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Elimination of numerical dispersion
in finite-difference modeling and migration

by flux-corrected transport

Tong Fei*and Ken Larner t

ABSTRACT

Finite-difference acoustic-wave modeling and reverse-time depth migration

based on the full wave equation are general approaches that can take into ac-

count arbitary variatious in velocity and density, and can handle turning waves

well. However, conventional finite-difference methods for solving the acoustic-

wave equation suffer from numerical dispersion when too few samples per wave-

length are used. Here, we present two flux-correctcd transport (FCT) algorithms,

one based the second-order equation and the other based on first-order wave equa-

tions derived from the second-order one. Combining the FCT technique with con-

ventional finite-difference modeling or reverse-time wave extrapolation can ensure

finite-difference solutions without numerical dispersion even for shock waves and

impulsive sources. Computed two-dimensional migration images show accurate

positioning of reflectors with greater than 90-degree dip. Moreover, application

to real data shows no indication of numerical dispersion. The FCT correction,

which can be applied to finite-difference approximations of any order in space and

time, is an efficient alternative to use of approximations of increasing order.

INTRODUCTION

Finke-difference methods, following the approaches of Claerbout (1985), have

been widely implemented for wave extrapolation in modeling and migration. Those

approaches employ a one-way wave equation that allows energy to propagate either

downward or upward, but not both. Although successful in many situations, such

methods are limited by assumptions made in deriving the one-way wave equation.

Moreover, finite-difference schemes based on the one-way wave equation contain a

limit on the maximum dip angle of the reflector. To deal with a variable velocity
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field, Kosloff and Baysal (1983) developed a two-dimensional migration scheme in the
frequency and space domain based on a direct integration in depth of the acoustic
wave equation.

Since finite-difference modeling and migration based on the full acoustic-wave
equation have no additional l)hysical assumptions, the finite-difference method po-
tentially can address many issues, such as arbitrary velocity variation, turning waves,
and multiple reflected waves. This method, however is costly, placing heavy demands
on computer memory and input/output devices (Reshef and Kessler, 1989; Blacquiere
et eft., 1989; Hale and Witte, 1992).

Conventional finite-difference schemes for numerically solving the wave equation
suffer from undesirable riI)plcs, so-called grid dispersion or numerical dispersion, par-
ticularly near large gradients in wavefields or when too coarse a computation grid is
used. Alford et al. (1974) and Kelly ct al. (1976) have studied the grid dispersion
existing in finite-differcnce methods. They concluded that to eliminate the numerical
dispersion, at least 11 and 5.5 points per half-power wavelength must be used for
the second-order and fourth-order finite-difference methods, respectively. Consistent
with their conclusions, Dablain (1986) stated that 8 and 4 grid points at the Nyquist
frequency are required to eliminate dispersion for the second-order and fourth-order
finite-difference methods, respectively.

The flux-corrected transport (FCT) method developed by Boris and Book (i973}
and Book et al. (1975), has been successfully applied in the solution of the con-
tinuity equation in hydrodynamics in circumstances involving large gradients and
discontinuities, where conventional algorithms fail. Even with use of coarse grids, the
FCT algorithm can treat strong gradients, shocks and impulses without the usual
dispersively generated ripples.

Here, we present and apply the FCT finite-difference technique to forward seismic
modeling and reverse-time depth migration. The FCT approach is _pp|icable in either
of the two forms. The first FCT algorithm, which directly follow_ the hydredyliamics

approach, is based on the first-order partial differential cquatm i_ _teriv_d i:ro,_nthe
second-order wave equation through a change of dependent _ri: ;otes, whi: _,_he second
FCT approach can be directly used with the second-order ',_,:,_,v,i_.¢_u_or:, These FCT
algorithms allow full variability in velocity and density, ,_,_c,',i_,' _ ,, un__¢,c"t::flectors with
a wide range of dips, with no numerical dispersion. Wh_:i_7_,,,_,__;a r,i_e_a_ively coarse
grid, with less computation they achieve accuracy comp_],r_bi:_,_, ,_:,at of conventional
finite-difference approaches on a finer grid.

THEORY

For velocity and density fields that are functions of space, _e acoustic-wave equa-
tion is
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p O2t _x _.r + _ + _ -_z + f(x,y,z,t), (1)

where p = p(x,y,z) is density, c = c(x,y,z) is wave velocity, and f(x,y,z,t) is the
source function.

