T

Standard error = 0.33049.
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3. 10% Quantile Results at 90% Confidence

InDF(H, A T) = lnDF(H,O) + 0.00993606

- 0.0474108 (±0.0021796)AT

. 0.5696997 (±0.019987) (_T)

+ 0.0433372 (±0.00139914) Hc_H-_T

Standard error = 0.12447.

The regression equation predictions are compared to the results of the Monte Carlt, ......,yses in
Figures 13 and 14.:

The regression equations have been used to develop plots of constant decontamination factor as
functions of pool depth and subcooling. These plots are shown in Figures 17, 18 and 19.
Decontamination factors in excess of 1000 were calculated in the Monte Carlo analyses and can
be calculated with the simplified expressions using suitable values of pool depth and subcooling.
It is, however, difficult to have confidence in such large decontaminatio n factors. Phenomena
that have not been considered here can prevent achieving decontamination factors in excess of
about 1000 in real systems. One such phene.mc:,.e.-, is the entrainment of contaminated liquid
by sparging gases [6]. The authors recommend that predicted values of the decontamination
factor in excess of 1000 be reduced to 1000.
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Figure 17. Map of Median Values of the Decontamination Factor of 10, 100, 1000 and 10000
as Functions of Pool Depth and Subcooling. Note that decontamination factors in excess of 1000 may not

be realized in real systems because of unmodeled phenomena that can reverse decontamination by water pools.
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V. SUMMARY

A mechanistic model of the decontamination of aerosol-laden gases by a water pool overlying
core debris interacting with concrete has been described. This model was used to conduct a
Monte Carlo analysis of the uncertainty in the decontamination achieved by saturated water pools
30, 50, 100, 200, 300, and 500 cm deep. Cumulative probability distributions for the natural
logarithms of the decontamination factors are developed based on nonparametric statistical
analyses. Results of the uncertainty analyses are used to prepare simple polynomial regression
equations for estimating the decontamination factors for saturated pools 30 to 500 cm deep. The
median (50% quantile) decontamination factors (DF) for saturated cases can be estimated from:

i

ln(DF) = -0.195036 + 0.17976x/-_ + 4.68319x 10-9 H3

where H is the pool depth. The 10 percent quantile decontamination factor for saturated cases
can be estimated from:

ln(DF) = -0.1832417 + 0.0879653 (x/_

+ 8.192503 x 10 .5 H3/2- 1.2281546 x 10-9 H3

The 90 percent quantile decontamination factor for saturated cases can be estimated with:

ln(DF) = 0.114994 + 0.29587xf'_ + 1.087539x 10-8 H 3

Subcooling of the water pool dramatically increases the decontamination that can be achieved.
The mechanistic model was used in Monte Carlo uncertainty analyses for pools 30, 50, 100,
200, and 300 cm deep and subcooled by 2, 5, 10, 20, 30, 50, and 70 degrees Kelvin.
Cumulative probability distributions for the decontamination factors for these cases were
developed using nonparametric statistical analysis techniques. Results were then correlated by
linear regression to obtain simple polynomial expressions in terms of pool depth, H, and the
amount of subcooling, AT, for the decontamination factor. The median decontamination factor
can be estimated from:

lnDF(H, AT) = InDF(H,O) - 0.084381550 - 0.0704774 AT

+ 8.23463118 x 10-5H 3/2 + 0.8238286

+ 0.0668004 _ T
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where In DF (H,0) is the decontamination factor calculated for a saturated pool of the same
depth. The 90% quantile for a subcooled case can be estimated from:

InDF(H, A1) = InDF(H,O) + 0.03437166 - 0.2333505 AT

1 - --3/2+ 1.4415216_'_--T + 0.0 23460741

+ 3.92396212 x 10-4HAT + 0.075810892¢rH--_'T

+ 1.3850581 x 10-8H3 A_

The 10% quantile for a subcooled case can be estimated from:

! InDF(H,A I) = lnDF(H,O) 4. 0.00993606 - 0.0474108 AT

+ 0.5696997_ + 0.0433372 H_
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APPENDIX A

STATISTICS OF ORDER DISTRIBUTIONS

The statistical methods used to develop the probability distributions described in the text are
derived in this appendix. The derivations used here follow directly from derivations presented
by Hogg and Craig [1].

Consider a random variable X. Assume this random variable to have a continuous, positive
probability density function f(x) over the i,_terval from a to b such that a < b. The cumulative
probability distribution function for X is F(X) and is given by:

x It

-w 0

such that

.,* b

The probability density function, f(x) or equivalently the cumulative probability distribution
function F(x), are unknown for the problems posed in the text. The objective of the Monte
Carlo sampling is to obtain a sample of the random variable X from which some estimate of f(x)
or F(X) can be made.

At the conclusion of the Monte Carlo sampling for a given problem, a set of n possible values
of the random variable X is available:

{Xl, X 2, X3...Xn. 1, X n}

These sampled values can be arranged in increasing order--say, for example, X1, Xn.l, X2...X n,
X3. The values can then be relabelled Yi such that Yi < Yi+ 1:

{YI, Y2, Y3,"'Yn-i , Yn}

This ordered set of the sampled values of the random variable is the "order statistic" for the
sample of size n. The joint probability density function for this order statistic is labelled g(Yl,
Y2, Y3""Yn-I , Yn) and is given by:
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n!f rp/(r,).. r,_ rJ

g(YI,Y2,Y3,...Yn.I,Yn)= for Yi< Yi.l andi=l tOn-1

0 otherwise

This follows directly because there are n! ways that it might have been necessary to arrange the
sampled values of X in order to formulate the statistic.

A new statistic Z can be formulated from'

z_ = F(rp

where F(Y,) is the cumulative probability distribution function for the random variable X. The
Jacobian for this transformation of Y into Z is:

dY l 0 .............. 0
dZ l

0 dY2 ............ 0

dZ2 dr, dY2 dY 3 dY n
J --

dZ, dZ2 dZ , dZ ndY
0 0 _ ......0

dZ 3

o o o.. dr.
dZ.

1

dZ I dZ 2 dZ 3 dZ .

dY I dY 2 dY_ dY.._

Since Z = F(Y) and ,II/dY i :: f(Y,)"

1

f (Yi).f (Y2)f (YOf (Y_)

Then, the joint probability density function for the '/, statistic is'
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P P

nt z_(l -ZKr-xdZ,:
Pr(Zx<p) = f h(Z_)dZK= f0 0

= n! ._p)__r n! pr.l(1 _p).-r-i + p
Kt(n_K)lP r(1 + ..... +(K+1)t(n-K-l)(

n! p),-i
- _ i!(n-i)! P i(1- = Pr(Yg<_p), i=K

This result is sufficient to provide a basis to bracket critical values of the unknown distribution
function F(X) from the order statistic Y [2]. Note that

Pr(Y i < _p) = Pr(]_ < _p) + Pr(Y i < _p < Yj)

and that

Pr(Y i < _p < }_) = Pr(Y i < _p)-Pr(Yj < _p)

The joint probability density function of Zi = F(Y i) and Zj = F(Yj) for i <" j is:

h,j(Z.Zj)=

Z, ZiZ 1 Z] I I

=f....ff.....ff....f n!dZn"'dZ/+,dZi-t"'dZ,+tdZ,'"dZ,-,
o oz, zj__z/ z,.,

= nt i-l -i-l
(i-1)!(]-i-l)!(n-j)! Z, (Zj-Z_) / (1-Zj) n-_

for O < Z= < Z/ < 1

The most interesting of the joint probabilities is that of Z1 and Z n. Then,

h/n(Z _, Zn) = n(n-1) ('Zn-z1) n2 fi_rO < Z t < Z n < 1

Then, the probability that the sample of X exceeds some fraction p of the range of values of X
is given by:
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Pr[F(Y.) --F(Yz) _p] = Pr[Z.-Z_ _ p]

l-p 1

= f f
0 p,Z I

-- l-rip "-l . (n-l)p" - C

C is then the confidence level that a sample ot n values spans a fr;_c)ion of the distribution p.

