BROOKHAVEN NATIONAL LABORATORY , ..

PX84 Lo/ Fspl 2 TY - e
October 14, 1994 BNL-61074

TO APPEAR IN THE PROCEEDINGS OF
NATO ADpVANCED RESEARCH WORKSHOP
HOT HADRONIC MATTER: THEORY anND EXPERIMENT
27-JUN-1-JULY 1994, DIVONNE-LES-BAINS, FRANCE

NEGATIVE BINOMIAL FITS
TO MULTIPLICITY DISTRIBUTIONS

FROM CENTRAL COLLISIONS OF '*0+4Cu at 14.64 GeV/c
AND INTERMITTENCY

M. J. Tannenbaum

Brookhaven National Laboratory

Upton, NY 11973 USA

for the E802/E859 Collaboration

ANL, BNL, UCBerkeley, UCRiverside, Columbia, Hiroshima,
INS(Tokyo), Kyoto Kyushu, LLNL, MIT, NYU, Tokyo, Tsukbua

INTRODUCTION

The concept of “Intermittency” was introduced by Bialas and Peschanski’ to try
to explain the ‘large’ fluctuations of multiplicity in restricted intervals of rapidity or
pseudorapidity.3 A formalism was proposed! to to study non-statistical (more pre-
cisely, non-Poisson) fluctuations as a function of the size of rapidity interval, and it was
further suggested! that the “spikes” in the rapidity fluctuations were evidence of fractal
or intermittent behavior, in analogy to turbulence in fluid dynamics which is charac-
terized by self-similar fluctuations at all scales—the absence of a well defined scale

of length.* Bialas and Peschanski proposed that the data be presented as Normalized
Factorial Moments of order g :

< Fy(8n) >= = n{n - 1)<“1;(:q— g+1)> s (1)
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where 7 is the mﬁltiplicity in a pseudorapidity interval (bin) of size 47 on a given event
and the < > brackets indicate averaging over all events. Intermittency would be indi-

cated by a power-law increase of multiplicity distribution moments over pseudorapidity
bins as the bin size is reduced:
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The Normalized Factorial Moment with the clearest interpretation is
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where g =< n > and ¢ = v/< n? > — < n >? is the standard deviation. Note that the
Normalized Factorial Moments are all equal to unity for a Poisson Distribution.
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The formulation of this new concept of “intermittency” in terms of moments
was taken by many as an inelegant and confusing development, particularly since the
greatest advance in multiplicity distributions in 20 years had recently been made by
the UAS Collaboration® who actually determined the functional form of multiplicity
distributions. The Negative Binomial Distribution (which had been used sporadically
for the total multiplicity®) was used by the UA5 collaboration” as a “remarkable”
description of their measured multiplicity distributions in intervals of rapidity which are
not significantly constrained by conservation laws,®! and also for the total multiplicity.
Also, a related distribution, the Gamma Distribution, had been used to describe Er
distributions.’? One could not help but wonder what “intermittent” behavior
would look like in terms of distributions rather than moments—since once
the distribution is known, then ALL the moments are known.

An “intermittency” analysis of charged particle multiplicity data from the target
multiplicity array (TMA) in central collisions of %0+Cu at 14.6 A-GeV/c has been
published by the AGS-E802 collaboration.!® The centrality cut was made using the Zero
degree Calorimeter (ZCAL) and requiring that the forward energy be less than one pro-
jectile nucleon (i.e. Tzcar < 13.6 GeV). In agreement with previous measurements,!*
an apparent power-law growth of Normalized Factorial moments with decreasing pseu-
dorapidity interval was observed in the range 1.0 > 6p > 0.1. In the present work,
multiplicity distributions in individual pseudorapidity bins are presented for the same
data. These distributions are excellently fit by Negative Binomial Distributions (NBD)
in all §7 bins, allowing, for the first time, a systematic formulation of the subject of
“intermittency” in terms of distributions, rather than moments.

