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Elimination of numerical dispersion
in finite-difference modeling and migration
by flux-corrected transport

Tong Fei*and Ken Larner!

ABSTRACT

Finite-difference acoustic-wave modeling and reverse-time depth migration
based on the full wave equation are general approaches that can take into ac-
count arbitary variations in velocity and density, and can handle turning waves
well. However, conventional finite-difference methods for solving the acoustic-
wave equation suffer from numerical dispersion when too few samples per wave-
length are used. Here, we present two fluz-corrected transport (FCT) algorithms,
one based the second-order equation and the other based on first-order wave equa-
tions derived from the second-order one. Combining the FCT technique with con-
ventional finite-difference modeling or reverse-time wave extrapolation can ensure
finite-difference solutions without numerical dispersion even for shock waves and
impulsive sources. Computed two-dimensional migration images show accurate
positioning of reflectors with greater than 90-degree dip. Moreover, application
to real data shows no indication of numerical dispersion. The FCT correction,
which can be applied to finite-difference approximations of any order in space and
time, is an efficient alternative to use of approximations of increasing order.

INTRODUCTION

Finite-difference methods. following the approaches of Claerbout (1985), have
been widely implemented for wave extrapolation in modeling and migration. Those
approaches employ a one-way wave equation that allows energy to propagate either
downward or upward, but not both. Although successful in many situations, such
methods are limited by assumptions made in deriving the one-way wave equation.
Moreover, finite-difference schemes based on the one-way wave equation contain a
limit on the maximumn dip angle of the reflector. To deal with a variable velocity
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field, Kosloff and Baysal (1983) developed a two-dimensional migration scheme in the
frequency and space domain based on a direct integration in depth of the acoustic
wave equation.

Since finite-difference modeling and migration based on the full acoustic-wave
equation have no additional physical assumptions, the finite-difference method po-
tentially can address many issues. such as arbitrary velocity variation, turning waves,
and multiple reflected waves. This method, however is costly, placing heavy demands
on computer memory and input/output devices (Reshef and Kessler, 1989; Blacquiere
et al., 1989; Hale and Witte, 1992).

Conventional finite-difference schemes for numerically solving the wave equation
suffer from undesirable ripples. so-called grid dispersion or numerical dispersion, par-
ticularly near large gradients in wavefields or when too coarse a computation grid is
used. Alford et al. (1974) and Kelly et al. (1976) have studied the grid dispersion
existing in finite-difference methods. They concluded that to eliminate the numerical
dispersion, at least 11 and 5.5 points per half-power wavelength must be used for
the second-order and fourth-order finite-difference nmethods, respectively. Consistent
with their conclusions, Dablain (1986) stated that 8 and 4 grid points at the Nyquist
frequency are required to eliminate dispersion for the second-order and fourth-order
finite-difference methods, respectively.

The flux-corrected transport (FCT) method developed by Boris and Book (1973)
and Book et al. (1975), has been successfully applied in the solution of the con-
tinuity equation in hydrodynamics in circumstances involving large gradients and
discontinuities, where conventional algorithms fail. Even with use of coarse grids, the
FCT algorithm can treat strong gradients, shocks and impulses without the usual
dispersively generated ripples.

Here, we present and apply the FCT finite-difference technique to forward seismic
modeling and reverse-time depth migration. The FCT approach is applicable in either
of the two forms. The first FCT algorithm, which directly follows the hydredynamics
approach, is based on the first-order partial differential equatio ; derived fromn the
second-order wave equation through a change of dependent -wric sles, whi. » the second
FCT approach can be directly used with the second-order *7av:- cquatior. These FCT
algorithms allow full variability in velocity and density, . .«1 ciitc wnfige reflectors with
a wide range of dips, with no numerical dispersion. Wheir ngad on - velatively coarse
grid, with less computation they achieve accuracy comp?irabi+ :¢ that of conventional
finite-difference approaches on a finer grid.

THEORY

For velocity and density fields that are functions of space, tiie acoustic-wave equa-
tion is



44#4_4

. Fei and Larner Dispersion elimination by FCT

192P [ 18P\ @ (1dP\  Q (10P
r T [5}(;%) + a—y(;sg) + a(m)] ey, 1)

where p = p(z.y, 2) is density, ¢ = c(x,y,2) is wave velocity, and f(z,y,z,t) is the
source function.

