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" NOHENCLATURE

Symbo! DescrlPtl°n

'r A crOSS sectional flow area

a transport coefficient or coefficient in user-defined functions
" for gas specific volume or solids density

C coefficient, convection part of tilde term, or compaction modulus

._ D diffusion coefficient
..,

DG gas mass residual

DS solids mass residual

_, DU parameter in steady pressure correction equation

. dp particle diameter

' F convecting flow rate

G solids elastic modulus

gx,gy,gz acceleration due to gravity in the x, y, and z-directions,
_., respectively

0, L characteristic length or mean free path

H molecular weight

_! R mass source

P pressure

_,_ 0 convectlng volumetric flow rate

q volumetric flow rate

R equation residual

_ _ universal gas constant in the Ideal Gas Law
f

RX,RY,RZ flow resistance coefficients for flow in the x, y, and z-
directions, respectively

.a Re Reynolds Number

r microscopic density ratio, P@/(P@)R

J r' normalized macroscopic density, P;/(P_)R

"_ S source term

J

L_. v
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NOMENCLATURE(continued)

Descrlptign

T temperature _-:

t time

u,v,w velocities in the x, y, and z-directions, respectively

V fluid velocity _

V volume

x,y,z coordinate directions

_x,_y,Bz coefficients for interphase drag in the x, y, and z-directions,
respectively

Yv volume porosity

Yx,Yy,Yz surface permeabilities in the x, y, and z-directions,
respectively.

_L characteristic length
A

At timestep
?'

Ax,_y,dz control volume dimensions in the x,y, and z-directions,
respectively _

¢ void fraction

a parameter usedto select the Hydrodynamic Model
or

coordinate perpendicular to surface with origin on surface

e under-relaxation factor

A characteristic velocity

X coeEficlent of bulk viscosity

microscopic viscosity _,

pw macroscopic viscosity, (_'p_) "

a parameter used to implement the upvind difference scheme and _'

defined as 1 for a positive velocity and 0 for a negative _
velocity i

p microscopic density

pw macroscopic density, (¢_" p_) '_

vi



NOMENCLATURE(con t inued )

Descript ion

diffusion part of tilde term

a dependent solution variable or sphericity (also called shape
factor) of solids particle

a dependent solution variable

Q under-relaxation parameter in the pressure correction equation
for the transient solution

,Subs ri ts

A hydrodynamic model A

B control volume in back of volume Pcr hydrodynamic model B

E control volume east of volume P

F control volume in front of volume P

N Control volume north of volume P

NET net amount

P control volume of interest

O a subscript used to denote quantities at the center of Main
._ Control Volumes or velocities calculated with the Momentum
._ Control Volumes

R reference quanti ty

S control volume south of volume P

V control volume west of volume P

,_ b back face

"_ • east face

" f front face

_ g gas phase
J

i,j,k indices used to define locations in the flow domain

' max maximum value

min minimum value

vii



, NOMENCLATURE(continued) _-,

pesc  tlon

n north face _;

nom nominal value

p particle

q a subscript used to denote quantities on the faces of a Main or '.
Momentum Control Volume

tel relative "_"

s solids phase or south face

sv solids velocity parallel to the wall at the wall surface (solid
boundary)

u unrelaxed term
!

v volumetric

v yes t face

x,y,z in the x, Yt or z direction

relating to interphase drag £,

_u unrelaxed terms in the steady void equation
k

identifies phase, I = g or s !::i.

_o identifies other phase, i.e., when _=g, _o.s and vhen @=s, 4o=g ,'

AP pressure gradient term '

Superscripts

' macroscopic quantity such as o' or correction quantity
"r_

iter, steady iteration number ;_

o evaluated at the beginning of the ttmestep for a transient
solution or at the beginning of the problem for a steady solution i_i

* trial or assumed value
7
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1.0 INTRODUCTION

This report describes the theory and structure of the FORCg2 flow

program. The manual describes the governing model equations, solution
!

procedure and their Implementation in the computer program.

FORCE2 is an extension of an existing B&W multidimensional, two-phase

flow program. FORCE2 was developed for application to fluid beds by

implementlng a gas-sollds modeling technology derived, in part, during a joint

government - industry research program, "Erosion of FBC Heat Transfer Tubes,"

: coordinated by Argonne National Laboratory. The development of FORCE2 was

sponsored by ASEA-Babcock, an industry participant in this program.

This manual is the prlnclpal documentation for the program theory and

organization. Program usage and post-processlng of code predictions with the

FORCE2 post-processor are described in a companion report, FORCE2 - A

_. Multidlmenslonal Flow Program for Fluid Beds, User's Guide. This manual is

segmented into sections to facilitate its usage. In section 2.0, the mass and
Q

momentum conservation principles, the basis for the code, are presented. In

section 3.0, the constitutive relations used in modullng gas-sollds

hydrodynamics are given. The flnlte-difference model equations are derived in

" section 4.O and the solution procedures described in sections 5.0 and 6.0.

2 Finally, the implementation of the model equations and solution procedure in-

, FORCE2 is described in section 7.0.

.,

i
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2.0 HYDRODYNAMIC MODELS _

,?

2.1 OVERVIEW

The hydrodynamic approach to fluidizatlon which was started by Davidson

(1961) is the basis for the models implemented in FORCE2. All the solld

particles vlth identical densities and diameters form a continuum, a _

particulate phase. The gas and solids phases are then treated as

interpenetrating fluids in an Eulerlan formulation. Conservation of mass and rr

momentum are then applied to each phase (a total of two or more) to derive the
!

hydrodynamic model. Both single and multiple particle phases have been

simulated with this approach, Gidaspow (1986), Syamlal (1985). The current

FORCE2 model considers only two phases: one gas phase and one solids phase.

The capabilities of several computer codes utilizing this approach were

recently reviewed by Smoot (1984) and Gidaspow (1986). _/orkat the Illinois

Institute of Technology (IIT) using the FLUFIX computer code to model a small-

scale "two dimensional" fluldized bed, Gidaspow (1986), has provided partial

validation of the hydrodynamic model. Because FORCE2 contains many features

(three-dimensional cartesian, varlable control volume size, etc.) needed to ,,

model large beds, valld_ttlon for many industrial appllcations is now possible. '

Two hydrodynamic models, called Models A and B according to Lyczkowskl 'i.

(1989), have been implemented in FORCE2. They are extensions of the models .

developed by Lyczkowskl (1989, 1990) for the FLUFIX code. The models have

been extended in FORCE2 to include.'

o Three-dlmensional cartesian geometries

o Volume porosities and surface permeabilitles to account for volume

and surface obstructions in the flow field.

The models consist of mass and momentum conservatlon equations and are

described in the following sections. A cartesian coordinate system (x,y,z) is

used vlth u, v, and w denoting fluid velocities in the x, y, and z- _

directions. This convention and others are described in the nomenclature.



"" 2.2 CONTINUITY EQUATIONS

Conservation of mass in a phase is expressed by

: 0 "

where the subscript, O, denotes the phase (i.e., _,g for the gas phase and _,s

for the solids phase) and

O' = macroscopic density
,.

= %"
_ - phase vote fraction

cg+cs = I
:_ _@ = rate of mass addition [mass/(volume*tlme)] from a mass

source

Yx,Yy,Yz = surface permeabillties in the x, y, and z directions. They,^

are geometric parameters.

" - flow area available to the flulds/total area

_ 7v = volume porosity

= volume available to the fluids/total volume

, Other symbols are defined in the Nomenclature.

2.3 MOMENTUM EQUATIONS

Treatment of the pressure gradient term in the gas and solids phase

-' momentum equations results in two hydrodynamic models, called Models A and B

. (Lyczkovskl 1989). In Model A, this term is included in both phases whereas

._ it is included only in the gas phase in Model B. As noted by Lyczkovski

(1989,1978), the treatment in Model A results in an initial value problem that

r iS ill-posed. This situation leads to a conditionally stable numerical
,,J

solutlon. In Model B the pressure gradient term is included only in the gas

i_ phase momentum equations resulting in a well-posed problem.



The momentum equations for both models are as follows:

r

- Conservation of Momentum in the X-Directlon -

_u _ ,_
+ + y-_ (_zU_az)

L

' " + _ (7x _ _x-_)+ _ (Tx.¢ k, div V,)

(

tj_

+'_0 (Ty IJ_ :x-'_) + +_'x (Yz la_ _xw ) (2.2) ;'
+

- Conservation of Momentum in the Y-Directlon

,) .p V + .,,.

_X



r

_ _v

,.. _ w )+

_ _ (_x¢,t' _ div V4,)

,_ (2.3)

_!_' _ Conservation of Momentumin the Z_Direction -

.,_

" i_zCv_ - v,t,)+ t az_*_'_ 4' _V

_v

...... _ Xq,div Vq,)

(2.4)

vhex'e

dlv V_ = _x _Y _z

F:
_._ _ = coefilclent of bulk viscosity fo_ phase

-.5-



and the subscript _o indicates the "other" phase, i.e., for _=g, _o=s and _=s

and _<)=g.
.

The parameter, _, is used to select the hydrodynamic model according to

Model _._ __

A g,s 1.0

s g 1.0/cg
B s 0.0 ,_

The solids elastic modulus, Gs, is used to calculate the normal

component of the solids stress through the relation

Cs.acg

similar to what Is done in solids mechanics. The primary computational

function of the solids stress term is to keep the bed from compacting below

the defluidized or packed bed state. Any solids stress model that

accomplishes this is adequate. For the gas phase equations, the modulus, Gg,
is set to 0.0. " "

The last seven terms in each momentum equation are the compressible ..
t

formulation for the fluid stresses. All these terms are included when the

above equations are solved (i.e., a transient simulation). The equations used

for a steady simulation are derived from the above by deleting the temporal

terms (a/St) and by neglecting the last four viscous terms in each equation.
I!

The resulting set is called a steady, "incompressible formulation. _

For a three-dimensional problem, the flow field is described by eight

nonlinear, coupled partial differential equations for eight dependent i_

variablesz gas void fraction, Cg! the pressure, P; gas velocities in the three

directions, Ug, vg, wE! and solids velocities in the three directions Us, Vs, _

ws. The drag coefficients, _x, _y, _z and solids elastic modulus, Gs, are

defined in terms of these variables using correlations in the next section.



_ The flow resistance coefficients, RX_, RYe, RZ_, are input to the models and,
similarly, could be defined with correlations.



3.0 CONSTITUTIVE RELATIONS _

3.1 OVERVIEW

The hydrodynamic models described in the previous section Include a

coefficient for Interphase drag, a sollds elastlc modulus for calculatlng the

normal component of the solids stresses, and the microscopic densities of each

phase. These parameters are determined as functions of the fluid velocities, _

pressure and void fraction using the correlations given in this section. In

addition, the mean free path used to develop the partial slip boundary

condition for the solids phase is defined.

3.2 INTERPHASE DRAG "

t.

Standard correlations are used to evaluate fluid-particle friction

(drag). However, the drag coefficients, _x, _y, _z, will depend on the ._

hydrodynamic model to be used. Lyczkowski (1989) performs a simple analysis

ba_ed on the work of Gtdaspow (1986) to relate the coefficients for the two

models according to

. &/cg :.

where

_A " coefficient for Model A

_B " coefficient for Model B

The coefficient for Model A is then obtained from standard correlations,

Gtdaspow and Ettehadieh (1983), Ettehadteh et al., (1984). Below a gas void

fraction of 0.8, _A is given by the Ergun equation (Ergun 1952)! above 0.8,

the expression given by Wen and Yu (Wen and Yu 1966), as discussed by Gtdaspow

(1986) is used. These expressions may be summarized as followsz

L

° '_

--8"
..

• II II I



_i Fortg_0.8

(I-c )2.. pulVrell(I-c)

.I

For es > 0.8

_x _ CdIv"ll _(1 " _g)o . ",,+,.......

" Cd . 24(1 + 0.15 ReO'687)/Re for Re _ 1000

, and

" Cd = 0.44 for Re > 1000

, vhere the Reynolds number is given by

lyre1Idp+,_'

. The particle sphericity (also called shape factor) %, is defined as the

ratio of the actual surface area of the particle to the surface area of a

spherical particle of diameter dp.

• The following two options are available for evaluating the relative

. velocity, VrelZ

Scalar Drag Formulation

The relative velocity is taken as the difference in the magnitude of the

gas and solids velocity vectors, i.e.,



elm

U

Vrel = + (vg_Vs)2 + (wE_w 2 '"

This results in Isentropiccoefficients.

