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parameter in steady pressure correction equation
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convecting flow rate
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acceleration due to gravity in the x, y, and z-directions,
respectively

characteristic length or mean free path
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universal gas constant in the Ideal Gas Law
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Reynolds Number
microscopic density ratio, p¢/(p¢)R
normalized macroscopic density, p;/(p¢)R

source term
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temperature

time
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fluid velocity

volume

coordinate directions

coefficients for interphase drag in the x, Yy, and z-directions,
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volume porosity
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characteristic length
timestep

control volume dimensions in the x,y, and z-directions,
respectively

void fraction

a parameter used to select the Hydrodynamic Model
coordinate perpendicug:r to surface yith origin on surface
under-relaxation factor

characteristic velocity

coefficient of bulk viscosity

microscopic viscosity

macroscopic viscosity, (e¢-u¢)

a parameter used to implement the upvind difference scheme and
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velocity
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macroscopic density, (e¢°p¢)
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factor) of solids particle

a dependent solution variable

under-relaxation parameter in the pressure correction equation
for the transient solution
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Control Volumes
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pressure gradient term
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1.0 INTRODUCTION

This report describes the theory and structure of the FORCEZ flow
program. The manual describes the governing model equations, solution
procedure and their implementation in the computer program.

FORCE2 is an extension of an existing B&W multidimensional, two-phase
flow program. FORCE2 was developed for application to fluid beds by
implementing a gas-solids modeling technology derived, in part, during a joint
government - industry research program, "Erosion of FBC Heat Transfer Tubes,"
coordinated by Argonne National Laboratory. The development of FORCE2 was
sponsored by ASEA-Babcock, an industry participant in this program.

This manual is the principal documentation for the program theory and
organization. Program usage and post-processing of code predictions with the
FORCE2 post-processor are described in a companion report, FORCE2 - A
Multidimensional Flow Program for Fluid Beds, User’s Guide. This manual is
segmented into sections to facilitate its usage. In section 2.0, the mass and
momentum conservation principles, the basis for the code, are presented. 1In
section 3.0, the constitutive relations used in modaling gas-solids
hydrodynamics are given. The finite-difference model equations are derived in
section 4.0 and the solution procedures described in sections 5.0 and 6.0.
Finally, the implementation of the model equations and solution procedure in-

FORCE2 is described in section 7.0.




2.0 HYDRODYNAMIC MODELS

2.1 OVERVIEW

The hydrodynamic approach to fluidization which was started by Davidson
(1961) is the basis for the models implemented in FORCE2. All the solid
particles with identical densities and diameters form a continuum, a
particulate phase. The gas and solids phases are then treated as
interpenetrating fluids in an Eulerian formulation. Conservation of mass and
momentum are then applied to each phase (a total of two or more) to derive the
hydrodynamic model. Both single and multiple particle phases have been
simulated with this approach, Gidaspow (1986), Syamlal (1985). The current
FORCE2 model considers only two phases: one gas phase and one soliﬂs phase.
The capabilities of several computer codes utilizing this approach were
recently revieved by Smoot (1984) and Gidaspow (1986). Work at the Illinois
Institute of Technology (IIT) using the FLUFIX computer code to model a small-
scale "two dimensional” fluidized bed, Gidaspow (1986), has provided partial
validation of the hydrodynamic model. Because FORCE2 contains many features
(three-dimensional cartesian, variable control volume size, etc.) needed to
model large beds, validation for many industrial applications is now possible.

Two hydrodynamic models, called Models A and B according to Lyczkowski
(1989), have been implemented in FORCE2. They are extensions of the models .
developed by Lyczkowski (1989, 1990) for the FLUFIX code. The models have
been extended in FORCE2 to include:

0 Three-dimensional cartesian geometries
o Volume porosities and surface permeabilities to account for volume
and surface obstructions in the flow field.

The models consist of mass and momentum conservation equations and are
described in the following sections. A cartesian coordinate system (x,y,z) is
used with u, v, and w denoting fluid velocities in the x, y, and z-
directions. This convention and others are described in the nomenclature.

B




2.2 CONTINUITY EQUATIONS

Conservation of mass in a phase is expressed by
-a—(’ )+L(P'YU)+L(PYV)+L(PYW)=Y';l (2.1)
at Pe¥v/ * W \PeTxV¢’ t Ty PeYyVe) t 3z PeT Ve yé

vhere the subscript, ¢, denotes the phase (i.e., ¢=g for the gas phase and ¢=s
for the solids phase) and

e’ = macroscopic density
= €¢°Pp
€ = phase void fraction
€g+Eg =1
ﬁ¢ = rate of mass addition [mass/(volume*time)] from a mass
source
Yxr Yyr Yz = surface permeabilities in the x, y, and z directions. They

are geometric parameters.
= flow area available to the fluids/total area
Yy = volume porosity
= volume available to the fluids/total vclume

Other symbols are defined in the Nomenclature.
2.3 MOMENTUM EQUATIONS

Treatment of the pressure gradient term in the gas and solids phase
momentum equations results in two hydrodynamic models, called Models A and B
(Lyczkowski 1989). 1In Model A, this term is included in both phases whereas
it is included only in the gas phase in Model B. As noted by Lyczkowski
(1989,1978), the treatment in Model A results in an initial value problem that
is ill-posed. This situation leads to a conditionally stable numerical
solution. In Model B the pressure gradient term is included only in the gas
phase momentum equations resulting in a well-posed problem.



The momentum equations for both models are as follows:

- Conservation of Momentum in the X-Direction -
AR
ot "d'v ¢
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- Conservation of Momentum in the Y-Direction
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k¢ = coefficient of bulk viscosity for phase ¢
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and the subscript ¢o indicates the "other" phase, i.e., for ¢=g, ¢o=s and ¢=s
and ¢o=g.

The parameter, C¢, is used to select the hydrodynamic model according to

Model $ _C_¢
A g8 1.0
B g 1.0/88
B s 0.0

The solids elastic modulus, Gg, is used to calculate the normal
component of the solids stress through the relation

Gg * 3gg

similar to what is done in solids mechanics. The primary computational
function of the solids stress term is to keep the bed froa compacting below
the defluidized or packed bed state. Any solids stress model that
accomplishes this is adequate. For the gas phase equations, the modulus, Gg»
is set to 0.0. *

The last seven terms in each momentum equation are the compressible
formulation for the fluid stresses. All these terms are included vhen the
above equations are solved (i.e., a transient simulation). The equations used
for a steady simulation are derived from the above by deleting the temporal
terms (3/3t) and by neglecting the last four viscous terms in each equation.
The resulting set is called a steady, "incompressible" formulation.

For a three-dimensional problem, the flow field is described by eight
nonlinear, coupled partial differential equations for eight dependent
variables: gas void fraction, g} the pressure, P; gas velocities in the three
directions, ug, Vgr Vgi and solids velocities in the three directions ug, vg,
Vg. The drag coefficients, By, By, B, and solids elastic modulus, Gg, are
defined in terms of these variables using correlations in the next section.

€y
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The flow resistance coefficients, RX¢» RYy, RZy, are input to the models and,
similarly, could be defined with correlations.




3.0 CONSTITUTIVE RELATIONS

3.1 OVERVIEW

The hydrodynamic models described in the previous section include a
coefficient for interphase drag, a solids elastic modulus for calculating the
normal component of the solids stresses, and the microscopic densities of each
phase. These parameters are determined as functions of the fluid velocities,
pressure and void fraction using the correlations given in this section. 1In
addition, the mean free path used to develop the partial slip boundary
condition for the solids phase is defined.

3.2 INTERPHASE DRAG

Standard correlations are used to evaluate fluid-particle friction
(drag). However, the drag coefficients, By, Bys Bz, will depend on the
hydrodynamic model to be used. Lyczkowski (1989) performs a simple analysis
baced on the work of Gidaspow (1986) to relate the coefficients for the two
models according to

vhere

By = coefficient for Model A
Bp = coefficient for Model B

The coefficient for Model A is then obtained from standard correlations,
Gidaspov and Ettehadieh (1983), Ettehadieh et al., (1984). Below a gas void
fraction of 0.8, By is given by the Ergun equation (Ergun 1952); above 0.8,
the expression given by Wen and Yu (Wen and Yu 1966), as discussed by Gidaspow
(1986) is used. These expressions may be summarized as follows:

-8~

£




o TAR

Ll

A

For g S 0.8
150 (1———1—.}- ik 1.75 klv“ll -9
s ]} — '.' [
A € (d ¢) 9pts
g p's
For g > 0.8
rell (1-¢) ~1.7
B, = 6‘1' g o
0.687

Cd = 24(1 + 0,15 Re )/Re for Re £ 1000

and

Cq = 0.44 for Re > 1000
vhere the Reynolds number is given by

Re = lvrel'dg’s“ge

Ve

The particle sphericity (also called shape factor) ¢g, is defined as the
ratio of the actual surface area of the particle to the surface area of a

spherical particle of diameter dp.

The following two options are available for evaluating the relative
velocity, Vye1?

Scalar Drag Formulation

The relative velocity is taken as the difference in the magnitude of the
gas and solids velocity vectors, i.e.,




2 2 2
Vrel = J{ugaus) + (vg—vs) + (wg-ws)
This results in isentropic coefficients.

Vector Drag Formulation

The relative velocity is evaluated as the difference in the magnitude of
the gas and solids velocities in the direction of interest. For example, for
the X-momentum equations, the relative velocity would be defined as

Vrol = U, - U,

This results in non-isentropic coefficients.

The drag coefficients, B,, B,» B,y are then evaluated as:

Coefficient Model
A B
ﬂ‘ aﬂl a' 3
By Pay Bay
ﬁl ﬁhl aIl

3.3 SOLID STRESS

As noted in Section 2.3, the solids phase momentum equations contain a
normal component of solids-phase stress due to particle-to-particle
interactions. A general formulation for such a term would include the effects
of porosity, pressure, and the displacement tensors of solids velocity, gas
velocity, and relative velocity. No such formulation is currently available.
This stress is physically necessary to prevent the particles from compacting
to unreasonably low gas volume fractions. The stress only becomes important
as the particles contact each other, i.e., below the minimum fluidization
condition. Lyczkowski (1989) summarizes research that has been directed to
developing suitable expression(s) to model the particle-to-particle
interaction.

~10-




Based on both experimental data and fluid bed simulations with the
FLUFIX code, Lyczkowski (1989) has derived a generalized solids elastic
modulus coefficient, G(tc), of the form

G(€) = G, * EXP[-C(e-£%)]

wvhere C is the compaction modulus and &* the compaction gas volume fraction.
The normalizing units factor, G,, has been taken as 1.0 Dyne/cm?. The
compaction modulus and volume fractions will depend on parameters such as
particle size and density and are chosen to yield reasonable predictions of
bed porosity near a packed state. They are inputs to FORCE2. Typical values
are given in Table 3.1.

Table 3.1
TYPICAL SOLIDS ELASTIC MODULUS PARAMETERS

Compaction | Compaction Gas
Modulus Volume Fraction Reference
(ex)
600 376 Lyczkowski, et al., 1986, 1987
500 0422 Gidaspow and Syamlal, 1985

3.4 EQUATION OF STATE

For the gas phase, density may be determined from the Ideal Gas Law or
from a user-defined function for gas specific volume as a function of
temperature. For the solids phase, solids density is determined as a
function of temperature only using a function specified by the user. The
formulations for both phases are given below.

3.4.1 Ideal Gas Law

Gas density is determined by
P-p'é'T

-11-




where
M = gas molecular weight
R = universal gas constant

The molécular weight and gas constant are inputs to FORCE2.

3.4.2 User Function for Gas Specific Volume

Gas density is detarmined by

4

1 i
- — 4 _a < 7T
At

ol

vhere
a,; = user defined coefficients

3.4.3 User Function for Solids Density

Solids density is determined by

4

i

vhere
a;; = user defined coefficients

3.5 MEAN FREE PATH FOR PARTIAL SLIP CONDITION

At solid surfaces or boundaries, three solids velocity conditions are
considered: i) zero velocity (no-slip), ii) velocity equal to the velocity in
the adjacent active cell (free-slip) and iii) a "wall velocity" based on
kinetic theory (partial slip). The solids velocity for the partial slip

condition is specified (FLUFIX 1989) according to

-12-
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where

vg = solids velocity parallel to the surface

Vgy = solids velocity at the su.face
L = mean free path from continuum theory
{ = coordinate perpendicular to surface with origin or surface

In FORCE2, the mean free path is determined by
L=d, - ¢,/(6 77 - e))

vhere

dp = particle diameter
¢p = particle sphericity
€g = solids void fraction

Lol

Lroi
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4.0 FORCE2 FINITE DIFFERENCE EQUATIGONS
4.1 OVERVIEW

The finite difference equations that are solved to predict fluid bed
hydrodynamics are developed in this section. These expressions are derived by
dividing the flow domain into a collection of control volumes and then
integrating the governing momentum and continuity equations, presented in
Section 2.0, over these volumes. This results in a set of coupled, non-linear
equations describing the velocities, void fractions, and pressures within the
volumes.

In Section 4.2, the control volume arrangement and conventions for the
difference equations are described.

In Sections 4.3 and 4.4 the finite difference equations for the
transient and steady simulations are developed. The transient simulation is
an extension of the method used in the 2-D FLUFIX code (Lyczkowski and
Bouillard, 1989). It wvas installed without modifications in FORCE2. The
steady simulation, however, is based on the existing FORCE2 approach. Because
the two methods differ in the treatment of the convection and diffusion terms,
slightly different finite difference equations result.

In Section 4.5, the finite difference equations are modified to account
for boundary conditions. In Section 4.6, initial conditions are considered
and in Section 4.7, relaxation is applied to the finite difference equations
for the steady simulation.

4.2 CONTROL VOLUME AND EQUATION CONVENTIONS

The flow (or computational) domain is divided into a collection of cells
or control volumes in a Cartesian coordinate system. Scalar quantities such
as pressure and void fraction are calculated at the centers of these volumes
denoted Main Control Volumes. Gas and solids velocities are calculated on the
Main Volume faces utilizing a second set of control volumes that are
"staggered" with respect to the Main Volumes. This second set of volumes
connects the centers of the Main Volumes and are called Momentum Control

-14-




Volumes. The collection of Main and Momentum Volumes is the conventional
"Staggered" mesh used in most finite difference formulations (Patankar 1980).

Two schemes are used in this report to describe the flow field: 1) an
"i,j,k" designation and ii) a general scheme. The Main and Momentum Volumes
are shown in Figure 4.1 in the domain described by the "i,j,k" indices.
Centers of the Main cells are identified by the integers i,j,k. The Momentum
Volumes are named X-, Y-, or Z-Momentum Volumes depending on their
orientation. The flow field is further described in Figure 4.2 where the
faces of the Main Volume (also the location vhere velocities will be
calculated with the Momentum Volumes) are identified by half-integer values.
For example, in Figure 4.2, location i+1/2, j,k is the upper-X face of the
Main Control Volume centered at i,j,k. Alternately, a more general and
compact scheme is used to identify control volumes (Main or Momentum) in the
flowv domain as shown in Figure 4.3. 1In this scheme the control volume of
interest is designated by the upper case letter P, The neighboring volumes
are identified as points on the compass as

- the neighbor that is east of volume P

- the neighbor that is west of volume P

the neighbor that is north of volume P

- the neighbor that is south of volume P

- the neighbor that is in front of volume P
- the neighbor that is in back of volume P

W g Z < m
!

The faces of volume P are identified in a similar manner except using lower
case letters, i.e., e, w,...£, and b.

The x-, y- and z-dimensions of the main control volumes are inputs to
the model. Areas and volumes associated with both the main and momentum
volumes are based on these dimensions and on the user-specified volume
porosities and surface permeabilities.