Some values of the confidence level C for various values of n and p are shown in Table A-I.

An example helps to illuminate the features of the non-parametric analysis of the Monte Carlo
sampling to characterize an unknown distribution. Suppose five expert opinions are solicited on
the maximum ground acceleration of 5 Hz during an earthquake. These opinions are:

Expert # Ground Acceleration = X(i)

1 0.24

2 0.05

3 0.33

4 0.25

5 0.68

The order statistic for this set of samples is:

j Expert # X(i) Y(j)

1 2 0.05 0.05
2 1 0.24 0.24
3 4 0.25 0.25
4 3 0.33 0.33
5 5 0.68 0.68

Human opinions probably are not random samples of the true distribution of current uncertainty.
Here, however, it is assumed that these experts are special and do provide random samples of
the distribution. The first question to pose is "What is the probability that the five expert
opinions span 90% of the range of the distribution of opinions?" This question is answered
with:

Probability = 1-np n-1 + (n-1)pn

withn = 5andp = 0.9. Thus,
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Table A- 1

Sample Size Necessary to Span a Fraction of
the Uncertainty Distribution, p, at a

Confidence Level C

Confidence Sample Size to Span p =
Level

0.9 0.95 0.99 0.999

90% 37 76 388 3888

95% 46 93 473 4742

99% 64 130 661 6635

99.9% 88 180 919 9228

Probability = 1-5(0.9) 4 + 4(0.9) 5

,-, 0.082

It is likely, then, that there are opinions much more extreme than those reflected in the sample
of five opinions. Risk-adverse analysts would want :o get a larger sample than just five random
opinions. Note that the probability computed above is independent of the values provided by
the experts. This independence is, at first examination, surprising. The independence comes
about because it has been assumed that the opinions are random samples of the underlying
distribution. This is an acceptable assumption for the mechanical treatment of uncertainties
described in the main text of this report. Real expert panels, on the other hand, are capable of
providing opinions that span 90% of the range of opinions if charged to do so.

The next question that might be as_-ed is based on the values provided by the experts. Expert
Number 5 has provided a value that appears to be substantially higher than values provided by
the other experts. Pressure to delete this extreme opinion might develop. It is useful to have
an objective assessment of the probability that the opinion comes from the extreme limits of the
underlying distribution. Some indication of this can be obtained by asking what is the
probability that the 90% quantile of the underlying distribution is between the third and fourth
values in the order sample of opinions. This probability is found from"

Pr(Y(3) < _o.9< I"(4)) =

= Pr(Y(3) < _o.9) - Pr(Y(4) < _o.9)
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n

n! p),,-i
Pr(Y(k) < {p) = _ iY(n-i)1 p i(1 -i--k

n;5

p = 0.9

Then,

5

Pr(Y(3) < _o.9) = _ 51 0.9i(0.1)5__
_3 i_(5-i)T

_ 5! (0.9)3(0.1)2 + 5[ (0.94(0.1) + (0.9)s
3!2! 4!1[

N~ 0.9914

And,

5

Pr(Y(4) < _o.9) = _ 5[ (0.9),(0.1)5_ i
_--4 it(5-i)!

= 5(0.9)4(0.1) + (0.9) 5 ,_ 0.9185

Thus,

Pr(Y(3) < _o.9 < Y(4)) _ 0.073

The probability that the 90% quantile lies between the third and the fourth value of the ordered
sample is not very high. With such a small sample there is not a strong statistical basis to
exclude a value that might appear extreme in comparison to other values.

An example is used to illustrate how the characterization of the distribution improves with the
sample size. For this example, samples of 100, 500, 1000, and 3000 values were taken from
a lognormal distribution with a mean of 1.48 and a geometric standard deviation of 2.546. The
samples were ordered and subjected to the non-parametric statistical analyses described above.
Cumulative probability distributions derived from the samples at the 95 % confidence level are
shown in Figures A-1 to A-4. These are conventional cumulative probability plots. The known
distribution is also shown in the figures for comparison purposes. These results show that
median values are derived fairly accurately from samples of just 100 values if the distribution
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100 Sample Case
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Figure A-1. 95% Confidence Intervals for Quantiles of the Example
Distribution Derived from a 100 Value Sample. The actual underlying

distribution is shown by the continuous line.
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500 Sample Case
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Figure A-2. 95 % Confidence Intervals for Quantiles of the Example
Distribution Derived from a 500 Value Sample. The actual underlying

distribution is shown by the continuous curve.
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1000 Sample Case
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Figure A-3. 95% Confidence Intervals for Quantiles of the Example
Distribution Derived from a 1000 Value Sample. The actual underlying

distribution is shown by the continuous curve.
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3000 Sample Case
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Figure A-4. 95% Confidence Intervals for Quantiles of the Example
Distribution Derived from a 3000 Value Sample. The actual underlying

distribution is shown by the continuous curve.
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is not too complicated. Samples of about 1000 values are needed to get accurate values at the
5 % and 95 % quantiles.

The principal advantage of the Monte Carlo method and the non-parametric order statistic
analysis adopted here is that the number of samples that must be taken to characterize a
distribution is independent of the number of uncertain quantities that arise in calculations of the
type described in the text. The values listed in Table A-1 can be compared to the number of
calculations of values that would be required in a deterministic analysis. For instance, a simple
two-level factorial analysis of a problem with 16 uncertain xariables would require

216 = 65536

calculations. A far more complete characterization of the distribution is obtaine, J at fairly high
confidence levels with only a few hundred calculations following the Monte Carlo method.
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2. The factorials found in these equations can be accurately calculated for values greater than
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1 In(n+l) - n-1 + lln(2n) + 1 _ 1
In x! = (n+-_) 2 12(n+l) 360(n+1) 3
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1260(n+1) 5 1680(n+1) 7
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M. Abramowitz and I. A. Stegan, Handbook of Mathematical Functions, Dover
Publications, 1970.
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APPENDIX B

CUMULATIVE DISTRIBUTIONS DERIVED FOR
CASES WITH SUBCOOLED WATER POOLS

The detailed cumulative probability distributions for the natural logarithm of the decontamination
factor for cases with subcooled water pools are listed in Tables B-1 to B-25. The tabulated
results show quantiles of the distribution caused by phenomenological uncertainty at 5 % intervals
from 5% to 95%. These quantiles are shown for confidence levels of 50, 90 and 95% with
respect to the stochastic uncertainty associated with finite sample size. Means and standard
deviations for the samples are also shown in the tables. The entries in the tables can be used
in regression analyses to construct simplified expressions for different quantiles and confidence
levels than those developed in the main text of this report.
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Table B-1

Results for a 50 cm Pool with 2 Degrees Subcooling

Pool Sub- Quantile Range for In(DF) at a Confidence Level (%) of
Depth Cooling (%)
(cm) (K) 50 90 95

30 2 5 1.0257-1.0852 0.9941-1.1612 0.9738-1.1811
10 1.2581-1.3275 1.2111-1.3854 1.1994-1.3880
15 1.4488-1.5122 1.3868-1.5770 1.3759-1.5992
20 1.6158-1.6934 1.5693-1.7319 1.5505-1.7655
25 1.7675-1.8252 1.7056-1.8673 1.6979-1.8712

Mean = 30 1.8689-1.9311 1.8302-2.0025 1.8185-2.0153
= 2.5024 35 2.0101-2.0562 1.9448-2.0994 1.9139-2.1102

oo 40 2.0992-2.1741 2.0555-2.2308 2.0426-2.2446
o,, 45 2.2293-2.3129 2.1709-2.3715 2.1478-2.3918