,

_Vector__Drag Formulationi, ,, L,, ,, f,, _ i ....

f
t,

The relative velocity is evaluated as the difference In the magnitude of ,

the gas and solids velocities in the direction of interest. For example, for .,,

the X-momentum equations, the relative velocity would be defined as

Vre I = Ug - Us

This results in non-lsentroplccoefficients.

The drag coefficients) _x) _) S,, are then evaluated as, ,
v

Coef ft cien t Hode!

A D

3.3 SOLID STRESS

As noted in Section 2.3, the solids phase momentum equations contain a

normal component of solids-phase stress due to particle-to-particle

interactions. A general formulation for such a term would include the effects

of porosity, pressure, and the displacement tensors of solids velocity) gas

velocity, and relative velocity. No such formulation is currently available.

This stress is physically necessary to prevent the particles from compacting

to unreasonably low gas volume fractions. The stress only becomes important

as the particles contact each other, i.e., below the minimum fluidization

condition. Lyczkowski (1989) summarizes research that has been directed to
).

developing suitable expression(s) to model the particle-to-particle
interaction.

-10-



Based on both experimental data and fluid bed simulations vith the

FLUFIX code, Lycskovskl (1989) has derived a generalized solids elastic

: modulus coefficient, G(c), of the form

a(c) . co .

where C is the compaction modulus and c* the compaction gas volume fraction.

The normalizing units factor, Go, has been taken as 1.0 Dyne/cm s. The

: compaction modulus and volume fractions will depend on parameters such as

particle size and density and are chosen to yield reasonable predictions of

bed porosity near a packed state. They are inputs to FORCE2. Typical values

are given in Table 3.1.

Table 3.1

TYPICAL SOLIDS ELASTIC MODULUSPARAMETERS

, Compaction Compaction Gas
' Modulus _ Velum Fraction Reference

(C) -

600 .376 Lyczkovski, etal., 1986, 1987

500 .422 Gidaspow and Syamlal, 1985

3.4 EQUATION OF STATE

For the gas phase, density may be determined from the Ideal Gas Law or

from a user-defined function for gas specific volume as a function of

temperature. For the solids phase, solids density ts determined as a

function of temperature only using a function specified by the user. The

" formulations for both phases are given below.

3.4.1 Ideal Gas Law

Gas density is determined by

P=p '_'T

-11-

_
i i iiiii I



where

M - gas molecular weight

rB = universal gas constant

The molecular weight and gas constant are inputs to FORCE2. _

3.4.2 User Function for Gas Specific Volume

Gas density is determined by

I I _4 Ti
- =--. + _" all •@ @o

vhere

art = user defined coefficients r

3.4.3 User Function for Solids Denslty

Solids density is determined by

4
O • Po + ----_a21 ' Ti"i;I

vhere

azt = user defined coefficients

3.5 HBAHFREE PATH FOR PARTIALSLIP CONDITION

At solid surfaces or boundaries, three solids velocity conditions are

conslderedz t) zero velocity (no-slip), ii) velocity equal to the velocity in

the adjacent active cell (free-slip) and iii) a "wall velocity" based on

kinetic theory (partial slip). The solids velocity for the partial slip

condition is specified (FLUFIX 1989) according to

-12-
.



• _vs
Vsw-

:: ' where

t

._ vs - solids velocity parallel to the surface

Vsv . solids velocity at the so:face

,_! L - mean free path from continuum theory
. coordinate perpendicular to surface with origin on surface

In FORCE2, the mean free path is determined by

L- dp . _p/(6 '_"- • Cs)

" where

: dp = particle diameter

•_ _p = particle sphericity
Cs " solids void fraction

°

.J

,- -13-
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4.0 FORCE2 FINITE DIFFERENCE EQUATIONS

4.1 OVERVIEW

The finite difference equations that are solved to predict fluid bed

hydrodynamics are developed in this section. These expressions are derived by

dividing the flow domain into a collection of control volumes and then

integrating the governing momentum and continuity equations, presented in

Section 2.0, over these volumes. This results in a set of coupled, non-linear

equations describing the velocities, void fractions, and pressures within the

volumes.

In Section 4.2, the control volume arrangement and conventions for the

difference equations are described.

In Sections 4.3 and 4.4 the finite difference equations for the

transient and steady simulations are developed. The transient simulation is

an extension of the method used in the 2-D FLUFIX code (Lyczkowski and

Boutllard, 1989). It was installed without modifications in FORCE2. The

steady simulation, however, is based on the existing FORCE2 approach. Because

the two methods differ in the treatment of the convection and diffusion terms,

slightly different finite difference equations result. _'
L.

In Section 4.5, the finite difference equations are modified to account

for boundary conditions. In Section 4.6, initial conditions are considered

and in Section 4.7, relaxation is applied to the finite difference equations

for the steady simulation.

4.2 CONTROL VOLUME AND EQUATION CONVE_IONS

The flow (or computational) domain is divided into a collection of cells

or control volumes in a Cartesian coordinate system. Scalar quantities such

as pressure and void fraction are calculated at the centers of these volumes
T

denoted Main Control Volumes. Gas and solids velocities are calculated on the i

Main Volume faces utilizing a second set o£ control volumes that are

"staggered" with respect to the Main Volumes. Thls second set of volumes i

connects the centers of the Main Volumes and are called Momentum Control

°

-14-



Volumes. The collection of Main and Momentum Volumes is the conventional

"Staggered" mesh used in most finite difference formulations (Patankar 1980).

Two schemes are used in this report to describe the flow fleld_ i) an

"i,J,k" designation and ii) a general scheme. The Hain and Momentum Volumes

are shown in Figure 4.1 in the domain described by the "i,J,k" indices.

Centers of the Main cells are identified by the integers i,J,k. The Momentum

Volumes are named X-, W-, or Z-Momentum Volumes depending on their

orientation. The flow field is further described in Figure 4.2 where the

faces of the Main Volume (also the location where velocities will be

calculated with the Momentum Volumes) are identified by half-integer values.

For example, in Figure 4.2, location i+1/2_ J,k is the upper-X face of the

Main Control Volume centered at i,J,k. Alternately, a more general and

compact scheme is used to identify control volumes (Main or Momentum) in the

flow domain as shown in Figure 4.3. In this scheme the control volume of

interest is designated by the upper case letter P. The neighboring volumes

are identified as points on the compass as

E - the neighbor that is east of volume P

W - the neighbor that is vest of volume P

N - the neighbor that is north of volume P

S - the neighbor that is south of volume P

F - the neighbor that is in front of volume P

B - the neighbor that is in back of volume P

The faces of volume P are identified in a similar manner except using lower

case letters, i.e., e, w,...f, and b.

The x-, y- and z-dimensions of the mai_..._ncontrol volumes are inputs to

the model. Areas and volumes associated vith both the main and momentum

: volumes are based on these dimensions and on the user-speclfied volume

_. porosities and surface permeabillties.

A general transport equation (representing conservation of mass or

momentum) may then be written using the general control volume arrangement as
.

ap*p = _aq@Q + bp*p + Sc 4.1

where _p and @p are dependant solution variables and

-15-
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• aq - transport coefficients on face q of control volume P

E aq_ 0 = ae_e + a-' 4Dw + an_s + am'fs + a_4'F + ab_S

_,,_s,_=,_..'_s = The values of _ in the cells that are North (_,),
South (_s), East (_t), Vest (_w), Front of (_r), and
Back of (_n) the considered cell wlth value

ap = _ aq + bp + Sp

S_ = a source of _p

- Sp = a positive coefficient for a source of _

bp = a positive coefficient linking the two dependent

variables _p and _p

These terms are further outlined in Table 4.1 for each transport

equation.

The coefficients, aq, link neighboring variables in the mesh and are

: based on convection and diffusion. Finally, the control volumes in Figure 4.3

represent the Main Control volumes when equation 4.1 is a continuity equation

and represent the Momentum volumes when equation 4.1 is a momentum equation.

For example, if equation 4.1 represents the X-direction momentum equation, the

_ _'s are as follows:

_P = Ul+ll2,J,k _W = ul-I/2,J,k

_N = Ul+I/2,j+l,k _F = Ul+I/2,j,k+l

@S = Ui+l/2,j-l,k _E = Ul+l/2,J,k-1

@E = Ul+3/2,J,k

where u is the gas or solids velocity in the X-dlrectlon. The transport

coefficients, a's, correspond to the following:

-' a n = at+l/2,j+l/2, k af = at+l/2,j,k+l/2

_ as = al+i/2,j_i/2, k ab = al+i/2,j,k_i/2

-19-
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ae = ai+l,J,k "

aw = ai,j,k

W

Finally, a factor of 1/2 appears quite frequently in the coefficients of

the finite difference equations. For example, the coefficient of the velocity

in the transient momentum equation in the X-direction, aex equation 4.5, r

includes the storage term,

I

(.,v) . [(p_v)e . (p_v)w]/2

For this term, as well as many others, the factor of I/2 arises due to

approximate integration over the control volume, not due to a central

difference approximation, i.e.,

a(p'u) dV = p, dV . p' dV • __t • w

_t

then

_ p' dV = ½(P'Ve)e

IV p' dV = ½(P'Vw)W ,.

where V. and Vw denote volumes of the main control volumes connected by the ,.

momentum volume, i.e.,

Ve = Vt+l,j,k

Vw = Vi,j,k

-20-
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4.3 EQUATIONS FOR THE TRANSIENT SIMULATION _.

The governing finite difference equations for the transient simulation

are developed in this section. Equations for the gas void fraction and gas

mass residue are derived based on the solids and gas continuity equations

respectively. The expression for the gas residue is used to check solution

convergence and used to derive a pressure correction equation for the

transient solution scheme, Section 5.0.
i
i

Equations for the gas and solids velocities are developed based on the

momentum equations for each phase. The viscous and convection terms are

included explicitly, unlike the steady formulation in which a hybrid

differencing scheme (Patankar, 1980) is used to combine these terms.

4.3.1 Gas Void Fraction from the Solids Continuity Equation.... ii i - T : _ -: ililll(i ii ..... lllU!ill i _,,,,imi]11U lllla I __ - n iii, - - i/ _ Hila _E

By approximating the time derivative as a simple difference, the solids

continuity equation, Equation 2.1t is integrated over the Main Control volume

depicted in Figure 4.3 to yield the following expression for the solids

macroscopic densi ty

(csps)r . ( ,

_t

at "

-_ee [(VsAPs)n - (vsAPs)s] 4.2

at

- _ [ (vsAP_)f - (w2AP_ )b ] .,,

+ S

where the subscript, P, indicates the macroscopic density at the center of the

Main Control Volume and the subscripts e, w, n, .... and b indicate quantities

evaluated on the East, Nest, ..... and Back Faces of the Main Control (see

Figure 4.3 in section 4.2), i.e., in the "i,j,k" domain.

-22-



P * i, j, k

e Q i + I/2, J, k

v • I-1/2, J, k

n., i, J+1/2, k

@

b '_ i, J, k-1/2

and

. I+1, J, k

W = i-1, J, k

e

B • i, J, k-I

Some additional terms are defined as

At = problem tlmestep

Vp . volume in the Main Control Volume available for the gas

and solids phases

A = cross sectlonal flow areas on the associated face of the

main control volume

_xp,_yp_zp = main control volume dimensions in the X, Y, and Z

directions, respectively

(_.'0,)_ . macroscopic density at the beginning of the tlmestep

The macroscopic densities on the faces of the Main Volume are evaluated using

an upwind approximation (Patankar 1980) as follows

(O')e = _e ( ' ')s ' Ps)P + (1-E;e) (Ps E



I

W

ks

where

l (us) e _ 0_e = O (us)e < 0

end similar formulationsfor densitieson theotherfacesof theVolume.
r

The gas void fraction is then determined using the macroscopic solids
density from Equation 4.2 as follows

e,= (p,e,)lp,

and finally

¢w = 1- e, 4.3

Someimportant observations includes

o All the terms in Equation 4.2, with the exception of (s,p,) °, are

evaluated at the end of the ttmestep.

o An t tersttve solution method is used for the transient simulation

resulting in Equation 4.2 betnf solved several times at each Main
Control Volume during a single ttmestep. This formulation tn which

macroscopic densities at node P can appear on the rlght-hand slde Is

used in PLUrZXand is the default formulation In fORCE2. An optlonal

method in which Equation 4.2 is rearranged like Bquatlon 4.1 In which

all macroscoplc densities at P are collected onto the left-hand side
is also available in FORCE2. Both formulations are installed in

subroutine VIqU_C'T!however, the PLUPIX form is currently used.