A general transport equation (representing conservation of mass or
momentum) may then be written using the general control volume arrangement as

apbp = }):aq¢o + bowp + S, 4.1

vhere ¢p and yp are dependant solution variables and
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Pigure 4.1. Main and momentum control volume arrangement - FORCE2 theory.
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o

a = transport coefficients on face q of control volume P

q
EZ:Zaq¢b = a,by + B, by + B by + 8,0 + Bsdy + By

bys g1 bgr by -5 = The values of ¢ in the cells that.are North (¢),
South (ég), East (¢;), West (¢,), Front of (¢,), and
Back of (¢,) the considered ce&l vith value

o an+b,+s,

a source of ¢,
a positive coefficient for a source of ¢,
a positive coefficient linking the two dependent

variables ¢, and y,

o wnn wn
v v
L] [ | L]

These terms are further outlined in Table 4.1 for each transport

equation.

The coefficients, a;, link neighboring variables in the mesh and are
based on convection and diffusion. Finally, the controcl volumes in Figure 4.3
represent the Main Control volumes when equation 4.1 is a continuity equation
and represent the Momentum volumes when equation 4.1 is a momentum equation.
For example, if equation 4.1 represents the X-direction momentum equation, the
¢'s are as follows:

% = Y4.1/2,5,k %y = Yi1/2,5,k
¢nu ¢-u

N = Y441/2,§+1,k F ™ Y341/2,5 k1
¢ = U ¢, = u

s ™ Y441/2,4-1,k B = Y14+1/2,§,k-1

% = Y443/2,5,k

vhere u is the gas or solids velocity in the X-direction. The transport
coefficients, a’s, correspond to the following:

& " 8441/2,§+1/2,k 3¢ = 8441/2,§,k+1/2
8¢ = 8441/2,3-1/2,k % = 2441/2,j,k-1/2
-19-




8e " 8141,3,k

& " 81,5,k

Finally, a factor of 1/2 appears quite frequently in the coefficients of
the finite difference equations. For example, the coefficient of the velocity
in the transient momentum equation in the X-direction, a,, equation 4.5,
includes the storage term,

(o) = [(py¥) + (p4¥) 172

For this term, as well as many others, the factor of 1/2 arises due to
approximate integration over the control volume, not due to a central
difference approximation, i.e.,

u

[Lv o dV + J;wp’ dv -] B

I i%fiﬂl v
v

then

I o d¥ = 3(p'Ve)
Ve

I o d¥ & F(o'¥W)
Yw

vhere ¥, and ¥, denote volumes of the main control volumes connected by the

momentum volume, i.e.,

Ve = vi+1,j,k
Yo = Y4,k
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4.3 EQUATIONS FOR THE TRANSIENT SIMULATION

The governing finite difference equations for the transient simulation
are developed in this section. Equations for the gas void fraction and gas
mass residue are derived based on the solids and gas continuity equations
respectively. The expression for the gas residue is used to check solution
convergence and used to derive a pressure correction equation for the
transient solution scheme, Section 5.0.

Equations for the gas and solids velocities are developed based on the
momentum equations for each phase. The viscous and convection terms are
included explicitly, unlike the steady formulation in which a hybrid
differencing scheme (Patankar, 1980) is used to combine these terms.

4.3.1 Gas Void Fraction from the Solids Continuity Equation

By approximating the time derivative as a simple difference, the solids
continuity equation, Equation 2.1, is integrated over the Main Control volume
depicted in Figure 4.3 to yleld the following expression for the solids
macroscopic density ‘

(egeg)p = (€5p5)p

- [ughe)g - (ugho), )

- éf [(VsAp;)n - (VsApé)s] 4.2

- Lgae)g = (wyhop), ]
+m_ + Ot

vhere the subscript, P, indicates the macroscopic density at the center of the
Main Control Volume and the subscripts e, w, n, .... and b indicate quantities
evaluated on the East, West, ..... and Back Faces of the Main Control (see
Figure 4.3 in section 4.2), i.e., in the "i,j,k" domain.
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Pei, j, k

e»i +1/2, 3, k
v i-1/2, 3§, k
nei, §+1/72, k

» i’ J; k~1/2

o

and

- i*l’ j, k
- 1‘19 Jo k

=

L]

B»i, i, k-1
Some additional terms are defined as

ot = problem timestep

v, = volume in the Main Control Volume available for the gas
and solids phases

-y, * &, ¢ by, * bz,

A = cross sectional flow areas on the associated face of the
main control volume

Ox,, by, 82, = main control volume dimensions in the X, Y, and 2
directions, respectively

(t.'p.): = macroscopic density at the beginning of the timestep

The macroscopic densities on the faces of the Main Volume are evaluated using
an upvind approximation (Patankar 1980) as follows

(1) = B * (pL)p + (1-£) (ol)g
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vhere

. _ { 1 (ug), 2 0
(] 0 (u.). <0

and similar formulations for densities on the other faces of the Volunme.

The gas void fraction is then determined using the macroscopic solids
density from Equation 4.2 as follows

g, = (p,8,)/p,

and finally
c' - 1 - C. 403
Some important observations include:

o All the terms in Bquation 4.2, with the exception of (¢,p,)°, are
evaluated at the end of the timestep.

o An iterative solution method is used for the transient simulation
resulting in Bquation 4.2 being solved several times at each Main
Control Volume during a single timestep. This formulation in which
macroscopic densities at node P can appear on the right-hand side is
used in FLUFPIX and is the default formulation in FORCE2. An optional
mathod in vhich Equation 4.2 is rearranged like Equation 4.1 in which
all macroscopic densities at P are collected onto the left-hand side
is also available in FORCE2. Both formulations are installed in
subroutine VFRACT; however, the FLUFIX form is currently used.

4.3.2 Gas Mass Residual

During the solution over a timestep, nodal pressures are adjusted until
gas mass is conserved. Convergence of the solution is determined by the
magnitude of gas mass residue (the amount of gas that is "created" or

-2

Coag




"destroyed" due to non-convergence) and is determined by integrating the gas
continuity equation, Equation 2.1, over the Main Control Volume as follows:

¥p
DGP = 3t * (P& - Pé.)p

+ [Qughopdq = (uhor)y] ah

+

[Cvghop), = (vphol),]

-+

[Cvghng)g - (Wehng)y]

- M
8

vhere P indicates the center of the main volume and e, v,... indicate
parameters on the faces as described in the previous section. The convected
macroscopic gas densities on the faces, i.e., P'get P gureesy ATE determined
using the upwind acheme shown above based on gas velocities on the cell faces
and

DG « gas mass residue

gas source
V, *

p¢® = macroscopic density at the beginning of the timestep

. 4.3.3 X-Momentum Equations

The X-direction momentum equation, Equ 2.2, is intsgrated over an X-
Momentum Volume such as that depicted in Figure 4.1 and Figure 4.2 to give

- P -P
8p, (Ug)p = (PLUT) o= L¥p ¢+~
20 AN 2 0 R T




vhere the subscripts indicate

+ (ﬂ; c ¥ u“)P :

(e), - (c)

+ (§;V$P . -—‘—!ZE;—~‘—! $mgors 4.5

P»isl/2 3, k
e »i+l, §, k
ve i, §, k

It should be noted that e and v indicate the centers of the main control
volumes that are connected and by the X-momentum volume

and

= volume of the momentum volume
- (¥, + V,)/2

01,9,k * ¥1,9,0072 '.

length of the momentum volume in the X-direction ;

(Ax1+1 + Axi)/Z

°x1'°"1+1 = lengths of the i and i+1 main control volumes in the X-

direction, an input to the model

(3{517) is denoted the "tilde" term (Rivard and Torrey 1977) and contains ‘
the gravity, convection and diffusion terms. It is evaluated at the beginning .
of the timestep. The other terms are based on parameters evaluated at the end

of the timestep unless denoted with the superscript o, i.e., ( )° These

terms are further defined below.

(a;)P = Drag coefficient evaluated at the beginning of the timestep and

at the face of the main control volume. Drag coefficients are
calculated based on conditions at the center of the main volume.
Cell centered velocities are taken as the average of velocities
on the faces of the main volume. The drag coefficient for the
momentum volume, (B%),, is then found by interpolation.
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(82)p = £,(B)), + (1-£,) (BD),
vith £, = &% /(bx, + &x,)

The coefficient, a,,, is given by

&p, * (3",’?)/0:* (By + kg * ¥p
vhere

(oq¥) = [Copidy + (py¥),1/2

k!

“ o (Rx¢ . p; . u‘IZ);

vith (p;)g determined by interpolation as

L

(o8 = £1(pQ)8 + (1-£)) (o))g

Solid Stress Term:

The solid stress term, vhich is present only in the solids equations, is
evaluated based on gas void fraction at the end of the timestep according to

(G = [(Gy W)y + (BgW),1/2
vhere

Gy = Gy(Ey)
Tilde Term:

As noted above, the tilde term is evaluated only at the beginning of
timestep. Consequently, in the equations below, all parameters are evaluated
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at the start of the timestep: the superscript °, ( )° is not included to
simplify the notation. The tilde term is made up of body force, convection
and diffusion components as follows:

(Fagp = (Fp * (uy)p/ot

+B, +C, + T,

The density-volume product, <§3&), is as defined earlier, except it is
evaluated at at the beginning of the timestep.

Gravity Term: B,

B.- (';:Ibv)l’ ‘g

X

Convection Term: C,

The convection term is defined as

9 '
C, = - -[v I (Teu,ppuy) 4V

9 ' 9 '
B J; oy (TyVePely) 9V - J; 7z (YzV4Pguy) OV
and may be expressed as
Cx - - E Qq ’ (9;u¢)0 - QP * (%‘%)P

vhere

E : = summation over the faces of the X-momentum control volume
according to

-28-
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» . 0 (Pyuy)g = Qelpguydy + Q (pguy)y

+ —— Qb( p$u¢>3

with

E » i+3/2, §, k
Vo i-1/2, 3, k

B » 1+1/2, j, k-1

b » i+1/2, §, k-1/2

Expressions for the convecting volumetric flow rates, Q,, are developed
by considering the volumetric rates on each face and by expressing the
convected momenta, (p$U¢)q, on each face in terms of the momenta in
neighboring cells (p&u¢)9, using the upwind approximation. This approach

results in

q, = (Aug),
q, = (Aug),
q, = (Avy),
q, ~ (Avy),
Qg = (AV¢)g
qp = (Aw‘;)b

vhere q,, q,y..., are the convecting flow rates on the faces of the X-momentum

volume and

(Au¢). = [(Au¢), + (Au¢)z]/2
(Au¢)" = [(Au¢), + (Au¢)"]/2

(Avg), = [(Ayv¢)i+1,j+1/2,k + (Ayv¢)i,3+1/2:k]/2

The flow rates on the south, front and back face, q,, q, and q,, are
defined similar to q,. The convection flow rates, Q,, are now defined as

Qo'(l—zo)qo
Q, =-§& q,

~29.




Q = -§&) - q,

0-"'£-°qs
Qg = (1 - Eg) * q,
Q =-8 *q

& qq ~ (1-8) * q, + & - q; - (1-&) - q, + &-q¢ - (1-§) - q,

o
x
|

The § terms arise due to the upwind approximation and are defined as

1 (ug)e 20
a.-{ ¢
0

(up)g € O
1 (U¢)" 20

E' -
0 (uy), <O

£ . {1 (VeIa 2 0
0 (V*)n <0

and similarly on the other faces with
(ug)y = [(ug), + (ug)g)/2

(ug), = [(ug), + (ug)yl/2

(Vodn = 1 (Vg 50172,k * A-ED (VP4 50170,k

The equivalent velocities on the other faces such as (v¢)., (w,), and
(w,)b, are also determined by interpolation.

Finally, the macroscopic density in the convected momentum term is also
determined by interpolation. For example,

(py)p = £y (0 + (1-£;) (o),

= f1(93)1+1’j’k + (1'f1) (p;)i,j,k
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Diffusion Term: T,

The diffusion term is made up of the last six terms in the X-momentum
equation, Equation 2.2, and is expressed as

T, = D Dy * (ugdg - Dp * (upp + T,

vhere
H Dq . (u¢)o =D, (u¢)E +D, - (u¢)w 4 eee 4 Qe (u¢)B
DP -D."‘D""'oounb

and T, is as defined belov. The diffusion coefficients on each face, D, are
defined as follovs.

2 ’
LA,
e Axe

wvhere

&xe = 1
Axw = Axi
Ayn = [ij + ij+1]/2
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bz (82, + bz, ,1/2

b
(Au;)e = [(Ax)P + (Ax)E] . (U;)e/z
(Aug), = [(A)p + (A )yl + (uy) /2
(Mgl = TAHD 0, 50172, * ByH94, 501721072

(BMedp = LA MY g1, 9,172 + BM) 4,4, k-1/2172

with the macroscopic viscosities (Mg)i,yr441,2,kr

M)y, 5012,k, (M) isr,3,k-1/2, (M)y,g,k-1,2 determined
by interpolation. The macroscopic viscosities, (ug), and
(u&), are at main control volume centers.

The last term, T., is made up of the last three terms in Equation 2.2 and is
glven by:

T, = (A X; div V)e - (A Xa div V)w

+ (A u; —~2 - (A u; ~—9

v ow
+ (A uy =D - (a uy N

with

N togy

The derivatives in each term are expressed in terms of known velocities
on the faces of the volume. For example,

av
(Eii]n = [OVQ401 54172,k = (V9 ig+172,k 1/ &p

The macroscopic viscosities on the faces are determined ty interpolation
as described above.
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- Solution for u, and u, -

The gas and solids momentum equations, Equation 4.5, are solved
simultaneously to predict velocities at the same location. The two equations,
¢=g and s in Equation 4.5, may be written as:

agu, = Cg * u, + §
a,u, = Cg * u, + §,

vhere the coefficients ag, a, and Cg and the source terms may be defined by
referring to Equation 4.5. The velocities are then given by:

u, = (Cg* S, +a, * S,)/DEN
u, = (Cg* S, +a, * S,)/DEN

DEN = a, * a; - Csz

4.3.4 Y-Momentum Equations

The Y-direction momentum equation, Equation 2.3, is integrated over the
momentum volume such as that depicted in Figures 4.1, 4.2 and 4.3 to give

P - P
YRR .S
aPy . (v¢)P - (p¢V¢V)P - C¢VP AyP
+ (B; v v¢o)P
. (e)n - (82)g it

+ (G¢ )P . AyP

vhere the subscripts indicate

P» i,j"'l/z,k
n » i+1,j,k
s »i,j,k

The north (n) and south (s) faces of the X-momentum volume pass through
the centers of main control volumes where pressures, viscosities and void
fractions are calculated.
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volume of the momentum volume
(¥, + ¥,)/2

<
L]
% |

gkt ¥,5,072

by, = length of the Y-momentum volume in the Y-direction
- (ij + ij+1)/2
ij,ij+1 = lengths of the j and j+1 main control volumes in the Y-

direction, an input to the model

Equation 4.6 is similar to the X-momentum equation, Equation 4.5, and
the formulation of each term parallels that for the X-momentum equation in the
previous section. For example, a,, is a velocity coefficient defined like
ap,} (55?]?), is the tilde term, evaluated at the beginning of the timestep,
comparable to (pgug¥),, and B is a drag coefficient defined like BJ. Because
of these similarities, the detailed development of each term is not repeated.
Instead, because it is the most complicated, a summary of the tilde term is
provided.

- Tilde Term -~

This term is evaluated only at the beginning of the timestep. As was
done for the X-momentum equation, the designation, ( )°, is not used in the
equations below, as all quantities are to be evaluated only at the start of
the timestep. The tilde term is written as

(p;’v’V)P - (;;V)P . (v,)P/At + By + Cy + Ty

Gravity Term: By

By = (p;V)P ‘8
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Convection Term: Cy

Cym - D20+ (pivydg = Qp * (pyvydp

= - QQ ¢ (p;v¢)E - QW ¢ (P¢v¢)w v Qb ¢ (p$v¢)n

- QP (p;v¢)P

wvith

E » 141, 34172, k
Wo»i-1, 3+1/2, k
B=»i, j+1/2, k-1
e » 1+1/2, j+1/2, k
v »i-1/2, j+1/2, k
b =i, j+1/2, k-1/2

Convecting rates, q's, on the faces of the volume are defined as

(Au

’)e l(Axu’)i+1/2’J+1,k + (Axu¢)i+1/2,j’kl/2

(Av¢)n [(Ayv¢)N + (Ayv¢)Pl/2

(AVyp = (AN 5.1,k-172 * ¥4, 5,k-1172

The E-factors are defined according to the expressions given in the
previous section with the face velocities such as (u¢)., (u¢),, etc.,
determined by interpolation. The convecting flow rates, Q. , are then defined
according to the expressions in the previous section.