This wave equation for inhomogencous media can be approximated by an explicit,
conventional finite-difference scheme. However, this finite-difference discretization
causes the phase speed to become a function of discretization interval, and generates
undesirable dispersion when the spatial grid is too coarse (that is, too few samples
per wavelength are used). The FCT technique is a correction procedure applied to
the finite-difference result at each time step.

First, let us follow the original hydrodynamics approach by defining rew depen-
dent variables in the second-order acoustic wave equation so as to form four first-order,
conservative. equations in these new variables.

With new dependent variables defined as

1 OP

oP
_ 0P
oP
the second-order acoustic wave equation (1) is reduced to the new first-order partial
differential equation,
dqg 0 (u 0 ('U) 0 (w)
ot —Osc(p)+0y p +8y p +/, (6)

which is of the conservative form, and three additional first-order partial differential
equations are derived from definitions (2) through (3),

du 0 ( ,
== %(pc ), (7)
dv _ 0 9
5= (%), (8)
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As in the hydrodynamics problem. the FCT correction can then be applied to
these first-order equations. After we applied the FCT to the first-order system, we
found out that the FCT correction could readily be applied to the second-order wave
equation, as well.

Conceptually, the FCT technique consists of two major stages — a conventional
finite-difference stage (Stage I). follcwed by a correction stage (Stage II) which consists
of diffusion and anti-diffusion corrections. Applied to a conventional finite-difference
scheme of any order approximation in differencing, FCT ideally would entail applica-
tion of a corrective diffusion localized to just those regions where non-physical ripples
tend to form. This diffusion step would be carried out in a conservative way; that
is, whenever a portion of the wavefield is removed at one point, the same amount is
inserted somewhere else, and, as a result, there is no net loss or gain of the quantity
(e.g., pressure) to the system. In real situations, if there is no a priori information
about where the dispersion might exist, the FCT attempts to apply the diffusion
everywhere (steps 2 and 4 in Appendix A and B). Therefore, once the solution is
diffused, an opposing anti-diffusion is introduced to reduce the diffusion wherever it
seems not to be needed (steps 3, 5 and 6 in Appendix A and B).

The Appendix A gives the procedure for solving equations (6) through (9) by the
flux-corrected transport finite-difference method, while Appendix B gives the FCT
correction procedure for solving second-order wave equation (1).

In the computer implementation here, we apply the absorbing boundary condition
of Clayton and Engquist (1980) to the side boundaries and the lower boundary.

NUMERICAL EXAMPLES

We have tested the FCT correction on one-dimensional forward problems, two-
dimensional modeling and reverse-time depth migration. The reverse-time depth
migration, which basically is the same as forward modeling, simply runs time back-
wards.

For the one-dimensional case, where g’; = % = (), forward modeling tests involve
a wavelet that is an isolated full-cycle of a sinusoid, 0.5 cos(27 ft)+0.5, as well as for a
rectangle function with different widths. The medium is homogeneous in these tests,
and the FCT aigorithm used is based on the first-order partial differential equations.

For the two-dimensional case where 5‘?— = 0, we do tests of both modeling and
migration with FCT correction based on both the first-order partial differential equa-
tions and the second-order wave equation.
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One-dimensional tests

In the one-dimensional tests. the medium has a constant density and a constant
velocity of 2 km/s. In cach of the modeling tests, we specify a time sequence at
the surface and examine a snapshot of the wavefield generated in depth. Figures 1
through 3 show the snapshots at 1 s, generated by three isolated sinusoids at the
surface 0.333-s apart. The frequency for these tests is 10 Hz. The spatial steps are 0.01
km (twenty samples per wavelength), 0.025 km (eight samples per wavelength) and
0.04 km (five samples per wavelength), respectively. Similarly, Figures 4 through 6
show the snapshots at 1 s for rectangle-function pulses at the surface with spatial
step 0.01 km, and with cight, four and two samples per pulse width, respectively.