4.3.2 Gas Mass Residual

During the solution over a timestep, nodal pressures are adjusted until

gas mass Is conserved. Convergence of the solution Is determined by the

magnitude of gas mass residue (the amount of gas that is "created" or



"destroyed" due to non-convergence) and is determtnecr by integrating the gas

continuity equation, l_quatton 2.1, over the Main Control Volume as follovs,

V

<'i" 'i')P
I

, + [(us^p_), - (u;A_i)v] 4._

+ [(VgA_)n -(v A ,; _).1

A '

vhere P indicates the center of the main voiume end e, v,... indicate

parameters on the rases as described in the previous section. The aonvected

macroscopic gas densities on the faces, i.e., P'vo, P'gw,.", are determined
using the upvtnd scheme shorn above based on gas velocities on the cell rases

and

_, I_ . gas mtse residueQ

_g n gel source

- Vp ' _g

" p_' . macroscopic density at the beginning o£ the timestep

. 4.a.3X:M0m_en_u_.R,uatio,.

The X-direction momentum equation, Equ 2.2, Is integrated over an X-

Momentum Volume such as that depicted in Figure 4.1 and Figure 4.2 to give

"_ Pe - Pv

- -25-



, (_x' v ' U_o)P i_
O

('R), - ('_)v _
.,.(.,v)p__. .........._.-_p- . ,., o_ _, 4.5

vhere the subscripts indicate
,e

p .b i+1/2 Jt k

e • i+l, J, k

v_i,J,k

It should be noted that e and v indicate the centers of the main control

volumes that art connected and by the X-momentumvolume

and

Vp . volume of the momentumvolume ,

- (re . Vv)/2

k)/2" (Vi+l,J,k + Vi,J,

_x_ . length ot the momentumvolume in the X-direction ,_

- (6Xi+ 1 + 6xi)/2

6Xi,AXi+ 1 - lengths of the i and i+l main control volumes in the X-
direction, an input to the model

(_'_) is denoted the "tilde" term (Rivard and Torrey 1977) and contains
the gravity, convection and diffusion terms, It is evaluated at the beginning

of the tlmestep. The other terms are based on parameters evaluated at the end

of the timestep unless denoted vith the superscript o, i.e., ( )o. These i

terms are further de_ined belov.

(eBx) p - Drag coefficient evaluated at the beginning of the timestep and
at the face of the main control volume. Drag coefficients are *
calculated based on conditions at the center of the main volume.

Cell centered velocities are taken as the average of velocities

on the faces of the main volume. The drag coefficient for the

momentum volume, (B_)p, is then found by interpolation.

-26-



, (_o),. f_(#o). . (1-_1) (#0),

The coefficient, ah, is given by

, "Px . (o-_,)/at" (_x . _.x)_' Vp

, vhere

, o

, vith (p_)_ determined by interpolation as

pw'_e e o(°_)_" fl ( _'o . (1"el) (°_)v

Solid Strns Tarms

The solid stress term, vhlch is present only in the solids equations, is
evaluated based on gas void fraction at the end of the ttmestep according to

vhere

" Tilde_Terms
.J

... As noted above, the tilde term is evaluated only at the beginning of

._ timestep. Consequently, in the equations belov, all parameters are evaluated

_- -27--
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at the start of the timestept the superscript oj_ ()o is not included toi r _ ,rTi ............... i - ir ..... ::± -- L -_

simplify thenotation. The tilde term is made up of body force, convection

and diffusion components as follovss

L

+ Bx + Cx + _x a

The density-volume product, (p_V)p is as defined earlier, except it is
evaluated at at the beginning of the ttmestep.

Gravity Terms Bx___ i ]11111[!__ _:1 .....

B, -(p-_ )p ' i x

Convection Terms C

The convection term is defined as

cx .- dV

_V' (yyV,p;u,)dV IV _ (yzW,p;u,)dV- -_ -

and may be expressed as _,_

vhere i

. summation over the faces of the X-momentumcontrol volume
accordlng to



_ . - • --+

+ --- Ob( p_U,)B

with

E " I+3/2, J, k

: W * 1-112, J, k

B '_ I+i12, J, k-1

b * I+112, J, k-112

Expressions for the convecting volumetric flow rates, Oq, are developed

by considering the volumetric rates on each face and by expressing the

converted momenta, (oSU_)q, on each face in terms of the momenta in

neighboring cells (pSu_)Q, using the upwind approximation. This approach
results in

q. = (Au_).
qv = (Au4')v

q, = (Av4),

q, ._ (Ave).

" (Av+), qf " f

qb = (Av0) b

where q., q,,..., are the converting flow rates on the faces of the X-momentum
+ volume and

(Au+). - [(Auq,), + (Au_),]12
, (Au_).- [(Au0) P + (Au_).]/2

+ (Av+).-[(Ayv4,)i+l,j+112, k + (AyV+)t,j+l/2,k 1/2

The flow rates on the south, front and back face, q,, qb and qt, are

_ defined similar to qn" The convection flow rates, Qq, are nov defined as
2_

_ Q, = (1- _) q.

: Ov = - _ " qw

-29-



Q. - (1- _) • q. L.

e e - (1- _) • qe

Ob=- _ " qb
L"

(}_,. _. q... (i-_.,) • qw+ _ • q.- (i-_,) • q, + _.q_ - (i-¢,,) • qb _
kJ.

The _ terms arise due to the upwind approximation and are defined as

o (u_). < o
/

z (u,),, _ o_" = o (u_).<o

L.

l (v,)._ o" o (vp. < o :'

and similarly on the other faces vlth ,_
t_

(u,).= [(u,).+ (u,),]/2 :,

(u¢),, . [(u¢) , + (u_)w]/2
,

(v_). = fl " (v¢)l+l,j+i/2,k + (1-fl) (V_)l,j+i/2,k :-

The equivalent velocities on the other faces such as (v_),, (w_) e and ..

(we)b, are also determined by interpolation.

Finally, th,_ macroscopic density in the convected momentum term is also

determined by interpolation. For example, c

("_)v" _z('_,)e+ (z-fz)("_,)w _

" fl(_¢)t+i,j,k + (l-fz)(_)i,J,k



Diffusion Term: 1:x

The diffusion term is made up of the last six terms in the X-momentum

equation, Equation 2•2, and is expressed as

' _x = _' Dq (U,)Q- Dp • (U,)p + _c

:', where "

, _ Dq • (u,)o- De • (u,)E + Dw • (ul)W + ••• + qb " (U,)B

,',, De - De + D. + ._. Db

and Tc is as defined below. The diffusion coefficients on each face, Dqt are
" defined as follows•

_' 2(Ap_).. D •
e = _ _xe

2(Ap_/) w

_: Dw = _ _xw ......

"?. Dn (AP_)n
.., " '"AYn

- (AP_)b

Db = &zb

:;; where

• - • •02_

_Sx = _xt+ 1
•:)!

_ AXw = _I

_p

._ AYn " [ &YJ + AYJ+I]/2



r

_Zb = [AZk + _Zk-1]/2

(Alia)e - [(Ax)e + (Ax)E] ' (IJ_)e/2 !;

(Ati_,)w = [(Ax) P + (Ax) V] • {:U_)w/2

n - k + (AyJ,)i,j+1,,2,k]12

(AztJ_)b - [(Az'tJ_)i+l,j,k_I/2+ (AzU'_)i,j,k_l/2]12

with the macroscopicviscosities (_)I.I,#+I/2,k,

(tJ_)i,J+I/2,k,(U_)i+1,J,k-I/2,(_)i,J,k-X/2determined

by interpolation. The macroscopicviscosities,(_). and

(_), are at main control volume centers.

The last term, T=, is made up of the last three terms in Equation 2.2 and is

Elven bys

_c " (A k_ dlv V)e - (A k_ div V)v

8v 9v

aw _w

with

The derivatives in each term are expressed in terms of known velocities

on the faces of the volume. For example,

x )n" [(v_)i+l,J+l/2,k- (v@)ij+l/2,k]l_Xp.

The macroscopic viscositieson the faces are determined by interpolation

as described above.
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- Solution for ug and u s -

The gas and solids momentum equations, Equation 4.5, are solved

simultaneously to predict velocities at the same location. The two equations,

_-g and s in Equation 4.5, may be written ass

avuv -C_. us + Sg

asUs - C_ . u_ + Ss

o

where the coefficients av, as and C_ and the source terms may be defined by

referring to Equation 4.5. The velocities are then given bys

uv = (C_ • Ss + as . Sv)IDEN

us - (C_ • Sv + av • Ss)IDEN

DEN . as . av - C_s

: 4.3.4 Y-MomentumEquattons

The Y-direction momentum equation, Equation 2.3, is integrated over the

momentum volume such as that depicted in Figures 4.1, 4.2 and 4.3 to give

a_ . (V,)e (_-_)p _.,vp P" - rs- - • _ye

: + (p_, v vto)p

(rg)n - (cS)s 4.6
+ (U_v)p • _yp

where the subscripts indicate

i P * t,J+l/2,k

n * t+l,J,k

_' S '_l,J,k

_ The north (n) and south (s) faces of the X-momentum volume pass through

the centers of main control volumes where pressures, viscosities and void

fractions are calculated.

i
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V_ volume of the momentum volumem ,.

= (Vm + V=)/2 ,,

= (_/l,J+l,k+ _/l,J,k)12

Ayp . length of the Y-momentum volume in the Y-direction ,:

. (Ayj + Ayj+l)/2

Ayj,Ayj+ 1 =Iengths of the j and J+l main control volumes in the Y-direction, an input to the model

Equation 4.6 is similar to the X-momentum equation, Equation 4.5, and

the formulation of each term parallels that for the X-momentum equation in the

previous section. For example, apy is a velocity coefficient defined like

apx ! (p_v_V)p is the.... tilde term, evaluated at the beginning of the timestep,

comparable to (p_u_V)p, and _ is a drag coefficient defined like _. Because
of these similarities, the detailed development of each term is not repeated.

Instead, because it is the most complicated, a summary of the tilde term is

provided.

- Tilde Term-

This term is evaluated only at the beginning of the ttmestep. As was

done for the X-momentum equation, the designation, ( )o, is not used in the

equations belov, as all quantities are to be evaluated only at the start of

the timestep. The tilde term is vritten as

(p_v@_)p = (p-'_)p" (V@)pl&t + By + Cy + "_y

Gravity Term= By

By = (p-_)p • gy



Convection Terms Cv

Cy =- _ Qq. (p_v¢)Q- Qp , (p_V,)p
.i

" - °e " (%v.)z - °v ' (%v,)v '" Qb' (%v,)_

- Qp(%v_)p
"I

with

i
_' E * t+1, J+1/2, k

., I_ * t-1, J+1/2_ k

B '* I, I+1/2, k-1

• * t+1/2, .'}+1/2, k

v * t-112, J+1/2, k

b * t_ 1+112, k-1/2

,

Convecting rates, q's, on the faces of the volume are defined as

, = k]/2(Au0)e [(AxU0)l+ll2,j+l,k+ (AxUo)I+II2,j,
@

(Av_)n = [(AyV_)N+ (AyV_)p]12!

,, (Av0) b = [(AzV_)t,j+l,k_l/2 + (AzV_)t,j,k_l]/2

b

The _-factorsare defined according to the expressions given in the

previous section with the face velocities such as (uo)., (uo)w, etc._

determined by interpolation. The convectlng flow rates, Oq, are then defined

according to the expressionsin the previous section.

Diffusion Term: _y

•._. _y = _ Dq ' (v,)Q - Dp ' (V,)p + _c

De = Dl + Dw + DN + ... + D_

-35-
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The diffusion coefficients are defined as

(A _' )e

De=_

# • # bo

ug!n
Dn = _n

" "&l_
I

vtth

Axe = (_x t + AXl+1)12

ayn - A_'j+z

a_s - _j

/tZb = (AZk + _k-I )/2

= ' A ' ,k]12(A U0)e [(AXU0)I+II2,J+I, k + ( xlJ0)l+ll2,j

(A _)n" [(Ay)N+ (Ay)p] . (W_)n/2

I:

and similar expressions on the other faces• it

The macroscopic viscosities on the faces of main control volumes such as

( _)t+t/2,_+l,k are determined by interpolation.

The last term, _, is made up of the last three terms in Equation 2.3

and is given by_



Co = (A _._ . div V) n - (A X_ • div V) s

_u _'_)v+ (A _a_"_'_)e" (A _,

J

The derivatives are ,xpressed in terms o£ velocltin on the £aces o£ the

volume and the macroscopic viscosities on the faces are determined by

Interpolation.