Diffusion Term: T

T, = y Dy * (vgdq = Dp * (Vgdp + T,
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The diffusion coefficients are defined as

(A u))
o0

with
ax - (Axi + Ax1+1)/z
4y - ij-o-l
Ay, - ij

b
(A uglg = [(AMD 172,541,k * AeHP141/2,1,k]/2
and similar expressions on the other faces.

The macroscopic viscosities on the faces of main control volumes such as
(W$) 1412, 441,¢ 8re determined by interpolation.

The last term, T, is made up of the last three terms in Equation 2.3
and is given by:

-36-
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T " (A ka cdiv V) - (A k% © div V)a
du du
vy e - Ay Eh,
ov v
vy dy - oy Ehy

The derivatives are expressed in terms of velocities on the faces of the
volume and the macroscopic viscosities on the faces are determined by

interpolation.
- Solution for v, and v, -

The Y-direction momentum equations are solved simultaneously to predict
the velocities at the same locations. The tvo equations, ¢=g and s in
Equation 4.6, may be written as:

8y
8, * v, = Cg v+ 5,

tVgmCpt Vst By

The solution is similar to that for the X-direction velocities given in the
previous section.
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4.3.5 Z-Momentum Equations

The Z-direction momentum ‘quation, Equation 2.4, .1s integrated over the
Z-momentum volume such as that depicted in Figures 4.1, 4.2 and 4.3 to give

' P, - P
8y (Vodp = (PQv¥p - 4% "t&fl,—é
+ (BS * ¥+ vgo), 4.7

(e)g = (€,

+ (6 W)y« —g—2

P

vhere the subscripts indicate

Pei, j, kel/2
£ 4, 3§, kel
b=4, j, k

The front (£) and back(b) faces of the Z-momentum volume pass through the
centers of main volumes vhere pressures, viscosities and void fractions are

known.

v, = volume of the momentum volume
= (Vg + V)72
= (¥, g0+ Y0072
bz, = length of the Z-momentum volume in the Z-direction
- (Azk + Az,m)lz
4z,,4z,,, = lengths of the k and k+1 main control volumes, an input to
the model, in the Z-direction

BEquation 4.7 is similar to the X- and Y-momentum equations developed
earlier. The formulation of Equation 4.7 parallels that for the X-momentum
equation described in section 4.3.3. Detailed development of each term is not
repeated; most can be derived by inspection. A summary of the tilde term is
provided because it is the most complicated.
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- Tilde Term -

Like the X- and Y-momentum equations, this term is evaluated only at the
beginning of the timestep., The designation ( )° is not used in the equations
below because all terms are based on quantities at the start of the timestep.
The tilde is given by:

("""Vp‘w‘ )p = m’v)l, . (w’)P/M + By +Cp s,

Gravity Term: B

B! - (F:V)P * RS
Convection Term: C,

c. . - E oq (p"w‘)o - oy("‘w‘)P

- QP("*"‘)P

vith

Ew» i"'l' J' k+1/2

Vil §, kel/2

N» 1' j"'l, k+1/2

B » i’ Jp k-1/2

e » 14172, J' k+1/2

v i-1/2, §, k+l/2

n=1i, 3+1/2, k+1/2
b=i, 3,k
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The convecting rates, q’s, on the faces of the Z-momentum volume are given by:

(Augdg = (AN ,1/2,5,ke1 * AU i41/2,5,k)72
AV, = LAV 10172,ke1 * AyVP1,541/2,1)72
AWy = LAV y + (AN o172

The &-factors are defined as given in section 4.3.3 vith the face
velocities, such as (uy),) (ug)ys (Vg)ps.s.y defined by interpolation. The
convection flov rates, Q,, are then defined as given in section 4.3.3,

Diffusion Term: <,
DP'D.*DV"'D“"' [N Db

The diffusion coefficients, Dyy are defined as:
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bt

t..o..3

with

g

(Ax1 + A“1+1)/2

3
=

(byy + byy,9)/2
bzy = b2

bz, = 83,

(Aupdg = [CAMY 972, 9,ke1 * MO 141/2,5,k)72

(A u;)f - [(AS)F + (AS)PI . (u$)£/2

The macroscopic viscosities on the faces of the main volume are defined by
interpolation.

The last term, t,, is made up of the last three terms in Equation 2.4
and is given by:

au du
+ (A e Bz Do - (Axu; =y

+<Au,r'> (Au, 4

This term may be evaluated like the comparable term in the X- and Y-
momentum equations.

- Solutions for v, and w, -

The gas and solids momentum equations are solved simultaneously like the
X- and Y-equations. They may be written in the form:

&,W,-CBV.-O-S‘
a, V‘-Cswq-o-S.
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The solution is similar to that given for the X-direction momentum equation in
section 4.3.3.

4,3.6 Pregssure Correction Equation

The transient soclution scheme involves adjusting pressures throughout
the flov field until gas mass is conserved. Two methods are used: i) pressure
correction based on the gas mass residue given by Equation 4.4 and ii) a
regula-falsi scheme once minimum and maximum nodal pressures are established.
The pressure correction equation based on the gas mass residue is developed
here. This approach is similar to that given in detail for the steady
formulation in section 4.4.6., The pressure correction equation for the
transient solution may be derived (Patankar, 1980) by writing the gas
continuity equation in terms of a trial velocity and a velocity correction.
The trial velocity field, which is determined by solving the gas momentum
equations, does not, in general, satisfy continuity and, therefore, results in
a mass residue. The momentum equations are then written in terms of the trial
velocities, trial pressures and corrections to both. Because the trial
pressures are assumed to produce the trial velocities, an approximate, and
simple, expression is derived relating the pressure and velocity corrections.
These expressions are then used to replace the velocity corrections in the
continuity equation resulting in the following:

Pp = - & * DGp/L, E[(Apé!i)/(apamq 4.8

vhere

Pi = pressure correction to be applied to the main control volume
pressure

QP = an under-relaxation factor that is used to promote solution
convergence: 0 £ ®, £ 1.0

DG, = gas mass residue given by Equation 4.4

Y = indicates that the quantities are summed over each face of the
main control volume, i.e.,
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AL

q=¢€, v, n, s, fand b

with

i+172, 3,

i-1/72, j,

i, j+1/2,

i, j-1/2,

i, J, k+l72

i, 3, k-1/2

= flow area normal to the face

= (g,0g) evaluated on the face, q, using the upwind approximation

= volume of the momentum control volume associated with face q,
the momentum volume that connects main volume P and the neighbor

& & & & & 3
~ ®*r & "

o M W O € 0

that shares face g

= momentum equation coefficient of the face q velocity. These
coefficients come from the left-hand side of Equations 4.5, 4.6
and 4.7

= length of the momentum volume normal to face q

The following should be noted:

o

Equation 4.8 is a point solution. In developing Equation 4.8, the
pressure corrections in the neighboring volumes have been ignored.
This approach is used because the FLUFIX solution scheme is cell-by-
cell rather than a coupled method.

Equation 4.8 is simpler than the FLUFIX formulation. In both
formulations, the objective is to develop a simple and stable method
to adj. *t pressure.

4.4 EQUATIONS FOR THE STEADY SIMULATION

4.4.1 Overview

The governing finite difference equations for the steady simulation are

developed in this section. The approach is to integrate the governing

conservation relations given in section 2.0 over the control volume
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arrangement shown in Figures 4.1, 4.2 and 4.3. This results in a set of
coupled non-linear equations that may be arranged into a standard form like
equation 4.1. Because an iterative solution method will be used, relaxation
is next applied to derive the governing finite difference equations.

In this section, equations for the gas void fraction and the phase
velocities are derived. The void fraction equation is based on the continuity
equations for both phases (Carver 1982). The phase momentum equations are
based on a hybrid differencing scheme (Patankar 1980) for the combined
convection and diffusion terms. This scheme tends to reduce numerical
diffusion and thereby provides a better approximation, compared to the upwind
method for example. In addition, it is computationally simple to implement.

4.4,2 Gas Void Fraction Equation

The gas void fraction equation is developed based on Carver (1980). The
gas and solids continuity equations are expressed in terms of normalized
densities for each phase and then integrated over the Main Control Volume
using the upwind approximation for quantities on the volume faces. The two
equations sre then subtracted and the identity

89-0-8.-1

applied to yield the following:
ceu‘P’an €q * Seu 4.9
wvhere the subscript su indicates unrelaxed parameters and
[:%%aae'%+aw-%+an-%+.”ab°%

& = (5g)4,4,k
g = ()1.1,5,k
& = (Sg)i.1,4,k

bl

SR

Uy



edd

N "(eg)i,3+1,k
® = (%g)4,5,k-1

The coefficient C¢, is given by:

v
Cey = K% (rg + Tgdp + (rglp * EZ::ag + (x)p EZ::a¢

vhere VP - vi,j,k

and (ry), and (r,), are the normalized gas and solids densities, respectively,
at the center of the main control volume, i.e.,

(rg)y - (Pq)i'j,k/(Pq)g

(r.)p - (P.)ld,k/(p.)g

vhere (Pg)n and (p,), are the gas and solids reference (normalizing)
densities, respectively.

The summation terms, Lag and fay, are given by:
T ey = Do, + 00 o,
with

Eag- E(A-A s 1-}}'_,"[A-A q (%)

q-e n' q-‘l S,

Bleg = Do [ag A+ &5l - B Iag Ay - (1-85p)

q=e,n, £ 9 q=v,s,b
vhere the subscripts e, w, n,..., b indicate the east, west, north,..., back

faces of the main control volume, Apq is used to indicate the velocity of
phase ¢ (¢ = g or s) on face q, and A, indicates the area of face q, i.e.,
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(B4 Mqdqme = Ae¥4)141/2,4,k
(A Aydaan = By Y4 54172,k
(A Apqdqes = Az Vod4, 5, kel/2

The weighting factors, §,. and qu, arise due to the upwind differencing and

8q
are given by:

1 Agg 2 0
Eh'~ q=e wn, s, £, b
0 A¢q <0 =g, s

vwhere

(Myq'qee = (U9)141/2,3,k

(Agq?qan = V921,541/2,k

(Ag)qet = (V9)1,5,ke1/2

L4 L] -

The coefficients, a,, a,, a,,...a, involve convection on the faces and are
given by:

a == DAt A (L= B ()

qq-e,n,f q=e,n, f

- DD (At A (1= B ) - (x)g

q-e’n’f

46—

£y £.4

~1

e
|-

-y s



[T S |

vhere Q=E, N, F
with q = e, n and §£, respectively.

For the other faces,

g - L ' Agg) " Bgq

qq-w 8,b q-w’s'b q

+ E (A ‘ s y Esq *

q-v,s,b

where Q = W, S and B
vith q = v, s and b, respectively.

The source term, Sg,, is given by:

S = N (AA) "
€ qme,n, f q 89

- o (a1 - B

q=v,8,b 959
M M v
s P
- z——%— - 7 + 3= (pf + p)
Pg'R (pg)g Ot '8 s

vhere

Q-E, NandF

vhen

qQ =e, nand f, respectively, in the first term and

Q=V, Sand B
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when
'q = v, § and b, respectively, in the second term.

For completeness, the storage terms have been included. With these
terms deleted, i.e.,

&l

(rg + rs)P =0

&l

(o& +pg)p =0

the resulting set becomes the "unrelaxed" finite difference equations for the
steady simulation.

Although the coefficient, Cg,, in Equation 4.9 will always be positive,
an important criteria for numerical stability (Patankar, 1980), Equation 4.9
is modified to further promote solution convergence based on the following two
criteria:

i) Eliminate negative source terms.

The gas void fraction must always be in the range

(€4)packea < € $ 1.0

vhere (€,),,.xeq 18 the void fraction at a packed condition. During
the iterative solution sequence, a "strong" negative source term
(1.e., large negative values of Sg,) may drive the void fraction
significantly below the packed condition or even negative. To
eliminate this behavior, a negative source term is linearized and
Equation 4.9 rewritten as

(Cy - Splep =D 3,8 * 59 4.10
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where SE“ Seu >0
sl -

and

0 Sey, SO
S {o Sey > O
P scu/(e’)itu-l seu 0

(ep)it*r~! » gas void fraction at the end of the previous iteration.

ii) Gradual approach to limiting values.

To promote solution stability near the packed state €, = (€,);,oxed
or near the condition of no solids (e, = 1.0), Equation 4.9 is
relaxed to slow changes in the void fraction. After applying
relaxation (Carver, 1982), Equation 4.10 becomes:

ap * € = }Z::aq € * S¢ 4.11
ap - (Ceu - SP)/GE
se " 81 * Ce a- eg) ' (eP)iter-l

where 6, is the under-relaxation parameter,
0<e, <1.0

and is specified as follows:

8 = Buin 1+ % S Eayp

eq - enmu v Epin < el; < Emax
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vhere ¢, is a point solution of Equation 4.9 based on the void
fractions in the neighboring volumes at the end of the previous
iteration. The relaxation factors ©,,,, 6,,, and 6,,, and the
associated void fractions ¢,,, and ¢,,,, are specified through input
to FORCE2.

Equation 4.11 is the finite difference equation that must be solved
to predict gas void fraction.

4,4.3 X-Momentum Equation

The X-momentum equation, Equation 2.2, is integrated over the X-momentum
volume shown in Figure 4.1 or 4.3. As indicated in section 2, the steady form
of the momentum equation does not include the time derivative term nor the
last four viscous terms in Equation 2.2. After integration, the convection
and diffusion terms are approximated using the hybrid differencing scheme
(Patankar 1980). As explained by Patankar (1980), at low Peclet numbers (-2 ¢
Pe € 2), a central difference is used to estimate convected velocities on the
volume faces and at high Peclet numbers (outside the noted range), an upwind
scheme i{s used to estimate these velocities. This approach tends to reduce
unvanted numerical diffusion and, thereby, improve the modeling.

After integrating and applying the hybrid difference, the X-momentum
equation may be written, using the compact notation associated with the
control volume arrangement in Figure 4.3, as

Cox * Ygp = 2{::aq TUgg *t By (u¢o)P +8, -8y dmgors 4,12

vhere the node center (P), east (E), west (W),..., back (B) locations are
defined as:
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o 3

£l

i

f i ’l;, L4

P »i141/2, 3, k
E »143/2, J, k
Wo»i.1/2, 3, k
N » 14172, J+1, k

1
L]

L]

B »1+1/2, J, k-1

and
Ugp - = (Ugdirsza, g,k
Ugn = (Ugdiessa,q,k
U g = (Ug)ioasa, g,
U = (Ugdia1 a, 341,k
Ugn = (Ugdiar/a,9, k=1

(Ugo)p = velocity of the other phase at 1+1/2,3,k
= (Ugo)iatsa, 5,k
Dl tUgg = Bg " Ugp 8, Uy teen 8y Uy

- Pace Coefficients, 8, -

The coefficients, a,, a,,...,8, account for convection and diffusion on
the volume faces and are defined for each phase using the hybrid difference
as:

MAX [D,, |F,/2]|] - F,/2
a, = MAX [D,, |F,/2]|) + F,/2
a, = MAX [D,, |F,/2]|] + F /2

MAX [D,, |F,/2|] + F,/2

[ ]
-4
]
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vhere MAX indicates the maximum of the two quantities in the brackets. The
diffusion conductance, D, and the convecting strength (or flow rate), P, are
defined on each face of the X-momentum volume, depending on the phase, as
follows:

Dq « (A ‘.lf*)q/ALq
Fq ] (p" A A¢)q

vith A and aL, denoting the flov area and characteristic length normal to face
q, respectively. For examplet

oL, - Oy = &y

B, =y, e (b e by
oL, = b3y = (82 + b2, 4)/2
(Aug = [(A)g + (A)p] * (MY /2

Ay = [AMD 1, 300/2,k + B4, 50172,11 72

(Augdy = LMD, 1 k12 * APy, ke1/2)/2
[(A u¢)n + (A “Q)P] ¢ (9’) /2

~
=
>
>
v
|

~~
-
)
>
<
V
]

(VP8 141, 54172,k * (AyVePRI 1, j41/2,k1/2

L] L] .