This wave equation for inhomogencous media can be approximated by an explicit,
conventional finite-difference scheme. However, this finite-difference discretization

causes the phase speed to bccome a function of discretization interval, and generates
undesirable dispersion when the spatial grid is too coarse (that is, too few samples
per wavelength are used). The FCT technique is a correction procedure applied to
the finite-difference result at each time step.

First, let us follow the original hydrodyn_tmics approach by defining ,ew depen-
dent variables in the second-order acoustic wave equation so as to form four first-order,

conservative, equations in these new variables.

With new dependent variables defined as

10P

q - pc_ Ot ' (2)

OP
•u - 0x' (3)

OP

v - Oy' (4)

OP
w - Oz' (5)

the second-order acoustic wave equation (1) is reduced to the new first-order partial
differential equation,

0-7=Ox_ +N +N,o,
which is of the conservative form, and three additional first-order partial differential

equations are derived from definitions (2) through (5),

0( )o-7= o-7p_q ' (7)

o_, o( )0-7=0_ p_q ' (s)
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O---t-= 0--_ pc2q " (9)

As in the hydrodynamics problem, the FCT correction can then be applied to
these first-order equatmns. After we applied the FCT to the first-order system, we
found out that the FCT correction could readily be applied to the second-order wave

equation, as well.

Conceptually, the FCT technique consists of two major stages w a conventional
finite-difference stage (Stage I), follr,_ed by a correction stage (Stage II) which consists
of diffusion and anti-diffusion corrections. Applied to a conventional finite-difference
scheme of any order approximation in differencing, FCT ideally would entail applica-
tion of a corrective diffusion localized to just those rc,gions where non-physical ripples
tend to form. This diffusion step would be carried out in a conservative wav; that
is, whenever a portion of the wavcfield is removed at one point, the same amount is
inserted somewhere else, and. as a result, there is no net loss or gain of the quantity
(e.g., pressure) to the system. In real situations, if there is no a priori information
about where the dispersion might exist, the FCT attempts to apply the diffusion
everywhere (steps 2 and 4 ill Appendix A and B). Therefore, once the solution is
diffused, an opposing anti-diffusion is introduced to reduce the diffusion wherever it
seems not to be needed (steps 3, 5 and 6 in Appendix A and B).

The Appendix A gives the procedure for solving equations (6) through (9) by the
flux-corrected transport finite-difference method, while Appendix B gives the FCT
correction procedure for solving second-order wave equation (1).

In the computer implementation here, we apply the absorbing boundary condition
of Clayton and Engquist (1980) to the s_de boundaries and the lower boundary.

NUMERICAL EXAMPLES

We have tested the FCT correction on one-dimensional forward problems, two-
dimensional modeling and reverse-time depth migration. The reverse-time depth
migration, which basically is the same as forward nlodeling, simply runs time back-
wards.

0
For the one-dimensional case, where _ = _ = 0, forward modeling tests involve

a wavelet that is an isolated fifil-cycle of a sinusoid, 0.5 cos(27rft) +0.5, as well as for a
rectangle function with diffcrent widths. The medium is homogeneous in these tests,
and the FCT atgorithm used is based on the first-order partial differential equations.

For the two-dimensional case where a_ _ 0a_ - , wc do tests of both modeling and
migration with FCT correction based on both the first-order partial differential equa-
tions and the second-order wave equation.
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One-dimensional tests

In the one-dimensional tests, the medium has a constant density and a constant
velocity of 2 km/s. In each of the modeling tests, we specify a time sequence at
the surface and examine a snapshot of the wavefiehl generated in depth. Figures 1
through 3 show the snaI)shot_ at 1 s, generated by three isolated sinusoids at the
surface 0.333-s apart. The frequency for these tests is 10 Hz. The spatial steps are 0.01
km (twenty samples per wavelength), 0.025 km (eight samples per wavelength) and
0.04 km (five samples per wavelength), respectively. Similarly, Figures 4 through 6
show the snapshots at 1 s for rectangle-function p_tlses at the surface with spatial
step 0.01 kin, and with eight, four and two samples per pulse width, respectively.

In each of the six figures, we compare the results for the ideal solution with those
obtained by a standard finite-difference method and by the FCT algorithm. The
ideal solution has a waveform that is unchanged during propagation. In Figure 1,
the fine-grid simulation (large dominant wavelength relative to Ax), the standard
leapfrog method applied to first-order equations gives a good result with only a small
amount of numerical dispersion, while the dispersion-caused ripples are absent in the
FCT solution.