In each of the six figures. we compare the results for the ideal solution with those
obtained by a standard finite-difference method and by the FCT algorithm. The
ideal solution has a waveform that is unchanged during propagation. In Figure 1,
the fine-grid simulation (large dominant wavelength relative to Ax), the standard
leapfrog method applied to first-order equations gives a good result with only a small

amount of numerical dispersion. while the dispersion-caused ripples are absent in the
FCT solution.

For the coarse grids, cight samples per wavelength (Figure 2) and five samples
per wavelength (Figure 3), the standard leapfrog method yields a progressively more
distorted and weakened waveform, with large precursor oscillations, and significant
loss in resolution. The FCT correction still produces a good waveform shape, without
the ripples, but still with amplitude losses of about 8 percent in Figure 2 and about
15 percent (for the deepest cvent) in Figure 3. The weakened amplitudes are the
result of applying diffusion and anti-diffusion in the FCT method; the anti-diffusion
did not fully correct for the amplitude loss in the diffusion stage. The results suggest
that the FCT correction can give the correct position of the wavefront, as well as
greatly reduced numerical dispersion. While it partly improves the resolution, even
when few samples per wavelength are used, the loss in amplitude in finite-difference
result is not fully recovered by the FCT correction.

For the rectangle pulses (Figures 4 through 6) with spatial step of 0.01 km, the
standard leapfrog finite-difference method gives poor solutions for all choices of sam-
pling, whereas the FCT solutions show no numerical dispersion. Also for the choices
of eight and four samples per pulse width, the FCT method gives the correct ampli-
tudes (Figures 4 and 5) because relatively lower frequencies are dominant in these two
cases than in tests with the sinusoidal pulses. The waveform with the FCT correc-
tion has only little distortion since, for the one-dimensional case, it is easy to control
the diffusion and anti-diffusion coefficients (1, and 1), see appendices) to obtain a
good waveform. For the narrowest rectangle pulse, with only two samples per pulse
width (Figure 6), the FCT correction greatly improves the pulse shape and restores
resolution, but it falls short in restoring the significant loss of amplitude.

From these one-dimensional tests, we see that the FCT technique can treat large
gradients and shocks without the usual ripple artifacts. The FCT algorithm not only
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removes the grid-dispersion errors, it also yields a waveform with little distortion.
Moreover, the FCT can recover some, but not all, amplitude loss when too few samples
per wavelength (or pulse width) are used.

Reflector model

The model shown in Figure 7 has five reflectors, each with a horizontal segment
and a segment with dip varying from 30 degrees to 90 degrees, in 15-degree increments.
The input zero-offset time section for each of two different velocity models (Figure 8)
was obtained by a Kirchhoff modeling program. The first velocity model has velocity
linearly increasing with depth. and the second has a velocity gradient in a sloping
direction. Figures 9 and 10 show the results of FCT reverse-time depth migration
applied to each of the zero-offset synthetic data sets in Figure 8. The spatial steps, Az
and Az, in these tests are hoth 0.008 km, and the time step At is chosen to satisfy
a conventional stability condition. The input zero-offset synthetic data contain a
symmetric Ricker wavelet with dominant frequency of 20 Hz.

Here, a leapfrog finite-difference method, second-order accuracy both in time and
space, is first used to obtain the solution for the first-order partial differential equa-
tions, and then the FCT correction is applied. For these tests, the number of grid
points Gy per upper half-power wavelength is about G (at the position with the small-
est velocity), which gives a relatively coarse grid according to Kelly’s criterion for
the second-order accuracy method. Numerical dispersion is present in the solutions
without FCT correction (not shown here). However, with the FCT correction, the
migration images are dispersion free.

Figure 8a shows the synthetic data for velocity linearly increasing with depth,
c(z) = 1.6 + 0.6z km/s. The migrated section (Figure 9) indicates that the FCT
method can accurately image reflectors with all dips. The broadening of deeper
events is caused by the increasing of velocity with depth.

For a velocity field that is changing both vertically and horizontally, ¢(z, z) = 1.5+
0.2z + 0.35z km/s, the migrated section (Figure 10) again shows accurate positioning
of the horizontal and dipping reflectors. For the vertical reflector, the amplitude

appears weak because some of the unmigrated data fall out of the recording window
(Figure 8b).