~~
D
"
’
v
]

[CAVePR) 141, 5, ke1/2 * (Ag¥gPR)4 5 k412172

The macroscopic viscosities on the north, south, front and back faces
are evaluated by interpolation such as:

(P11, 5,ke1/2 = £3 0 MD401 5,001 * (-E3) (MR 400 5k
vhere
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The macroscopic densities on the faces are evaluated based on the upwind

approximation, such ass

vhere

(Pe)ya1,g,ke1v2 = 8 CPRupn 9,0 % 2= 8 * (P44 4 ke

{ 1 (Vo) 141,9,ke1/2 20
E, = '
£ 0 (Mi,q,ketz2 <O

Development of the diffusion coefficients and convecting strengths, D,

and Fer on the other faces follows that given above.

vhere

and

vhere

- Velocity Coefficient, Cox -

The coefficient, Cgy,, is defined, depending on the phase, as:

Cox = E‘q”v*"x*“w)p A .

Y. By = By + B, 4 s b By

Fn.t - P' - Fw + Fn - P. + Ff - Fb

The coefficient, F,, is defined so that Cox does not become negative, a

situation that can lead to an unstable solution. With no mass sources, F,
will approach zero at solution because it is the net flow out of the X-
momentum volume. With positive mass sources, F, should be positive, thereby
making Cox positive, However, with mass sinks, i.e., ﬂ¢ negative, F, must be
negative if it is retained on the left-hand side of Equation 4.12, For this
case, F, is included in the source term, S,.
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The additional terms are defined as:

(k,,), = loss coefficient k‘,. evaluated at i+1/2, j, k and defined
in section 4.3.3

B, = drag coefficient evaluated at i+1/2, j, k and defined in
section 4.3.3

- Drag Term with Other Phase -

The phase momentum equations are explicitly linked through the relaxed
drag coefficient, B,, defined as:

(B = 8¢ * (B)p

vhere
(B,)p = drag coefficient evaluated at 1+1/2, j, k as described in
section 4.3.3
69 = drag under-relaxation cosfficient in phase ¢. It is an input
parameter to FORCE2 and is defined on the range 0 ¢ O < 1
- Source Term, §, -
The source term, S,, depends on the phase and is given by:
(e), - (€,
Sx = Bx + (EQ‘U)P ¢ -‘*z;;———‘-"
+ (B = Bylp * (ugy - up' e (P, | - 7 (up e
vhere

iter-1
(ugo = Uglp = (Vg = U9 141/2,5 k!

= velocity difference at 1+1/2, j, k evaluated at
the previous iteration
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(u“)ig“"'"1 = velocity at 1+1/2, j, k evaluated at the end of
the previous iteration

L4 (Axi + Axl*l)/z

and the body force term, B,, and solid stress term, (a¢'v)i+1/2,j,k’ are
as defined in section 4.4.3.
- Pressure Gradient Source Term, Sy, -

The pressure gradient source term is given by:

Pc - Pv

Sep = G Ve T

- Summary -
BEquation 4.12 is the unrelaxed form of the X-direction momentum
equation. Inertia and under-relaxation, section 4.7, are applied before this

equation is solved.

4.4.4 Y-Momentum Equation

Development of the Y-momentum equations is similar to that given for the
X-equation in the previous section. After integrating over the Y-momentum
volume shown in Figures 4.1, 4.2 and 4.3 and applying the hybrid difference,
the Y-momentum equation is expressed as:

C”-V¢P-’anvm+av-(v“)P-o-Sy-SAP,¢-gors 4.13

vhere locations in the compact notation are related to the i,j,k locations
according to
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» i, J+1/2, k
» i+1, J+1/72, k
» {-1, 3+1/2, k
» i, J+3/2, k
»{, §j-3/2, k

v Z T = o

B=»i, j+1/2, k-1

e » 141/2, J+1/2, k
w®i.1/2, 3+1/2, k
n=1i, j«i, k

- i’ j+1/2, k°1

o

with

Ver = (Vodi,341/2,k

<
&
3

* (V9141,341/2,k

(Vod1,5+1/2,k-1

-
-
| T3

anv‘o-a.ov“»faw-qu-...ab~v“
- Face Coefficients -

The coefficients are evaluated using the hybrid scheme as outlined in
the previous section with the diffusion coefficients, D, and convecting
strength, F_, defined as follows:

Dq - (Auf’)q/ALq
Fq = (o’ A V¢)‘l

with A and oL, defined as flov areas and lengths normal to face q. For
example:
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PEEI |

AL = Axe = (Axi + Axi+1)/2

e
AL, = by, m Wy
ALf = Azf = (Azk + Azk+1)/2

(A = [(AMD 172,541,k * (A9 4,1/2,5,k)72

(Aup), = [(Ay)y + (Apl (My)y/2

(Au;,)f

(A1 101, ke1/2 * APP1,4,ke1/2)/2

(pyav)g = P89 11/2 301,k * P 101/2,3,k1/2

(p;AV)n - [(Ayv¢)N + (Ayv¢)P] . (Pa)n/Z
(pyav)g = [CoRANYY) g 501 kesz * (PEAZY Q1,5 ke1/2) 72

vhere the macroscopic viscosities on the faces of the main control volumes are
evaluated by interpolation and the macroscopic densities by the upvind

approximation.

- Velocity Coefficient, C4, -
The coefficient, Cy,, is given by:
Coy = )):aq + Fp + (B, + Kydp * ¥p
with
ansae+aw+ono ab

and the flow parameter, F,, is as defined in the previous section. The drag
coefficient, B, and loss coefficients are evaluated at i, j+1/2, k as

outlined in section 4.3.4.

- Drag Term for Other Phase -

The under-relaxed drag coefficient, B, is similar to B, defined in the

previous section, and is defined as:
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By = 898 ° B

vhere 9¢5 is the under-relaxation coefficient defined earlier.

- Source Term, Sy

— (€)n - (&),
iter-1

+ (ﬂy - 5")? ¢ (vw - v¢)P

+ (Ipnetl - FP) . (v‘,);tEI—l

vhere B,, the Y-direction body force term, and (Gg¥), the solids stress term,
are as defined in section 4.3.4 and

Ayp = (ij + ij+1)/2
- Pressure Gradient Term -

The pressure gradient term is given by:

Pn - Ps
See =% Ve T wy,

- Summary -

Bquation 4.12 is the unrelaxed form of the Y-momentum equation. Inertia
and under-relaxation are applied, section 4.7, before this equation is solved.

4,4.5 Z-Momentum Equation

Development of the Z-momentum equations is similar to that given for the
x and y equations in the previous sections. The Z-momentum equation for phase

¢ is expressed as:
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FRES |

PSP ‘

e v F
BT

&t

P
el

o

C¢z . w¢P=-ﬁ::aq w¢0 + ﬂw (w”)P + Sz - SAP’ ¢=gors 4,14

vhere the node center (P), east (E), west (V) and back (B) locations are

defined as:

» i, j, k+l/2
i+1, j, k+1/2
i-1, j, k+1/2
i, j+1, k+1/2
i, j~1, k+1/2
i, J, k372
i, 3, k-172

U m n Z £ W v
@ & & 3 & 3

1)
4

1+1/2, §, kel/2
1-1/2, 3§, ke1/2

$

f ‘1' j' k'.'l
b=»14, J, k

with

(Ve)i,§,ke1/2

(V) 141,4,ke1/2

'O-S
™
L]

(Vg)y,5,k-1/2
I'__,-'aqwm-aew",E+aw'wm+...:;1bw4,B

The face coefficients, a,, a,)..., and a, are defined in terms of diffusion
conductances and convection strength on the faces of the Z-momentum volume for
each phase similar to the face coefficients in the X- and Y-momentum
equations. The diffusion coefficients and convection strengths are defined as

follovs:
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Fq - (p; AA

For example,

ALe -
ALn -
ALf =
(Aud) e -
(Au;)n -
(Aug) ¢ -
(py & Ayg =
(py A Ay =

(o) A Ay =

AL
q
#q

fe = (bxy o+ Dxy 4)/2
by, = (byy + byy 1)/2

oz, = Az

f k+1

[AMD 1,172,001 * Px¥9141/2,3,k172
[(Ay"$)i;j+1/2,k+1 + (AR 4,172,172
[(A))p + (A)pl - (H;)f/z

[CP4ANY 14172, ket * CPEAXYS142/2,3,k172

[CPRAVY)1 141/2,ked * P48V O1, 541/2,k172

(4,95 + (Av)p] (p))¢/2

As noted in the previous sections, the macroscopic viscosities on the faces

are evaluated by interpolation and the macroscopic densities by the upwind

method.

- Velocity Coefficient, Cy, -

The coefficient, Cg,, is defined for each phase according to:

Cu’an*Fp‘“(“z*ku)p"’p

vhere all the terms are similar to those defined in the X- and Y-momentum

equations.
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- Source Term, S, -

(e ), - ()
=gy .. Bf gb
8, = B, + <G¢ )p bz,

+ (Bz - ﬂw)P ¢ (w¢° - w¢);ter—1

RSN EE SENUA -

with

B, " 9"6

AzP - (Azk + Azk+1)/2

* B

- Pressure Gradient Term, Sp, -

Pf - Pb

Sap = C¢ * ¥p o -—-z;;—

- Summary -

Equation 4.14 is the unrelaxed form of the Z-momentum equation. Like
the X- and Y-equations, inertia and under-relaxation are applied before it is

solved.

4.4.6 Pressure Correction Equation

The solution procedure is based on adjusting the pressure field until
total mass continuity is achieved. This approach is the same as that for
single-phase flow (Patankar, 1980) and is based, in part, on recent work for
steam/vater flows (Carver, 1982). With this method, the pressure field is

‘modified (or corrected) based on the total (gas + solids) mass residue.

The equation for the pressure correction is developed using the momentum

and continuity equations and is given by:
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Cp * P} =N, 8, Pg + Sp 4,15

correction to the pressure in main control volume P

h-d
#

ae . Pé + aw . P& + ees ab . Pé

”.
£0

g
O~

]

P ~ D %4

source term

Because volume P is a main control volume, node and face subscripts are
defined as:

*1, 3, k

» 141, §, k
»i-1, J, k
i, 3+1, k
i, 3, k-1
14172, 3, k
i-1/2, 3, k
1, 3+1/2, k

P
E
v
N
B
e
v
n
b=»1, j, k-1/2

¥ & 3 & 3 3

The development of Equation 4.15 follows the formulation of others
(Patankar, 1980, Carver, 1982). The momentum equations on each face of the
main volume P are written in terms of the desired pressure corrections as:

(A¢)q = (A;)q - (DA¢)q . AP& 4.16

where
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(A¢)q = phase velocities, Ugr Vg OF Wy that vill satisfy both mass
and momentum conservation
(A@) = trial velocities based on a trial (assumed) pressure field
8p/, = difference in pressure corrections for cells that share face q

For example, on the north face of the main volume, Equation 4.16 may be
vritten as:

(vp = (v, - (V) + (B - BY)
vhere

Ly * Vo

(DV ) = "
Vo T B,

and

s | ]
Vi, AN Y. 8, Voo * BulVg) * Sy ]
L] L]
- (Dv¢)n (PN - PP)
(C¢>n = coefficient of velocity in the momentum equation on the north
face of the main control volume (from Equation 4.13)
Vn = volume of the Y-momentum volume on the north face

P*,P’ = trial and associated pressure corrections

Ayn (ij + ij+1)/2

The velocities on each face, such as that given in Equation 4.16, are now used
in the continuity equations to derive Equation 4.15.

The continuity equations for each phase, expressed in terms of
normalized densities (section 4.4.2), are added and integrated over the main
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volume. Using the velocities on the faces from the momentum equations, such
as Equation 4.16, the pressure correction equation (Equation 4.15) is derived
with:

AVr! AVr!
'on & ), ali
q g Cg AL q s Cs AL q

Sp = = DGp/(p)p - DSp/(py)p

where
A = flow area normal to face q
v = volume of the momentum volume connecting adjacent main
volumes normal to face q
r§ ¢=g or s = normalized density on the face based on the upwind
approximation, i.e., on the north face
I *
{ (p‘)i,j,k/(F,#)R (V¢)n 20
) o/ - ' *
¢ (90)1,}’_1’[‘/(9#)!‘ (V¢) <0
Cg,cs = coefficient of velocity in the gas and solids momentum
equations, respectively, for the momentum volume normal
to face q
AL = length of the momentum volume in the direction normal to
face q
DGP,DSP = gas, solids mass residuals, respectively
DG = D (Apr M%) - N (Apl AX) - M
P q=e,n, f g 8°q q=V,S,b g 8 g
DS = N (Ap! AY) - D (Apl M) - N
P gee,n, £ ° 59 gqav,s,b 8 5 S
with
qE(gpéqu = (Agpgud) + (Apvi) + (A, powk)
L ALE ]
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and similar expressions for both phases on the other faces. The face
densities, (p}),» (pl),) etc., are evaluated using the upvind approximation.

- Summary ~

Equation 4.15 is the pressure correction equation that is used to adjust
the flow field pressures during the iterative solution. It should be noted
that when Model B is used (L, = 0), pressure does not appear in the solids
momentum equations. And, as a result, the coefficient, 8 involves only gas-
phase parameters. In this situation, the solids mass residual is not included
in the source term, S,,. Because the solids velocities (and solids
continuity) are not directly affected by pressure gradients, it was felt that
including the solids residual may cause solution difficulties. Consequently,
wvhen Model B is used, the pressure correction equation is based on just the
gas continuity equation.

4.5 BOUNDARY CONDITIONS

The finite difference equations for mass and momentum congervation are
modified to include the effects of obstacles, walls, and mass flow into or out
of the flov domain. Boundary conditions for mass inflow and outflow are
imposed by extra (also called dummy), non-computational control volumes
located around the boundaries of the flow domain.

4.5.1 Inflow Boundaries

At inflow boundaries, the gas and solids velocities are prescribed on
the faces of the Main Control Volume adjacent to the inflow port. The
microscopic density and void fraction of the incoming stream are determined by
the upvind scheme: they are determined by the values assigned to the boundary
cells that are "upwind" of the interior Main volume. The temperatures, void
fractions, and pressures of these boundary cells are changed only through
input to FORCE2.
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4.5.2 Outflov Boundaries

A continuitive outflow condition is used for the steady simulation and
is one option for the transient mode. A constant pressure condition is a
second option in the transient mode. At all outflow boundaries, void fraction
in the boundary nodes is determined by reflection, i.e., equal to void
fraction in the adjacent node that is inside the computational domain.

4.5.2.1 Continuitive Qutflow for Transient Mode. In the transient mode,
pressure in the boundary node and node geometry are set by reflection. The
outflow velocity is then calculated with the appropriate momentum equation. If
the calculated velocity is into (instead out of) the flow domain, the velocity
is set to zero. This prevents inflow at an outflow port, a situation that
can introduce erroneous information into the flow field and indicates the
nodalization is inadequate.

The procedure is illustrated below for continuitive outflow in the X-
direction. The nodal arrangement at this outflow boundary is illustrated in
Figure 4.4. Velocities, voids, pressures, and other quantities at the outlet
are determined according to the following:

Ax = Ox

141 1
11,1,k = ¥ak
(°¢)i+1,j,k - <°¢)§,j,k
Pie1, 3,k = F ik

W iaar2, 9,k = P44,k (U9141/2,5,k7 PR 141, 4,k

(u¢)1+1/2,j,k = calculated with X-momentum equation
(Vo) i41,441/72,k = V¢l141,9-1/2,k = O
= 0

Vo)1, 5, ke1/2 = Vd141,4,k-1/2

4.5.2.2 Continuitive Outflow for Steady Mode. In the steady mode, an
outflow velocity distribution is calculated based on global mass conservation
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and the velocity distribution in the cells adjacent to the outflow boundary.
Prior to solving the momentum and continuity equations, an initial
distribution is calculated or an existing one modified based on mass
conservation. The momentum and continuity equations are then solved using
this distribution, resulting in a new velocity, void and pressure field. The
outflow distribution is next modified based on the new velocities in the cells
adjacent to the boundary. This procedure is repeated at each solution
iteration and is outlined below for the case of outflow along the upper X
boundary shown in Figure 4.4.

i) Calculate Distribution Prior to Momentum & Continuity Solutions Based
on Total Mass Conservation

The outflow velocity in the X-direction is calculated according tot

iter iter-1
(Ue)ii1/2,5,k = Mo * (N9141/2,9,k 4.17

vhere iter and iter-l1 indicate velocities at the current and previous solution
iterations, respectively, and

iter-1
= (i) o/ B0 (Aol w3172, 4,k
with

(ﬁT)¢ = total outlet mass flow rate for phase ¢ based on the velocity
boundary conditions and mass sources for phase ¢

}Z:: = summation over all j and k nodes at 1+1/2, i.e., over the upper
X-face of all main control volumes adjacent to the outflow
boundary. The macroscopic density, pa, is evaluated based on
the upwind approximation.