For the coarse grids, eight samples per wavelength (Figure 2) and five samples
per wavelength (Figure 3), the standard leapfrog method yields a progressively more
distorted and weakened waveform, with large precursor oscillations, and significant
loss in resolution. The FCT correction still produces a good waveform shape, without
the ripples, but still with amplitude losses of about 8 percent in Figure 2 and about
15 percent (for the deepest event) in Figure 3. The weakened amplitudes are the
result of applying diffusion and anti-diffusion in the FCT method; the anti-diffusion
did not fully correct for the amplitude loss in the diffusion stage. The results suggest
that the FCT correction can give the correct position of the wavefront, as well as
greatly reduced numerical dispersion. While it partly improves the resolution, even
when few samples per wavelength are used, the loss in amplitude in finite-difference
result is not fully recovered by the FCT correction.

For the rectangle pulses (Figures 4 through 6) with spatial step of 0.01 km, the
standard leapfrog finite-difference method gives poor solutions for all choices of sam-
pling, whereas the FCT solutions show no numerical dispersion. Also for the choices
of eight and four samples per pulse width, the FCT method gives the correct ampli-
tudes (Figures 4 and 5) because relatively lower frequencies are dominant in these two
cases than in tests with the sinusoidal pulses. The waveform with the FCT correc-
tion has only little distortion since, for the one-dimensional case, it is easy to control
the diffusion and anti-diffusion coefficients (rh and 712,see appendices) to obtain a
good waveform. For the narrowest rectangle pulse, with only two samples per pulse
width (Figure 6), the FCT correction greatly improves the pulse shape and restores
resolution, but it falls short in restoring the significant loss of amplitude.

From these one-dimensional tcsts, we see that the FCT technique can treat large
gradients and shocks without the usual ripple artifacts. The FCT algorithm not only
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removes the grid-dispersion errors, it also yields a waveform with little distortion.
Moreover, the FCT can recover some, but not all, amplitude loss when too few samples
per wavelength (or pulse width) arc used.

Reflector model

The model shown in Figure 7 has five reflectors, each with a horizontal segment
and a segment with dip varying from 30 degrees to 90 degrees, in 15-degree increments.
The input zero-offset time section for each of two different velocity models (Figure 8)
was obtained by a Kirchhoff modeling program. The first velocity model has velocity
linearly increasing with depth, and the second has a velocity gradient in a sloping
direction. Figures 9 and 10 show the results of FCT reverse-time depth migration
applied to each of the zero-offset synthetic data sets ill Figure 8. The spatial steps, Ax
and/kz, in these tests are both 0.008 km, and the time step At is chosen to satisfy
a conventional stability condition. The input zero-offset synthetic data contain a
symmetric Ricker wavelet with dominant frequency of 20 Hz.

Here, a leapfrog finite-difference method, second-order accuracy both in time and
space, is first used to obtain the solution for the first-order partial differential equa-
tions, and then the FCT correction is applied. For these tests, the number of grid
points Go per upper half-power wavelength is about 6 (at the position with the small-
est velocity), which gives a relatively coarse grid according to Kelly's criterion for
the second-order accuracy method. Numerical dispersion is present in the solutions
without FCT correction (not shown here). However, with the FCT correction, the
migration images are dispersion free.

Figure 8a shows the synthetic data for velocity linearly increasing with depth,
c(z) = 1.6 + 0.6z km/s. The migrated section (Figure 9) indicates that the FCT
method can accurately image reflectors with all dips. The broadening of deeper
events is caused by the increasing of velocity with depth.

For a velocity field that is changing both vertically and horizontally, c(x, z) = 1.5+

0.2x +0.35z km/s, the migrated section (Figure 10) again shows accurate positioning
of the horizontal and dipping rcflectors. For the vertical reflector, the amplitude
appears weak because some of the unmigrated data fall out of the recording window
(Figure 8b).