Wedge model

Figure 11 shows a two-dimensional model in which the velocity in a rectangular
area is assumed to be zero, while outside that area the velocity is a constant 2.438
km/s. The modeled area in the tests is 5.266 x 5.266 km?, with upper left corner at the
origin. The upper left corner of the rectangular is at (2.194 km, 3.510 km) and a line
source is located at (2.633 km, 3.072 km). The time variation of the source function
is (t — 0.1)e~2t=0-17 "\here t is time, measured in s, and a=700 s~2. This gives a
upper half-power frequency of 10 Hz, and the corresponding half-power wavelength
is about 0.244 km for velocity v=2.438 km/s.

6
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For the fine grid, Ax=0.02194 km, the number of grid points Gy per upper half-
power wavelength is about 11. Figure 12a shows the snapshot at 1.026 s for the
wavefield computed by the second-order conventional finite-difference method, and
Figure 12b shows the snapshot at the same time for the FCT-corrected wavefield.
For this fine sampling, both the conventional finite-difference result and the FCT-
corrected result are accurate. and show no numerical dispersion.

On a medium-coarseness grid, Ar=0.04388 km. for which Gy = 5.5, the wave-
field obtained by the sccond-order conventional finite-difference approach becomes
dispersive (Figure 12c¢). The FCT correction, however, removes the numerical disper-
sion (Figure 12d). Note also in the conventional solution (Figure 12c) some loss of
resolution, which is partiallv recovered with the FCT correction.

When the grid size becomes more coarse, Ax=0.08776 km, for which Gy = 2.7,
the oscillations in the conventional finite-difference solution increase significantly (Fig-
ure 12e). The FCT correction, however, still removes the numerical dispersion (Fig-
ure 12f). In addition to the numerical dispersion. use of too coarse a grid in the
conventional modeling has caused considerable wavelet distortion, loss of amplitude,
and, in places, apparent time crrors (note the slightly non-circular wavefront at the
depth between 4 km and 5 km). Although the grid dispersion is removed by the FCT
correction, the use of too coarse a grid causes loss of amplitude and resolution (as
would happen in an attenuating medium) that cannot be fully corrected by the FCT
method.

Salt-dome structure model

Figure 13 shows a reflector structure modeling the boundary of an overhanging salt
dome with dip as large as 125 degrees. The input zero-offset time section for velocity
linearly increasing with depth (c¢(z) = 1.5 + 0.9z km/s) was obtained by a Kirch-
hoff modeling program. The wavelet is a symmetric Ricker wavelet with dominant
frequency of 30 Hz. Figures 14 through 18 show the reverse-time depth-migration re-
sults by the second-order and the fourth-order conventional finite-difference methods,
without and with the FCT correction.

For Figure 14, a migration image by second-order conventional finite-differencing,
the number of grid points per upper half-power wavelength at depth z=0 km, where
velocity is 1.5 km/s, is about 3.7 (coarse grid). The migration image shows strong
numerical dispersion. To overcome this problem. we can use a finer grid, at high
computational cost and heavy use of computer memory for the second-order method,
or we can use a higher-order scheme. Figure 15 shows the migration image by fourth-
order conventional finite-differencing on the same grid. As expected, the fourth-order
method significantly reduces the numerical dispersion and also improves the resolu-
tion. Since this spatial grid is still coarse for the fourth-order method, a significant
amount of dispersion remains. With use of a finer grid (Gy 5.5 at 2=0 km), the mi-
gration image for the fourth-order method becomes dispersion-free (not shown here).

The FCT technique can be equally applied to the higher-order finite-difference
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results. Figures 16 through 18 show the FCT-corrected results by the second-order
and fourth-order methods.

In Figure 16 (same grid size as for Figure 14), the FCT correction Las removed
the numerical dispersion scen in Figure 14, and has slightly improved the resolution.
But, since the grid is too coarse for the second-order method, the FCT correction has
not completely cured the resolution problem. For the finer grid with Gy ~5.5 at z=0
km (still a coarse grid for the conventional second-order method), the FCT correction
on the second-order finite-difference vields good resolutinn, again along with removal
of the numerical dispersion (Figure 17). Applying the FCT correction to the fourth-
order method on the coarser grid (Figure 18), also eliminates the numerical dispersion
and yields the desired resolution (compare with Figures 14 through 16).