NEGATIVE BINOMIAL DISTRIBUTION

The Negative Binomial Distribution of an integer m is defined as

(m+k—1) (&)™
P = "=y @ “

where P(m) is normalized for 0 < m < oo, p =< m >, and some higher moments are:
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azmm+%) %=;+E Fp=1+ (5)

The Normalized Factorial Moments and Cumulants (K,;)!*''® of the NBD are
particularly simple:

g—1 (g —1)!
Fq = F(q—l)(l + T) ‘Kq = ka-1 . (6)

The NBD, with an additional parameter k compared to a Poisson distribution, becomes
Poisson in the limit ¥ — oo and Binomial for k equal to a negative integer (hence the
name). The extra parameter has made the NBD useful to Mathematical Statisticians
in the Likelihood Ratio Test for whether a distribution is Poisson—more precisely
as a “test for independence in rare events.”!” The likelihood ratio test for a Poisson
distribution consists of determining whether the NBD parameter 1/k is consistent with

zero to within its error s L which is given!” as:
1 /2
sy = 2= 22 (7)
* k2 uVN

where N is the total number of events. For statisticians, the NBD represents the first
departure from a Poisson Law. Physicists are more likely to describe the NBD as
Bose-Einstein (k = 1) or Generalized Bose Einstein k # 1 distributions.®
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EB802 0+Cu Central Multiplicity data in d7 bins
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Figure 1: Multiplicity distributions for selected 67 intervals, 0.1,0.2,0.3,0.5,1.0, as indicated. The
data for each interval are plotted scaled in multiplicity by < = >, the mean multiplicity in the interval.
Each successive distribution has been normalized by the factor indicated, for clarity of presentation.

NEGATIVE BINOMIAL FITS TO THE DATA

The AGS-E802 multiplicity distributions for central *0+Cu in bins of §n=
0.1,0.2,0.3, 0.5,1.0, around a central value of n = 1.7 in the laboratory, are shown in
Fig. 1. Note that < dn/dn> is rather constant (2.5% rms variation) for these bins. The
distributions for each bin all have approximately the same number of events, 19667.
The solid lines on the data are NBD fits. The exact details of the centrality cut are
important for Fig. 1, and presumably also for intermitiency analyses by moments, since
the rising (lower multiplicity) parts of the distributions are determined by the centrality
cut. The excellence of the fits of the NBD to the rising as well as the falling parts of all
the distributions is attributed to use of the ZCAL centrality cut, which is an indirect
cut on multiplicity, rather than the sharp cut on multiplicity which is traditionally used
to define centrality. Approximately 3.2% of minimum bias events would be expected to
pass the centrality cut, thus the data in Fig. 1 correspond to ~ 0.6 million interactions.

The k parameters of the NBD fits are plotted in Fig. 2 and show a totally unex-
pected and strikingly steep linear dependence on §7—¥ varies by more than a factor of
3 over 1 unit of 7. This is in sharp contrast to the UAS5 results, where k is also linear
with &7 but varies by only ~ 10% over the same interval. The linear increase of the NBD
parameter k(67) with 67 (and thus with p =<n(6y)>) indicates that the multiplicity
in each 7 bin acts as if it were largely statistically independent of that in the next
bin, since the near direct proportionality of the NBD parameter k(é9) with <n(é7n)>
means that the multiplicity distributions convolute as the bin size is extended. The
effect of the clear non-zero intercept, k(0) # 0, is that the ratio k(&%)/ <n(én)> does
not remain strictly constant with increasing §7, as would be the case for full statisti-
cal independence. The fact that the measured multiplicity distributions are excellently



fit by distributions (NBD) with well known properties under convolution enables these
observations to be made by inspection.
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Figure 2: The k(én) parameter from NBD fits to the data as a function of the interval 67.

INTERMITTENCY EXPLAINED!