- Solution for vg and v, -

The Y-dlrectlon momentum equations are solved jlmultaneously to predict

the velocities at the same locations. The rye equations, _g and s in

Bquatlon 4.6, may be written as,

a_ , vg = ¢_ . v. + Sw

a, . v, = C_ . vg + S,

The solution is similar to that for the X-dlrection velocities given in the

previous seetion.



v,

4.3.5 Z-Homentum Equations .,-- i i i ...... i i i ii ,i ...... --_ .....

#

The Z-direction momentum equation, Equation 2.4,,is integrated over the

Z-momentum volume such as that depicted in Figures 4.1, 4,2 and 4,3 to give
m

+ v. 4.7

<'-)-,!'s)b
+ (GIV)P . -__--_ ____p

vhere the subscripts indicate

P • i, J, k+I/2

f • i, J, k+l

b • i, J, k "
i

The front (f) and back(b) faces of the Z-momentum volume pass throush the

centers of main volumes vhere pressures, viscosities and void fractions are

known.

V_ - volume of the momentumvolume

- (re + Vb)/2

- (Vl,_,k, 1 .,.V_,_,A)/2

£zp = lensth of the Z-momentum volume in the Z-direction

- (_z k + t_. I)/2

Azk,AZk+1 = langths of the k and k+l main control volumes, sn input to
the model, in the Z-direction

i

Equation 4.7 is similar to the X- and Y-momentum equations developed "

earlier. The formulation of Equation 4.7 parallels that for the X-momentum

equation described in section 4.3,3. Detailed development of each term is not

repeated! most can be derived by inspection. A summary of the tilde term is

provided because it is the most complicated.
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- Tilde Tern -

Like the X- and Y-momentum equations, this term is evaluated only at the

; bqinntn8 of the ttmeetep. The designation ( )0 is not used in the equations

bslov beeause all terms are based on quantities at the start of the gimestep.

I The tilde is siren byt
,0

Gravlty Terms B

Bs - (o-'_)p ' _

,, Conveet!on Term, C,

q!

: c,.- E oq(_;v,)Q-%(_;v,)p

;! . - o.(_;v,)_- ov(_v,)v - o., (,_v,), .., - 0b(_v,).

. - Op(p_v,)p

_ vtth

B * i+1, J, k+1/2

W m i-1, J, k+1t2

H * i, J+l, k+1/2

'" B " t, J, k-1/2

'"_ • .*' i+1/2, J, k+1t2

v * I-I12, J, k+!!2

. n .' i, J+112, k+112

': b .' i, J, k

_" "39-
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t:

The conveetin8 rsteo, q,s, on the fsceo of the Z-monentum volume are given bye !_:

(A Ue) e = [(AxU_)i+l/2,j,k+ 1 + (AxU_Ii+l/2,j,k]/2

' " ' r

(A Ve) n = [(kyVl)i,l+l/2,k+ 1 + (kyvl)i,j+Z/2,k]/2
g

e e O ,

(A V,)! - [(AsV)) N + (AsV))pl/2 ,.

The L-factors ire defined as liven in section 4.3.3 vith the face

veloattie|, |ueh as (u_)e_ (u_),, (v_)n,..., defined by interpolation. The

conveation flov ratu, 0q, are then defined as siren in section 4.3.3.

D!f!u.io. Ter.s _,

DqlV+lQ_, " E -Dplv,)p + _c

Dip .. De + Dv + Dn + ... Db

The dlffuion aoefflalents, D_, are defined ass

(A .' 1_ _
._ ..... _ ql

De = AX e t
!

• • e

Dn _ _d= (,Ai,_n.,,
r



................. - ..................... J ................... _ - .<.,:............... • -..: ............... : ..........

" vith

_xe " (_t + tit+1)/2
I

_, _vn - (_Yj + _Yj+l)/l

', _S l l AZk+1
J

, £1Zb " _k

(A _).. [(Ax_)i+lti,j,k+ 1 + (^x._)i+l/l,j,k]/l
+,

: (^ nl) i - l(sm)F + (Am)el. (n;)t/l
I

The laoroscoptG viscosities on the laces ol the latn volume are dittnid by

Interpolation.

" The last term, la, is madeup of the last three, terms in Bquation 2.4
and is given byi

'_ '_C m (A)_; div V) l - (A Xi div V) b

_u ltu

f
,i

IV DV

- This term may be evaluated like the comparable term in the X- and Y-

momentumequations.

+w

- Solutions for v i and v, -

The gas and solids momentum equations are solved simultaneously like the¢

X- and Y-equations. They may be written in the formi

aI vt = C_ v, + Sl

. a, V l m C 6 Vg . S l



r

The solution is similar to that given for the X-direction momentum equation in .,

sectlon 4.3.3. ..

4.3.6 Pressure Correction Equation
_,,,,, , ,_=,,_ ; ,,_1,, ,, ................... ,, ........... i'_

The transient solution scheme involves adjusting pressures throughout

the flow field until gas mass is conserved. Two methods are used, i) pressure

correction based on the gas mass residue given by Equation 4.4 and ii) a '_

regula-faisi scheme once minimum and maximum nodal pressures are established.

The pressure correction equation based on the gas mass residue is developed

here. This approach is similar to that given in detail for the steady

formulation in section 4.4.6. The pressure correction equation for the

transient solution may be derived (Patankar, 1980) by writing the gas

continuity equation in terms of a trial velocity and a velocity correction.

The trial velocity field, which is determined by solving the gas momentum

equations, does not, in general, satisfy continuity and, thereforet results in _.,
a mass residue. The momentum equations are then written in terms of the trial

velocities, trial pressures and corrections to both. Because the trial

pressures are assumed to produce the trial velocities, an approximate, and '"i
simple, expression is derived relating the pressure and velocity corrections. "

These expressions are then used to replace the velocity corrections in the ""

continuity equation resulting in the followings

P6 = " 9p . DGp/_g _[(Ao_V)/(ap_L)]q 4.8 L.
.1

where _-

P_ = pressure correction to be applied to the main control volume _"
pressure

Qp = an under-relaxation factor that is used to promote solution _
convergence s 0 _ _ _ 1.0 L

l_p = gas mass residue given by Equation 4.4 !:

_= indicates that the quantitiesare summed over each face of the ,.
o

main control volume, i.e.,



q = e, w, n, s, f and b!.

wi th

,_ • * t+1/2, J, k

w * i-1/2, J, k

n * t, j+1/2, k

'_,, s * t, J-1/2, k

f * t, J, k+1/2

_; b * t, J, k-1/2

A = flow area normal to the face

pg' - (_gpg) evaluated on the face, q, using the upwind approximation
._ V = volume of the momentum control volume associated wtth face q,

the momentum volume that connects main volume P and the neighbor

that shares face q

ap = momentum equation coefficient of the face q velocity. These
coefficients come from the left-hand side of Equations 4.5, 4.6

_" and 4.7

AL = length of the momentum volume normal to face q

The following should be notedz._

,!

o Equation 4.8 Is a point solution. In developing Equation 4.8, the

i_ pressure corrections in the neighboring volumes have been ignored.

This approach is used because the FLUFIX solution scheme is cell-by-

cell rather than a coupled method.

o Equation 4.8 is simpler than the FLUFIX formulation. In both

formulations, the objective is to develop a simple and stable method

to adJ, "t pressure.

- 4.4 EQUATIONS FOR THE STEADY SIMULATION

4.&.l Overview

.:_ The governing finite difference equations for the steady simulation are

developed in this section. The approach is to integrate the governing

conservation relations given in section 2.0 over the control volume
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!
arrangement shown in Figures 4.1, 4.2 and 4.3. This results in a set of _:

coupled non-llnear equations that may be arranged into a standard form llke

equation 4.1. Because an iteratlve solution method will be used, relaxation
_a

is next applled to derive the governing finite difference equations.

In this section, equations for the gas void fraction and the phase _'

velocities are derived. The vold fraction equation is based on the continuity

equations for both phases (Carver 1982). The phase momentum equations are

based on a hybrid differencing scheme (Patankar 1980) for the combined P_

convection and diffusion terms. This scheme tends to reduce numerical

diffusion and thereby provides a better approximation, compared to the upwind

method for example• In addition, it is computationally simple to implement. _

4.4.2 Gas Void F_action Equation .

The gas void fraction equation is developed based on Carver (1980). The

gas and solids continuity equations are expressed in terms of normalized

densities for each phase and then integrated over the Main Control Volume

using the upwind approximation for quantities on the volume faces• The two

equations _r_ then subtracted and the identity _"

r

applied to yield the following_

I;

CEu cp - _ aq CQ + S_u 4.9 _

P

where the subscript _'u indicates unrelaxed parameters and I-

aq CQ ae _E + aw _ + an _N * ab 8Bml • • • • • • • _.

N" (Cg)i.l,J,k "

eN" (Sg)i-l,j,k
!-

/
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:_: _..(cg)i,j.1,k

_B = (Sg)i,J,k-1

i •
The coefficient CCu is given byz

J
Vp

ccu = _ (rg + r,) e + (rg)p • T-:ag + (rs)e ' Ea_

vhere Vp = Vl,j, k

and (rv) P and (r.)p are the normalized gas and solids densities, respectively,

at the center of the main control volume, i.e.,

i (rg), = (pv)i.#,k/(pg)m

(r,), . (P,),,_,_/(P,)R

_,, where (pv) n and (P.)n are the gas and solids reference (normalizing)

:: densities, respectively.

;! The sumnation terms, Fag and _a@, are given byz

vi th

Eag . E _Aq. Agq. _gq] - E [b_q' Agq. (1-_gq)_ q=e, n, q=w, s,
• .

"_ _a s - _ Aq' Asq ]- _ Aq Asq (1
_ q=e,n, q=v,s,

where the subscripts e, v, n,..., b indicate the east, west, north,..., back

faces of the main control volume, A_ is used to indicate the velocity of

phase _ (_ = g or s) on face q, and Aq indicates the area of face q, i.e.,



(Aq A_l)q. e = (AxU_)i+i/2,j, k

• , • i'+!

(Aq Aqkl)q=n = (Ay v_)i,j+ll2, k :_,

(Aq A_l)q. f - (A z w,)i,j,k+l/2

..,j,

The weighting factors, _,q and _q, arise due to the upwind differencing and

are given by: :'

_;_ = q = e, w, n, s, f, b
0 A_<O +=g, s _"

,/

where 1

_r

(A_l)q.e = (u+)i+l/2,j,k ++

(A_l)q=n = (v+)i,j+l/2,k ,.,_,

• • • +"

l

(A,kl)q= f - (v+)i.j.k+112
,P5

The coefficients, a., a,, aa,...a b involve convection on the faces and are ::

given by,

a =- _. _Aq" Agq)(I- _gq) • (rg). --qq=e,n,f q=e,n,

+ - _ _Aq' Asq)(i-_sq) " (rs)Qq=e,n, r



where Q = E, N, F

wlth q = e, n and f, respectively.

For the other faces,
;j

a - _ (Aq • Agq) ' _gq ' (rg),
qq=w,s,b q=w,s,b

, + _ _Aq • Asq) ' _sq ' (rs)Q

where 0 = W, S and B

with q . w, s and b, respectlvely.

J

The source term, S_, is given by:

/

S_ = _ _AqAsq)' [_sq(rs) P + (1-E;sq) • (rs) Q],. q=e,n_

- _ (AqAsq) ' 1(1- _,sq) • (rs) P + _'sq ' (rs)Q]
q=v, s, b

R Ms Vp ,

where
• ,.,,

Q - E, N and F
..,

- when

q = e, n and f, respectively, in the first term and

Q = t/, S and B



q - v, s and b, respectively, in the second term.

For completeness, the storage terms have been included. With these

terms deleted, i.e.,

Vp _
d-_(rE + rs)P = 0

._. e + O
(pg ps).o

the resulting set becomes the "unrelaxed" finite difference equations for the

steady simulation.
,.