50 2.3629-2.4250 2.3093-2.4797 2.2841-2.5172

Std. Dev. = 55 2.4779-2.5960 2.4233-2.6368 2.4109-2.6471
= 0.9867 60 2.6315-2.6881 2.5940-2.7510 2.5615-2.7663

65 2.7510-2.8230 2.6881-2.8827 2.6765-2.9000
70 2.8852-2.9622 2.8255-3.0398 2.8125-3.0450
75 3.0407-3.1082 2.9686-3.1780 2.9570-3.2204

Sample Size= 80 3.2251-3.3533 3.1482-3.4288 3.1115-3.4364
= 500 85 3.4903-3.5975 3.4207-3.6856 3.4014-3.6873

90 3.7549-3.8952 3.6861-3.9945 3.6817-4.0237
95 4.1755-4.4744 4.0739-4.5574 4.0475-4.6018



Table B-2

Results for a 30 cm Deep Pool with 5 Degrees Subcooling

Pool Sub- Quantile Range for ln(DF) at a Confidence Level (%) of
Depth Cooling (%) ....
(cm) (K) 50 90 95

30 2 5 1.5373-1.6335 1.5210-1.6783 1.5129-1.7439
10 1.8902-1.9810 1.7941-2.0150 1.7893-2.0250
15 2.0492-2.1081 2.0168-2.1921 2.0050-2.2105
20 2.2275-2.2749 2.1630-2.3547 2.1221-2.3657
25 2.3753-2.4100 2.3141-2.4644 2.2766-2.4715

Mean = 30 2.4659-2.6034 2.4257-2.6611 2.4097-2.6723
= 3.2797 35 2.6636-2.7146 2.6071-2.7760 2.5490-2.7970

40 2.7760-2.8648 2.7138-2.8991 2.6977-2.9266
Oo

--a 45 2. 8928-3.0120 2. 8637-3.0733 2. 8463-3.0904
50 3.0708-3.1175 3.0027-3.1798 2.9705-3.2119

Std. Dev. = 55 3.1757-3.2879 3.1147-3.3649 3.1071-3.3809
= 1.2323 60 3.3628-3.5007 3.2853-3.5632 3.2622-3.5739

65 3.5622-3.6447 3.5006- 3.7297 3.4503-3.7477
70 3.7322-3.8668 3.6515-3.9180 3.6215-3.9511
75 3.9321-4.0614 3.8796-4.0905 3.8620-4.0963

Sample Size = 80 4.0981-4.1963 4.0774-4.2568 4.0630-4.2976
= 500 85 4.3174-4.4735 4.2341-4.6745 4.2134-4.7341

90 4.7935-4.9239 4.7041-5.1801 4.6312-5.1901
95 5.3264-5.5741 5.2359-5.8275 5.2254-6.0112



Table B-3

Results for a 30 cm Deep Pool with 10 Degrees Subcooling

.. .,, ,,,

Pool Sub- Qu,: ' Range for In(DF) at a Confidence Level (%) of
Depth Cooling (%) .......
_cm_ (K) 50 90 95

...........

30 I0 5 _ 2.0850-2. I362 2.0321-2.1696 1.9847-2.1887
10 2. __844-,..3495 2.2236-2.4091 2.2033-2.4176
15 2.4945-2.5830 2.4148-2.6741 2.3983-2.7137
20 2.7177-2.8447 2.6495-2.8957 2.6253-2.9217
25 2.9361-3.0377 2.8550- 3.1085 2.8450- 3.1215

Mean = 30 3.1168-3.1989 3.0591-3.2653 3.0329-3.2954
= 3.9776 35 3.2725-3.3724 3.2042-3.4207 3.1825-3.4521

oo 40 3.4195-3.5316 3.3711-3.6125 3.3416-3.6351
o_ 45 3.6106-3.7186 3.5313-3.7957 3.5109-3.8224

50 3.7884-3.8978 3.7083-3.9601 3.6953-3.9794

Std. Dev. = 55 3.9584-4.0543 3.8955-4.1354 3.8724-4.1496
= 1.3552 60 4.1300-4.2265 4.0504-4.2868 4.0364-4.3196

" 65 4.2867-4.4153 4.2265-4.5534 4.2030-4.5801
70 4.5607-4.6504 4.4380-4.7227 4.3733-4.7329
75 4.7287-4.8177 4.6656-4.9203 4.6402-4.9981

Sample Size = 80 5.0109-5.1016 4.8387-5.2624 4.8182-5.3399
= 500 85 5.3728-5.5039 5.2001-5.5840 5.1462-5.5996

90 5.6705-5.7915 5.5855-5.9541 5.5803-5.9787
95 6.2587-6.5598 6.0905-6.7729 6.0132-6.9426



Table B-4

Results for a 30 cm Deep Pool with 20 Degrees Subcooling

Pool Sub- Quantile Range for In(DF) at a Confidence Level (%) of

Depth Cooling (%)
(cm) (K) 50 90 95

30 20 5 2.6347-2.7398 2.5383-2.8428 2.5068-2.8864
10 3.0192-3.1206 2.9425-3.1907 2.9079-3.2034
15 3.2568-3.3255 3.1940-3.4021 3.1721-3.4175
20 3.4377-3.5874 3.3814-3.6365 3.3616-3.6514
25 3.6521 -3.7318 3.6013- 3.7989 3.5886- 3.8236

Mean = 30 3.8150-3.9267 3.7420-4.0208 3.7262-4.0315
= 4.8443 35 4.0269-4.0907 3.9364-4.2127 3.9109-4.2594

40 4.2111-4.3187 4.0902-4.3639 4.0748-4.4023
OO

'_ 45 4.3575-4.5125 4.3180-4.5771 4.3083-4.5968
50 4.5743-4. 6779 4.5122 -4.7774 4.4785 -4.7851

Std. Dev. = 55 4.7740-4.8883 4.6670-4.9425 4.6285-4.9676
= 1.6431 60 4.9380-5.0416 4.8878-5.1318 4.8458-5.1495

65 5.1313-5.2527 5.0408-5.3464 5.0133-5.3869
70 5.3521-5.5278 5.2551-5.6537 5.2234-5.6630
75 5.6575-5.8328 5.5420-5.9024 5.5237-5.9127

Sample Size = 80 5.9134-6.0184 5.8602-6.1186 5.8349-6.1902
= 500 85 6.2049-6.4617 6.0880-6.5898 6.0502-6.6331

90 6.7291-6.9697 6.6050-7.1592 6.5446-7.1919
95 7.5790-7.8508 7.3273-8.0699 7.2758-8.2959



Table B-5

Results for a 30 cm Deep Pool with 30 Degrees Subcooling

Pool Sub- Quantile Range for In(DF) at a Confidence Level (%) of
Depth Cooling (%)
(cm) (K) 50 90 95

30 30 5 2.9779-3.0352 2.9381-3.1484 2.9058-3.2035
10 3.3771-3.5028 3.3269-3.5749 3.2715-3.6555
15 3.7332-3.8961 3.5874-3.9572 3.5662-3.9717

I 20 3.9941-4.0576 3.9275-4.1629 3.9069-4.1906
25 4.1940-4.3134 4.0981-4.3932 4.0600-4.4062

Mean = 30 4.4022-4.5314 4.3306-4.6116 4.2922-4.6335
= 5.4376 35 4.6208-4.7124 4.5345-4.7563 4.5223-4.7851

40 4.7560-4.8752 4.7106-4.9577 4.6914-4.9632
o 45 4.9575-5.0272 4.8566-5.0995 4.8321-5.1384

50 5.0977-5.2478 5.0240-5.3400 5.0062-5.3761

Std. Dev. = 55 5.3385-5.4562 5.2467-5.5309 5.2222-5.5743
--- 1.7468 60 5.5298-5.6807 5.4524-5.7874 5.4064-5.8436