It is now possible to relate the directly measured evolution of the fluctuations of
multiplicity with increasing pseudorapidity interval—as described in terms of the Nega-
tive Binomial distributions which excellently fit the measurements—to the Normalized
Factorial Moment analysis of the same data. The striking linear evolution of the NBD
parameter k(6n) with the width of the interval, explains the observation of fractional
power laws based on the “intermittency” formalism in a much more simple, elegant and
understandable way. The apparent power laws with fractional ezponent are simply an
artifact of using the quantity Fy —1, which is the tnverse of a linear quantity k(67). The
“Intermittency” phenomenology, which looks for self-similar fluctuations at all scales
0n by a fractional power-law increase of bin-averaged Normalized Factorial Moments
with decreasing bin size &7, obscures the real physics of multiplicity fluctuations which
is given simply and elegantly by the linear evolution of k(69) = 1/(F, — 1).

Furthermore, for all orders of the Normalized Factorial Moments measured in this
experiment!? the apparent fractional power-law increase with decreasing bin size 7 is
entirely given by the Negative Binomial Distribution best fit curves, represented by the
single parameter k(67n)—and has nothing to do with the deviations of the measured data
points from the best fit curves! The Normalized Factorial moments of all orders can
be obtained from the single parameter k(é7) of the NBD fit (see Eq. 6), and compared
point by point with the results of the moment analysis'® up to 6th order (see Fig. 3).
The low order moments agree to well within the statistical errors but there appears to
be a small systematic discrepancy between the two methods, which increases slightly



with increasing order. Part of the discrepancy may come from the slight difference in
the actual data for the two methods and may therefore be real. It is also conceivable!®
that the NBD fits, which give excellent values for the low order moments with the the
best statistics, may give smooth values for the high order moments, which miss the
fluctuations of the data points at high multiplicity seemingly indicated in Fig. 1.1° Two
comments are relevant on this possibility: the only visible fluctuations of the data from
the curves occur for n > 15 (and therefore are relevant only for the 15th moment or
higher); due to the excellence of the x? of the fits, these fluctuations from the NBD best
fit curves are constistent with statistical fluctuations. In any case, the slight differences
in the results of the two method would not affect the fractal interpretation of either
set of data points in Fig. 3 by a “true believer” in the factorial moment formalism of
“intermittency”.
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Figure 3: Normalized factorial moments F, for central collisions of 180+Cu, for orders ¢=2,3,4,5,6,
from the “intermittency” analysis’® (open points) compared to the same quantities computed from
the NBD parameter k(6n) of Fig. 2 (solid points).

TWO-PARTICLE CORRELATIONS, THE NBD AND INTERMITTENCY

The importance of two-particle correlations to completely determine the mul-
tiplicity distribution was pointed out by Fowler and Weiner,” and more recently by
Giovannini and Van Hove.?’ The application of two-particle short range correlations
to the “intermittency” phenomenology was pioneered by Carruthers, Friedlander, Shih
and Weiner,?! Capella, Fialkowski and Krzywicki,”* and Carruthers and Sarcevic.?®
The Reduced 2-particle Correlation is parameterized in an exponential form

_ 02(3/19312) _ P2(y13y2) 1 e-—lw-—wl/f
Rlonse) = 200 ~ et - OO ®)



where p;(y) is the inclusive single particle density (assumed constant), ps(y1,¥2) is the
inclusive two-particle density, Ca(¥1,y2) is the Mueller'® 2-particle correlation function,
and £ is the correlation length. Then, the integral can be performed on an interval of
full width 69,0 <y, < 6,0 <y, < én:

én
/ dy1dys Ca(y1,92) (1= (1~ e50/¢)]

Ko=Fy-1= e = R(0,0) o . ()

For a Negative Binomial Distribution, substitution of the identity k = 1/(F, — 1) into
Eq. 9 yields the equation for the evolution of the NBD parameter k(67) :

1 _ 1 8n/2¢ |
F,—1  R(0,0)[1— £(1—e®/e)] (10)

k(6n) =

Note that Giovannini and Van Hove?® were the first give the relationship between the
NBD k parameter and the integral of the 2-particle correlation function C,, and a
similar derivation was given by De Wolf.?* If it is known (eg. from the data) that
the multiplicity distribution is Negative Binomial, then the two particle correlation
determines the entire distribution. Of course, independently of the distribution, Eq. 10
is valid for the evolution of 1/(F, — 1) with é7.