Although the coefficient, Ccu, in Equation 4.9 will always be positive,

an important criteria for numerical stability (Patankar, 1980), Equation 4.9 _:

is modified to further promote solution convergence based on the following two e

criterias

t) Eliminate negative source terms. :

The gas void fraction must always be in the range :-
I'

where (_g)p.ck,d iS the void fraction at a packed condition. During

the tterattve solution sequence, a "strong" negative source term _:'

(i.e., large negative values of Scu) may drive the void fraction

significantly below the packed condition or even negative. To _,
¢

eliminate this behavior, a negative source term is linearized and _,

Equation 4.9 rewritten as

(C_.u - Sp)_p "E aq80 + S1 4.10 .,
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where [ Scu St. > 0
SI =

0 Sru_0

Sp= {0 Szu>OSe./(¢p)ttor-x Sz._ O

and

(ep)Iter-I= gas void fraction at the end of the previous iteration.

it) Gradual approach to l!mlting values,

To promote solution stability near the packed state cv = (¢g)pagkod

or near the condition of no solids (¢v = 1.0), Equation 4.9 Is

relaxed to slow changes in the void fraction. After applying

relaxation (Carver, 1982), Equation 4.10 becomest

ap • tp = _aq _(} + S¢ 4.11

, ap . (ceu- Sp)/og

) Se = Sl + Ce (I - eg) • (eP)iter_l

where eg is the under-relaxationparameter,

0<%<1.0

and Is specified as follovsz

. e, = e=t,, , _ _ e,,i,,
i

Ov = Onom , e=t. < _ _ ema,
J

e, = e,,x , r,, x < ,_



vhere ¢_ is a point solution of Equation 4.9 based on the void _

fractions in the neighboring volumes at the end of the previous

iteration. The relaxation factors em_., eno_ and O_,x and the

associated void fractions cmt. and ¢_,x, are specified through input
to FORCB2.

Equation 4.11 is the finite difference equation that must be solved

to predict gas void fraction.

4.4.3 x-Homentum Equation

The X-momentum equation, Equation 2.2, is integrated over the X-momentum

volume shorn in Figure 4.1 or 4.3. As indicated in section 2, the steady form

of the momentum equation does not include the time derivative term nor the

last four viscous terms in Equation 2.2. After integration, the convection

and diffusion terms are approximated using the hybrid differencing scheme

(Patankar 1980). As explained by Patankar (1980), at lov Peclet numbers (-2

Pe _ 2), a central difference is used to estimate convected velocities on the

volume faces and at high Peclet numbers (outside the noted range), an upvind "

scheme is used to estimate these velocities. This approach tends to reduce

unwanted numerical diffusion and, thereby, improve the modeling. _

After integrating and applying the hybrid difference, the X-momentum

equation may be vrttten, using the compact notation associated vith the

control volume arrangement in Figure 4.3, as

C%X' U_p = _aq ' u4_ + Pu ' (U_o)P + Sx - S_p, _- g or s 4.12 "

a.

vhere the node center (P), east (E), vest (W),..., back (B) locations are

defined ass _



'_ P * I+1/2, j, k

' E * I+3/2, J, k

_' W " !-1/2, J, k
.j
.: H _ i+1/2, .'}+1, k

tN

0

e

n,_ B '_ t+1/2, j, k-1

-. and

5

. u,,, - (Ut),.l/:,_,k

U_w " (Ut)i-l/_,_,k
, u_ - (u_) t.t/=, _+t,k

.J
o

. !_,

ut_ - (ut)t.l/2,:j,k.l
(u4_)e = velocity of the other phase at t+l/2,j,k

- (uto)_..,.l/2,:l,k

: _aq'U4_ - ae ' utg + aw ' utv + ... ab ' utB

-- - Face Coefficients, aq -

,, The coefficients, a._ aw,...,a b account for convection and diffusion on
the volume faces and are defined for each phase using the hybrid difference
ass

•" a...Ax lb., IF./21I- F./2
-.! =,. ,AX [O., IF./21] + e./2

an . HAX [D,, IF./21]+ P,/2

I_ ab . HAX[Db, ]Fb/2l] + Fb/2



vhsre HAX indleates the maximum of ,,he iv. quantities in the brackets. The _.

diffusion conductance, D, and the eonvectlng strength (or flov rate), P, are

defined on each face of the X-momentum volume, depending on the phase, as
follovst

Dq . (A U_)q/_q
, _

Fq . ( _ A A4,)q ;,

vlth A and ALqdenoting the f!ov area and characteristic length normal to face "
q, respectively• For example,

#

ALe - _xe - _xt+ 1 o,

aLn " a_n " (_1 + _J.1)/2 -

ALf = _sf = (Az k + AZk+l)i2 ,,

(A _)e " [(Ax)B + (Ax)p] ' {_)e/2 "'

(s._)n " [(sy";)i.x,j+l/z,k. (sy"_)i,j+l/z,k]/z _

(A.;)_ " [(%";)i.;,l,k+l/= . (%"_)t,l,k._/=l/a r,
#
X.

(,,_A ^0)s = [(AxU0)I , (AxU0)P] • (_)./2
O @ • i"

(p_A A4,)n - [(Ayvlo_)i+l,l.X/2, k + (AyV@_)l,j.i/2,k]i2 ,.

(_,A ^_)f. [(,tzv_,;)i+l,:l,k+l/2+ (,,,zv,_,_,)t,:j,k+_/f]/_ ,,_'

The macroscopic viscosities on the north, south, front and back faces _

are evaluated by interpolation such ass _"

r _

(";)t+l,J,k+l/2" f3 ' (";)i+l,J,k+l + (l'f3) ("_)i+l,J,k _:

vhere '_

f3 = Szkl(_k+1 + /tZk)
v,

!.

-- , I I I



' The macroscopic densities on the faces are evaluated based on the upvlnd

approximation, such ast
4

(P_)i.1,j,k.i/2 " _' (P_)i.z,l,k . (z- _f) . (p_)i.z,j,k. I

' where

I (vl)i+l,j,k+il 2 _ 0: l_f = 0 (vO)t+l,j,k+l/2 < 0

• Developmentof the diffusion coefficientsand convectlng strengths,Dq

and F_, on the other faces follows that given above.
*t

- Velocity Coefficient, C_x -

The coefficient, C_, is defined, depending on the phase, as,

! C_x- E,q * ee . (ix . k_x)e' ve .

where

.. _ aq - ae + av + ... + ab_6

and

[ I'..,I ",Fp. o _ <o

" where

'" Fnet = Fe - Fv + Fn - Fs + Ff - Fb

The coefficient,Fp, is deflned so that COx does not become negative,a

" situation that can lead to an unstable solution. With no mass sources, Fe

'_ viii approach zero at solution because it is the net flow out of the X-

- momentum volume. Vtth positive mass sources, Fe should be positive, thereby

,_ making C#x positive. Hovever, with mass sinks, i.e., R_ negative, Fp must be
negative if it t_ retained on the left-hand side of Bquatton 4.12. For this

case, F_ is included in the source term, Sx.
f_
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The additional terms are defined ass ..

(ksR) P - lose eoefflciant k_, evaluated at i+i/2, j, k and defined
in se_tlon 4.3.3

Bx . drag eoefflcient evaluated at i+I12, J, k and defined in
nation 4.3.3

- Drag Term vlth Other Phase -

The phase momentumequations are explicitly linked throush the relaxed

dras coefficient, _,, defined ast

vhere

(_)_ - dral coeffleiant evaluated at i+I/2, J, k as described in
section 4.3.3

t

e)0 . dra| under-relixation =oefflclant in phase _. Zt is an input

parameter to rORCB2 and is defined on the ramp 0 _ O_ _ 1

- Source Term, Sx -

,i

The source term, Sm, depends on the phase and is given byt

+ (_x _,)P ("_o . ,Iter-1 , ,Iter-I- . - u@ap . (Jrnmtj - Fp) (u@>p
Y

vhere u

,k]tter_ 1 ,.(U_o - u,) ter-1 . [(u_ ° . u_)i+I/2,j

- velocity difference at t+:1./2, 21, k evaluated at

the previous iteratlon



(u_)ip ter-1 - velocity at 4+1/2, j, k evaluated at the end of
the previous iteration

i _Xp " (_t + _Xl+l)/2

. and the body force term, 6,, and solid stress term, (_)i+l/2,j,k' are
as defined in sectiong.4.3.

- Pressure Gradient Source Term, S_ -

- The pressure gradient source term is given bys

Pe " Pv

S_, - _" Vp ' _p,

- Summary -

Bquatton 4.12 is the unrelaxed form of the X-direction momentum

_ equation. Inertia and under-relaxation, section 4.7, are applied before this

equation is solved.

. 4.4.4 Y-HomentumBquation

Development of the Y-momentum equations is similar to that given for the

X-equation in the previous section. After integrating over the Y-momentum

volume shown in Figures 4.1, 4.2 and 4.3 and applying The hybrid difference,
.i

" the Y-momentumequation is expressed ast

" CW ' V%p- _ aq v_ + Sv • (v_o) P + Sy - St_P, _ - g or s 4.13

.. where locations in the compact notation are related to the t,j,k locations

._ according to
!

bern
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P * it J+1/2, k ..

B • t+1, J+1/2, k

V * i-1, J+1/2, k _._

N o t, j+3/2, k
S " tt J-3/2, k

e

.
e _

B '* i, J+i12, k-I

, • .,' t+1/2, 1+112, k

v '* t.-1/2, j+1/2, k

n '* i, 1+i, k
e

e

b '* t, t+112, k-1

t..

vt th

v_p = (V_ll,j+ll2, k "_

V441 " (V_)l+l,J+l/2, k !.
i

v_B _' (Vl)l,j+l/2,k. I

aq v_Q .. ae . v_K + av . v_v + ... ab . V_B
t,

- Face Coefficients - r

The coefficients are evaluated using the hybrid scheme as outlined in

the previous section vtth the diffusion coefficients, Dq, and convecttng

strengtht Fqt defined as follovss

!

Dq. (A.i)q/aLq "-
F_- (p' Avo),

.6

vtth A and _Lq defined as flov areas and lengths normal to face q. For .._

examples
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AT-e = _Xe = (_Xi + _Xi+I)12

aLn = ayn = aYj+I

ALf = _zf = (_zk + 6Zk+l)12

(A_) e = [(Ax_)i+l/2,j+l, k + (Ax_)?_+l/2,j,k]/2

'. (A_) n = [(Ay)N + (Ay)p] • (_;)n12 ..

. (A_)f = [(Az_)l,j+l,k+l/2 + (Az_)l,j,k+i/2]/2

(p_AV)e = [(P_AxU_)l+l/2,j+l, k + (P_AxU_)i+l/2,j,k ]/2

(p_Av)n = [(AyV@)N + (AyV_)e] • (p_)nl2

(pSAv)f = [(p'@AzW,_)i,j+l,k+ll2 + (piAzW%)i,j,k+ll2]12

where the macroscopic viscosities on the faces of the main control volumes are

evaluated by interpolation and the macroscopic densities by the upwind

approximation.

- Velocity Coefficient, C_ -

The coefficient, C_, is given byz

._ C4,y = _aq + Fp + (ISy + Z4,y) P • Vp

with
._

., _ aq - ae + av + ... ab

and the flow parameter, Fp, is as defined in the previous section. The drag

coefficient, _, and loss coefficients are evaluated at i, j+l/2, k as
outlined in section 4.3.4.

:_ - Drag Term for Other Phase -

.. The under-relaxed drag coefficient, 13v, is similar to 15., defined in the

previous section, and is defined as:
-
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,,

where e_ is the under-relaxation coefficient defined earlier.

- Source Term, Sv

I

Sy = By + (G_V)p. • - Ayp

Iter-I

+ (_y- _v)p • (v_ - v+)p

+ ( [rnet [ - Vp) • (v_)iter-1

where _y, the Y-direction body force term, and (G-_), the solids stress term,
are as defined in section 4.3.4 and

Aye = (ayj + arj+z)/2

- Pressure Gradient Term -

The pressure gradient term is given by:

Pn - Ps

sap. _+. vp ..... ayp

- Summary-
+

+

Equation 4.12 is the unrelaxed form of the Y-momentum equation. Inertia

and under-relaxatlon are applied, section 4.7, before this equation is solved.

4.4.5 Z-Momentu m Equation
+

Development of the Z-momentum equations is similar to that given for the

x and y equations in the previous sections. The Z-momentum equation for phase

is expressed as:
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"_ c_z • V_p--_aq v_ + IBv (V_o)P . sz - see, _- g or s 4,Z4

h

i: vhere the node center (P), east (E), vest (_) and back (B) locations are
defined as:

,4

P ,* t, J, k+l/2

E * I+I, J, k+I/2
,I

" W '* t-1, J, k+112

N '* t, J+l, k+l/2
,,'. S * t, J-l, k+1/2

F * I, J_ k+312
-i*

:i B '* I, J, k-l12

"" e '* t+1/2, J, k+l/2
1
,'-I v * 1-1/2, J, k+112

!:

":,' f * I, J, k+l
d

"" b*t,J, k

'-_ vl th

,t

"i W_p = (v_)i,j,k+i/2

..... w_E = (v_)l+l,j,k+ll2

,-_ v_B = (V_)l,j,k_I/2

_' _ aq w4_) = ae w,E + aw * w_] + ... ab w,B
.!