For the first solution iteration (iterwl), if an outlet distribution is
not specified, a uniform profile is calculated according to:
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1 v '
W ih1s2,5,k = Pedg / 2 (APD1L1/2,5,k

vhere
(p¢)® = macroscopic density based on the initial void fraction and

phase density

i1) Revige Distribution Based on Interior Velocities After Solutions to
Momentum & Continuity

The distribution is revised according tot

iter iter 4.18

() 142/2,4,k = Mo 184 172 4,k = Uy

A vhere (ug),.,,3,s,« 18 an interior velocity that has been calculated from mass
and momentum conservation and u, a minimum velocity defined according to:

u, = 0,0 or
= the minimum of all negative (ug),.;,3,34.x velocities

and
i
' P iter
; Hy = (hpdy / B0 (Agpy v9)3 1799,k
The summation is as defined in step i and the velocity difference, uy, is
given by:
“ Ug = (Ug)i_i/2, 4,k = Un
§
o The distribution from this step is then used in step i at the start of the
~ next solution iteration.
L
With the above formulation, the distribution satisfies global
{f continuity, a constraint that improves solution convergence, and there are no
- inflov velocities at the outflow boundary. The minimum velocity, u,, has been
[
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added to the formulation in step ii to prevent an inflow condition that may
arise during the iterative solution of the non-linear momentum and continuity
equations. It should be noted that if negative velocities are observed near
the outflow boundary during the solution, the nodalization is probably
inadequate. Specifically, the flow exit should be located far enough
downstream of the problem to avoid flow recirculation in the exit plane.

4.5,2.3 Constant Pressure, Transient Mode Only. The constant pressure
condition is identical to continuitive outflow except the pressure in the

boundary node, node i+1,j,k in Figure 4.3, is fixed according to the value
that is input to the model.

4,5.3 Velocities Normal to Solid Surfaces

The velocities normal to solid boundaries are initially set to zero. In
the transient mode momentum equations for the normal velocities are not solved
thereby maintaining this condition. In the steady mode, the velocity
coefficients and source terms are modified to meintain a zero velocity during
the solution sequence. PFor example, the Z-Momentum equations, Equation 4.14,
are modified as follows for a solid boundary normal to the Z-direction:

8, =a, w8 =2 =0

B, =0

Spap = O
c"-loo

This results in a zero velocity in the Z-direction at the solid boundary. A
similar formulation is used for surfaces normal to the X- and Y-directions.

4.5.4 Velocities Parallel to Solid Surfaces

Three boundary conditions have been included to account for solid
boundaries such as walls or obstacles in the flow field. These conditions are
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applied at blocked cells, along blocked boundaries or along symmetry

boundaries. To illustrate the approach, the fo:mulation for the Y-momentum
equation is given for flow adjacent to the solid surface shown in Figure 4.5.

The formulation is similar for the other directions.

4.5.4.1 No Slip. For this condition, the phase velocity is assumed to
be zero at the solid surface. The viscous stress on the face of the Y-
momentum volume adjacent to the solid boundary is given by:

(A wy 3y = By " (Vp = WL (V)4 510k
where

o= A 170 5.k © M4 5, Adis1/2,941,k © V94, 541,607/ 8%

For the transient mode, this boundary condition is implemented by
redefining the vest face and node center diffusion coefficients in the tilde

term as:

D = 000

\J
= u’
Dp EDq-ru¢

For the steady mode, a similar approach is taken to give:

D, =0

v

Coy = D ag + Fp + (By + kypdp = ¥pr iy

4.5.4.2 Partial Slip. The solid particles are assumed to move along
the solid surface in this situation. The velocity along the surface is given
according to the relation in section 3.5 in terms of the mean free path, L.

The viscous term may then be written as above with
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Ms = [ 1 172,35, (8)h, 5,0+ A 1o1/2, 501,06 901,301, B T2E

vhere
L = mean free path defined in section 3.5

This boundary condition is included in the transient and steady modes as
noted in section 4.5.4.1 using the above definition for EZ.

4.5.4.3 Full Slip or Symmetry Boundary. In this situation, the phase
velocity at the solid surface or boundary is assumed to be the free stream
value. As a result, the above velocity gradient is zero. This condition is
implemented in the transient and steady modes with

B =
u¢0
in the formulations given in section 4.5.4.1.

4.5.5 Mass Sources & Sinks

Momentum equations are not solved in momentum volumes connecting
adjacent mass sources or sinks. The treatment in both the transient and
steady mode is the same that for velocities normal to solid surfaces, section
4'5‘3.

4.6 INITIAL CONDITIONS

Initial conditions are provided to the model through input. For the
first run, initial velocities and voids must be specified throughout the flow
field. A minimum fluidizing condition may also be selected on the first run.
In this situation, the solids are assumed at rest, the gas flow field is
assumed one dimensional and the pressure field is set to just support the
veight of the bed. These conditions assume that the bed is at minimum
fluidization.
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During the solution, initial conditions for the next timestep in the
transient mode or next iteration in the steady mode come from the predicted
velocities, voids, pressures, etc., at the end of the previous solution step.
At the end of a run, predicted conditions are written to a file and .can

subsequently be used to start up the solution.
4.7 RESIDUES AND RELAXATION OF STEADY EQUATIONS

Residues for each of the steady equations are calculated and displayed
as a means of monitoring solution progress. Convergence is indicated by
residues that decrease as the solution progresses. The residues are defined
below and used as part of the relaxation schemes.

Because the finite difference equations are very nonlinear, they must be
relaxed to promote a stable solution. Two schemes are applied: 1) under-
relaxation and ii) inertia relaxation. Both are outlined below.

All the steady equations may be written in the form:

ap,%p = Y. 8y $g * bp ¥p + Sy 4.19

wvhere

HE A N " RTTI N

»S = unrelaxed coefficient and source term, respectively

aPu cu

and the parameters are defined in Table 4.2, depending on the particular

steady equation.

4.7.1 Eyuation Residue

A residue for Equation 4.19, at the beginning of the current iteration
(iter), 1s defined as:
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iter iter-1 iter jter-1
R¢-Z:% * 4 + b ¥ *

P

siter

iter iter-1
L] ¢P

cu  °Pu

vhere Ry indicates the residual in the equation for variable ¢.

Table 4.2

TERMS IN THE GENERAL FORCE STEADY TRANSPORT EQUATION

Equation $e ¥p
Void fraction, > 0

Equation 4,11 ’

X-Momentum, u u
Equation 4.12 ¢ bo

Y-Momentum v v
Equation 4:13 ¢ bo

Z-Momentum W v
Equation 4:14 ¢ bo

Pressure Correction, P! 0
Equation 4.15

8pu

by

0

By

By

Bu

The coefficients and source term at the start of the current integration
are based on predicted conditions at the end of the previous soluticn step,
i.e., on ¢it*r=l, etc. The maximum and average values for Ry are displayed
for each solution variable at the start of each solution step.

4.7.2 Relaxation of Steady Equations

Under-relaxation and inertia relaxation are applied to the steady
equations before they are solved. Each relaxation method is outlined below.

4.7.2.1 Under-relaxation. The new estimate for ¢, is written as:

iter iter-1
=0 % ocalc t (1-8) %
vhere ¢§ter = "new" value for ¢P

T4

4.20




6 - under-relaxation parameter, 0 < e¢ <1

¢
$p,calc = % calculated with Equation 4.19

¢§ter—1 = ¢, from the previous iteration

The calculated value, ¢, .,;.» in Equation 4.20 is used in Equation 4.19 along
with the residual, Ry, to define ¢,it*f as

ap, * % = DI 2, b *+ bp ¥p + S, - (1 - 6¢)R¢

where ¢, is the new value. The superscript, iter, is not used to simplify the

notation.

4,7.2.2 1Inertia Relaxation. For inertia relaxation, we assume

. . 1 _ I _
ap, " ¢p =8, ' b L1-I"1-I]

iter-1
- 8py ¥ - 8py I ¢P-
1-1 1 -1

where I is the inertia relaxation parameter defined on the range

0¢I<1

Vith inertia relaxation, the governing equation for ¢, becomes

ap-¢P.an¢0+waP+sc 4.21
where
a = 8py
P IT
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4.7.3 Summary

Equation 4.21 is the final form for all the steady equations. This
equation is solved iteratively, as described in section 6.0, to predict the
steady-state operating conditions.
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5.0 TRANSIENT SOLUTION PROCEDURE

5.1 OVERVIEW

The implicit multifield technique (IMF) (Harlow 1975) is the transient
solution procedure used in FORCE2 and is based primarily on the IMF scheme as
implemented in FLUFIX. The solution procedure is based on adjusting node
pressure until gas mass is conserved. Some key features of the method

include:

o Cell-by-Cell solution. The solution for operating conditions at the
end of the timestep is developed by solving the governing equations
on a cell-by-cell basis. Sweeps over the flow domain are performed
until gas mass is conserved in all cells.

o Simultaneous solution for velocities on the cell faces. The gas and
solids momentum equations on the face of a Main Control Volume are
solved simultaneously. This improves the modeling and contributes to

solution stability.

o Explicit formulation for convection and diffusion, As noted in
Section 4.3, the convection and diffusion terms are evaluated only at
the beginning of the timestep. This rough approximation simplifies
the formulation. A better approach would be to include these terms
in the velocity coefficient on the left side of the momentum
equations, similar to the steady formulation.

o Implicit formulation for the solids stress. The solid stress term is
evaluated based on void fractions at the end of the timestep. This
formulation is required for a stable solution due to the exponential

variation of stress with gas void near the packed state.

The overall transient solution scheme is given below.

~77-



5.2 OVERALL TRANSIENT SOLUTION METHOD

The solution procedure over a problem timestep consists of the following

steps:

Step 1:

Step 2:

Step 3:

Calculate Densities, Viscosities and the Explicit Tilde Terms.

Fluid densities and viscosities are calculated throughout the
flov field based on conditions at the beginning of the
timestep. The explicit tilde terms that include body forces,
convection and diffusion of momentum are also calculated for
each momentum volume in the flow field. The initial conditions
come from user input or from operating conditions at the end of
the previous timestep.

Solve for Velocities Throughout Flow Field.

This is called the explicit stage of the solution (Lyczkowski,
1989). This step results in new velocities throughout the flow
field based on the initial pressure field. Velocities are

are predicted by the simultaneous solution of the gas and
solids momentum equations as outlined in sections 4.3.2, 4.3.3,
and 4.3.4.

Start the Implicit Phase of the Solution.

The solution is started at the first computational cell located
at the Minimum X1-Coordinate, Maximum X2-Coordinate, and
Minimum X3-Coordinate in the FORCE2 coordinate system. For the
discussion here, the X1-Direction will correspond to X, the X2
to Y and X3 to 2. Main Control Volumes are visited in the
folloving order: at each plane perpendicular to the Xl-Axis,
visit nodes along X3-lines starting at the minimum X3-
coordinate. In a two-dimensional problem, this is equivalent
to visiting all j-nodes at each i-location. 1In the description
below, the Main Control Volume will be designated by the
indices i,j,k.
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Step 4:

Step 5t

Step 6:

Check Mass Convergence at Node i,j,k.

The gas mass residue is calculated according to Equation 4.4
and convergence checked, A converged solution at this node is
assumed if

|pGp  at/wp| < EPSG - (pp)p

vhere EPSG is the input convergence parameter.

1f the convergence criteria is met, go to Step 5, othervise go
to Step 6.

Calculate Void Fraction.

The gas void fraction is predicted using Equation 4.3, If an
unrealistic void is predicted, warning messages are written to
the FORCE2 log file and the solution is stopped. Experience
indicates that near the packed state the solid stresses can
give rise to very high velocities which, in turn, can result in
physically unrealistic voids. Exceeding the material Courant
criteria is one condition that can lead to this situation.
Othervise, the solution then continues to Step 11,

Adjust Node Pressure.

Two procedures for adjusting the pressures in Main Control
Volume 1,j,k are used. They are:

i) Apply Pressure Correction Equation, Equation 4.8. This
correction is applied until minimum and maximum values are

obtained.

ii) Regula-Falsi Using Minimum and Maximum Values. The
pressure in the Volume is corrected using
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Step 7¢

Step 8:

P! = Prox = DGpay/M

where

m= (P’

max Pﬁin)/(DG - DG

max min)

DG = maximum residual and associated pressure

correction

14
max'Pmax

DG = minimum residual and associated pressure

14
min’Pmin
correction

The maximum and/or minimum is revised based on the residual and
associated pressure correction in the current iteration before
the above correction is calculated. The minimum or maximum is
determined by:

DGp >0 Epgy = P

Dp SO By =P

Calculate Velocities on Faces of Main Volume i, ], k.

The momentum equations on each face of the control volume,
Equations 4.5, 4.6, and 4.7, are solved to predict gas and
solids velocities. The coupled equations on each face are
solved simultaneously.

Calculate Void Fraction.
The gas void fraction is predicted using Equation 4.3. As
noted in Step 5, if the predicted void is physically

unrealistic, warning messages are written to the FORCE2 log
file and the solution is stopped.
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Step 9:

Step 101

Step 11:

Step 12:

Check Mass Convergence at Node 1,j,k.

This step is identical to Step 4 above. If convergence is
achieved, the solution continues at Step 1l1; otherwise, it
continues at Step 10.

Check Number of Micro Iterations.

Steps 6 through 9, which are performed at each Main Control
Volume, comprise a Micro-Iteration. The allowable number of
these steps is controlled by input to the model (the allowvable
number of Micro-Iterations is typically 5 to 10). If the
allovable number is exceeded, the solution proceeds to Step 11;
othervise it returns to Step 6.

Check for Last Node,

If node i,),k is the last node in the domain, one Macro-

Iteration has been completed and the solution continues at Step
12, Otherwige, the node number is incremented according to the
scheme outlined in Step 3 and the solution continues at Step 4.

Check for Overall Convergence or Maximum Allowable Macro
Iterations.

Overall convergence is achieved when only sgteps 4,5, and 11 are
performed during a single sweep (Macro-Iteration) over the
domain. If this criteria is met, a nev timestep is started at
Step 1.

If overall convergence is not achieved and the maximum
allovable number of Macro-Iterations is not exceeded, a new
swveep over the domain is started. The Main Control Volume
number is reset to the starting value defined in Step 3 and the
solution restarts at Step 4.
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I1f overall convergence is not achieved and the maximum
allowable number of Macro-Iterations is exceeded, a new
timestep is started at Step 1. This non-converged condition
can be detected by examining the FORCE2 log file which displays
convergence information.
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6.0 SOLUTION PROCEDURE FOR STEADY SIMULATION
6.1 OVERVIEW

Because the finite difference form of the momentum and continuity
equations are very non-linear, an iterative solution procedure is required.
The approach is to congtruct sets of linear equations by evaluating velocity,
void fraction, etc., coefficients based on assumed or trial operating
conditions. The resulting linear equations are solved using matrix methods
and their solutions used to estimate new operating conditions. This sequence
is continued until the equation residuals are small indicating that an
acceptable solution has been achieved. The non-linear nature of the
governing equations also requires that the solution be advanced slowly.
Consequently, solutions are developed based on governing equations that have
been relaxed according to the methods described in section 4.6. Finally, the
implementation of this method in FORCE2 is outlined in section 7.0. Program
flov and logic are described ihere.