This formula, Eq. 10, gives 2 mathematical explanation of why the linear increase
of k with 67 is an indication of the randomness of the multiplicity in adacent 47 bins,
while the constancy of k with increasing 67 would be an indication of 100% correlation:
in the limit §n < ¢, when the 87 interval is well inside the correlation length, k(67) =
1/R(0,0), a constant; in the limit §n > &, k is directly proportional to &7, k() ~
6n/2¢, as expected from convolutions of independent bins.”! The measured evolution of
k(67), which appears to be strikingly linear, is equally well described by a fit to Eq. 10
(see Fig. 4) which indicates a weak correlation strength, R(0,0) = 0.074 + 0.005, and
a very short rapidity correlation length, ¢ = 0.12 £ 0.01. It is important to note that
these results are very sensitive to any short-range two-particle correlation generated by
the detector, and in fact, the data of Figs. 1-4 which are uncorrected for instrumental
effects, have a known instrumental short range correrelation'® which constitutes about
half the measured effect.

CORRECTION FOR INSTRUMENTAL EFFECTS

A short range correlation was inadvertently built into the Target Multiplicity
Array (TMA) used for these measurements, which was constructed of resistive plastic
tubes operated in the proportional mode and read out from image signals induced
on cathode pads. The detector was composed of individual small panels which were
slightly tilted to avoid inefficiency due to the walls of the tubes: the ineffeciency was
compensated by a small amount of cross-counting on adjacent pads for particles which
cross from one wire to another across a tube wall—a built-in short range correlation.
The effect of such cross-counting was studied extensively using Monte Carlo (MC)
simulations, test beam data, and finally by comparing the measured rate of two-pad
clusters on adjacent wires to that predicted by the MC which included all the physical
(conversions, decays, multiple scattering) and geometrical effects. The rate on which
pads on adjacent wires fired was (7.45+0.11)% in the data, compared to (3.4+0.3)% in
the MC which is composed of a random effect of 2.3%, with only 1.1% from conversions
and Dalitz pairs. (The tracks from conversions and Dalitz pairs generally both land on
one pad or else the instrumental background from this effect would be much larger.)
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Figure 4: The NBD parameter k(7) as a function of the interval &7 (Flg 2),together with a fit to
Eq. 10 with the parameters indicated (solid line).

0+Cu Central CORRECTED k Parameter

150 B 1 1 ) 1 I 1 I 1 I 1 11 l LR 1 I 1 1 LR i L] ¥ ]
[ EB802-AGS CORRECTED | .
125 [— R(0,0)=0.031+0.005 —
- ¢=0.18+0.05 .
oy 100 — —
> . ]
,“\ b =
= 75— —
O n .
S N ]
'M - pu
S0 — ~
25 — —
C | N N T | 1 1 L1 | 1 1 ] 1 I 4 i 1 | . 11 L1 | S 7

0

0.

0 0.2 0.4 0.6 0.8 1.0 1.2

Flgure 5: The k parameter from NBD fits to the data, corrected for instrumental effects, as explained
in the text, presented as kC(6n) = 1/KJ (6n) as a function of the interval én. The solid line is a fit to
Eq. 10 with the parameters indicated.




The difference of 4% was therefore added to the final Monte Carlo used to calculate the
instrumental effects. Interestingly, the results of final MC for the instrumental effects,
FMC —1 = KI, can be rather well represented by Egs. 8, 9, with parameters RY(0,0) =
0.050 + 0.010 and ¢ = 0.072 £ 0.020, which is, in fact, a reasonable mathematical
description of the built-in short range correlation of the detector.