The face coefficients, a., a,,..., and a b are defined in terms of diffusion

"" conductances and convection strength on the faces of the Z-momentum volume for
._'

each phase similar to the face coefficients in the X- and Y-momentum

._,.; equations. The diffusion coefficients and convection strengths are defined as
follows."



1
Dq - (Atl_)q//_Lq

o.f..,,

u,,...

For example, :**_
_'

_Le = Axe = (bx i + _Xi+l)/2 _'_

= = _yj Ayj :.._Ln GYn ( + +1 )/2 '*'

_Lf = _'f = _k+l

, , k ]/2(Ati_) e = [(Axtl_)i+i/2,J k+l + (Axt_)i.I/2 J, -.

(Atl_) n - [(Aytl_)i,j+I/2,k+ I + (Ay"_)i,j+i/2,k]/2

(A,_)_ . [(Az)F + (^z)p] • (t,_)f/2 **

= , k ]/2 _.(p_ A A¢) e [(P_AxU¢)i+l/2,j,k+ 1 + (P_AxU¢)i+l/2 J,
.t,.

" , k ]12(@_ A A@)n [(p_AyV@)i,j+l/2,k+ I + (p_AyV@) i J+i/2, _.

(_,_A ^_)f - [(Azw_)r + (Azw_)P] (_)f/2
¢

,J

As noted in the previous sections, the macroscopic viscosities on the faces _

are evaluated by interpolation and the macroscopic densities by the upwind

method. _.

- Velocity Coefficient, C_s -

The coefficient, C4_, is defined for each phase according to: :_

C@z = _ aq + Fp + (_z + k@z)P " Vp
k..

where all the terms are similar to those defined in the X- and Y-momentum i
m

equations.
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- Source Term, S m -

, (cx) f - (cs) b

:_ + (IBz - IBv)P " (V_o-vg)_ ter-1

, . .iter-i
: + ([Fnetl- Fe) . tw_je

..: vl th

_Zp = (_zk + AZk+l)/2#

" - Pressure Gradient Term, SAp -
w

• Pf - Pb

•- Sbp " _@ ' Vp ......L_Zp

- Summary -

Equation 4.14 is the unrelaxed form of the Z-momentum equation. Like

the X- and Y-equations, inertia and under-relaxation are applied before it is

solved.

4.4.6 Pressure Correction Equation
• _ , ,,i

', The solution procedure is based on adjusting the pressure field until

- total mass continuity is achieved. This approach is the same as that for

_, single-phase flow (Patankar, 1980) and is based, in part, on recent work for

steam/water flows (Carver, 1982). With this method, the pressure field is

modified (or corrected) based on the total (gas + solids) mass residue.

The equation for the pressure correction is developed using the momentum

.... and continuity equations and is given by:
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Tv_

where

P_ = correction to the pressure in main control volume P

W

_aqP_-a e . P_ + aw • P_ . ... ab • P_ .:_a_

Cp = _ aq

S_ - source term

Because volume P is a main control volume, node and face subscripts are

defined as:

P * i, J, k

E • i+l, J, k

V * I-I, J, k

N * i, J+i, k

B • i, J, k-I

• * i+I/2, J, k

w • i-1/2, J, k

n * i, J+l/2, k

b * i, J, k-l/2

The development of Equation 4.15 follows the formulation of others

(Patankar, 1980, Carverp 1982). The momentum equations on each face of the

main volume P are written in terms of the desired pressure corrections as' "'

(A¢)q (A" - • AP' 4.16= @)q (DA _)q q
t

where
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(A@)q = phase velocities, u@, v@ or v@ that will satisfy both mass
-- and momentum conservation

. (A_) = trial velocities based on a trial (assumed) pressure field

/_P_ = difference in pressure corrections for cells that share face q

For example, on the north face of the main volume, Equation 4.16 may be

written ass

(V@)n = (V_)n - (Dv@)n ' (P_- P_)

" vhere

(SV_)n = (C_)n • _Yn

and.r

- - (Dv@) n (PN- Pp

: (C_)n = coefficient of velocity in the momentum equation on the north
face of the main control volume (from Equation 4.13)

• Vn = volume of the Y-momentum volume on the north face

P*,P' - trial and associated pressure corrections

= /_Yn = (_yj + nYJ+l)/2

r

The velocities on each face, such as that given in Equation 4.16, are nov used

' in the continuity equations to derive Equation 4.15.
.c

The continuity equations for each phase, expressed in terms of

. normalized densities (section 4.4.2), are added and integrated over the main
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volume. Using the velocities on the faces from the momentum equations, such .l

as Equation 4.16, the pressure correction equation (Equation 4.15) is derived _

wi thz ,_,j

,.-s + ..... ":
f,

s_. - i_l,/( Pg)R" DSp/(%)R

where

A = flow area normal to face q ....

V = volume of the momentum volume connecting adjacent main -

volumes normal to face q ...

r_,_=g or s = normalized density on the face based on the upwind

approximation, i.e., on the north face

{ (p_)i,j,k/(Pl)R (v;) n _ 0 ,..r_ = (p_)i,j+l,k/(P@)R (v;) < 0 '._.

Cg,Cs - coefficient of velocity in the gas and solids momentum _,
equations, respectively, for the momentum volume normal

to face q

AL - length of the momentum volume in the direction normal to _.

face q ..

DGp,DSp = gas, solids mass residuals, respectively

D% - E (Ao'̂ *. - E (A.i _)- _g
q=e,n,f g °) q b "q=w,S, .:.

DSp " E (A ' A_)q E (A ' -
q.ein, f ps - Pi Ag) 1;1sqmWlSlb

wi th

E(AO_:A_:). " <AxP'_U*_)+ (Ay._;v_;)n + "
q-e,n, f _ s s e (AzP&W_)f
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"" and similar expressions for both phases on the other faces. The face

_ densities, (o_)., (p_)., etc., are evaluated using the upwind approximation.

I

.... - Stlmmary - I

Equation 4.15 is the pressure correction equation that is used to adjust
J

the flow field pressures during the iterattve solution. It should be noted

that when Model B is used (_, = 0), pressure does not appear in the solids
•

- momentum equations. And, as a result, the coefficient, aq, involves only gas-
phase parameters. In this situation, the solids mass residual is not included

!
., in the source term, Sp,. Because the solids velocities (and solids

continuity) are not directly affected by pressure gradients, it was felt that

including the solids residual may cause solution difficulties. Consequently,

when Hodel B is used, the pressure correction equation is based on Just the

gas continuity equation.

4.5 BOUNDARYCONDITIONS

The finite difference equations for ma_s and momentum conservation are

modified to include the effects of obstacles, walls, and mass flow into or out

of the flow domain. Boundary conditions for mass inflow and outflow are

'_" imposed by extra (also called dummy), non-computational control volumes

_ located around the boundaries of the flow domain.

_ 4.5.1 Inflow Boundaries

At inflow boundaries, the gas and solids velocities are prescribed on
i '

the faces of the Main Control Volume adjacent to the inflow port. The

_ microscopic deneity and void fraction of the incoming stream are determined by

..... the upwind schemes they are determined by the values assigned to the boundary

cells that are "upwind" of the interior Hain volume. The temperatures, void

L. fractions, and pressures of these boundary cells are changed only through

input to FORCE2.

L
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4.5.2 outf!ow_Boundaries .

A continultlveoutflow conditionis used for the steady simulation and

is one option for the transientmode. A constant pressure condition is a

second option in the transientmode. At all outflow boundaries,void fraction

in the boundary nodes is determined by reflection, i.e., equal to void "'"

fraction in the adjacent node that is inside the computational domain.

4_5_72.1C0ntin_itiyeOutf!ow for Transient Mode. In the transientmode,

pressure in the boundary node and node geometry are set by reflection. The

outflow velocity is then calculatedwith the appropriatemomentum equation. If
4

the calculated velocity is into (instead out of) the flow domain, the velocity

is set to zero. This prevents inflow at an outflow port, a situation that

can introduce erroneous information into the flow field and indicates the

nodalization is inadequate ....

The procedure is illustrated below for continuitive outflow in the X-

direction. The nodal arrangement at this outflow boundary is illustrated in

Figure 4.4. Velocities, voids, pressures, and other quantities at the outlet

are determined according to the followings

s,

AXe+I = AXi ,_,

Vi+l,J,k = Vi,J,k

(¢{)i.1,J,k = (¢@)_,j,k

Fi+l,j,k = P_,j,k

(u@)i+3/2,j, k = (0_)i,j,k ' (u,)i+I/2,J,k/(°_)i+1,J,k

(u@)i+i/2,j, k = calculated with X-momentum equation "

(v)i+1,J+I/2,k- (v@)i+l,j_i/2,k = 0

(w@)i+1,J,k+l/2- (w@)i+1,_,k_i/2.- 0
a

4.5.2.2 Continue,lye Outflow for Steady Mode. In the steady mode, an

outflow velocity distribution is calculated based on global mass conservation '
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. _Boundary Node

"_"

-'

,j .......... , ....... .......--OutflowBoundary

": l,j,k . i+l,J,k

" "-'_'--OutflowVeloetty

'," y

""--'_ BoundaryNodeX

,,! Figure 4.4o Outflov psrallel to the X-dtreetton - FORCB2theory.

m

MomentumVolume

,._*. Obstac:es _"0""I

,.... : 'Iv : ,,

*L I I _y

Y l,J,k J
._

r_

b x

[.,, Ftsure 4.5. Flov in the Y-direction adjacent to a
solid boundary - FORCE2 theory.
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and the velocity distribution in the cells adjacent to the outflow boundary. [

Prior to solvlng the momentum and continuity equations, an initial

distribution is calculated or an existing one modified based on mass
conservation, The somentum and continuity equations are then solved u_ing

this distribution, resulting in a new velocity, void and pressure fleld. The "'_

outflow distribution is next modified based on the new velocities in the cells ,.i

adjacent to the boundary. This procedure is repeated at each solution
iteration and is outlined below for the case of outflow along the upper X _.

boundary shown in Figure 4.4.

i) Calculate Distribution Prior to Momentum & Continuity Solutions Based

on Total Mass Conservation

The outflow velocity in the X-dlrectlon is calculated according toe ..

u slier 7" Iter-1 "
_'t+l/2,j,k " M_ ' (u_)t+l/2,j, k l,.l? ..

t_

where Iter and Iter-1 indicate velocities at the current and previous solution

iterations, respectively, and

'

tter-1
", - ¢E u,)i+i/2,l,k ',;

wlth :..

(MT)o - total outlet mass flow rate for phase 0 based on the velocity
boundary conditions and mass sources for phase _

= summation over all J and k nodes at i+1/2, i.e., over the upper ,.

X-face of all main control volumes adjacent to the outflow ,_

boundary. The macroscopic density, o_, is evaluated based on ,_
the upwind approximation. 'J

For the first solution iteration (iter=l), if an outlet distribution is

not specified, a uniform profile is calculated according to: "
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(u+)z -("T) / E (Ax'°i+l12,j,k ¢ PC)i+I12,j,k

where

., . (p,_)o . macroscopic density based on the Initial void fraction and

. phase densl ty

ii) Revise Distribution Based on Interior Velocities After Solutlons to

Homentum& Continuity

': The distribution is revised according tot

i tar _" 4.18
: (u+)i+i/2,j, k = H+ [(u+)l.il2,j, k - urn]liar

? where (u¢)t.I/2,_,k is an interior velocity that has been calculated from mass

and momentumconservation and u, a minimum velocity defined according to,
"5
.¢

Us = 0.0 or

" = the minimum of all negative (u¢)L.l/z,_, k velocities

.,! and

'_ T" iter
He = (HT) ¢ / _ (AxP _ Ud)l+ll2,j, k

The summation Is as defined in step i and the velocity difference, Ud, iS
; 4#

given bys

" Ud = (U+)_-l/2,_,k " U,

q
The distribution from this step is then used in step t at the start of the

next solution Iteration.

With the above formulation, the distribution satisfies global

continuity, a constraint that improves solution convergence,and there are no

_" Inflov velocities at the out£1ov boundary. The minimum velocity, un, has been

r_
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added to the formulatlon In step il to prevent an inflov condition that may _.;

arise durlnl the iteratlve solutlon of the non-llnear momentum and eontlnulty

equations. Zt should be noted that If negative velocities are observed near

the outflow boundary durlnl the solutlon, the nodallzatlon is probably

inadequate. Specifically, the flov exlt should be located far enough

dovnstream of the problem to avoid flow recirculatlon in the exit plane.