65 5.7863-5.9235 5.6802-6.0494 5.6519-6.0771
70 6.0515-6.1883 5.9298-6.2800 5.8964-6.3282
75 6.3195-6.4185 6.1971-6.5623 6.1774-6.6045

Sample Size = 80 6.6173-6.8605 6.4811-6.9937 6.4407-7.0165
= 500 85 7.0453-7.1639 6.9697-7.2634 6.9370-7.3101

90 7.4124-7.7175 7.2795-7.9798 7.2528-8.0105
95 8.3130-.8.6026 8.1195-8.7214 8.0512-8.7538



Table B-6

Results for a 30 cm Deep Pool with 50 Degrees Subcooling

Pool Sub- Quantile Range for ln(DF) at a Confidence Level (%) of
Depth Cooling (%)
(cm) (K) 50 90 95

30 50 5 3.3845-3.4949 3.2113-3.7281 3.2023-3.7483
10 3.9292-4.0371 3.8181-4.0992 3.8012-4.1233
15 4.1895-4.3306 4.1074-4.4489 4.0898-4.4806
20 4.5394-4.6987 4.4248-4.7990 4.3415-4.8269
25 4.8318-4.9420 4.7443-5.0172 4.6994-5.0422

Mean = 30 5.0392-5.0979 4.9508-5.1337 4.9272-5.1559
= 6.1298 35 5.1356-5.2794 5.0983-5.3743 5.0942-5.3849

,_ 40 5.3743-5.4952 5.2770-5.6030 5.2416-5.6413
-- 45 5.6009-5.7182 5.4912-5.7921 5.4563-5.8056

50 5.7907-5.8814 5.7123-5.9605 5.6871-5.9889

Std. Dev. = 55 5.9489-6.0682 5.8780-6.1986 - 5,8580-6.2536
-- 1.9380 60 6.1882-6.3343 6.0673-6.4419 6.0200-6.4851

65 6.4392-6.6593 6.3341-6.7734 6.2758 6.8136
- ,,._ ,._70 6.7872-6.964 1 6.6663-7. 1096 _. 6_,,_0-7.1250

' "_ 775 7.1219-7.1979 6.9931-7.3482 6.93J0- .4932

Sample Size = 80 7.4948-7.6300 7.2440-7.7231 7.2004-7.7953
= 500 85 7.8153-8.0135 7.6916-8.3703 7.6536-8.4072

90 8.4943-8.6151 8.3760-8.7992 8.1916-8.9859
95 9.3548-9.8350 9.1332-10.5710 9.0560-10.6971



Table B-7

Results for a 30 cm Deep Pool with 70 Degrees Subcooling

I

Pool Sub- Quantile Range for ln(DF) at a Confidence Level (%) of
Depth Cooling (%)
(cm) (K) 50 90 95

30 70 5 3.3027-3.3830 3.2045-3.4768 3.1998-3.5083
10 3.7114-3.8132 3.5725-3.9342 3.5353-3.9765
15 4.0950-4.2563 3.9511-4.3468 3.9168-4.3890
20 4.4233-4.5492 4.3352-4.6987 4.2830-4.7625
25 4.7825-4.9973 4.6032-5.0504 4.5548-5.0754

Mean = 30 5.0548-5.1541 5.0050-5.2112 4.9818-5.2349
= 6.2685 35 5.2204-5.3896 5.1570-5.4512 5.1443-5.4702

40 5.4511-5.5326 5.3889-5.6179 5.3721-5.6452
45 5.6156-5.7374 5.5279-5.7946 5.4959-5.864 5

_o 50 5.7892-5.9429 5.7356-6.0294 5.7062-6.0547

Std. Dev. = 55 6.0133-6.1635 5.9331-6.2253 5.9184-6.2597
= 2.3913 60 6.2221-6.3566 6.1630-6.5356 6.1396-6.5709

65 6.5319-6.7318 6.3558-6.7987 6.3349-6.8278
70 6.8022-6.9888 6.7390-7.1184 6.6929-7.1428
75 7.1308-7.3062 7.0013-7.5420 6.9848-7.6333

Sample Size = 80 7.6359-7.9165 7.4235-8.0845 7.3269-8... 4
= 500 85 8.1484-8.3169 8.0539-8.5225 7.9710-8.5505

90 8.7262-9.0258 8.5337-9.3989 8.5010-9.5258

I 95 9.8988-10.2119 9.7265-10.6287 9.6539-10.7503



Table B-8

Results for a 50 cm Deep Pool with 2 Degrees Subcooling

Pool Sub- Quantile Range for ln(DF) at a Confidence Level (%) of
Depth Cooling (%)
(cm) (K) 50 90 95

50 2 5 1.3659-1.3889 1.3350-1.4337 1.3156-1.4389
10 1.5577-1.61130 1.4652- I. 6618 1.4463-1.6838
15 1.7519-1.8133 1.6671-1.8628 1.6551-1.8831
20 1.8920-1.9600 1.8279-2.0160 1.8215-2.0690
25 2.0819-2.1342 1.9909-2.1936 1.9610-2.2067

Mean = 30 2.2055-2.2676 2.1453-2.3246 2.1325-2.3464
= 2.9413 35 2.3333-2.3919 2.2695-2.4247 2.2553-2.4386

,_ 40 2.4247-2.5097 2.3915-2.5814 2.3843-2.5955
45 2.5801-2.6354 2.4905-2.7073 2.4784-2.7279
50 2.7048-2.7805 2.6288-2.8377 2.6215-2.8508

Std. Dev. = 55 2.834!-2.8975 2.7781-2.9912 2.7565-3.0369
= 1.2085 60 2.9812-3.1059 2.8968-3.1549 2.8766-3.1750

65 3.1521-3.2584 3.1056-3.3155 3.0919-3.3512
70 3.3169-3.4360 3.2648-3.51 64 3.2407-3.55 i 7
75 3.5341-3.6894 3.4660-3.7573 3.4216-3.7854

Sample Size = 80 3.7871-3.8553 3.7066-4.0302 3,692!-4.0435
= 500 85 4.0527-4.1490 3.9509-4.2475 3.88354.2826

90 4.3327-4.4848 4.2535-4.5795 4.2347-4.6509
95 4.9590-5.2124 4.8064-5.5113 4.7482-5.7450



Table B-9

Results for a 50 cm Deep Pool with 5 Degrees Subcooling

Pool Sub- Quantile Range for ln(DF) at a Confidence Level (%) of
Depth Cooling (%)
(cm) (K) 50 90 95

50 5 5 1.8375-1.9170 1.7369-1.9426 1.7332-1.9566
10 2.0554-2.1692 1.9907-2.2740 1.9766-2.2885
15 2.3632-2.4497 2.2853-2.5103 2.2175-2.5417
20 2.5760-2.6734 2.4896-9.7 !93 2.4705-2.7396
25 2.7401-2.8545 2.6840-2.9037 2.6736-2.9320

Mean = 30 2.9206-2.9856 2.8619-3.0453 2.8301-3.0698
= 3.7644 35 3.0493-3.1560 2.9962-3.1970 2.9766-3.2210

,_ 40 3.1967-3.2975 3.1552-3.3895 3.1214-3.4340
"_ 45 3.3700-3.4962 3.2908-3.5328 3.2808-3.5466

50 3.5281-3.6559 3.4957-3.7443 3.4758-3.7656

Std. Dev. = 55 3.7408-3.8356 -J 3.6427-3.8898 3.6031-3.9090
= 1.3447 60 3.8883-3.9825 3.8271-4.0534 3.8070-4.0701