Wedge model

Figure 11 shows a two-dimensional model in which the velocity in a rectangular
area is assumed to be zero, while outside that area the velocity is a constant 2.438
km/s. The modeled area in the tests is 5.266 x 5.266 km 2, with upper left corner at the
origin. The upper left corner of the rectangular is at (2.194 km, 3.510 km) and a line
source is located at (2.633 kin, 3.072 kin). The time variation of the source function
is (t- 0.1)e -_(t-°'l)2, where t is time, measured in s, and _=700 s-2. This gives a
upper half-power frequency of 10 Hz, and the corresponding half-power wavelength
is about 0.244 km for velocity v=2.438 km/s.
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For the fine grid, Ax=0.02194 km, the number of grid points Go per upper half-
power wavelength is about 11. Figure 12a shows the snapshot at 1.026 s for the
wavefield coxnputed by the second-order conventional finite-difference method, and
Figure 12b shows the snapshot at the same time for the FCT-corrected wavefield.
For this fine sampling, both the conventional finite-difference result and the FCT-
corrected result are accurate, and show no numerical dispersion.

On a medium-coarseness grid, Ax=0.04388 km. for which Go _ 5.5, the wave-
field obtained by the second-order conve,'ltional finite-difference approach becomes
dispersive (Figure 12c). The FCT correction, however, removes the numerical disper-
sion (Figure 12d). Note also in the conventional solution (Figure 12c) some loss of
resolution, which is partially recovered with the FCT correction.

When the grid size 1)ecomes more coarse, Ax=0.08776 km, for which Go _ 2.7,
the oscillations in the conventional finite-difference solution increase significantly (Fig-
ure 12e). The FCT correction, however, still removes the numerical dispersion (Fig-
ure 12f). In addition to the mmmrical dispersion, use of too coarse a grid in the
conventional modeling has caused considerable wavelet distortion, loss of amplitude,
and, in places, apparent time errors (note the slightly non-circular wavefront at the
depth between 4 km and 5 km). Although the grid dispersion is removed by the FCT
correction, the use of too coarse a grid causes loss of amplitude and resolution (as
would happen in an attenuating medium) that cannot be fully corrected by the FCT
method.

Salt-dome structure model

Figure 13 shows a reflector structure modeling the boundary of an overhanging salt
dome with dip as large as 125 degrees. The input zero-offset time section for velocity
linearly increasing with depth (c(z) = 1.5 + 0.9z km/s) was obtained by a Kirch-
hoff modeling program. The wavelet is a symmetric Ricker wavelet with dominant
frequency of 30 Hz. Figures 14 through 18 show the reverse-time depth-migration re-
sults by the second-order and the fourth-order conventional finite-difference methods,
without and with the FCT correction.

For Figure 14, a migration image by second-order conventional finite-differencing,
the number of grid points per upper half-power wavelength at depth z=0 kin, where
velocity is 1.5 kin/s, is about 3.7 (coarse grid). The migration image shows strong
numerical dispersion. To overcome this problem, we can use a finer grid, at high
computational cost and heavy use of computer memory for the second-order method,
or we can use a higher-order scheme. Figure 15 shows the migration image by fourth-
order conventional finite-differencing on the same grid. As expected, the fourth-order
method significantly reduces the numerical dispersion and also improves the resolu-
tion. Since this spatial grid is still coarse for the fourth-order method, a significant
amount of dispersion remains. With use of a finer grid (Go _5.5 at z=O km), the mi-

gration image for the fourth-order method becomes dispersion-free (not shown here).

The FCT technique can be equally applied to the higher-order finite-difference
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results. Figures 16 through 18 show the FCT-corrccted results by the second-order
and fourth-order methods.

In Figure 16 (same grid size as for Figure 14), the FCT correction has removed
the numerical dispersion sc,cn ill Figure 14, and has slightly improved the resolution.
But, since the grid is too (.oarsc for the second-order method, the FCT correction has
not completely cured the resolution problem. For the finer grid with Go _5.5 at z-O
km (still a coarse grid for the ('()nvcntional second-order method), the FCT correction
on the second-order finite-difference yields good resolution, again along with removal
of the numerical dispersion (Figure 17). Applying the FCT correction to the fourth-
order method on the coarser grid (Figure 18), also eliminates the numerical dispersion
and yields the desired resolution (compare with Figures 14 through 16).

Field data

Figure 19 shows a D:_lO-stacked section from the Gulf of Mexico. The migrated
section by the fourth-order conventional finite-difference method, with spatial step
size of 6 m, is shown in Figure 20. The part of the image inside the dashed box is en-
larged in Figure 21. For comparison, Figure 22 shows a closeup view of a comparable
portion of the unmigrated D,_IO-stacked section. The arrows in Figures 21 and 22
point to comparable positions on thc two sections, where reflections have little slope
and therefore should not be changed much by the migration. The added reflection
events at the arrow in Figure 21 might therefore be artifacts of numerical dispersion.
With the FCT correction (Figure 23), the suspect events are removed.