_.5.2.3 Constant Pressure, Transient Mode Only. The constant pressure ;:.... _ - :J/:--_ ii:_ i .... fl" .................... ........ rl

condition is identical to conttnuitive outflow except the pressure in the

boundary node, node i.l,j,k in Figure 4.3, is fixed according to the value

that is input to the model.

4.5.3 Velo_itiesNormal t? Solid Surfaces

The velocltles normal to solld boundaries are Inltlally set to sero. Zn :

the transient mode momentum equations for the normal velocities are not solved

thereby maintaining this condition. In the steady mode, the velocity

cosfficients and source terms are modified to maintain a zero velocity during

the solution sequence. Pot example, the Z-Momentum equations, Equation 4.14,

are modified as follovs for a solid boundary normal to the Z-directions

a e = aw = an = --- ab = 0 i,

S. -S_-O

C_, - 1.0

This results in a zero velocity in the Z-direction at the solid boundary. A

similar formulation is used for surfaces normal to the X- and Y-directions.

4.5.4 Velocities Parallel to Solid Surfaces P,
........ . :m _ : _ i |i, ....... i iii i

Three boundary conditions have been included to account for solid "

boundaries such as wails or obstacles in the flow field. These conditions are
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_" applied at blocked cells, along blocked boundaries or along symmetry

_ boundaries. To 111ustrate the approach, the fo:mulatlon for the Y-momentum

equation is given for flow adjacent to the solld surface shown in Figure 4.5.

The formulatlon Is slmilar for the other directions.

• 4.5.4.1 No Slip. For this condition, the phase velocity is assumed to

be zero at the solid surface. The viscous stress on the face of the Y-

momentum volume adjacent to the solid boundary is given by:

_V

where

_-_= [(Ax)i-I/2,j,k ' (_¢)i,j,k + (Ax)i-ll2,J+l,k " (P¢)i,j+1,k]/_i

• For the transient mode, this boundary condition is implemented by

redefining the west face and node center diffusion coefficients in the tilde

term as:

i DW = 0.0

)T-':.Dq+

For the steady mode, a similar approach is taken to glvet

•_ Dw=O

C_y = E a + Fp + (_y + • Vp+--

"_ 4.5.4.2 Partial Slip. The solid particles are assumed to move along

-? the solid surface in this situation. The velocity along the surface Is given

_ according to the relation in section 3.5 in terms of the mean free path, L.

The viscous term may then be written as above with7 '
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2 ._.l

,=7,Ws[(Ax)l_I/2,j,k.(us)i,,j,k + (Ax)l-112,j+1,k'(_s)i,J+l,k]'Ax i + 2L

• ._.j

where

L - mean free path defined in section 3.5

"_,'L.

This boundary condition is included in the transient and steady modes as

noted in section 4 5 4 1 using the above definition for ..-7," " " -0"

4..5.4.3 Full S!.lp or Symmetry Boundary. In this situation, the phase

velocity at the solid surface or boundary Is assumed to be the free stream
:.

value. As a result, the above velocity gradient is zero. This condition is

implemented in the transient and steady modes with

in the formulations given In section 4.5.4.1. "

4.5.5 Hams Sources & Sinks

Homentum equations are not solved in momentum volumes connecting "

adjacent mass sources or sinks. The treatment in both the transient and

steady mode is the same that for velocities normal to solid surfaces, section
J

4.5.3.

4.6 INITIAL CONDITIONS

Initial conditions are provided to the model through input. For the :_

first run, initial velocities and voids must be specified throughout the flow _-

field. A minimum flutdizing condition may also be selected on the first run.

In this situation, the solids are assumed at rest, the gas flow field is _

assumed one dimensional and the pressure field is set to just support the
f..

velght of the bed. These conditions assume that the bed is at minimum
;,

fluidization.

/.
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_ " During the solution, initial conditions for the next timestep in the
,2

transient mode or next iteration in the steady mode come from the predicted

"_ velocities, voids, pressures, etc., at the end of the previous solution step.

_ At the end of a run, predicted conditions are written to a file and .can

subsequently be used to startup the solution.

4.7 RESIDUES AND RELAXATION OF STEADY EQUATIONS
._,_

Residues for each of the steady equations are calculated and displayed

:_ as a means of monitoring solution progress. Convergence is indicated by

_ residues that decrease as the solution progresses. The residues are defined

_ below and used as part of the relaxation schemes.

Because the finite difference equations are very nonlinear, they must be

. relaxed to promote a stable solution. Two schemes are applied: t) under-

relaxation and ti) inertia relaxation. Both are outlined below.
,y

_ All the steady equations may be written in the formz

= apuO P = _ aq _Q + bp _p + Scu 4.19

_i; where

:.: _ aq _Q- ae _E + aw " _ + "" ab " _B

apu,Scu . unrelaxed coefficient and source term, respectively

_-. and the parameters are defined in Table 4.2, depending on the particular

steady equation.

4.7.1 Equation Residue

A residue for Equation 4.19, at the beginning of the current iteration

I" (iter), is defined as"
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R_ = _aq ' 90 + b • + cu - apu ' _

where R_ indicates the residual in the equation for variable _.

Table 4 2 _• .._

TERMS IN THE GENERAL FORCE STEADY TRANSPORT EQUATION

Void fraction, _g 0 ap O S_ _
Equation 4.11 _-

X-Momentum, u_ u_o C_x 15. Sx - S_ "
Equation 4.12

Y-Momentum, v_ v_o C_ _v Sz - S_ _.
Equation 4.13

Z-Momentum, v_ w_ C_, _w S, - S_
Equation 4.14 :_

Pressure Correction, P* 0 Cp O Sp' "
Equation 4.15 _r

The coefficients and source term at the start of the current integration

are based on predicted conditions at the end of the previous solutt¢_ step, _.

i.e., on @tter-t, etc. The maximum and average values for R_ are displayed ;_-

for each solution variable at the start of each solution step. :.

4.7.2 Relaxation of Steady Equations , m,

Under-relaxation and inertia relaxation are applied to the steady

equations before they are solved. Each relaxation method is outlined below. _"

4.7.2.1 Under-relaxation. The new estimate for _p is wrltten as: _-

_ptter e,) Iter-I" 04 " _P,calc + (I - _p 4.20 ?

vhere _ter . "new" value for _p ,"
b,.

L.
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_'.._ 8_ . under-relaxation parameter, 0 < e_ _<I

_P talc " CP calculated with Equation 4.19p

J

a Iter-1 _p from the previous iteration

.!

in Equation 4.20 is used in Equation 4.19 alongThe calculated value, Cp,c.lc,

with the residual, Re, to define #ptt.r as

.o

i apu " _P " _ aq _Q + bp Sp + Scu- (1 - 0%)R4|

...._ where _F is the new value. The superscript, iter, is not used to simplify the

•_ notatlon.

..; 4.7.2.2 Inertia Relaxation. For inertia relaxation, we assume

:j apu. ¢p- apu" 4'p [1 1 i-

• .tter-1
_ apu Cp apu I • qbp _, L

"[-I ....... i-I

where I is the inertia relaxation parameter defined on the range

" o i<I

- _;ith inertia relaxation, the governing equation for _p becomes

-_ ap " _p- _ aq %Q + bp *p . Sc 4.21

where

:_ apu
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apu I _iter-I _'
sc . Scu- (1 - e_)s_+ _ • .p _,

L.

4.7.3

Equation 4.21 is the final form for all the steady equations. This

equation is solved Iteratlvely,as described in section6.0, to predict the

steady-stateoperating conditions.

!

t-"
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.... 5.0 TRANSIENT SOLUTION PROCEDURE

5.1 OVERVIEW

.i

The implicit multlfleld technique (IMF) (Harlov 1975) is the transient

:, solution procedure used in FORCE2 and is based primarily on the IMF scheme as
?

implemented in FLUFIX. The solution procedure is based on adjusting node

- pressure until gas mass is conserved. Some key features of the method

_. tncludez

• o Cell-by-Cell solution. The solution for operating conditions at the

end of the timestep is developed by solving the governing equations

• on a cell-by-cell basis. Sweeps over the flow domain are performed

until gas mass is conserved in all cells.

_i o Simultaneous solution for velocities on the cell faces. The gas and

solids momentum equations on the face of a Main Control Volume are

'i._ solved simultaneously. This improves the modeling and contributes to
solution stabili ty.

o Explicit formulation for convection and diffusion. As noted in

_ Section 4.3_ the convection and diffusion terms are evaluated only at

•._- the beginning of the timestep. This rough approximation simplifies

:,, the formulation. A better approach would be to include these terms

in the velocity coefficient on the left side of the momentum

equations, similar to the steady formulation.

o Implicit formulation for the solids stress. The solid stress term is

,_ evaluated based on void fractions at the end of the timestep. This

_ formulation is required for a stable solution due to the exponential

_ variation of stress with gas void near the packed state.
2:

The overall transient solution scheme is given below.
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5.2 OVERALL TRANSIENT SOLUTION METHOD _..,

The solution procedure over a problem timestep consists of the foilowing

steps:

Step 1: Calculate Densities, Viscosities and the Explicit Tilde Terms.

Fluid densities and viscosities are calculated throughout the ;LL

flow field based on conditions at the beginning of the

timestep. The explicit tilde terms that include body forces,

convection and diffusion of momentum are also calculated for

each momentum volume in the flow field. The initial conditions _

come from user input or from operating conditions at the end of

the previous tlmestep. ,,-

Step 2z Solve for Velocities Throughout Flow Field.

This is celled the explicit stage of the solution (Lyczkowski,

1989). This step results in new velocities throughout the flow

field based on the initial pressure field. Velocities are

are predicted by the simultaneous solution of the gas and

solids momentum equations as outlined in sections 4.3.2, 4.3.3,

and 4.3.4.

Step 3s Start the Implicit Phase of the Solution.

_.

The solution is started at the first computational cell located

at the Minimum Xl-Coordinate, Maximum X2-Coordlnate, and

Minimum X3-Coordlnate in the FORCE2 coordinate system. For the _-

discussion here, the Xl-Direction viii correspond to X, the X2
,_

to Y and X3 to Z. Main Control Volumes are visited in the

following order: at each plane perpendicular to the Xl-Axis,
.?

visit nodes along X3-11nes starting at the minimum X3- _
!

coordinate. In a two-dimenslonal problem, this is equivalent '_

to visiting all J-nodes at each i-locatlon. In the description _
t

below, the Main Control Volume will be designated by the

indices i,J,k. _.
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.i_i Step 4: Check Mass Convergence at Node i,_,k.
_,_

_ The gas mass residue is calculated according to Equation 6.4

and convergence checked. A converged solution at this node is

assumed if

._

• •

 t/Vp[ < EPSG• (o)p
?i

where EPSG is the input convergence parameter.
.,?_

.s if the convergence criteria is met, go to Step 5, otherwise go

'-_ to Step 6.

,._ Step 5: Calculate Void Fraction.
'!

The gas void fraction is predicted using Equation 4.3. If an

unrealistic void is predicted, warning messages are written to

;2_ the FORCE2 log file and the solution is stopped. Experience

,_: indicates that near the packed state the solid stresses can

_ give rise to very high velocities which, in turn, can result in

,_ physically unrealistic voids. Exceeding the material Courantcriteria is one condition that can lead to this situation.

Otherwise, the solution then continues to Step 11.

Step 6: Adjust Node Pressure.

_ Two procedures for adjusting the pressures in Main Control

_. Volume t,J,k are used. They are:

I) Apply Pressure Correction Equation, Equation 4.8. This

correction is applied until minimum and maximum values are
obtained•

ll) Regula-Falsi Using Minimum and Maximum Values. The

pressure in the Volume is corrected using, _'
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pr . p, . l_max/m _max

where

m . (P_ax P_In)/(DGmax DGmln)

DG ,P' = maximum residual and associated pressure "_max max '_
correction

DGmin,Pmin' = minimum residual and associated pressure
correction

The maximum and/or minimum is revised based on the residual and

associated pressure correction in the current iteration beEore

the above correotton is calculated. The minimum or maximum is
_

determined byz

DGF > 0 F' = P' :"max _.

DGp _ 0 F' " P'rain _',°

-Step 7s Calculate Velocities on Faces of Main Volume i,J,k. .