65 4.0530-4.2045 3.9825-4.3215 3.9453-4.3732
70 4.3366-4.4367 4.2088-4.5298 4.2000-4.5911
75 4.5643-4.6775 4.4401-4.7370 4.4321-4.7553

Sample Size = 80 4.7570-4.8597 4.6973-4.9217 4,6776-4.9328
= 500 85 4.9969-5.2619 4.9088-5.3842 4.8810-5.4393

90 5.5344-5.6614 5.4022-5.8733 5.3691-5.9016
95 6.1494-6.3807 6.0455-6.5367 5.9789-6.5692



Table B-10

Results for a 50 cm Deep Pool with 10 Degrees Subcooling

Pool Sub- Quantile Range for ln(DF) at a Confidence Level (%) of
Depth Cooling (%)
(cm) (K) 50 90 95

50 10 5 2.3539-2.4919 2.2108-2.5785 2.1557-2.5910
10 2.7134-2.8351 2.6093-2.9217 2.5992-2.9428
15 2.999-3.1200 2.9302-3.2129 2.9011-3.2471
20 3.2612-3.3757 3.1588-3.4521 3.1350-3.4776
25 3.4805-3.5738 3.4169-3.6180 3.3833-3.6368

Mean = 30 3.6246-3.7397 3.5852-3.8249 3.5698-3.8722
= 4.6346 35 3.8293-3.9660 3.7506-4.0281 3.7301-4.0439

40 4.0277-4.1252 3.9658-4.1966 3.9530-4.2474
45 4.1933-4.2944 4.1225-4.3839 4.1142-4.4087
50 4.3825-4.4949 4.2929-4.5726 4.2769-4.587.5

Std. Dev. = 55 4.5596-4.6625 4.4942-4.7690 4.4793-4.7944
= 1.6077 60 4.7619-4.8707 4.6603-4.9900 4.6321-5.0060

65 4.9884-5.1080 4.8707-5.1621 4.8615-5.1812
70 5.1674-5.2976 5.1193-5.4006 5.0810-5.4260
75 5.4039-5.6399 5.3402-5.7857 5.2907-5.8469

Sample Size = 80 5.8566-5.9593 5.7161-5.9987 5.6463-6.0477
= 500 85 6.0748-6.2124 5.9880-6.4273 5.9769-6.4549

90 6.5519-6.6764 6.4373-6.9502 6.3408-7.0046
95 7.2270-7.6409 7.1663-7.9425 7.1024-7.9884



Table B- 11

Results for a 50 cm Deep Pool with 20 Degrees Subcooling

Pool Sub- Quantile Range for ln(DF) at a Confidence Level (%) of
Depth Cooling (%)
(cm) (K) 50 90 95

50 20 5 2.6821-2.8589 2.6265-2.9573 2.5903-2.9762
10 3.1933-3.3115 3.0929-3.4076 3.0300-3.4445
15 3.5537-3.7511 3.4235-3.7984 3.3922-3.8178
20 3.8411-3.9427 3.7882-4.0153 3.7680-4.0374
25 4.0414-4.1843 3.9727-4.2715 3.9466-4.2940

Mean = 30 4.2822-4.4249 4.2030-4.5547 4.1651-4.5951
= 5.5245 35 4.5746-4.6450 4.4293-4.7271 4.4026-4.7575

40 4.7265-4.8574 4.6437-4.9356 4.6240-4.9627
o_ 45 4.9339-5.0749 4.8548-5.0980 4.8386-5.1195

50 5.0951-5.2448 5.0562-5.3978 5.0208-5.4725

Std. Dev. = 55 , 5.3887-5.6161 5.2430-5.6858 5.2255-5.7316
= 2.0147 60 5,6755-5.8010 5.5947-5.8801 5.5393-5,9264

65 5.8781-6.0302 5.8002-6.1735 5,7762-6.1968
70 6.1751-6.2983 6.0376-6.5530 6.0079-6.5842
75 6.5445-6.8054 6.3185-6.9905 6.2830-7.0012

Sample Size = 80 7.0019-7.1165 6.8716-7.3138 6.8068-7.3186
= 500 85 7.3324-7.4754 7.2611-7.7264 7.2409-7.8019

90 7.8994-8.1412 7.7528-8.2354 7.6376-8.3488
95 8.6196-9.0436 8.5191-9.7546 8.4695-9.9856



Table B-12

Results for a 50 cm Deep Pool with 30 Degrees Subcooling

H.....

Pool Sub- Quantile Range for ln(DF) at a Confidence Level (%) of
Depth Cooling (%)
(cm_ (K) 50 90 95

50 30 5 3.1952-3.2875 3.1241-3.3776 3.1127-3.4077
10 3.6486-3.8498 3.4996-3.9106 3.4312-3.9227
15 4.0447-4.1304 3.9134-4.1723 3.9010-4.2068
20 4.2683-4.3837 4.1526-4.4785 4.1472-4.5174
25 4.5222-4.6568 4.4409-4.7591 4.3852-4.8221

Mean = 30 4.7933-4.9559 4.6929-5.0378 4.6531-5.0586
= 5.9125 35 5.0396-5.1507 4.9589-5.2356 4.9218-5.2615

,_ 40 5.2354-5.3638 5.1501-5.4698 5.1388-5.4929
-a 45 5.4610-5.6025 5.3525-5.6575 5.3203-5.6845

50 5.6469-5.7914 5.5588-5.8551 5.5321-5.8800

Std. Dev. = 55 5.8538-5.9509 5.7863-6.0039 5.7473-6.0389
= 1.9181 60 6.0034-6.1567 5.9475-6.2434 5.9263-6.2700

65 6.2428-6.3659 6.1560-6.5450 6.0799-6.6080
70 6.5482-6.7791 6.3736-6.8286 6.3497-6.8499
75 6.8340-7.0403 6.7988-7.1326 6.7633-7.1757

Sample Size = 80 7.1766-7.4141 7.0594-7.5486 7.0412-7.6113
= 500 85 7.6568-7.8402 7.5167-8.0184 7.4584-8.0489

90 8.1099-8.304 1 8.0362-8.5868 8.0007-8.6305
95 9.0330-9.4238 8.7304-9.5990 8.6665-9.6518



Table B- 13

Results for a 50 cm Deep Pool with 50 Degrees Subcooling

Pool Sub- Quantile Range for ln(DF) at a Confidence Level (%) of
Depth Cooling (%)
(cm) (K) 50 90 95

50 50 5 3.5955-3.7463 3.4620-3.8611 3.4008-3.8757
10 4.0290-4.1873 3.9472-4.2385 3.8972-4.2506
15 4.4203-4.5973 4.2452-4.7099 4.2263-4.7235
20 4.7695-4.9482 4.6884-5.0877 4.6506-5.1087
25 5.1095-5.2601 5.0145-5.3882 4.9486-5.4115

Mean = 30 5.4092-5.5023 5.2757-5.6100 5.2560-5.6615
= 6.9015 35 5.6308-5.7628 5.5115-5.8638 5.4880-5.9031

40 5.8638-6.0270 5.7624-6.1575 5.7518-6.1873
oo 45 6.1561-6.2937 6.0159-6.4312 5.9820-6.4736

50 6.4307-6.5659 6.2867-6.7004 6.2682-6.7163

Std. Dev. = 55 6.6930-6.7883 6.5609-6.9479 6.5370-7.0126
= 2.7161 60 6.9416-7.1590 6.7747-7.3125 6.7359-7.3266

65 7.3114-7.4201 7.1566-7.5848 7.0955-7.6529
70 7.5868-7.8314 7.4227-8.0317 7.4036-8.0648
75 8.0500-8.2038 7.8774-8.3263 7.7748-8.3989

Sample Size = 80 8.4019-8.6177 8.2476-8.7365 8.2116-8.7603
= 500 85 8.8977-9.0595 8.7161-9.3008 8.6476-9.3544