The NBD analysis is corrected for the instrumental effect by taking the measured
two particle correlation R(y;,y:) to be the sum of a true effect plus the instrumental
effect: '

R(y1,92) = R*(y1,%2) + R (v1,%2) , (11)

with the further assumption that the instrumental effect has minimal influence on the
observed < n(67) >. It then immediately follows from Egs. 8-10 that the measured

K,(6n) = 1/k(6n) is just the sum of the integrals of the true plus the instrumental
terms, or '

1
K. = e = KT ! .
2(577) k(517) - K, (5"7) + K2(617) (12)
The true effect KJ(6n) is then simply
1 .
K;(6n) = wWEn) Ky(én) - (13)

FINAL RESULTS FOR R(0,0) AND ¢

In keeping with the notation based on the NBD, the final results are quoted as
1/K;(6n), denoted kC(6n), and are plotted vs 67 in Fig. 5 which clearly illustrates,
again, the simple linear evolution and non-zero intercept. The final values of R(0,0)
and §, corrected for instrumental effects, are derived from a fit of this data to Eq. 10:
R(0,0) = 0.031 £ 0.005, { = 0.18310:33} (statistical errors). The systematic error,
predominantly from the measured cross-talk uncertainty (4.0% % 0.4%), is +0.003 for
R(0,0) and +0.01 for {. The hadron correlation length at low energies is known?® to
be roughly ¢ ~ 2 units of rapidity, with strength R(0,0) ~ 0.6. Thus, for the weak
correlation strength and small correlation length derived from the E802 data to make
sense, it must be that the standard hadronic short range correlation effect is diluted
by the random overlap of the multiple collisions in the %0+Cu reaction. Similar
conclusions in the context of the conventional “intermittency”slope parameters were
given in references,?!»2226,27

This result further demystifies “intermittency”. For *0+Cu central collisions,
“Intermittency” is nothing more than the apparent statistical independence of the multi-
plicity in small pseudorapidity bins, §n ~ 0.2, due to the surprisingly short two-particle
rapidity correlation length! The ‘large’ bin-by-bin fluctuations on individual event
rapidity distributions from Si+AgBr interactions in cosmic rays3?® and the linear evo-
lution of k(é7n) for the present data are both explained by this effect.

It is interesting that exactly the deduced effects from the E802 data—weakened
and very short length rapidity correlations in collisions of relativistic heavy ions—
were predicted several years ago.?"»?%2%% In nucleus-nucleus collisions, the conventional
short-range correlations should be washed out by the random superposition of corre-
lated sources,??26:27 50 that eventually only the Quantum-Statistical Bose-Einstein (B-
E) correlations should remain.?!:?%:3! Qther experiments have reported a relationship
of “Intermittency” to B-E correlations.?>3® If B-E correlations were the entire effect,
then direct measurements of B-E correlations in the variable §7, instead of the usual
variable® (Qinv = p1 — p2), should reproduce the parameters derived from the evolu-
tion of kC(67). A preliminary attempt using the E802/E859 spectrometer is shown in



E859 Si+Au Central HBT data vs. Qi
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Figure 6: a) E859 two =~ Bose-Einstein Correlation measurements in the variable Qiyy from 231K
events in Si-+Au central collisions. b) the same data as a function of §7. The curves are fits with
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Fig. 6. The two pion correlation measurement in the variable Qinv, which is consid-
ered to be one of the most demanding in RHI physics, appears to be much easier than
the measurement in terms of 87, where the result for £ is extraordinarily sensitive to
the normalization of the correlated and mixed event samples.>® The results are very
preliminary but appear encouraging.

INTERMITTENCY IN TERMS OF DISTRIBUTIONS

Many of the individual components of the present analysis have been noted by
previous authors.?20-23,31,27,24,32,35,26,29,30,36-38 However, the present data allow for the
first time a systematic formulation of the sub ject of “intermittency” in terms of distri-
butions, rather than moments. Furthermore, the evolution with 47 of the NBD param-
eters yields a simple, elegant and understandable explanation of the “intermittency”
phenomenology. The key to explaining “intermittency”, which had not previously been
understood, is the dramatic reduction of the two-particle rapidity correlation length
for *0+Cu central collisions from the value in hadron-hadron collisions.2 Moreover,
the correlation length for central '*0+Cu collisions, although smaller than expected,
is quite finite and can be measured—which means that a length scale exists in these
collisions and therefore there is no intermittency!'* in the multiplicity fluctuations.