Field data

Figure 19 shows a DMO-stacked section from the Gulf of Mexico. The migrated
section by the fourth-order conventional finite-difference method, with spatial step
size of 6 m, is shown in Figure 20. The part of the image inside the dashed box is en-
larged in Figure 21. For comparison, Figure 22 shows a closeup view of a comparable
portion of the unmigrated DMO-stacked section. The arrows in Figures 21 and 22
point to comparable positions on the two sections, where reflections have little slope
and therefore should not be changed much by the migration. The added reflection
events at the arrow in Figure 21 might therefore be artifacts of numerical dispersion.
With the FCT correction (Figure 23), the suspect events are removed.

EFFICIENCY

Just as increasing the order of the finite-difference approximation increases the
amount of computation on a fixed grid, so does use of the added steps in FCT cor-
rection. As with use of higher-order finite-differences, however, the FCT correction
allows computation on a coarser grid.

For 2-D problems, the second-order conventional finite-difference method for solv-
ing equation (1) requires about AN computations (Table 1), assuming that the num-
ber of grid points in the horizontal and vertical directions, and the number of time
steps are each equal to N. Hcre, k is a fixed proportionality constant. The second-
order finite-difference method for solving equations (6), (7) and (9) increases the
amount of computation to about 1.6kN3, which is nearly the same as that for the
fourth-order finite-difference method for solving equation (1). The diffusion and anti-
diffusion steps in the FCT method for the first-order equations again increase the
computational effort, to about 4kN3; similarly, the FCT correction for the second-
order wave equation increases the computation to about 2.8k N3 for the second-order
finite-difference method. and to about 3.4kN3 for the fourth-order finite-difference
method. But the FCT method gains in efficiency because fewer points per wave-
length are required for acceptable accuracy in terms of both numerical dispersion and
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resolution. In practice. at least 11 points per upper half-power wavelength must be
used for the second-order conventional finite-difference method and 5.5 points must
be used for the fourth-order method to achieve acceptable accuracy. In contrast,
for the FCT method, only 5.5 and 3.7 points need to be used for the second-order
and fourth-order methods, respectively, to obtain comparable accuracy. Thus, as
seen in Table 1, the FCT method should gain in speed compared with the conven-
tional second-order and fourth-order finite-difference methods. For 3-D problems, the
increases in efficiency and speed of the FCT method should be even greater.

Computational cost Points per Relative
Method proportional to | wavelength (Gy) | speed

2nd-order eqn;
2nd-order FD kN3 11 1
1st-order equs:
2nd-order FD 1.6kN3 11 0.63
2nd-order eqn;
4th-order FD 1.6kN3 5.5 5
2nd-order eqn:

2nd-order FD with FCT 2.8kN3 5.5 2.9
1st-order eqns;

2nd-order FD with FCT 4kN3 5.5 2.0
2nd-order eqn;

4th-order FD with FCT 3.4kN3 3.7 7.7

Table 1. Relative computation speeds with and without FCT.

Asseen in Table 1, solution of the second-order wave equation is more efficient than
that of the first-order equations. However, it is easier to code the FCT corrections
for the first-order system in applications to elastic media (Fei, 1993). Note also in
Table 1, the speed of the fourth-order conventional finite-difference method exceeds
that of the second-order finite-difference method with the FCT correction. If one were
to go to the next higher-order (sixth-order) finite-difference method, the higher-order
finite-difference would also be somewhat faster than the fourth-order finite-difference
with the FCT correction. However, the higher-order finite-difference effort can still
fail to completely remove the numerical dispersion where velocity is particularly low,
locally.

The speeds of the FCT correction listed on the table pertain to corrections that
are applied everywhere throughout the computation area of interest. However, where
velocity has large contrast, the numerical dispersion tends to be restricted to regions
with small velocity, and we can choose to localize the FCT correction to those regions.
With such localization of the FCT effort, the FCT approach can be particularly
efficient. For a constant velocity medium, no such benefit of localization of action is
available.
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CONCLUSIONS

As we have seen. the FCT method provides an efficient and effective means of
overcoming problems of numerical dispersion that arise in standard finite-difference
algorithms if too few samples per wavelength are used. Even for wavefields with
strong gradients and discontinuities, the FCT method can still produce solutions
without numerical dispersion. Also, the migration results presented here show that
the FCT method can produce good images of reflectors with dip beyond 90 degrees
for velocity that increases with depth.