EFFICIENCY

Just as increasing thc order of the finite-difference approximation increases the
amount of computation on a fixed grid, so does use of the added steps in FCT cor-
rection. As with use of higher-ordcr finite-differences, however, the FCT correction
allows computation on a coarser grid.

For 2-D problems, the second-order conventional finite-difference method for solv-
ing equation (1) requires about kN 'a computations (Table 1), assuming that the num-
ber of grid points in the horizontal and vertical directions, and the number of time
steps are each equal to :V. Here, k is a fixed proportionality constant. The second-
order finite-difference method for solving equations (6), (7) and (9) increases the
amount of computation to about 1.6kN 3, which is nearly the same as that for the
fourth-order finite-difference method for solving equation (1). The diffusion and anti-
diffusion steps in the FCT method for the first-order equations again increase the
computational effort, to about 4kN3; similarly, the FCT correction for the second-
order wave equation increases the computation to about 2.8kN 3 for the second-order
finite-difference method, and to about 3.4kN 3 for the fourth-order finite-difference

method. But the FCT method gains in efficiency because fewer points per wave-

length are required for acceptable accuracy in tcrms of both numerical dispersion and
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resolution. In practice, at least 11 points per upper half-power wavelength must be
used for the second-order conventional finite-difference method and 5.5 points must
be used for the fourth-order method to achieve acceptable accuracy. In contrast,
for the FCT method, only 5.5 and 3.7 points need to be used for the second-order
and fourth-order methods, respectively, to obtain comparable accuracy. Thus, as
seen in Table 1, the FCT method should gain in speed compared with the conven-
tional second-order and fourth-order finite-difference methods. For 3-D problems, the
increases in efficiency and speed of the FCT method should be even greater.

Computational cost Points per Relative
Method proportional to wavelength (G0) speed

2nd-order eqn;
2nd-order FD kN 3 11 1

lst-order eqns;
2nd-order FD 1.6kN 3 11 0.63

2nd-order eqn;
4th-order FD 1.6kN 3 5.5 5

2nd-order eqn:
2nd-order FD with FCT 2.SkN 3 5.5 2.9

lst-order eqns;
2nd-order FD with FCT 4kN 3 5.5 2.0

2nd-order eqn;
4th-order FD with FCT 3.4kN 3 3.7 7.7

Table 1. Relative computation speeds with and without FCT.

As seen in Table 1, solution of the second-order wave equation is more efficient than
that of the first-order equations. However, it is easier to code the FCT corrections
for the first-order system in applications to elastic media (Fei, 1993). Note also in
Table 1, the speed of the fourth-order conventional finite-difference method exceeds
that of the second-order finite-difference method witl_ the FCT correction. If one were

to go to the next higher-order (sixth-order) finite-difference method, the higher-order
finite-difference would also be somewhat faster than the fourth-order finite-difference

with the FCT correction. However, the higher-order finite-difference effort can still
fail to completely remove the numerical dispersion where velocity is particularly low,
locally.

The speeds of the FCT correction listed on the table pertain to corrections that
are applied everywhere throughout the computation area of interest. However, where
velocity has large contrast, the numerical dispersion tends to be restricted to regions
with small velocity, and we can choose to localize the FCT correction to those regions.
With such localization of the FCT effort, the FCT approach can be particularly
efficient. For a constant velocity medium, no such benefit of localization of action is
available.
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CONCLUSIONS

As we have seen.the FCT ,nethodprovidesan efficientand effectivemeans of

overcomingproblemsofnumericaldispersionthatariseinstandardfinite-difference
algorithmsiftoo few samplesper wavelengthareused. Even forwavefieldswith

stronggradientsand discontinuities,the FCT method can stillproducesolutions
withoutnumericaldispersion.Also,themigrationresultspresentedhereshow that
theFCT method can producegood imagesofreflectorswithdipbeyond90 degrees

forvelocitythatincreaseswithdepth.