90 9.4390-10.1692 9.3374-I0.4523 9.2363-10.6419
95 11.1363-11.7915 10.7847-12.0537 10.7063-12.2857



Table B- 14

Results for a 50 cm Deep Pool with 70 Degrees Subcooling

Pool Sub- Quantile Range for In(DF) at a Confidence Level (%) of
Depth Cooling (%)
(cm) (K) 50 90 95

50 70 5 3.8315-4.0895 3.6110-4.2238 3.5782-4.3633
10 4.5572-4.8263 4.3884-4.9852 4.2368-5.0320
15 5.0411-5.1829 4.9309-5.3146 4.8410-5.3832
20 5.3427-5.5712 5.2240-5.6406 5.1558-5.6593
25 5.6381-5.7291 5.5604-5.9033 5.5244-5.9209

Mean = 30 5.8943-6.1627 5.7250-6.2422 5.6955-6.3451
= 7.7924 35 6.2155-6.5148 6.0860-6.6834 5.9778-6.7047

40 6.6387-6.7932 6.4203-6.9270 6.3663-6.9729
45 6.8950-7.0522 6.7469-7.1433 6.7027-7.2037
50 7.1014-7.2417 6.9867-7.3856 6.9395-7.4254

Std. Dev. = 55 7.3402-7.5045 7.2171-7.6119 7.1856-7.6659
= 3.5256 60 7.5512-7.8159 7.4665-8.0150 7.4155-8.0574

65 7.9304-8.2269 7.6843-8.3344 7.6659-8.4080
70 8.2603-8.6093 8.1902-8.7249 8.0720-8.7860
75 8.7077-9.0308 8.5621-9.2267 8.4891-9.3086

Sample Size = 80 9.2093-9.4807 9.0217-9.6231 8.9516-9.7032
= 360 85 9.6563-9.9369 9.4994-10.2462 9.4567-10.2803

90 10.2879-11.2271 10.072!-12.4243 10.0132-12.7523
95 13.2847-14.1425 12.7569-15.6067 12.5553-16.6816



Table B-15

Results for a 100 cm Deep Pool with 2 Degrees Subcooling

Pool Sub- Quantile Range for In(DF) at a Confidence Level (%) of
Depth Cooling (%)
(cm) (K) 50 90 95

100 2 5 1.7927-1.9251 1.7112-1.9823 1.6744-1.9939
10 2.1189-2.1669 2.0625-2.2355 2.0106-2.2683
15 2.3594-2.4656 2.2395-2.5967 2.2225-2.5134
20 2.5516-2.6143 2.4972-2.6839 2.4827-2.6939
25 2.6920-2.7715 2.6272-2.8284 2.6175-2.8592

Mean = 30 2.8550-2.9483 2.7755-2.9930 2.7674-3.0265
= 3.8077 35 3.0011-3.0967 2.9497-3.1354 2.9239-3.1522

40 3.1353-3.2512 3.0953-3.3068 3.0824-3.3232
o 45 3.3042-3.4013 3.2408-3.4848 3.1931-3.5120

50 3.4795-3.5774 3.3937-3.6883 3.3758-3.7130

Std. Dev. = 55 3.6659-3.7880 3.5760-3.9520 3.5512-4.0054
= 1.4598 60 3.9516-4.1035 3.7846-4.1943 3.7560-4.2211

65 4.1934-4.2717 4.1032-4.3402 4.0555-4.4128
70 4.3513-4.5281 4.2776-4.6441 4.2601-4.6873
75 4.6573-4.7798 4.5490-4.8771 4.5192-4.9436

Sample Size = 80 4.9454-5.0698 4.8016-5.1766 4.7851-5.2008
= 500 85 5.2279-5.3092 5.1393-5.4282 5.1162-5.4488

90 5.5653-5.6976 5.4399-5.9751 5.4027-6.0525
95 6.2781-6.3759 _ 6.1722-6.6805 6.1115-6.8114



Table B- 16

Results for a 100 cm Deep Pool with 5 Degrees Subcooling

Pool Sub- Quantile Range for ln(DF) at a Confidence Level (%) of
Depth Cooling (%)
(cm) (K) 50 90 95

100 5 5 2.2899-2.3479 2.1337-2.4495 2.1269-2.4695
10 2.6316-2.8324 2.5064-2.9710 2.4779-3.0070
15 3.0670-3.1999 2.9815-3.2641 2.9547-3.3217
20 3.3457-3.4339 3.2496-3.5354 3.2361-3.5511
25 3.5527-3.6822 3.4429-3.7767 3.4340-3.7977

Mean = 30 3.7904-3.8733 3.6870-3.9630 3.6629-3.9747
= 4.8364 35 3.9665-4.1043 3.8829-4.1409 3.8407-4.1601

40 4.1406-4.2298 4.1030-4.3050 4.0462-4.3247
O

'--" 45 4.2991-4.4118 4.2246-4.4891 4.2070-4.5090
50 4. 4869-4.5630 4. 3980-4. 7396 4.3689-4. 8048

Std. Dev. = 55 4.7362-4.8986 4.5541-4.9572 4.5437-5.0087
= 1.8178 60 4.9562-5.1445 4.8934-5.2390 4.8505-5.2704

65 5.2386-5.3814 5.1442-5.5289 5.0913-5.5819
70 5.5473-5.6999 5.4041-5.8272 5.3545-5.8451
75 5.8430-5.9125 5.7097-6.0209 5.6759-6.1113

Sample Size = 80 6.1148-5.2508 5.9432-6.3089 5.9166-6.3544
= 500 85 6.3883-6.4992 6.2805-6.6743 6.2700-6.6937

90 6.7625-7.0593 6.6838-7.3304 6.5778-7.4016
95 7.7128-8.1128 7.5571-8.6866 7.5228-9.1066



Table B-17

Results for a 100 cm Deep Pool with 10 Degrees Subcooling

Pool Sub- Quantile Range for In(DF) at a Confidence Level (%) of
Depth Cooling (%)
(cm) (K) 50 90 95

100 10 5 2.9708-3.1347 2.7223-3.2202 2.6951-3.2327
10 3.4210-3.5795 3.2765-3.6409 3.2450-3.6535
15 3. 6992-3. 7925 3. 6451-3. 8766 3. 6233-3. 8977
20 3.9234-4.0238 3.8409-4.1263 3.8178-4. 1378
25 4.1443-4.2520 4. 0509-4. 2988 4. 0254-4.3373

Mean = 30 4.3200-4.4800 4.2586-4.5603 4.2384-4.6103
= 5.7409 35 4.5736-4.7677 4.4833-4.9015 4.4733-4.9270

-- 40 4.9014-5.0298 4.7659-5.0868 4.7126-5.1237
45 5.0845-5.2094 5.0255-5.3450 5.0034-5.4070
50 5.8401-5.5473 5 1909-5.7076 5.1689-5.7257

Std. Dev. = 55 5.7061-5.8363 5.5467-5.8997 5.4620-5.9473
= 2.0804 60 5.8942-6.0162 5.8270-6.1523 5.7893-6.1961

65 6.1510-6.3536 6.0160-6.4678 6.0007-6.4935
70 6.4724-6.6317 6.3591-6.7165 6.3263-6.7538
75 6.7437-6.9594 6.6390-7.0658 6.6183-7.1364

Sample Size = 80 7.1423-7.3818 6.9845-7.5519 6.9635-7.5766
= 500 85 7.6014-7.9873 7.4566-8.1545 7.4319-8.2179

90 8.3057-8.4287 8.1638-8.9105 8.1364-9.0591
95 9, 2659-9.8746 9.1602-10.4412 9.1250-10.4569



Table B- 18

Results for a 100 cm Deep Pool with 20 Degrees Subcooling

Pool Sub- Quantile Range for ln(DF) at a Confidence Level (%) of
Depth Cooling (%)
(cm) (K) 50 90 95