The flux-corrected transport correction, initially applied to the first-order equa-
tions of hydrodynamics. may be applied to the acoustic wave equation written either
as a second-order equation or as a set of first-order equations. While the FCT applied
to the first-order system is casier to code for elastic-wave extrapolation in anisotropic
media (Fei, 1993), for the acoustic problem the second-order equation is more effi-
ciently treated by finite-diffcrence methods. The use of the FCT correction imposes
no limitation on the spatial variation of the velocity and density fields for either mod-
eling or reverse-time depth migration. The additional FCT steps add about 1.5 times
more computation for the first-order equations, and about 1.8 times more for the
second-order wave equation, than that of the standard second-order explicit finite-
differencing step. The FCT method, however. offers the opportunity to use a coarse
grid (fewer samples per wavelength) to obtain accuracy in wavefield extrapolation
that is comparable to that obtained by conventional finite-difference methods. The
use of next higher-order finite-difference methods also allows the use of a coarse grid,
and with slightly less computation effort than that for the lower-order finite-difference
with the FCT correction. However, in situations wlhere higher-order finite-difference
methods cannot effectively remove all the numerical dispersion, the FCT correction
is an alternative technique that can ensure a dispersion-free solution.

When using higher-order methods in the finite-differencing step, the relative com-
putation cost of the FCT is reduced, since the FCT correction is independent of
the order of finite-differencing. Despite these benefits of the FCT corrections, the
computation effort of reverse-time depth migration is still about three to ten times
(depending on the velocity model) that of the Kirchhoff integral method for 2-D
migration. For 3-D migration and modeling, the computational effort of any finite-
difference method (the FCT method in particular) is proportional to N*, while that of
the Kirchhoff integral method or Gaussian beam mcthod is proportional to N®, sug-
gesting that the FCT method might be more competitive with the Kirchhoff integral
method or Gaussian beam method for 3-D problems.
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APPENDIX A: FLUX-CORRECTED TRANSPORT
FOR THE FIRST-ORDER WAVE-EQUATION SYSTEM

The flux-corrected transport (FCT) method (Boris and Book, 1973; Book, et
al., 1975) was developed primarily for solving the first-crder continuity equation in
hydrodynamics. To apply the FCT method to the first-order system for seismic
wavefield extrapolation in acoustic media, we need to solve equations (6) through
(9). By direct extension of the FCT approach in Boris and Book (1973), the FCT
algorithm proceeds as follows:
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1. Advance the solutions on a staggered grid by a standard finite-difference method

(leapfrog algorithm has been applied here) and obtain q{'ﬁ, “?:11/2,j,k’ v,”;&1 12k
and w,";f,: +1/2 at time level n + 1. (For example, ¢F;, is the value of g at the
time sample n, z-coordinate sample ¢, y-coordinate sample j and z-coordinate
sample k). To save computation cost, the FCT correction (next few steps) need
be performed only on the variable q. Such a correction is not necessary for
computation of u. v and w. Once q is corrected, u, v and w can be computed

directly from equations (7) through (9).

. Compute diffusive fluzes at time level n — 1 :

-1 _ -1 -1
QI?—%—I/'Z,]’.k = 771((1?+1.j,k - ‘Iﬁj,k)
n—1 - -1 -1
Qyi'.j+1/‘2.k = (@1 e — Gigk)
-1 _ -1 -1
Qzﬁj,k+1/2 =M (Q?,j,k+l - q?,j,k), (A'l)
where 0 < n; < 1 is a coefficient that varies with position. In typical applica-
tions, n; ranges between 0.01 and 0.1. The function can be determined from a
few small-scale numerical experiments by considering the amplitude treatment
for horizontal events. Results are not critically sensitive to the choice of 7,.
. Compute diffusive fluxes at time level n + 1, for use in step 6 below :

> n+l

_ +1 +1
Q::i+1/2.j,k = 712((1?+1,j,k - qﬁj,k)
j ntl - +1 +1
Qui je1/24 = T(Gr1 — G7k)
y ntl — +1 +1
Qzija+1/2 = @5k — Ggk)» (A-2)

where 0 < 7o < 1. The values of 7, may differ from those of ;. To preserve
resolution, we generally use 7, about 10 to 15 percent larger than 7;.