The flux-correctedtransportcorrection,initiallyappliedtothefirst-orderequa-

tionsofhydrodynamics.,naybeappliedtotheacousticwaveequationwritteneither

asa second-orderequationorasa setoffirst-orderequations.WhiletheFCT applied
tothefirst-ordersystemiseasiertocodeforelastic-waveextrapolationinanisotropic

media (Fei,1993),forthe acousticproblemthesecond-orderequationismore effi-
cientlytreatedby finite-differencemethods.The useoftheFCT correctionimposes
no limitationon thespatialvariationofthevelocityand densityfieldsforeithermod-

elingorreverse-timedepthmigratiou.The additionalFCT stepsadd about1.5times

more computationforthe first-orderequations,and about 1.8timesmore forthe
second-orderwave equation,thanthatofthestamlardsecond-orderexplicitfinite-

differencingstep.The FCT method,however,offerstheopportunitytousea coarse

grid(fewersamplesper wavelength)to obtainaccuracyin wavefieldextrapolation
thatiscomparabletothatobtainedby conventionalfinite-differencemethods.The
useofnexthigher-orderfinite-differencemethodsalsoallowstheuseofa coarsegrid,

and withslightlylesscomputationeffortthanthatforthelower-orderfinite-difference
withtheFCT correction.However,insituationswhere higher-orderfinite-difference

methods cannoteffectivelyremoveallthenumericaldispersion,the FCT correction

isan alternativetechniquethatcanensurea dispersion-freesolution.

When usinghigher-ordermethodsinthefinite-differencingstep,therelativecom-

putationcostofthe FCT isreduced,sincethe FCT correctionisindependentof
theorderoffinite-differencing.DespitethesebenefitsoftheFCT corrections,the

computationeffortofreverse-time.depthmigrationisstillaboutthreetotentimes

(dependingon the velocitymodel)thatofthe Kirchhoffintegralmethod for2-D

_., migration. For 3-D migration and modeling, the computational effort of any finite-
difference method (the FCT ,nethod in particular) is proportional to N 4, while that of
the Kirchhoff integral method or Gaussian beam method is proportional to N 5, sug-
gesting that the FCT method might be more competitive with the Kirchhoff integral
method or Gaussian beam method for 3-D problems.
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APPENDIX A: FLUX-CORRECTED TRANSPORT

FOR THE FIRST-ORDER WAVE-EQUATION SYSTEM

The flux-corrected transport (FCT) method (Boris and Book, 1973; Book, et
al., 1975) was developed primarily for solving the first-order continuity equation in
hydrodynamics. To apply the FCT method to the first-order system for seismic
wavefield extrapolation in acoustic media, we need to solve equations (6) through
(9). By direct extension of the FCT approach in Boris and Book (1973), the FCT
algorithm proceeds as follows:

11
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1. Advance the solutions on a staggered grid by a standard finite-difference method

_ (leapfrog algorithm has been applied here) and obtain ,,n+t . n+l ,n+ltli,j,k , ai+l/2,j,k, vi.j+l/2,k
. n+l n

and oJi,j,k+l/2 at time level n + 1. (For example, qi,j,k is the value of q at the
time sample n, x-coordinate sample i, y-coordinate sample j and z-coordinate
sample k). To save computation cost, the FCT correction (next few steps) need
be performed only on tile variable q. Such a correction is not necessary for
computation of u. t, and w. Once q is corrected, u, v and w can be computed
directly from equations (7) through (9).

2. Compute diffusive fluxes at time level n- 1 •

n-I n-1 n--1
Q,:,+l/2,j,k = rll (qi+l,j,k -- qi,j,k)

0 n- 1 n-1 n-1
= -- qi,j,k )"¢ Yi.j+l/2,k 771(qi,j+l,k

Q n-I n-1 n-1zi.j,_.'+tl'2= rll (qi,j,k+1 -- qi,j,k), (A- 1)

where 0 < 711< 1 is a coefficient that varies with position. In typical applica-
tions, 0t ranges between 0.01 and 0.1. The function can be determined from a
few small-scale numerical experiments by considering the amplitude treatment
for horizontal events. Results are not critically sensitive to the choice of rh.

3. Compute diffusive fluxes at time level n + 1, for use in step 6 below •

~ n+l _ n+l _ _,n+l
Qxi+ l/2,j,k - rl2(qi+l,j,k -- 'li,j,k )

() n+l __ _[,,,,n+l ,_n+l_
Yi,j+ l /2,k -- '12ktji,j+ l,k -- tli,j,k ]

n+l t n+l t,n+l
zi,j,_+l/2 = _(qi,i,k+l - ui,j,_), (A-2)

where 0 <_ _ _< 1. The values of 779may differ from those of rh. To preserve
resolution, we generally use r/2 about 10 to 15 percent larger than rh.