100 20 5 3.6095-3.8192 3.4742-3.9675 3.4644-4.0518
10 4.2335-4.3607 4.1105-4.4486 4.0849-4.4682
15 4.5742-4.6873 4.4610-4.7819 4.4202-4.7964
20 4.8414-4.9526 4.7371-5.0990 4.7001-5.1066
25 5.1107-5.2969 5.0226-5.3880 4.9577-5.4122

Mean = 30 5.4007-5.5328 5.3273-5.6008 5.2813-5.6138
= 6.9541 35 5.6027-5.7211 5.5339-5.8575 5.5260-5.8959

40 5.8566-6.0217 5.7191-6.1500 5.6919-6.1792
O
t_ 45 6.1480-6.3513 6.0116-6.4647 5.9681-6.5107

50 6.4503-6.6214 6.3422-6.7222 6.2990-6.7727

Std. Dev. = 55 6.7084-6.8690 6.6190-7.0468 6.5968-7.1203
= 2.504 1 60 7.0467-7.2615 6.8639-7.3847 6.8096-7.4027

65 7.3847-7.5636 7.2614-7.7112 7.1968-7.7674
70 7.7202-8.0348 7.5842-8.2166 7.5379-8.2851
75 8.2707-8.4281 8.0924-8.5396 8.0159-8.5767

Sample Size = 80 8.5805-8.7761 8.4892-8.9849 8.4298-9.0697
= 500 85 9.1206-9.4115 8.9687-9.6164 8.8963-9.7317 1

90 9.8588-10.2102 9.6548-10.4686 9.5529-10.5547
95 11.2287-11.5825 10.9431 -11.9483 10.6687-12.0597

m



Table B- 19

Res,_:Itsfer a !00. cm Deep Pool with 50 Degrees Subcooling

Pc_',i S._ .- O,.a:_.:iic Range for !n(DF) at a Confidence Level (%) of
toL\

Dentk j .'7_n',_:_: _ ""' [ 50 90 95icm) 1 _K i
1

• ,-_ ,,,

ICX? J:J ...._o, i'' __' j' 4.7 ""t -,'_,6-4.86_ 14 4.5009-4.9575 4.3755-4.9697
: i 10 , 5 13 ,_-_.3550 5 0256-5.4645 5.0092-5.5352I i
I i 15 5.6546-5.8608 5.4852-5.9759 5.4425-6.0644

! 20 6.0852-6.2705 5.9604-6.3983 5.9135-6.462225 6.4643-6 7137 6.3153-6.9252 ,,.2734-6.9714

i
4

Meax: = ! I 30 6.9481-7.1495 6.7295-7.3335 6.6779-7.3655
- 0._,89 35 7.3450-7.5070 7.1703-7.5764 7.1210-7.6445I

40 7.5755-7.7227 7.5059-7.8513 7.4394-7.8971
: ! 45 7.8462-8.1481 7.7198-8.2662 7.7075-8.3517

50 8.2593-8.4461 8.1465-8.5975 8.0439-8.6474

1
Std. Dev. = 55 8.5960-8.7781 8.4443-9.0021 8.4157-9.0344

= 3.6621 60 8.9953-9.3113 8.7765-9.4143 8.7535-9.5176
65 9.4129-9.6311 9.3111-9. 7778 9.2778-9.8417
70 9. 7945-10.0856 9. 6388-10.2787 9.5917-10.3325
75 10.3221-10.6899 10.1065-10.8596 10.0674-10.9152

i
i

Sample Size = 80 10.9381-11.4698 10.7631-11.6492 10.6987-11.7231
= 500 85 11.8047-12.0824 11.6002-12.4191 11.5602-12.4904

i 90 12.9160-13.5053 12.4449-14.0268 12.3881-14.3653
: 95 15.6413-16.8060 15.1249-17.4116 14.9593-17.6362



Table B-20

Results for a 100 cm Deep Pool with 70 Degrees Subcooling

Pool Sub- Quantile Range for In(DF) at a Confidence Level (%) of
Depth Cooling (%)
(cm) (K) 50 90 95

100 70 5 5.1645-5.2518 5.0053-5.394-2 4.997_.-5.3996
10 5.7566-5.9317 5.5658-6.0474 5.5097-6.0528
15 6.1193-6.2888 6.0522-6.4825 6.0010-6.5735
20 6.6163-6.8196 6.3813-6.9103 6.3619-,5.9546
25 6.9600-7.2096 6.8590-7.2921 6 8220-7.3292

Mean = 30 7.3080-7.5730 7.2139-7.7713 7.1821-7.8368
= 9.8510 35 7.7728-7.9555 7.5762-8.1786 7.5090-8.2079

40 8.1785-8.3756 7.9534-8.5042 7.9054-8.5357
O 45 8.4997-8.7084 8.3369-8.8303 8.3009-8.9041

50 8.8291-9.0081 8.6997-9.2010 8.6537-9.2555

Std. Dev. = 55 9.1642-9.6367 8.9937-9.8061 8.9820-9.8576
= 4.1113 60 9.8049-10.0923 9.6302-10.2359 9.4924-10.3531

65 10.2352-10.5874 10.0921-10.9488 10.0116-11.0237
70 10.9693-11.3249 I0.6021-11.4665 10.5487-11.4851
75 11.4753-11.7491 11.3321-11.9149 11.2806-I 1.9811

Sample Size = 80 11.9891-12.3028 11.8598-12.5991 11.7695-12.6843
= 500 85 12.7822-13.0620 12.4738-13.7495 12.3842-13.9517

90 14.5184-15.0637 13.7746-15.3293 13.6707-15.5513
95 17.1182-18.4318 16.2910-19.4881 15.9303-20.7024



Table B-21

Results for a 200 cm Deep Poo! with 10 Degrees Subcooling

ii

Pool t

i Sub- Qum:tiie Range for In(DF) at a Confidence Level (%) ofDepth Cooling (%)
t

(cm_ i (k) 50 90 95
i

200 i !0 ! 5 3.6681-3.8299 3.4005-4.0055 3'3147-4.0164
i i I0 4.2680-4.5216 4.0265-4.7015 4.0122-4.7296I I

1 [ I i5 4.7610-4.9467 4.6727-5.0713 4.5884-5.1212
20 '_ 1233-5.3316 4.97a7-5.6073 4.9447-5.6515[ --"

I 25 5.6161-5 8491 5.3571-6.0175 5.2090-6.0841I
!

Mean = 30 6.001 I-6.2197 5.8491-6.3393 5.7540-6.3671
= 7.8476 j 35 6.3284-6.4975 6.19a6-6.5735 6.1331-6.6029

40 6.5483-6.7322 6.4406-6.8871 6.3814-6.9356
o-. l 45 6.8101-7.1249 6.6751-7.2793 6.6080-7.3082

i 50 7.2661-7.4614 7.0700-7.5318 6.9634-7.5765

Std. Dev. = 55 7.5157-7.7229 7.3542-7.8121 7.3225-7.8448
= 3.5157 60 7.7675-7.9766 7.6407-8.1796 7.5863-8.1993

65 8.1459-8.3149 7.9474-8.4779 7.8644-8.5272
70 8.4536-8.7275 8.2515-8.8419 8.2209-8.8782
75 8.8291-9.0579 8.7251-9.2862 8.6591-9.4533

Sample Size = 80 9.3183-9.7908 9.0758-10.0484 9.0288-10.2212
= 402 85 10.2156-10.6476 9.8708-11.0576 9.7938-11.1459

90 11.2708-11.8634 10.8580-12.9156 10.7347-13.2522

95 13.8248-14.5412 13.5048-15.5666 13.1992-15.9748



Table B-22

Results for a 300 cm Deep Pool with 2 Degrees Subcooling

Pool Sub- Quantile Range for ln(DF) at a Confidence Level (%) of
Depth Cooling (%)
(cm) (K) 50 90 95