A key element of the solution scheme is the adjustment of tha flow field
pressure to conserve mess in each computational cell. The iterative procedure
is based on conserving mass once a solution is achieved. Hovever, during the
iterations mass residuals are present indicating that mass has been "added or
taken from" the flow domain. The local imbalance is used to adjust pressure
vhich in turn causes the required changes in the phase velocities. Th!s
scheme along with inflow boundary conditions results in a solution in which
mass is conserved with a certain inventory of the phase in the flow field.

For the case of no inflow boundary conditions, such as the solids phase in a
bubbling bed, the situation is different. Mass residuals will be present
during the solution and can be used to adjust pressure. However, because
there are no local constraints on solids mass, such as the storage term in the
transient continuity equation, solids mass may not be conserved from start to
finish of the solution, that is the solids inventory after several iterations
may not be equal to the inventory at the start of the problem. The "loss" or
"gain" of solids mass is further "enhanced" by the relaxation of the void
equation which is needed to stabilize the solution. Consequently, a
constraint of global mass conservation for the solids phase is used to adjust
void fraction during the solution. This constraint is applied only for the
case of no inflow of the solids phase,
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6.2

The steady solution procedure is outlined below. It is a modified
version of SIMPLER (Patankar 1980) developed by Schnipke (1986).

OVERALL SOLUTION PROCEDURE

The following steps are performed during a single solution iterations

Step 1:

Step 2:

Step 3

Evaluate Microscopic Densities and Viscosities

Based on operating conditions from the previous iteration and
user input, microscopic densities and viscosities are evaluated
throughout the flow domain.

Calculate or Revise Outlet Velocity Distribution

The outlet velocity distribution for each phase is calculated
(initial run) or revised (all runs after initial one) based on
total mass conservation of the phase. The procedure is
outlined in section 4.5.2.2, step ii) .

Solve the X-Momentum Equations for the Trial Velocities, u}

The X-Momentum equations are solved to predict trial
velocities, denoted u;, throughout the flow domain based on
pressures and void fractions from the previous iteration. The
coupled gas and solids equations are solved along lines in the
domain using the Coupled Tri-Diagonal Matrix Algorithm (CTDMA,
Fortino 1989) described in Appendix A. The solution is
iterative in which many swveeps over the domain (the number and
direction of sweeps are input parameters to FORCE2) are
performed. The solution for the trial velocities consist of
two steps:

1) Sulve the Relaxed Momentum Equations.

The relaxed forms of the X-Momentum Equations, Equation
4.21, are solved over the domain along lines using CTDMA.
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Step 4:

Step 5:

Step 6:

Step 7:

ii) Calculate Trial Velocities from Unrelaxed Momentum
Equations.
The trial velocities, u;
unrelaxed momentum equations, Equation. 4.12, in point

and u;, are calculated from the

form. The neighboring velocities at a node and the other
phase velocity in the drag term are based on the velocities
from step i. The source terms are based on the trial
pressures, void fractions and velocities at the beginning
of the iteration.

Soive the Y-Momentum Equations for the Trial Velocities, v&
Solve the Z-Momentum Equations for the Trial Velocities, w$

Steps 4 and 5 (if a 3-D problem ) are identical to Step 3. All
the momentum equation coefficients are evaluated based on
velocities at the start of the iteration, not the trial
velocities.

Solve for Pressure Corrections.

The trial velonities, u&, v$ and w&, are nov used to formulate
the pressure correction equation, Equation. 4.15.

The equation is not relaxed and is solved along lines using a
standard tri-diagonal matrix solution algorithm (Patankar,
1980). The solution is iterative with many sweeps over the
domain (controlled by input to FORCE2) being performed.

Correct Pressure and Velocities

The pressure corrections from step 6 are applied to the trial
pressure and velocity fields according to

P = P* + P/

(Mg = (Nq = O " (PRYq * &y
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where

Px = trial pressure field

(A;)q = trial velocity field from steps 3, 4 and 5

(DA¢)q,AP& = parameter defined in section 4.4.6

GA = under-relaxation factor for phase velocity, A, an input

to FORCE2

The resulting pressure and velocity fields, P and (A¢)q, become the starting

values for the next solution iteration.

Step 8:

Solve for Gas Void Fraction

The gas and solids velocities from step 7 are used to formulate
the gas void equation, Equation 4.11. The resulting equations
for void throughout the domain are relaxed and solved using a
tri-diagonal matrix solution algorithm. Like the solution of
the momentum and pressure correction equations, many sweeps
along lines in the domain are performed to develop the void
field.

If there is solids inflow to the field, the predicted voids are
used in the next solution iteration and the solution continues
to Step 9.

If there is no solids inflow to the field, the predicted voids
are adjusted so that global solids mass is conserved according
to the following:

sg = eg - ees . fe (1 - ez)

and

Bsal—eg
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vhere

as:

with

€, = predicted gas void to be used in next solution iteration

€, = predicted gas void from the solution of the void equation

O¢, = under-relaxation facter for the solids void fraction, an input
to FORCE2

»

The parameter, fg, is determined based on the initial solids inventory

= . . * - .
£, =M /D ey ¥ ¢ g% - 1.0

= total solids mass based on the user-specified void distribution
and solids density at the start of the problem

M

Y .= summation over all computational main control volumes in the flow
field

& =1-¢

¥ = volume of the main control volume

The resulting voids are then used in the next solution iteration.

Step 9: Adjust Outflow Velocity Distribution

The outflow velocity distribution for each phase is adjusted
based on the new interior velocities according to the approach
outlined in section 4.5.2.2, step ii). A newv iteration is now
started at Step 1.
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7.0 STRUCTURE OF FORCE2

7.1  OVERVIEW

This section describes how the hydrodynamic models, solution procedures
and complementary input and output routines are implemented in the FORCE2
program. Two major computational models, transient and steady, have been
installed in FORCE2. The organization of the code is best explained in terms
of tvo almost distinct modules that implement each of these models. Each
module uses common set-up (input, geometry, calculations, properties, data
structure) and output (printer output, post-processor data, restart data)
routines and do share some calculational routines such as drag coefficient
evaluation. The routines in each module, the complementary routines, and the
structure of FORCE2 are outlined in the following sections.

7.2 PROGRAM ORGANIZATION AND FLOW

The execution flow is divided into three distinct phases: input,
computation and output (Figure 7.1). The flow in the first two phases is
controlled by three routines: the main program, FORCE2; the computational
routine, CONTRL2, which implements the steady simulation; and the
computational routine, CNTRLT, vhich implements the transient simulation. The
output phase is controlled by a collection of routines that perform a distinct
function and that may be used periodically during the computational phase.

The output routines include PRINT, which writes predictions for subsequent
printing; RESTRT, which writes a restart file; and POSTA, which writes a file
for the FORCE2 post-processor.

During the input phase, data is read from the input file and the restart
file. Most of the restart file is also written during the input phase. The
input phase is controlled by the main routine, FORCE2, which calls the input
routines. The sequence of subroutine calls during the input phase is shown in
Figure 7.2.

The fundamental modeling calculations are performed during the
calculation nhase. Overall execution flow is controlled by routine CNTRL2 for
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Figure 7.1.
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Overall FORCE2 execution flow - FORCE2 theory.
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GEOM1

Geometric Input
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FLOW1

Flow Data

CNTRL1

Execution Control Information

SETUP
GEOM2
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Input Porosities & Permeabilities,
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INITL

Field Variable Initialization /

Modification

FLOFLG

Input Cell Flags

PRINT
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POSTT

Print Input Specifications &
Initial Values
Set Up Post Processor Files

Proceed to Computational Phase

Figure 7.2. FORCE2 input phase - FORCE2 theory.
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a steady simulation and by CNTRLT for a transient simulation. The flow in-
each routine is shown schematically in Figures 7.3 and 7.4,

Results of the modeling calculations are printed intermittently as well
as at the end of the calculational phase. Overall execution of the printing
is controlled by routine PRINT and is shown schematically in Figure 7.5.
Prior to calling print after the calculational phase, the main program calls
routine RESTRT to write the field variables to the restart file and routines
POSTA and POSTT to complete the post-processor files.

7.3  GEOMETRIC QUANTITIES

FORCE2 is based on a three-dimensional Cartesian coordinate system
(X1,X2,X3). The geometric solution domain is a rectangular grid. The number
of nodes in each direction and coordinate of cell faces are stored in common
block FGEOM with the variable names given in Table 7.1. The rectangular grid
system is shown in Figure 7.6. It should be noted that two-dimensional
problems use the X1 and X2 coordinates. The X3 coordinate is used only for
three-dimensional simuitations.

Most geometric quantities vary from cell-to-cell and are, therefore,
stored for each cell. The geometric quantities maintained for each cell are
listed in Table 7.2.

Each of the geometric quantities is stored as a field variable. Every
geometric quantity is associated with a main node and identified in the same
wvay as the main node. Quantities assocliated with faces of cells (between main
nodes) take the identify of the main node in the positive coordinate direction
normal to the face. Figure 7.7 shows the relation between the geometric
quantities and the main nodes.

The linear interpolation factor, FFn, is used to interpolate values at
main nodes to faces. The interpolation factor is based on the distance
between the main nodes (Ax) and the distance from the main node to the face
(8x). See Figure 7.8.
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[ ___PROPS2 | update Densities & Viscosities

[ FLow2 ] calculate Velocities, Voids, &
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[ PRINT |  Print Field Variables
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Figure 7.3(a). FExecution flow in routine CNTRL2 - FORCE2 theory.
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Pressure

[__BOUND ] Adjust Boundary values
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Figure 7.3(b). Execution flow in routine FLOW2 - FORCE2 theory.

Figure 7.3. Calculation phase for a steady simulation
in FORCE2 - FORCE2 theory.
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Execution flow in routine MODSMP - FORCE2 theory.

Calculation phase for a steady simulation
in FORCE2 - FORCE2 theory. (continued)
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Update Densities & Viscosities

TILDE

Calculate "Tilde" Terms

FLOW2T
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Figure 7.4(a). Execution flow in routine CNTRLT - FORCE2 theory.

Figure 7.4. Calculation phase for a transient simulation
in FORCE2 - FORCE2 theory.
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Figure 7.4. Calculation phase for a transient simulation
in FORCEZ - FORCE2 theory. (continued)
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Figure 7.4. cCalculation phase for a transient simulation
in FORCE2 - FORCE2 theory. (continued)
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Figure 7.5. Final output phase of FORCE2 - FORCE2 theory.
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&x
FFnul—Kx-

Therefore, the distance from a main node to the face below it is calculated:
8% = DXn * (1 - FFn)

Most quantities, both geometric and dependent variables, are associated
wvith main nodes located at the center of a cell. To interpolate values stored
at main nodes to faces, the following expression is used:

y = FFn*Y, + (1 - FFn) Y-,

Where Y, is the value at the main node above the face and Y-; is the value at
the main node below the face (see Figure 7.9). The interpolation factor is
identified vith the main node above the face (i.e., the same as Y,).

Finally, the storage scheme for main control volume and momentum control
volume quantities should be noted. Quantities on the faces of main control
volumes (velocities, areas, etc.) are stored in a "backwards" sense compared
to the main volume number. For example, in Figure 7.7, the X1 and X2 areas
AX1 (IP) and AX2 (IP), are on the lower (or "back") faces of main control
volume IP. The velocities, which are momentum control volume quantities, are
defined in a similar manner. For example, Ul (IP) and U2 (IP) denote fluid
velocities in the X1- and X2-directions on the lower X1 and lower X2 faces of
main volume IP. In contrast, the FLUFIX code uses a "forward" scheme. This
difference should be kept in mind when comparing code predictions.

7.4 FIELD VARIABLES
The term "field variable" refers to any geometric quantity or dependent
variable which must be maintained for each node of the discrete geometry. In

FORCE2, field variables are not stored as ordinary FORTRAN variables, instead
they are stored as data on disk.

Each field variable is divided into records corresponding to geometric
planes. A record consists of all values of a single-field variable
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corresponding to a single position in the X1 direction. Primary memory
available for field variables is divided into buffers, each capable of storing
a single record. Buffer management and disk I/0 are controlled by storage
management routines (SMR). When a subroutine needs a field variable, it calls
the SMR to locate the buffer containing the record (plane) needed.

A code number is assigned to each field variable and is used to identify
the field variable within the program. Code numbers for geometric quantities
and the fluid dynamic dependent variables are contained in the common block
FIELD. Code numbers for other field variables are assigned by the SMR when
the field variable is defined. These codes must be retained by the module
defining the variable.

Planes (records) of a field variable are numbered in the positive X1
direction. For field variables associated with X1 faces, planes are numbered
from 2 to NX1. For other field variables, planes are numbered from 1 to NXI1.

The array FV is used to store field variables in primary memory. It is
divided into buffers and managed by the SMR. When a subroutine needs a field
variable, it calls the storage management subroutine FLDGET. Arguments
identify the field variable and plane desired. FLDGET insures that the record
is in memory and returns the offset (index in the array FV) of the buffer
containing the record. Subroutine FLDGET is detailed in section 7.8.4.

Example: CALL FLDGET (KRHO, 2, 1, KPLN, JRHO)

This example requests a plane of densities, where KRHO is the code
number for density, and KPLN is the number of the plane desired. After the
call, JRHO will contain the offset of the buffer. The other arguments are
described in section 7.8.4.

Assume that JRHO is the offset of the desired plane of densities. To

reference the density at a particular point, IP, in the plane, it would be
coded as FV (JRHO+IP).
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To improve readability

of the code, statement functions are defined so

that reference to the field variable is clearer. The statement function for

RHO, for example, would be:

RHO (IP) = FV (JRHO+IP)

Therefore, a node of the plane can be referenced by coding RHO(IP) instead of

FV (JRHO+IP). (Refer to the

FORTRAN language reference manual for a

description of statement functions.)

This makes a reference

look like an array reference; but actually, it is

a statement-function reference. Statement functions are valid only on the

right- hand side of an assignment statement. To store a value at a particular
node, the notation FV (JRHO+IP) must be used.

By convention, offsets

in FV are given the name of the variable with a J

prefix. With this convention, FV(JPHI+IP) refers to the same node and
variable as PHI(IP), where PHI is some variable name.

FORCEZ maintains additional information for dependent variables:

DFIELD (1,KSV)
DFIELD (2,KsV)
KPRTF (KSV)
RELAX (KSV)
RELAXI (KSV)

Field variable name for input (4 characters)
Field variable title for output (16 characters)
Print control code

Under-relaxation factor

Inertial-relaxation factor

For a field variable with code number KF, the index KSV above is KF-KBASE.

7.5  VARIABLE NAMING CONVENTIONS

The first letter of variable names usually indicates its function in the

program. Following the naming convention makes the code easier to understand.
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Ixxxxnx
IP
ITER

JRRXRX

JCP
Jul

J2p

Naxxxx
NX1
NITER

Mxxxxx

MX1

MITER
Kxxxxx

Kul
KPHASE or KPH

1

General index or counter.

Index of a point in a plane.

Number of current iteration during a run.
Offset (or index) into the secondary storage
array, FV. In general, JXYZ is the name of the
offset for field variable XYZ.

Offset for field variable CP.

Offget for the current plane of axial velocities
(u1).

Offset of the next node in the positive X2
direction. In other words, IP + J2P is the index

of the next no. 1in the positive X2 direction
from the node wii.. index IP.

Number of nodes in the X1 direction.

Total number of iterations.

Maximum number of items which the code can handle
wvith current dimensicns or limiting value of a
count.

Maximum number of nodes in the X1 direction. No
problem can be run with more than MX1 nodes.

Maximum number of iterations for this run.
Miscellaneous integer codes and parameters.
Secondary storage code for variable Ul.

Phase number, 1 (gas) or 2 (solids)

A complete list of common variable names is provided in section 7.9.