4. Modify (i.e. diffuse) the solution q using Q_, Qu and Qz; this process smooths
the solution (also causcs an undesirable loss of amplitude) and eliminates the
ripples caused by grid dispersion:

.':n+ l ..n+l n-I n--1
= -- Qxi_l/2,Lk ),1i,_ ,1_,_ + (Q_i+l/2d,k

"q" _ Yi,j+l/2,k Yi,j-l/2,k/
n-1 n-1

+ (Q_i,j,k+l/2 (A-a)-

5. Take the differences of the diffused _ •

Am+l (_+1
Xi+l/2,j,k _ '-li+l,j,k -- li,j,k

~n+l . zn+l
] i,j+l/2,k = qi,j+l,te -- 'li,j,k

_+1 -.+1 (A-4)Zi,j,k+l/2 = tli,j,k+l -- qi,j,k"

12
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6. Anti-diffuse the solution as follows, and obtain the corrected solution for q •
n+l -,_+I -c ' c ...c

qi,j,k -- qi.j,k -- (Xi+l/2.j,k -- -¥c-,/2,j,k) -- (Yi,j+l/2,k -- ]" i,j-1/2,k)

-- (Zitj,k+l/2 -- Zitj,k_l/2) , (A-5)

where
~ n+l \

-'Y_+l/2,j,k: S_ max{O, min[SxXi-1/2,j,k, abs(Qxi+l/2,j,k), SxXi+3/2,j,k]},

yc _ {0, min[Su],], j - n+l , y ,i,j+l/2,k - Su max -1/2,k, abs(Qui,j+l/2,k), Su i,j+3/2,k]}
~ n+l

Z[i,k+_/2 = 5': max{ 0, min[S,Z,,j,k__/2, abs(q,,,_,k+_/2), SzZi,j,k+3[2]},

S, sign{ "" ,+l= q_,+l/2,j,k},

Sy = sign{(_y"+li.j+l/2,k} '
- n+l

5': = sign{Q:ij._.+l/2 }.

APPENDIX B: FLUX-CORRECTED TRANSPOR2 _

FOR THE SECOND-ORDER WAVE EQUATION

To apply the FCT method to the second-order acoustic wave equation (1), the
procedure is much the same as that discussed in Appendix A. The diffusive and anti-
diffusive fluxes, however, are computed differently, hi equation (2), note that wriable
q is the time derivative of variable P. Therefore, the fluxes for P can be obtained by
finite-differencing in time after finite-differencing in space. The algorithm proceeds
as follows:

1. Advance the solutions by a standard second-order finite-difference method and
e n+l Dn+lobtain i,j,k at time level n + 1 (, i,j,k is the value of P at time sample n + 1,

x-coordinate ,.ample i, y-coordinate sample j ;tnd z-coordinate sample k).

2. Compute diffusive fluxes at time level n •

O xi+ l /2,j,k 7}1(P;+l,j.k Pi?j,k n-1 pn-1" = " - - Pi+l,j,k + i,j,k)
n __ p n-1- ,7, - - + )
n __ p,n __ pn _ p..- 1 p.n- 1

Qzi,j,k+l/2 -- 771( i,j,k+l i,j,k i,j,k+l "+" i,j,k ), (B-l)

where 0 _ 711< 1 is a coefficient chosen as described for equation (A-l).

3. Compute diffusive fluxes at time level n + 1, for use in step 6 below •

n+1 __ _ /p.n+l _ p.+l _ p n n,+_/2,j,k - ,t2t _+1,j,k i,j,J, i+1,j,_ + Pi,j,k)

" n+l __ _.tpn+l __ p n+l _ p n n
Oyi.j+l/2,k- 'rz_" i.j+l,k i,j,k i,j+l,k + Pij,k)

0z n+l -- p n+l __ p.n ,i.j,k+I/2 -- /_2( nn'l'l n-- I_i,j,k+l i,j,k i,j,k+l + P_,j,k) (B-2)

13
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where 0 < 7/2_<1 is as described for equation (A-2).