Since the pioneering work of UA5,® many other experiments have shown that the
NBD provides excellent fits to charged particle multiplicity distributions in restricted
én intervals for all reactions studied, for example: p+p (NA22%), et + e~ (HRS%),
p-p DIS (EMC*), S+S central (NA35%?). All these measurements show the same
effect as the present data—linear dependences of the NBD parameter k(én) with the
pseudo-rapidity interval 7, or equivalently with the mean multiplicity in the interval
#(6n), with non-zero intercept, k(0) £ 0 (see Fig. 7a). The present data (and also to
a certain extent, the other heavy ion data, NA35 S+S) are quantitatively, rather than
qualitatively, different from the others in that k(67) is much larger, and the dependence
on 67 much steeper. True intermittency, with a zero correlation length ¢ — 0, would
occur if the intercept k(0) — 0, which is not observed in any experiment!

The Clan Model Appears

Amazingly, the parameters of the clan model of Giovannini and Van Hove®®
can be directly read off Fig. 7a, as shown in Fig. 7b: the mean number of clusters,
<N >= kIn(1.0 + p/k), and the mean multiplicity in a cluster <n,>= p/ < N >=
(1/k)/1n(1.0 4 p/k). For the heavy ion data, k/g > 1 for all cases, so that <n,>~ 1
and <N >~ u to an excellent approximation, with the result that the NA35 and both
sets of E802 data are nearly indistinguishable on the line <n. >~ 1. Only the UA5
data where k/p < 1, and to a certain extent NA22, show appreciable multiplicity/per
cluster and it will be interesting at RHIC or LHC, which are in the UA5 domain, to
see how the parameters evolve from p-p to heavy ion collisions.

The Heavy Ion Data

It is instructive to try to understand the precision obtained for the NBD parame-
ter k(én) from the two heavy ion experiments, NA35 and the present experiment, E802.
The error estimate, s 1 for the NBD parameter 1/k was given above (Eq. 7). Thus, to
an excellent approximation, the required number of events N, for a fixed percent error



k(6m) vs u(én) from NBD fits
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This explains why the errors for NA35 S+S with 2856 events are so much larger than
E802 O+Cu with 19667 events—(k/u) is 2 to 3 times larger—even though NA35, in
distinction to all the other NBD fit experiments, combined the data from all intervals
of a given size (as in the normalized factorial moment analysis) to reduce the errors.
Interestingly, the fit of Eq. 10 to this data, shown as the dashed line on Fig. 7 with
¢ = 0.613:3, indicates that k increases with 6y (i.e. 1/¢ # 0) to 99.4% confidence (2.5¢0),
which is somewhat in disagreement with the conclusions reached by NA35 from this
data,” and also by EMUO01,* that “the NBD parameter (1/k) is (within the errors)
independent of the width of the rapidity interval.” Of course, the present measurement,
corrected for instrumental effects, gives a much clearer (3.5¢) effect for the variation of

k(é7).

Higher Order Correlations

A popular misconception is that***5 “there are practically no correlations beyond
the second order in the heavy ion data, in contrast to the hadron-hadron and ete-
collisions.” This is evidently incorrect since all the data, heavy ion included, are fit by
the NBD, which exhibits finite K for all orders (Eq. 6). Of course, since k¥ ~ 50 - -- 100
for the heavy ion data, K3 = 2/k? ~ 0.0008---0.0002, which is roughly two orders of
magnitude lower than the sensitivity of previously published direct searches with ‘null’
results.?6:47