300 2 5 3.6443-3.7633 3.4842-3.8283 3.3462-3.8335
10 3.9929-4.1775 3.8820-4.2937 3.8392-4.3039
15 4.3421-4.5412 4.2944-4.6057 4.2437-4.6323
20 4.6727-4.7975 4.5837-4.9139 4,5553-4.9479
25 4.9464-5.2079 4.8364-5.2965 4.7897-5.3173

Mean = 30 5.2985-5.4794 5.2252-5.6243 5. 1807-5.6466
= 7.1248 35 5.6266-5.7987 5.4788-5.8952 5.4600-5.9213

40 5.8872-6.0320 5.7929-6.1856 5.7576-6.2320
-,a 45 6.1671-6.3368 5.9975-6.4784 5.9658-6.4975

50 6.4529-6.5348 6.3002-6.6383 6,2761-6,7039

Std. Dev. = 55 6.6094-6.8458 6.5340-6.9716 6,5314-6.9837
= 3.1029 60 6.9655-7.1255 6.8322-7.3295 6_79_4-7 3658

65 7.3163-7.4910 7.1108-7.6237 7.05 i0-7. _,8i6
70 7.6,:35-7.8709 7 a0a'_-8 0_7 _ 7.J_ _,_-8 "°_"

75 8.1876-8.5362 7.8732-8.7251 ! 7 852i-8 et45
1
I

Sample Size = 80 8.8111-9_0761 8.5976-9.3605 8.5346-9 4070
= 472 85 9.4265-9.8400 9.2286-10.2825 9, i 8i0-10.39 i3

90 10.5650-10.9403 10.2913-11 5347 10 2266-11,6748
95 i2.5010-13.1552 11.8902-13 7969 11.7191-13.8568

i " I



Table B-23

Results for a 300 cm Deep Pool with 5 Degrees Subcooling

Pool Sub- Quantile Range for ln(DF) at a Confidence Level (%) of
Depth Cooling (%)
(cm) (K) 50 90 95

300 5 5 4.2330-4.3344 4.1712-4.4445 4.1275-4.4637
10 4.6516-4.8320 4.5141-4.9976 4.4912-5.0254
15 5.1266-5.30 !8 5.0165-5.4542 4.9499-5.4912
20 5.5044-5.6470 5.4014-5.7776 5.3606-5.7813
25 5.7818-5.9572 5.6869-6.1351 5.6495-6.2146

Mean = 30 6.1851-6.3492 6.0244-6.5053 5.9487-6.5138
= 8.2769 35 6.5076-6.6091 6.3636-6.7785 6.3082-6.9303

40 6.7766-7.0842 6.6082-7.1604 6.5794-7.2161
O
oo 45 7.1578-7.4290 7.0821-7.5635 7.0433-7.5813

50 7.5122-7.8032 7.4015-7.9818 7.3045-8.0071

Std. Dev. = 55 7.9602-8.1526 7.7994-8.2632 7.7436-8.3112
= 3.4529 60 8.2549-8.4535 8.1522-8.6021 8.0740-8.6426

65 8.5997-8.8499 8.4533-9.0115 8.3924-9.0937
70 9.0285-9.4048 8.8589-9.6080 8.8344-9.6787
75 9.6292-9.9172 9.4552-10.0775 _ 9.3719-10.i83i

Sample Size = 80 10.1848-10.5440 9.9560-10.7668 9.9281-10.8889
= 500 85 11.0402-11.6220 10.6791-11.8800 10.6222-11.9674

90 12.1001-12.6239 11.9353-12.9979 11.7624-13.0883
95 _ 14.0972-14.5055 13.4663-16.0356 13.1336-16.2842



Table B-24

Results for a 300 cm Deep Pool with 10 Degrees Subcooling

Pool Sub- Quantile Range for In(DF) at a Confidence Level (%) of
Depth Cooling (%)
(cm) (K) 50 90 95

300 10 5 4.9688-5.1729 4.7563-5.3608 4.6893-5.3792
10 5.5186-5.8537 5.3783-5.9109 5.3533-5.9398
15 5.9539-6.2783 5.8874-6.6978 5.8549-6.7295
20 6.7100-6.9561 6.3056-7.0641 6.1864-7.1724
25 7.0326-7.2776 6.8978-7.5190 6.8524-7.5441

Mean = 30 7.4802-7.6745 7.2521-7.8099 7.2119-7.8688
= 9.7677 35 7.7454-7.9913 7.5735-8.1083 7.5515-8.1469

40 8.0520-8.3313 7.9632-8.5008 7.8670-8 5597
o " 9,,_ 45 8.4507-8.8466 8.1956-9.1039 8.1 ,:06-. 1520

50 9.0310-9.2363 8.5756-9.4188 8.5155-9.4265

Std. Dev. = 55 9.2929-9.5332 9.1691-9.6792 _ 9. I078-9.7203
= 4.0360 60 9.6370-9.8971 9.4312-10.I 130 9.a21 i-10.1676

65 10.0561-10.2758 9.7922-10.6048 9.69,_5-!0 -__t,f
70 10.5697-10.9479 10._ 167-1 ! "_11_ ! :0' _I'_,'°,,-,_.11,.____,_-"7
75 11.1493-11.7747 10.8814-1"_ 05fi13__ i ,'-.:'),?665 -_ " ,_t_,_.,1

J

t
Sample Size = 80 12.0491-12.2551 1!_6708-12.5308 I 11 5673-1." 547"a

= 333 85 12.5342-12.9475 i2.2842-13.8620 ] i2.2235-14.0249
90 i 14.0847-!4.6774 13.70!'_-!5.3326 I 13.0656-16.318t3

' i95 !7.2297-i8.5623 i 16.0529-20.2029 !5.2753-20.8188, , | .,.



Table B-25

Results for a 300 cm Deep Pool with 30 Degrees Subcooling

Pool Sub- Quantile Range for ln(DF) at a Confidence Level (%) of
Depth Cooling (%)
(cm) (K) 50 90 95

300 30 5 6.3864-6.7122 6.1488-6.8646 6.0837-6.9421
10 7.2244-7.4976 7.1512-7.6963 7.0186-7.7828
15 8.1421-8.5044 7.7380-8.7365 7.6529-8.8282
20 8.8695-9.0740 8.5864-9.1967 8.5495-9.3108
25 9.3228-9.5465 9.0864-9.6870 9.0750-9.7463

Mean = 30 9.7183-9.9271 9.5826-10.2573 9.5401-10.3870
= 13.3052 35 10.3086-10.6075 9.9301-10.8658 9.8964-10.8866

-- 40 10.8655-11.1869 10.6048-11.3963 !0.5306-11.4852
45 11.3414-11.6652 1!. 1500-12.0117 11.0529-12.0747
50 12.0088-12.3872 11.6573-12.6266 11.5998-12.7166

Std. Dev. = 55 12.6121-12.9944 12.3603-13.3740 12.2485-13.4263
= 5.5663 60 13.3693-13.5290 12.9922-13.7929 12.9505-13.9812

65 13.7845-14.4523 13.5274-14.7629 13.4806-14.7864
70 14.7718-14.9722 14.4620-15.4354 14.3385-15.4984
75 15.4735-16.0348 15.0428-16.3242 14.9266-16.4215

Sample Size = 80 16.4246-16.8708 16.1113-17.5521 16.0357-17.7363
= 500 85 18.0308-19.2504 17.0819-19.9762 16.9703-20.1467

90 20.5216-21.1332 20.0146-22.0593 19.8737-22.2381
95 23.8324-27.6241 22.7318-28.6891 22.5645-29.2342
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