7.6 MODULE INTERFACING

A module is a collection of subroutines which implements a physical
model. Each module contains four subroutines which interface the module and
b the main code. These subroutines are called by the main code for module

specific processing of:

input, calculation, output and computation of source
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terms for other modules. By convention, these subroutines are numbered 1
through 4. For example, the flow module contains of the following

subroutines:
Subroutine Function
FLOV1 Flow input processing
FLOW2 Flow calculations
FLOW3 Flow output
FLOW4 Source-term calculation for other variables

Additional subroutines are called by the four interface routines.

7.6.1 Input Routine

The input routine is responsible for:

o Reading data from the input file.
o Reading and writing the restart file.
o Performing set-up processing.

Overall flow of processing in the input routine is shown in Figure 7.10.

Input must be read using the subroutine INPUT or INPUTD (described in
section 7.8).

Data which must be retained for a restart is written on the restart
file. The regtart file is an unformatted file. Each record begins with two
vords: the record number and the number of data words in the record. Records
must be written to the file in sequence by record number. Each module is
assigned a restart code as n x 1000 (e.g., 1000, 2000, 3000, etc.). The
restart code is passed to the module when it is called. The record numbers
consist of the restart code plus a three-digit number to uniquely identify the
record.

Field variables are not available when the input routine is called and
cannot be accessed from the input routine. New field variables necessary for
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this module are allocated by using subroutine FLDDEF. All field variables are
automatically restarted.

7.6,2 Calculation Routine

The calculation routine is called either once per iteration or plane by
plane depending on the module. It calculates all field variables for which it
is responsible.

7.6.3 Output Routine

The output routines are responsible for module output, which is written
to Unit 6 for printing or to Units 69, 70 and 71 for the graphical post-
processor and the ANL erosion code. The frequency at which output is written
is specified by the user in the control input paragraph.

Output routines for printing are called from subroutine PRINT. PRINT is
called once after all input is processed, several times during steady or
transient execution depending on user specifications and finally after all
steady iterations or transient timesteps are complete. A single argument is
passed, indicating which call this is: 0 or 1 after input, and 9 after
iterations.

The output routine is responsible for updating the global line counter,
LINCNT. It must be decremented for each line printed. When LINCNT is zero or
less, subroutine HEADER is called to skip to a new page and reset the line
count.

7.6.4 Source-Term Calculation Routine

The source-term calculation routine is responsible for calculating
source terms for field variables. It is called by subroutine SOURCE.

The module source term routine (e.g., FLOW4) is passed a single

argument, KF, the field variable code number, The routine calculates source
terms from this module for the current plane (KPLN) of variable KF.
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For gtandard field variables, the codes are stored in the FIELD common
block. For example, if KF is equal to KU2, then this is the momentum equation
for the U2 velocity. Nonstandard field variables (defined through FLDDEF) can
be tested by comparing DFIELD (1, KF) with the field variable name.

The standard form of the finite-difference equation for some variable o
is:

8,0p = 8,6, + 8,05 + 8¢, + 8,6 + 8pbp + 8,9 + S

WVhere the a, are the finite-difference coefficients, and S is the source
term. The provision is made for the source term to be expressed as a linear
function of the variable,

Sm§, + Sp¢p

Two temporary field variables, SC and SP, are used for storing the source
term, vhere the source term for a particular cell is:

SC(IP) + SP(IP)*PHI(IP)

The components of the source term must be calculated for each cell and added
to SC and SP, respectively.

Source-Term Linearization for Steady Simulation. The recommended
linearization for a source term is based on a Taylor series for the source
terms

S(#) = S(#) + g3 4 P4 L

«SU) -5 g
Therefore,

n 8§ .n
S, =S¢ - 5 ¢
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Sp.%%¢

n= iter-1

However, because the solution techniques currently used in the code dc not use
pivoting, the diagonal terms must dominate for numerical accuracy. This
implies that Sp should be negative since it contributes to the diagonal term.
If Sp is positive, numerical problems may result.

7.7 FORCE2 SOURCE CODE FILES

Each subroutine is stored as a separate file. Common blocks are stored
in separate files and included in the subroutines via the FORTRAN INCLUDE
statement. This guarantees that the common blocks are identical in each
subroutine and facilitates modification of common block definitions. Default
values for variables in common are defined by data statements in another file.
For example, the basic FORCE2 common blocks are stored in FORCECOM, and
default specifications for the variables are stored in FORCEDEF.

Module specific common blocks are stored in a separate file and included
in the module subroutines (more than one common file may be used). Default
values for data in common are specified as DATA statements in an additional
file and are included in the input module.

Single precision (adequate for steady simulations) or double precision
(recommended for transient simulations) versions of FORCE2 can be created by
modifying the DOUBLE and FORCECOM files. The default is a double precision
version. By modifying the declarations in DOUBLE and replacing FORCECOM (the
default) with FORCECOM.sgl, a single precision version of the code can be
created.

7.8  UTILITY ROUTINES

7.8.1 Transport Coefficient Calculation

Subroutine COEF calculates the finite difference coefficients for the
gas and solids phase transport equations for the steady simulation.
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Subroutine COEFT performs a similar task for the transient simulation. The
transport coefficients are calculated for a single plane and stored in
temporary field variables. The offsets of these coefficient planes are stored
in common block FCOEF.

Both COEF and COEFT require a single argument, KF, the code number of
the variable. In addition, variable KPLN (in common block FCNTRL) must be set

to the number of the geometric plane being considered.

7.8.2 Tilde Term Calculation

For the transient simulation, subroutine TILDE calculates the "tilde"
terms for each phase in each coordinate direction. A sweep over all Xl-planes
is performed by TILDE. At each plane, subroutines TILDX1l, TILDX2 and TILDX3
are called to calculate the Xl-, X2- and X3-.direction tilde terms,
respectively. These routines are passed an argument, KF, that identifies the
phase velocity in the direction of interest.

7.8.3 Error Subroutine

An error subroutine is available for error handling; all error messages
should be printed by the error subroutine.

Subroutine ERROR has 3 arguments:
KLEV Error level
1 -~ Varning only
2 -~ Noncritical error, continue
3 -~ Critical error; may not produce a usable run.
But corrective action has been taken, and

procession can continue

4 Fatal error, run cannot be made
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NCHAR Number of chargcters in error message
XMSG Error message

By convention, error messages have the following format:
b program b-B message

The first space is for carriage control, "program" is the subroutine name and

"message"” is the error message text. For example:
CALL ERROR (2, 32, 32H PROPS1 - Numeric value expected)

7.8.4 Field-Variable Definition

Subroutine FLDDEF is used to define new field variables.

Subroutine FLDDEF has three arguments:

VNAME A unique four-character name for the variable.
This name is used for input related to the
variable.

VTITLE(4) A print title, four words of four characters each.

This title is used to identify the variable in the
printed output.

KF Output, code number for the variable.

7.8.5 Field-Variable Access

Secondary storage is organized into planes of variables, i.e., each
record in secondary storage is a single plane of a single variable. Access to
secondary storage is by the routine FLDGET. FLDGET reads and writes secondary
storage records into a main storage buffer (the array FV). In response to
requests FLDGET returns offsets into the buffer (indexes in FV). The
arguments to FLDGET are:
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KF(NV) Code numbers of the variables to be accessed.

KA(NV) Access codes: l=temporary, 2«read only, 3=update and
4=vrite only.

NV Number of variables requested.
KPLN Number of the plane requested for all variables.
JV(NV) Offsets of planes in main storage buffer (e.g., node IP

is specified by FV(JV(N) + IP)).
Figure 7.11 shows the processing flow for storage management.

Access read or update. When the access code specifies read or update,
FLDGET is requested to obtain plane KPLN for variable KF and return the offset
as JV. If the values are not changed, read-only access (2) is specified,
indicating that the data need not be rewritten on secondary storage after it
is used. If the values are changed, the update access is specified to insure
that the data is rewritten.

Access temporary. Occasionally a routine needs some array space to
temporarily store data when it is running. Since the need is temporary, it ‘is
useful to have storage allocated only when it is needed. Therefore FLDGET
provides the ability to allocate a plane of storage for temporary use. In this
case, KF is ignored by FLDGET since no variable on secondary storage is
associated with the request. When the program is done with temporary storage,
it is freed by calling RFREE.

Access vrite only. At the beginning of the program, there are no values
for the field variables on secondary storage. They must first be initialized.
Vrite-only access is used to specify that the variable is being initialized.
Space is allocated for the variable in the buffer but nothing is read into it.
The variable is then written to secondary storage after it is used.

Internal allocation of buffer space. When buffer space is needed to
satisfy a request, the storage management routine uses free space in the
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Figure 7.11.
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buffer to satisfy the request. If there is no free space, the least recently
requested record is used. If it was allocated with a WRITE or UPDATE request,
the data is written to secondary storage before it is used.

With this scheme of operation, a record cannot be expected to remain in
memory for a very long time. As a general rule, data needed by a routine is
requested each time that the routine is entered.

There is another potential problem with this scheme. If a particular
calculation requires more data than can be held in the buffer, it will not
run. The data management routines cannot guarantee that sufficient space is
available. However, when the buffer is initialized, a check is made to insure
that a reasonable number of records can be stored in memory.

7.8.6 Page Heading

Subroutine HEADER causes a page eject on the printer and prints a
standard heading. It also resets the line counter, LINCNT.

7.8.7 Input Processing

The basic input routine is INPUT. It reads an input statement, breaks
it into elements (fields) and stores the data in an array.

Subroutine INPUT. The subroutine INPUT stores its data in the arrays
XVALUE and XTYPE. In addition it sets two other values, XFLAG and NVALUE.

Variable Contents
XFLAG An integer code, a value of 99 indicates an end of

file for the current input section.

NVALUE Number of elements (fields) specified on the input
statement.
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XVALUE(I) The value of the ith element of the input statement.
A numeric field is stored as a real number. A
character field is stored as an A4 containing the
first four characters.

XTYPE(I) An integer code indicating the type of data stored in
XVALUE(I).

0 no data (XVALUE(I) = 0.0)
1 numeric data
-1 character data

CODE Equivalent to XVALUE(1)
CODEX Equivalent to XVALUE(2)

Subroutine INPUT has no arguments. After calling INPUT, XFLAG is
checked for 99 and treated as an end of file; otherwise, the input statement
is processed.

7.9 VARIABLE NAME DICTIONARY

The commonly used variables are listed in Table 7.3. A variable name
containing a lower case "n" stands for three variables, one for each
coordinate direction. The actual names have the "n" replaced by a digit (1,
2, or 3) for the coordinate direction. Unless local is specified under the
type column, the variable is in common. For arrays, the dimensions are
- specified under type.

Since statement functions are used to reference field variables, the
statement function names are included in this list. The notation SF appears
in the type column for statement functions.

7.10 SUBROUTINE LIST

The subroutines which make up FORCE2 are listed in Table 7.4, which
includes a brief description of each subroutine. All subroutines are
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classified into four groups, as indicated under the function column. The four
functions groups are: input, output, calculation and utility. FORCE2
containg some routines not listed in Table 7.4. Such routines are inactive
yet have been retained to maintain program logic. FORCE2 was derived from a
more general model that included heat transfer and combustion.

Table 7.1

FORCE2 GEOMETRIC VARIABLES

Variable

NX1
NX2
NX3
X1(NX1)
X2(NX2)
X3(NX3)

Contents

Number of nodes in the Xl-direction
Number of nodes in the X2-direction
Number of nodes in the X3-direction
X1-face coordinates
X2-face coordinates
X3-face coordinates

Table 7.2

GEOMETRIC VARIABLES FOR EACH CELL IN THE FORCEZ GRID SYSTEM

Quantity Name
Area of cell face normal to direction n AXn
Distance (arc length) between main nodes along
direction n DXn
Linear interpolation factor in direction n
(based on distance) FFn
Momentum interpolation factor for velocity in
direction n (based on areas) FXn
Area APn
Area x density ARn
Area x effective viscosity AVn
Volume of cell VoL
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Name
APn
APnP

ARnP
AVn
AVnP
CODE
CODEX

CON
cp

CnM
CnP
CVOL

DFIELD
DPROP
DXn

DXnP

Table 7.3

VARIABLE NAME DICTIONARY FOR FORCE2

SF
SF

SF

SF

SF

SF

SF
SF

SF

SF

SF

(5,MFV)
(5,MPROP)
SF

SF

Description
Area x Permeability at lower face in direction n.

Area x Permeability at lower face in direction n
on the next plane.

Area x Permeability x Density at lower face in
direction n,

Area x Permeability x Density at lower face in
direction n on the next plane.

Area x Permeability x Viscosity at lower face in
direction n.

Area x Permeability x Viscosity at lower face in
direction n on the next plane.

First field of card input (equivalence with
XVALUE(1)).

Second field of card input (equivalence with
XVALUE(2)).

Constant term in finite-difference equations.

Coefficient of the main node in the finite-
difference equations (the diagonal coefficient).

Coefficient of the lower node in direction n for
the finite-difference equations.

Coefficient for the higher node in direction n for
the finite-difference equations.

Volume x Porosity of control volume for current
variable.

Dictionary for solution field variables.
Dictionary for properties.

Distance betveen main node and lower node in
direction n.

Distance between main node and lower node in
direction 1 on the next plane.
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EPSG

FFn SF

FFnP - 8SF

FV (MWORD)

FXn SF
FXnP SF

IP Local
IPO Local
IPl Local
IPREF

ITER

ITRYX
ITRYMX

Jxxx
JCON
JCP
JCnM
JCnP
JCVOL
JRES
JSC
JSP

Table 7.3

VARIABLE NAME DICTIONARY FOR FORCE2

Gas residual solution tolerance for transient
solution.

Interpolation factor for computing main node
values at faces. The ratio of the distance from
the high node to the face and the distance from
node to node.

Same as FFn but in the next plane.

Field variable storage in primary memory, only the
values currently in use are stored in FV.

Interpolation factor for momentum control volume.
Same as FXn but in the next plane.

Index of a point in a plane.

First value for IP in a DO loop.

Last value for IP in a DO loop.

Node within plane KPREF associated with the
reference pressure.

Current iteration counter. During a run, ITER
goes from 1 to MITER.

Micro iteration counter for transient solution.

Maximum micro iterations at a node for transient
solution.

Offset in FV for xxx.
Offset in FV for CON.
Offset in FV for CP.
Offset in FV for CnM.
Offset in FV for CnP.
Offset in FV for CVOL
Offset in FV for RES.
Offset in FV for SC.
Offset in FV for SP.
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JV
JnM

JnP

KAPn
KARn
KAVn
KAXn

KBASE

KDXn
KFn

KFFn
KFV

KFXn

KPHASE
KPH
KPLN
KPREF

KPREST
KPRTD
KPRTF

Local

Local

Local

(MFV)

Local

(MSV)

Table 7.3
VARIABLE NAME DICTIONARY FOR FORCE2

Offsets returned by FLDGET for planes retrieved.
Offset in a plane of the lower node in direction n
(e.g., for node IP the lover node in direction 2
is IP+J2M).

Offset in a plane of the higher node in direction
n (see JnM).

Code number for APn.
Code number for ARn.
Code number for AVn.
Code number for AXn.

Array of access codes passed to FLDGET for
allocating planes.

Base for solution variable code numbers (e.g., RHO
is solution variable KRHO-KBASE).

Code number for DXn.

Array of code numbers passed to FLDGET for
allocating planes.

Code number for FFn.

Array containing I/0 record numbers for each field
variable (e.g., the I/0 number for RHO is
KFV(KRHO) ).

Code number for FXn.

Code number for pressure, P.

Phase identifier, 1 (gas), 2 (solids).

Same as KPHASE.

Number of current plane.

Number of the plane containing the reference
pressure node.

Restart parameter.
Debug print parameter.

Solution variable print parameters.
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Table 7.3
VARIABLE NAME DICTIONARY FOR FORCEZ2

KPRTG Geometry print parameter.

KPRTP Properties print parameter.

KPRTW Print width, number of values per line.

KPRTX Filler parameter, unused.

KPSAVE Regtart save parameter,

KPSTAT Print control for subroutine calls end file 1/0
statistics.

KRHO (3) Code number for density, RHO.

Kun (2) Code number for velocity, Un.

KVISC (2) Code number for viscosity, VISC.

KVOL Code number for volume, VOL.

KX Code number for cartesian X coordinate.