SUMMARY AND CONCLUSIONS

E802 0+ Cu Central(ZCAL) multiplicity distributions in bins of pseudorapid-
ity én = 0.1,0.2...1.0 show an apparent fractional power-law growth of Normalized
Factorial moments with decreasing pseudorapidity interval, in agreement with previous
“intermittency” analyses. The same data also exhibit excellent fits to Negative Bino-
mial Distributions. The k parameter of the NBD fits increases steeply and linearly
with the §7 interval which is an unexpected and particularly striking result. The lin-
ear evolution of the NBD parameter k(67) with the width of the interval explains the
observation of fractional power laws based on the “intermittency” formalism in a much
more simple, elegant and understandable way. The apparent power laws with fractional
ezponent of the Normalized Factorial Moments are simply an artifact of using quantities
like F; — 1 which are inversely proportional to a linear quantity, i.e. F, — 1 = 1/k(87).
Furthermore, the apparent fractional power-law increase of the Normalized Factorial
Moments with decreasing bin size §5 for all 6 orders measured in E802 %0+Cu Cen-
tral(ZCAL) collisions is entirely given by the Negative Binomial Distribution best fit
curves, represented by the single parameter k(én)—and has nothing to do with the
deviations of the measured data points from the best fit curves!

The linear increase of the NBD parameter k(67) with §n can be directly related
to the 2-particle short-range rapidity correlation strength and correlation length, con-
veniently paramterized as an exponential R(0,0) e~ !v: ~%1/¢, to give the equation

k(67) = 1 <n(8n)>? 1 & /2¢
- — 1" p¢ - — £(1 _ e—bn/€ !
. / "dydy; Calyr, ) OO (L= g (1— )]




which describes mathematically why the linear increase of k with é% is an indication
of the randomness of the multiplicity in adacent 83 bins (61 > £), while the constancy
of k with increasing 6y would be an indication of 100% correlation (§n < §). The
evolution of k(6n), which appears to be strikingly linear, is equally well described by
a fit to this equation. After correction for instrumental effects, the best fit parameters
indicate a weak correlation strength R(0,0) = 0.031 £ 0.005 and a very short rapidity
correlation length ¢ = 0.18313:331, e.g. compared to p — 7 collisions where UAS mea-
sured R(0,0) ~ 2/3 and ¢ ~ 3. The weak and very short-range rapidity correlation in
nucleus-nucleus collisions had been predicted—since the conventional nucleon-nucleon
short-range correlations should be washed out by the random superposition of corre-
lated sources so that eventually only Quantum Statistical (Bose-Einstein) Correlations
should remain. The dramatic reduction of the two-particle rapidity correlation length
gives a quantitative demystification of “intermittency”. For *0+Cu central collisions,
“intermittency” is nothing more than the apparent statistical independence of the mul-
tiplicity in small pseudorapidity bins, 1 ~ 0.2, due to the surprisingly short two-particle
rapidity correlation length!

The present data allow for the first time a systematic formulation of the subject
of “intermittency” in terms of distributions to complement the normalized factorial
moment formalism. In agreement with all previous measurements of NBD fits to multi-
plicity distributions in hadron and lepton reactions, the k parameter of the NBD fit for
central *0+Cu collisions is found to exhibit an apparently linear increase with the é7
interval, albeit with a much steeper slope than for the other reactions, and a non-zero
intercept, k(0) # 0. True intermittency, £ — 0, would occur if the intercept k(0) — 0,
which is not observed in any experiment. The correlation length for central °0+Cu
collisions, although smaller than expected, is quite finite and can be measured—which
means that a length scale exists in these collisions and therefore there is no inter-
mittency in the multiplicity fluctuations. It is clear that the present E802 data have
much more in common with the original UA5 observation—an increase in the width of
the multiplicity distributions about the average with decreasing é7 interval—than with
any of the classical “intermittency” analyses. The difference is quantitave rather than
qualitative: the rapidity correlation length is { ~ 3 in UAS5, { ~ 0.2 in E802.
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