. Modify (i.e. diffuse) the solution q using Q., Q, and @Q.; this process smooths
the solution (also causes an undesirable loss of amplitude) and eliminates the
ripples caused by grid dispersion:

-~ n -1 n—1
T =+ (Qeifijagn — Qeisijogn)
n—-1 n—1
+ (Qyi,j+l/2,k - Ili,j—l/Z,k)
-1 -1
+ (Q:ijk+1/2 — Quljk—1/2)- (A-3)

5. Take the differences of the diffused ¢ :

- — s+l il
.X,+1/2,),k - qi+1,],k - qi!j’k

¥ — ~n+l ~n+l1

Yijer/2h = Gijpie — Gk

— s+l ~n+1
Zijk+1/2 = Qije+1 — ijk- (A-4)

12



. Fei and Larner Dispersion elimination by FCT

6. Anti-diffuse the solution as follows, and obtain the corrected solution for ¢ :

(I?ﬁ = (E’f,é — (Xioy2ge = Xiage) = YVee — Yo1/20)
(Z5 k412 = Zijk=1/2)s (A-5)
where
Xij2,54 = Semax{0, min[S, Xi—1/2,jk, abs((j,?:llﬂ‘j,k), Sz Xita/2.5kl}
Y a0 = Sy max{o, min[SyY,',j._l/gyk,abs(Qy:;:l/zk), SyYijrasakl}
~ n+l

Z{ike1j2 = S: max{0, min(S, Z; j k-1/2,abs(Qz; j k41/2)s S: Zijk+as2l}s

. s n+l

Sz = sign{Qrir1/2,4}
. s on+l

Sy, = 51gll{Qy.‘.j+l/2-k}’

s n+l

S. = Sign{Q:i.j.kH/Q}‘

APPENDIX B: FLUX-CORRECTED TRANSPORT
FOR THE SECOND-ORDER WAVE EQUATION

To apply the FCT method to the second-order acoustic wave equation (1), the
procedure is much the same as that discussed in Appendix A. The diffusive and anti-
diffusive fluxes, however, are computed differently. In equation (2), note that variable
q is the time derivative of variable P. Therefore, the fluxes for P can be obtained by
finite-differencing in time after finite-differencing in space. The algorithm proceeds
as follows:

1. Advance the solutions by a standard second-order finite-difference method and
obtain P"%! at time level n 41 ( P['%} is the value of P at time sample n + 1,
z-coordinate :.ample i. y-coordinate sample j and z-coordinate sample k).

2. Compute diffusive fluzes at time level n :

-1 -1

Qzivij2jne = M(Pljn — Pk — Pije + Plix)
-1 -1

Quijersze = MPp1e = Plie = Pijie + Pijk)
-1 -1

Q=7 nerr2 = M(Pkpr = Pl = Pijjer + Pj%), (B-1)

where 0 < 7, < 1 is a coefficient chosen as described for equation (A-1).

3. Compute diffusive fluxes at time level n + 1, for use in step 6 below :

5 n+l n+1 n+1 n n
Q£i+l/2.j,k = 77'2(Pi+1,j,lc — Fijkx — i T+ Pi,j,lc)

s n+l _ n+1l n+1 n n
Quijr12 = (Pl — Pije — Pijpie + Plie)

ing ﬂ+l - +1 +l
Q:ijrr12 = (P ferr — Pilie — Pljksr + Plik), (B-2)

13
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where 0 < 7o < 1 is as described for equation (A-2).