KY Code number for cartesian Y coordinate. .

KZ Code number for cartesian Z coordinate.

LINCNT Print line counter.

LINMAX Maximum number of lines per page.

MFV Maximum number of field variables.

MITER Number of iterations to be performed for this run.

MPROP Maximum number of properties.

MVALUE Maximum number of fields per input card.

MWORD Number of words of buffer storage in array FV.

MXn Maximum number of nodes in direction n.

NFV Number of field variable stored on secondary
storage.

NGEOM Code number for type of geometry.

NIT Macro iteration counter for trangient solution.

NITER Total number of iterations.
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NLINE
NITMAX

NP
NPRIO (3)

NPROP

NSTEPS

NSTEPT

NSV

NVALUE

NXn

P SF
PDELTA

PM SF
PP SF
PREF

PRHO

PTIME

PVISC

RELAX (MSV)
RELAXI (MSV)
RES SF

RHO SF
RNDATE (3)
RSAVG (MSV)

Table 7.3
VARIABLE NAME DICTIONARY FOR FORCE2

Input line number.

Maximum macro iterations at a timestep for the
transient solution.

Number of nodes per plane.

Rank of flow directions as to predominance of flow
in that direction.

Number of properties.

Total numbar of timesteps for this run,

Total number of timesteps for this problem.

Number of solution variables.

Number of fields on previous input card.

Number of nodes in direction n.

Local pressure.

The local pressure at the reference pressure node.
Local pressure on next lover plane.

Local pressure on next higher plane.

Reference pressure level (the pressure at any ncde
is the sum of the reference pressure and the local
pressure).

Nominal density.

Problem time.

Nominal viscosity.

Under-relaxation factors for solution variables.
Inertial-relaxation factor for solution variables.

Cell residuals, updated by solve each time it is
called.

Density.
Current date, used in print heading.

Average absolute residual for each solution
variable.
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RSMAX

sC
sp

TILnG

TILnS

TSTEP
TITLE
Un
UnG
UnM
UnP
UnS
VIsC
VoL
VORK
XFLAG

XTYPE

XVALUE

Xn

(M8V)

SF
SF

SF

SF

(20)
SP
sP
sp
8P
sP

SP
(500)

(MVALUE)

(MVALUE)

(MXn)

Table 7.3

VARIABLE NAME DICTIONARY FOR FORCE2

Maximum absolute residual for each solution
variable.

External source-term constant.

External source-term coefficient of the current
variable.

Tilde term for gas momentum equation in direction
n.

Tilde term for solids momentum equation in
direction n.

Problem timestep.

Problem title from input.

Velocity in direction n.

gas velocity in direction n.

Velocity in direction n on the next lowver plane.
Velocity in direction n on the next higher plane.
Solids velocity in direction n.
Viscosity.

Volume of main control volume.

Work array used by utility routines.

Code for end of paragraph and end of file form
routine input.

Type of input filed in corresponding element in
XVALUE: lenumber, -l=alpha, Osunspecified.

Value of input field, either numeric or
alphabetical, depending on content.

Face coordinates in direction n.
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Routine Function
ANLRES Calculation
BANNER Output
BLKSET Utility
BOUN2T Calculation
BOUND Calculation
BOUND1 Calculation
BOUND2 Calculation
BOUNT Calculation
CNDIFT Calculation
CNTRLO Input
CNTRL1 Input
CNTRL2 Control
CNTRL3 Output

COEF Calculation
CONDIF Calculation
COEFT Calculation
COEFV Calculation
CONFAC Calculation
CORRCT Calculation
CTDMA2 Calculation

Table 7.4
SUBROUTINES IN FORCE2

Description

Implements ANL distributed resistance model for a
tube bundle.

Prints output banner.
Initializes a specified range of a field variable.

Adjusts tilde terms to account for wall boundary
conditions.

Calculates exit-plane boundary conditions.
Performs setup calculations for blockage logic.

Adjusts finite-difference coefficients to account
vall boundary conditions.

Sets boundary conditions for transient solution.

Calculates convection and diffusion in a single
direction for the tilde term.

Restart input paragraph interpretation routine.
Control input paragraph interpretation routine.
Controls overall calculation sequence.

Control output routine.

Finite difference equation coefficient calculation.

Calculates convection and diffusion in a single
coordinate direction.

Finite difference equation coefficient calculation
for the tilde term. COEFT calls CNDIFT.

Relaxes the steady finite difference equation for
void fraction as described in section 4.4.2.

Calculates upvind factor based on input velocity
Corrects velocity and pressure after solution of
pressure equation in the steady solution method.
CORRCT performs step No. 7, section 6.2.

Coupled tridiagonal matrix solver
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Routine Function
CTIMER Utility
DENSO Calculation
DRAG Calculation
DRAGSP Calculation
EROSWVR Output
ERROR Utility
FIND Utility
FINIT Utility
FLDDEF Utility
FLDGET Utility
FLDSET Utility
FLDEV1 Input
FLDEV2 Calculation
FLDEV3 Output
FLDEV4 Calculation
FLOFLG Input

FLOW1 Input

FLOW2 Control
FLOW2T Control

Table 7.4
SUBROUTINES IN FORCE2

Description

Accumulates number of calls and cpu time for each

subroutine which calls it.

User routine to calculate phase microscopic
density.

Calculates drag coefficient for gas-solids flow
based on Main Control volume parameters.

Calculates drag coefficients for momentum

equations. DPAGSP is used for both transient and

steady solutions and calls DRAG extensively.

Vrites hydrodynamic predictions to Unit 71 for

subsequent input to the ANL erosion model. EROSWR

is called only during a transient solution.
Error message output routine.
General linear interpolation routine.

Random access file I/0 initialization routine
(system dependent).

Field varieble creation routine.

Field variable allocation routine.
Field variable initialization routine.
Distributed resistance input routine.

Performs setup calculations for the distributed
resistance modelling.

Output routine for distributed resistance
modelling.

Calculates distributed resistance parameter for
finite difference equations.

Input routine for cell flow flags.
Input routine for flow solution.

Manages overall flow solution for the steady
simulation.

Manages overall flow solution for the transient
simulation.
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Routine Function
FLOW3 Output
FLOVW4 Calculation
FLOWS Calculation
FLOWST Calculation
FLOWEX Calculation
FORCE2 Control
FREAD Utility
FVRITE Utility
GAMAS Input

GEOM1 Input

GEOM2 Input

GEOM3 Output
GEOMS5 Calculation
GEOMST Calculation
GETFUN Control
HEADER Utility
INITL1 Calculation
INITL Input

INPUT Utility
INITLS Calculation

Table 7.4
SUBROUTINES IN FORCE2

Description
Output routine for flow solution parameters.
Calculates flow source terms for steady solution.

Adjusts finite difference equations for flow
blockages in steady solution

Adjusts tilde terms for flow blockages.

Adjusts exit velocity profile for steady solution.
FLOVEX performs step No. 9 of the steady solution
sequence, section 6.2.

Main program, controls all processing.

Random access file I/0 input routine (system
dependent).

Random access file I/0 output routine (system
dependent).

Input routine for permeabilities and porosities.
Geometry paragraph interpretation routine.

Calculates geometric quantities (AXn, DXn, FXn,
FFn, VOL, etc.).

Geometric output.

Adjusts finite difference equations for geometric
boundaries.

Adjusts tilde terms for geometric boundaries.
Initializes commons with field variable numbers
that are frequently used in various calculational
routines.

Produces output page break and resets line counter.

Initializes pressure distribution based on minimum
fluidization condition.

Initialization paragraph interpretation routine.

Reads and input card and converts fields to array
of values for interpretation by calling routine.

Calculates solids mass for initial run of problem.
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Routine Function
INTFL1 Control
INTFL2 Calculation
MODSMP Control
POSTA Output
POSTT Output
PRCOEF Calculation
PRESS1 Input
PRIMET Calculation
PRINT Control
PRINTD Utility
PRINTF Utility
PRINTR Utility
PROPS1 Input
PROPS2 Calculation
PROPS3 Output
PROP2T Calculation
PROPCT Calculation
PROPS2U Calculation

Table 7.4
SUBROUTINES IN FORCE2

Description

Manages temporal integration of certain field
variables. .

Performs temporal integration and stores result.
Manages flow and void solution in for steady
simulation. This routine performs steps 3-8 of the
steady solution sequence, section 6.2.

Writes all field variables to Unit 69 for
subsequent use with the FORCE2 graphical post
processor.

Writes timewise data to Unit 70 for subsequent use
vith the FORCE2 grgphical post processor.

Calculates finite ﬂifference coefficients for the
steady pressure correction equation, performed in
Step 6 of the steady solution sequence, section
6.2.

Input routine for steady pressure solution.
Pressure correction routine for transient solution.
Printed output driver

Prints coefficients, residuals and variables for
debug purposes.

Prints a single field variable.

Print maximum and average residuvals for each field
variable.

Properties input paragraph interpretation routine.
Controls phase properties calculations.
Properties output other than field variables.

Calculates macroscopic phase densities and
viscosities for the transient solution.

Calculates microscopic phase densities and
viscosities.

Calculates Area X Density and Area X Viscosity

parameters on faces of Main Control Volume based on
upvind values for properties.
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Routine Function
PRSOLV Calculation
RESIDG Calculation
RESTRT Input

RFREE Utility
RGET Utility
RINIT Utility
RPRINT Output
RSTAT Utility
SETUP Input
SOURCE Calculation
SMPINI Calculation
SOLSTR Calculation
SOURCT Calculation
TDMA Calculation
TILDE Control
TILDX1 Calculation
TILDX2 Calculation
TILDX3 Calculation
TRNINI Calculation

Table 7.4
SUBROUTINES IN FORCE2

Description

Solves finite difference equations over flow domain
using tridiagonal matrix approach. The pressure
correction and gas void equations are solved in
PRSOLV.

Calculates gas mass residual at a cell for the
transient solution.

Field variable restart input and output.
Secondary storage - free a record.
Secondary storage -~ get a record.
Secondary storage initialization.
Radiation module special print routine.
Secondary storage statistics output.

Calculates geometric control parameters and
initializes secondary storage.

External source term calculation via module source
term routines.

Sets up arrays for direct solution method used for
steady simulation.

Calculates the solid stress source terms for the
steady solution.

Calculates source terms and distributed loss
coefficients for the transient solution.

Tridiagonal matrix solver.

Manages calculation of tilde terms.

Calculates tilde terms in the X1-Direction.
Calculates tilde terms in the X2-Direction.
Calculates tilde terms in the X3-Direction.

Sets up arrays to store operating conditions during
a transient simulation. Arrays are used to restore

conditions at an earlier time if convergence
problems arise with transient method.
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Routine Function
TRNSTR Calculation
UEST Calculation
UHATSM Calculation
USRRES Calculation
USTAR Calculation
USTART Control
VELCOEF Calculation
VELS Control
VELSX1 Calculation
VELSX2 Calculation
VELSX3 Calculation
VFCOEF Calculation
VFMOD Calculation
VFRACS Calculation

Table 7.4
SUBROUTINES IN FORCE2

Description

Periodically stores operating conditions during a
transient simulation.

Performs point solution of steady momentum
equations. Check for solids flow out of a Main
Control volume that may not contain any solids.

Calculates trial velocities for steady momentum
equations, parts of Steps 3, 4, and 5 of the steady
solution sequence, section 6.2.

Routine to be developed by the User to calculate
distributed loss coefficients.

Momentum equation setup for steady solution.

Manages the solution of the momentum and gas void
equations at a single node for the transient
solution method.

Calculates momentum equation residuals, relaxes the
equations, and calculates the final finite
difference equation coefficients prior to their
solution for a steady simulation.

Manages the solution for velocities on the faces of
a Main Control volume during the transient
solution.

Calculates phase velocities on the Xl-faces of a
Main Control volume during the transient solution.

Calculates phase velocities on the X2-faces of a
Main Control volume during the transient solution.

Calculates phase velocities on the X3-faces of a
Main Control volume during the transient solution.

Calculates the void equation residual, relaxes the
equation, and calculates the final finite
difference equation coefficients prior to their
solution for a steady simulation

Modifies steady void based on global solids
continuity, Step 8 of the steady solution sequence,
section 6.2.

Calculates finite difference coefficients for the
steady void equations.
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Routine Function
VFRACT Calculation
VISCO Calculation

Table 7.4
SUBROUTINES IN FORCE2

Description

Calculates the gas void fraction in a Main Control
volume during the transient solution.

Routine to be developed by the User to calculate
phase microscopic viscosity.
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Appendix A
COUPLED TRI-DIAGONAL MATRIX SOLVER

The gas and solids momentum equations are solved simultaneously along
lines using a coupled tri-diagonal matrix algorithm (CTDMA, Fortino 1989).

The formulation of this method is given in this appendix.

The coupled momentum equations may be expressed, along a j-line, as:
Pqu;j - A1j . ’j+1 + Blj . ‘j—l + Clj . 43 + Slj (A-1)
sz' wa - AZj . wj+1 + sz . wj-l + CZJ¢j + SZJ (A-2)

vhere j indicates a node along the line and the variables ¢ and ¢ represent
velocities in the current application.

We assume a solution of the form:

43 - Glj + Hlj ¢3+1 + Flj qa (A-3)

Q3 = GZj + HZJ 13+1 + FZJ ’j (A-4)
and will develop recursive relations for the F’s, G's and H's.

Equations A-3 and A-4 are combined to give:

¢ = 613‘ + a1;‘ C bt m;‘ ¥y, (A-5)
v = c;z_?l‘ + Hz;‘ C ¥t 92; ‘b (A-6)
where
* .
Gl = (G, + F1, + 62,)/D,
*
Hlj = Hlj/Dj



Plg - r1j . uzj/nj

*
sz - (sz + F2

*
HZj - HZJ/Dj

* .
sz = FZJ AIJ/Dj

Dj L 100 - Flj M sz ,

'R Glj)/Dj

Also from Equations A-5 and A-6, we get
* * g x -
43_1 - Glj__1 + 811_1 ¢3 + Plj-l wa (A-7)
* * * -

Equations A-7 and A-8 are used to eliminate ¢;_) and v4-1 from Equation
A-1, By comparing this equation to Equation A-3, the following expressions
for F1, Gl and Hl may be derived:

. . *
. . . *

Hl, = Pljlbi

J 3

] . *
Dlj - Plj - Blj (alj_1 + P1j_1 723-1)

The same is done using Equation A-2 to define F2, G2 and H2 as follows:

. . *
+ B2, + P2 61} ;)/D2

F2, = (C2 4-1

) ]

. . . . *
GZj = (SZj + sz sz-l + BZj sz-l G15-1”°23

A-2



-
i

N

H2, = P2,/D2

N 77

, p%

D2J PZJ sz(ﬂzj_l + sz—l Plj_l)

The F’'s, G's and H’s at node J are nov defined in terms of known coefficients
in Equations A-1 and A-2 and in terms of the F's, G's and H's at node j-1.

The solution is then developed as follows:
Step 1: Define F's, G's and H's at j=l

At the first node, Equations A-1 and A-2 are used to define the F’s, G’s
and H's as follovs:

1
Hll - A11/P11
Fl1 - 011/911
G21 ) 821/P21
321 - A21/P21
F21 = 021/P21

Step 2: Define F's, G’s and H’s from j=2 to j=N
Using the recursive relation for the F's, G's and H's at node j in terms

of their values at node j-1, the F's, G’s and H’'s are defined along the line
to node N, the last node.

Step 3: Solve for ¢y and Yy

At the last node, Equations A-3 and A-4 become:

¢N - GlN + FlN . wN

A-3



L GZN + FZN . ’N
These are solved simultaneously to give
#y = (Gl + F1, * G2)/Dy

W = (G2 + P2y + GL)/Dy

Step 4: Solve for % and V4 from j=N-1 to jel

Equations A-3 and A-4 are nov used to solve for ¢; and Vy.
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Notice
The FORCE2 computer program may be obtained from:

Energg Science and Technology Software Center
ox 1020 '
Oak Ridge, TN 37833

}e\l}eé:hone (615) 576-2606
615) 576-2865
E- Mail ESTSC@ADONIS OSTL.GOV