4. Modify (i.e. diffuse) the solution P using Q,, Q_ and Q.; this process smooths
the solution (also again causes some loss of amplitude) and eliminates the dis-
persive ripples:

F:,+l _ p.n+l n-I n-1,.j - ,._ + (Q_i+l/2,_,k- Q_i-1/2j,k)
n--1 n-I

+ (Qy_,_+l/2,k- Qyi,j-1/2,k)
n-1 n-1

- O,_,j,k-x/2) )"_" (Ozi,j,k+l/2 . (B-3

5. Compute diffusive fluxcs with the diffused/5n+1 and pn:

Xi+l/2oj,k ( p?.l.+l 1 pn [/_n-I-1 n= ,j,k - i+l,j,k) - ," i,j,k - Pi,j,k)

,,5,,+1 p n I f_n+l _ p n
]"i,j + 1/ 2,k -" _l-i,j + 1,k -- i,j + 1,k ) -- kz i,j ,k i,j ,k )

p.+l _ p. ip_l .Zi,j,k+l/2 = ( i,j,k+l i,j,k+x) -- _ i,.',k -- Pi,j,k)" (B-4)

6. Anti-diffuse the solution as follows, and obtain the corrected solution for P •

p n+l p.+l _ (No+ _ ,¥.e /-e zci,j,k "- i,j,k I/2,j,k " ,-1/2,j,k) -- (_ i,j+l/2,k -- _t i,j-1/2,k)

- (ZiCj,k+l/2- Z_,j,k_l/2), (B-5)

where X[+x/2,j, k, l]cj+l/,2,k and Z_.j,k+l/2 are given in step 6 of Appendix A.

14
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Fig. 1. One-dimensional test for isolated wavelets, each of which is a full-cycle of
a sinusoid with a frequency of 10 Hz, for a constant velocity of 2 km/s and
a constant density. The spatial step is /kx = 0.01 km (twenty samples per
wavelength). (a) Ideal wavefield. (b) Wavefiekl obtained by a ,_tandard leapfrog
finite-difference method. (c) Wavefield obtained with the FCT correction.

Fig. 2. Same as Figure 1, except/kx = 0.025 km (eight samples per wavelength).

Fig. 3. Same as Figure 1, except Ax = 0.04 km (five samples per wavelength).

Fig. 4. One-dimensional test for isolated rectangle pulses (eight samples per pulse
width), for a constant velocity of 2 km/s and a constant density. (a) Ideal
wavefield. (b) Wavefield obtained by standard leapfrog finite-difference method.
(c) Wavefield obtained with the FCT correction.

Fig. 5. Same as Figure 4, but here the isolated rectangle pulses have four samples
per pulse width.

Fig. 6. Same as Figure 4, but here the isolated rectangle pulses have two samples

per p!flse width.
t

Fig. 7. Reflector model used to generate synthetic data for the tests described in
Figures 9 and 10.

Fig. 8. Zero-offset synthetic time sections generated by Kirchhoff modeling for (a)
velocity linearly increasing with depth, (b) velocity model with linear variation
in (x, z).

Fig. 9. Migrated section for velocity model c(z) = 1.6 + 0.6z km/s,
and constant density.

Fig. 10. Migrated section for velocity model c(x, z) = 1.5 + 0.2x + 0.35z km/s,
and constant density.

Fig. 11. Wedge model showing the source position and velocity field (rectangular
void in a homogenous medium).

Fig. 12. Wavefield snapshot for different grid sizes. (a) and (b) are for fine grid (Go ,_
11). (c) and (d) are for medium-coarseness grid (Go ,_ 5.5). (e) and (f) are for
coarse grid (Go ,_ 2.7). (a), (c) and (e) are for the conventional finite-difference
method. (b), (d) and (f) are the solution with the FCT correction.

Fig. 13. Reflector model used to generate synthetic data for the tests described in
Figures 14 through 18.
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Fig. 14. Second-order conventional finite-difference migration for grid step sizes/kx
=/kz = 0.008 km (Go _,3.7 at z = 0 km).

Fig. 15. Fourth-order conventional fil_ite-difference migration for the same grid as
that for Figure 14.

Fig. 16. Second-order finite-difference migration with the FCT correction for tile
same grid as theft _br Figure 14.

Fig. 17. Second-order finite-difference migration with the FCT correction for grid
step sizes/kx = Az = 0.0055 km (Go _5.5 at z = 0 km).

Fig. 18. Fourth-order fi'aite-diffcrencc migration with the FCT correction for the
same grid size as tkat for Figure 14.

Fig. 19. DMO and stacked section from Gulf of Mexico.

Fig. 20. Migrated section by tile fourth-order conventional finite-difference method.

Fig. 21. Enlarged portion of migrated section by the fourth-order conventional finite-
difference method.

Fig. 22. Closer view of DMO and stacked section from Gulf of Mexico.

Fig. 23. Enlarged portion of migrated section by fourth-order finite-difference method
with the FCT correction.
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