4. Modify (i.e. diffuse) the solution P using Q, @, and Q.; this process smooths
the solution (also again causes some loss of amplitude) and eliminates the dis-
persive ripples:

5 i -1 -1
Pi'.'fl = Pi,.zf + (Qr?+1/2 gk 1?—-1/2,]', )
+ (Qyu+l/2k Vig- 1/2 k)
1 -1
+ (Q:ljkrr2 — Qaljr-1/2)- (B-3)

5. Compute diffusive fluxes with the diffused P! and P

- — (pn+l n n+1 n
Nivrjzgk = PRk — Plge) — (P,J, ~ Ply)
n+1 n n+1 n
1IJ-H/”L - \P,_H-l kT i,j+l,k) (Pt Jok P,], )

Zijks1/2 = (Pi,j,kl+1 — Pl s1) — (P,',' - Pl (B-4)

ik

6. Anti-diffuse the solution as follows, and obtain the corrected solution for P :

P?JTI = P'n1+‘l = (Nyzge = Xior20) — (Yi?j+l/2,k =Y 1ak)
(Zi5k+1/2 = Zijh-1/2) (B-5)

where X7\ /o1y Yi541/20 and Z§j,4,/o are given in step 6 of Appendix A.

14
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LIST OF FIGURES

. 1. One-dimensional test for isolated wavelets, each of which is a full-cycle of
a sinusoid with a frequency of 10 Hz, for a constant velocity of 2 km/s and
a constant density. The spatial step is Az = 0.01 km (twenty samples per
wavelength). (a) Ideal wavefield. (b) Wavefield obtained by a standard leapfrog
finite-difference method. (¢) Wavefield obtained with the FCT correction.

. 2. Same as Figure 1, except Az = 0.025 km (eight samples per wavelength).
. 3. Same as Figure 1, except Az = 0.04 km (five samples per wavelength).

. 4. One-dimensional test for isolated rectangle pulses (eight samples per pulse
width), for a constant velocity of 2 km/s and a constant density. (a) Ideal
wavefield. (b) Wavefield obtained by standard leapfrog finite-difference method.
(c) Wavefield obtained with the FCT correction.

5. Same as Figure 4, but here the isolated rectangle pulses have four samples
per pulse width.

6. Same as Figure 4, but here the isolated rectangle pulses have two samples
per p%ﬂse width.

7. Reflector model used to generate synthetic data for the tests described in
Figures 9 and 10.

8. Zero-offset synthetic time sections generated by Kirchhoff modeling for (a)
velocity linearly increasing with depth, (b) velocity model with linear variation
in (z, 2).

9. Migrated section for velocity model ¢(z) = 1.6 4+ 0.6z km/s,
and constant density.

10. Migrated section for velocity model ¢(z,z) = 1.5+ 0.2z + 0.35z km/s,
and constant density.

11. Wedge model showing the source position and velocity field (rectangular
void in a homogenous medium).

12. Wavefield snapshot for different grid sizes. (a) and (b) are for fine grid (Go ~
11). (c) and (d) are for medium-coarseness grid (Gp =~ 5.5). (e) and (f) are for
coarse grid (Go = 2.7). (a), (c) and (e) are for the conventional finite-difference
method. (b), (d) and (f) are the solution with the FCT correction.

13. Reflector model used to generate synthetic data for the tests described in
Figures 14 through 18.
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Fig.

Fig.

Fig.

Fig.

Fig.

Fig.
Fig.
Fig.

Fig.
Fig.

14. Second-order conventional finite-difference migration for grid step sizes Ax
= Az = 0.008 km (Gp =3.7 at z = 0 km).

15. Fourth-order conventional finite-difference migration for the same grid as
that for Figure 14.

16. Second-order finite-difference migration with the FCT correction for the
same grid as that for Figure 14.

17. Second-order finite-difference migration with the FCT correction for grid
step sizes Ar = Az = 0.0055 kni (Gy =5.5 at z = 0 km).

18. Fourth-order finite-difference migration with tne FCT correction for the
same grid size as that for Figurc 14.

19. DMO and stacked section from Gulf of Mexico.
20. Migrated section by the fourth-order conventional finite-difference method.

21. Enlarged portion of migrated section by the fourth-order conventional finite-
difference method.

22. Closer view of DMO and stacked section from Gulf of Mexico.

23. Enlarged portion of migrated section by fourth-orler finite-difference method
with the FCT correction.
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