The momentum equations on each face of the control volume,

Equations 4.5, 4.6, and 4.7, are solved to predict gas and
_

solids velocities. The coupled equations on each face are

solved simultaneously. '

Step 8z Calculate Void Fraction. _.

The gas void fraction is predicted using Equation 4.3. As

noted in Step 5, if the predicted void is physically ._.:

unrealistic, warning messages are written to the FORCE2log

file and the solution is stopped. _

i
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Step 9s Check Mass Convergence at Node i,J,k.

_i This step is identical to Step 4 above. If convergence is

/ achieved, the solution continues at Step 11! othervin, it

continues at Step 10.

Step 10s Check Number og Micro _terations.

X
it

' Steps 6 through 9, which are performed at each Main Control

'_ Volume, comprise a Micro-Iteration. The allowable number of

:: these steps is controlled by input to the model (the allowable

.... number of Htcro-Iterations is typically 5 to 10). _f the

allowable number is exceeded, the solution proceeds to Step 11!

otherwise it returns to Step 6.

i

• - Step llz Check for Last Node.

J if node i,j,k is the last node in the domain, one Nacro-

,. Iteration has been completed and the solution continues at Step

' 12. Otherwise, the node number is incremented according to the

scheme outlined in Step 3 and the solution continues at Step 4.

Step 12t Check £or Overall Convergence or Maximum Allowable Hacro

:_ Iterations.

Overall convergence is achieved when only steps 6,5, and 11 are

performed during a single sweep (Macro-Iteration) over the

domain. If this criteria is met, a new timestep is started at

,_ Step 1.

_'i If overall convergence is not achieved and the uxlmum

._I allowable nu,zber o£ Hacro-lterations is not exceeded, a new

sweep over the domain is started The Hain Control Volume
_

_, number is reset to the starting value defined in Step 3 and the

solution restarts at Step 4.
!

_ -81-



If overall convergence is not achieved and the maximum :_

allowable number of Hacro-lteratlonm is exceeded, a nev ..

tlmestep is started at Step i. This non-converged condition _,_

can be detected by examining the FORCE2log file which displays
e,mo

convergence information. _,

t
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" 6.0 SOLUTIONPROCP.DUREFOR STEADYSIMULATION

6.I OVERVIEW

Because the finite difference form of the momentumand continuity

equations are very non-llnear, an Iteratlve solutlon procedure is required.

" The approach is to construct sets of linear equations by evaluating velocity,

._ void fraction, etc., coefficients based on assumed or trial operating

conditions. The resulting linear equations are solved using matrix methods

and their solutions used to estimate new operating conditions. This sequence

is continued until the equation residuals are small indicating that an

acceptable solution has been achieved. The non-linear nature of the

governing equations also requires that the solution be advanced slowly.

Consequently, solutions are developed based on governing equations that have

been relaxed according to the methods described in section 4.6. Finally, the

,,/ implementation of this method in PORCE2 is outlined in section 7.0. Program

..... flow and logic are described _here.

A kay element of the solution scheme is the adjustment of thQ flow field

pressure to conserve mass in each computational cell. The iterative procedure

" is based on conserving mass once a solution is achieved. However, during the

•"_ iterations mass residuals are present indicating that mass has been "added or

_ taken from" the flow domain. The local imbalance is used to adjust pressure

...._ which in turn causes the required changes in the phase velocities. Th_s

scheme along with inflow boundary conditions results in a solution in which

mass is conserved with a certain inventory of the phase in the flow field.

For the case of no inflow boundary conditions, such as the solids phase in a

' bubbling bed, the situation is different. Mass residuals will be present

during the solution and can be used to adjust pressure. However, because

_ there are no local constraints on solids mass, such as the storage term in the

transient continuity equation, solids mass may not be conserved from start to

finish of the solution, that is the solids inventory after several iterations

may not be equal to the inventory at the start of the problem. The "loss" or

,_' "gain" of solids mass is further "enhanced" by the relaxation of the void
L_

equation which is needed to stabilize the solution. Consequently,a

' constraint of global ma_s conservation for the solids phase is used to adjust

.-. void fraction during the solution. This constraint is applied only for the

r_ case of no inflow of the solids phase.
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The steady solution procedure is outlined below. It is a modified ..

version of $ZHPLER(Patankar 1980) developed by Schnlpke (1986).

6.2 OVERALLSOLUTIONPROCEDURE
t-

The follovtng steps are performed during a single solution iterations _

Step ls gvaluate Microscopic Densities and Viscosities _

Based on operating conditions from the previous iteration and

user input, microscopic densities and viscosities are evaluated

throughout the flov domain. "

Step 2s Calculate or Revise Outlet Velocity Distribution _=,

The outlet velocity distribution for each phase is calculated

(initial run) or revised (all runs after initial one) based on

total mass conservation of the phase. The procedure is

outlined in section 4.5.2.2, step ii) . "

, Step 3s Solve the X-MomentumEquations for the Trial Velocities, u_ .

The X-Momentum equations are solved to predict trial

velocities, denoted u;, throughout the flov domain based on
pressures and void fractions from the previous iteration. The

coupled gas and solids equations are solved along lines in the

domain using the Coupled Tri-Diagonal Matrix Algorithm (CTDHA,

Forttno 1989) described in Appendix A. The solution is

iterative in vhich many sveeps over the domain (the number and

direction of sveeps are input parameters to FORCE2) are

performed. The solution for the trial velocities consist of

two stepss
p

i) S_lve the Relaxed MomentumEquations.

The relaxed forms of the X-Homentum Equations, Equation

4.21_ are solved over the domain along lines using CTDHA.
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• ii) Calculate Trial Velocities from Unrelaxed Momentum

Equations.

* and us, are calculated from theThe trial velocities, ug

unrelaxed momentum equations, Equation. 4.12, In point

._ form. The neighboring velocities at a node and the other

phase velocity in the drag term are based on the velocities

from step I. The source terms are based on the trial
t

pressures, void fractions and velocities at the beginning

of the iteration.

_ Step 4: Soxve the Y-Momentum Equations for the Trial Velocities, v$

Step 5: Solve the Z-Momentum Equntlons for the Trial Velocities, v$

Steps 4 and 5 (if a 3-D problem ) are identical to Step 3. All

":: the momentum equation coefficients are evaluated based on

. velocities at the start of the iteration, not the trial

velocities.

Step 6: Solve for Pressure Corrections.
.-_

The trial velocities, u_, v_ and w$, are now used to formulate

_:: the pressure correction equation, Equation. 4.15.

The equation Is not relaxed and is solved along lines using a

_, standard tri-dlagonal matrix solution algorithm (Patankar,

1980). The solution is iteratlve vlth many sweeps over the

domain (controlled by input to FORCE2) being pezformed.

" Step 7: Correct Pressure and Velocities

=._ The pressure corrections from step 6 are applied to the trial

,_ pressure and velocity fields according to

P=P*+P'

A¢)q ^¢ e^ (DA, •..... ( = ( "1 _ . )q _P'q q
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where

P* = trial pressure field _

(A;)q = trial velocity field from steps 3, 4 and 5

(DA_)q, _Pq'= parameter defined in section 4.4.6 _

OA = under-relaxatlon factor for phase velocity, A, an input :_
to FORCE2 _.

''4

The resulting pressure and velocity fields, P and (A_)q, become the starting
values for the next solution iteration.

Step 8.* Solve for Gas Void Fraction "
....

The gas and solids velocities from step 7 are used to formulate

the gas void equation, Equation 4.11. The resulting equations

for void throughout the domain are relaxed and solved using a

tri-dlagonal matrix solution algorithm. Like the solution of

the momentum and pressure correction equations, ,_anysweeps

along lines in the domain are performed to develop the void "

field.

If there is solids Inflow to the field, the predicted voids are

used in the next solution iteration and the solution continues

to Step 9.

If there is no solids inflo,_rto the field, the predicted voids

are adjusted so that global solids mass is conserved according

to the following" ......

and :'"

_S=I- Cg

b.
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where

_ _g = predicted gas void to be used in next solution iteration

i_ _ = predicted gas void from the solution of the void equation

8¢, - under-relaxation factor for the solids void fraction, an input
to FORCE2

_: The parameter, re, is determined based on the initial solids inventory

as :

fc=Ms/E %' v. cg-1.o

" vith

_._ Ms = total solids mass based on the user-speclfled void distribution

and solids density at the start of the problem

_= summation over all computational main control volumes in the flow

::i field

r:?
V = volume of the main control volume

,,.,J

_ The resulting voids are then used in the next solution iteration.

,._ Step 9_ Adjust Outflow Velocity Distribution

The outflow velocity distribution for each phase is adjusted

' based on the new interior velocitie_ according to the approach

outlined in section 4.5.2.2, step ii). A new iteration is nov

started at Step I.
!

,_,%

j
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7.0 STRUCTUREOF FORCE2 --

7.1 OVERVIEW .:....

This section describes how the hydrodynamic models, solution procedures ..

and complementary input and output routines are implemented in the FORCE2 "

program. Two major computational models, transient and steady, have been

installed in FORCE2. The organization of the code is best explained in terms !_

of two almost distinct modules that implement each of these models. Bach ..

module uses common set-up (input, geometry, calculations, properties, data

structure) and output (printer output, post-processor data, restart data)
..

routines and do share some calculational routines such as drag coefficient

evaluation. The routines in each module, the complementary routines, and the "'

structure of FORCE2 are outlined in the following sections. '

7.2 PROGRAM ORGANIZATION AND FLOW _.,

The execution flow is divided into three distinct phasesz input,

computation and output (Figure 7.1). The flow in the first two phases is

controlled by three routines: the main program, FORCE2; the computational "'

routine, COI_rI'RL2,which implements the steady simulation; and the .....

computational routine, CNTRLT, which implements the transient simulation. The _.

output phase is controlled by a collection of routines that perform a distinct ..

function and that may be used periodically during the computational phase.
b.

The output routines include PRINT, which writes predictions for subsequent

printing; RESTRT, which writes a restart file; and POSTA, which writes a file

for the FORCE2 post-processor.

During the input phase, data is read from the input file and the restart .-

file. Most of the restart file is also written during the input phase. The .....

input phase is controlled by the main routine, FORCE2, which calls the input _.

routines. The sequence of subroutine calls during the input phase is shown in

Figure 7.2. _

The fundamental modeling calculations are performed during the

calculation _hase. Overall execution flow is controlled by routine CNTRL2 for
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__I- COMPiTATIONJ
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' OUTPUT I

., (iNTERMEDIATE)]

No ( End of Run?

.,

.,,

.: I  '°FUTPO -J

-., Figure7.1. OverallFORCE2executionflow - FORCE2theory.



[- coNTr_C_---IRestartControlSpecifications

- I--_,,

[ GEOMI I GeometricInput _,.#

r
[- PROPS1 _ Gas & SolidsProperties L.

=

......FLOW1 i FlowData "

[.- .....CNTRL1 .........I ExecutionControl Information r-

- i-- ,, .... ,, _

SETUP Set UpSecondaryStorage, _

GEOM2 InputPorosities & Permeabilitles,
GAMAS CalculateGeometricQuantities i:.,..,,,,,

_- _INiTL"-- ] FieldVariableInitialization/ 'L.
Modification ...,

[-- 'R..OFLG- | InputCellFlags

......

PRINT PrintInputSpecifications& _,_
POSTA InitialValues "

POSTT Set Up PostProcessorFiles _.

ProceedtoComputationalPhase !.

Figure 7.2. FORCE2 input phase - FORCE2 theory. _i.,
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i"

, a steady simulation and by CNTRLT for a transient simulation. The flow in'

each routine is shown schematlcally in Figures 7.3 and 7.4.

Results of the modellng calculations are printed Intermlttently as well

as at the end of the calculational phase. Overall execution of the printing

is controlled by routine PRINT and is shown schematically in Figure 7.5.

Prior to calling print after the calculatlonal phase, the main program calls
,._

routine RESTRT to write the field variables to the restart file and routines

POSTA and POSTT to complete the post-processor files.

7.3 GEOMETRIC QUANTITIES

FORCE2 is based on a three-dlmenslonal Cartesian coordinate system

(Xl,X2,X3). The geometric solution domain is a rectangular grid. The number

of nodes in each direction and coordinate of cell faces are stored in common

block FGEOM with the varlable names given in Table 7.1. The rectangular grid

_ system is shown in Figure 7 6 It should be noted that two-dlmenslonal

i; problems use the Xl and X2 coordinates. The X3 coordinate is used only for

three-dlmensional simulatlons.

Most geometric quantities vary from cell-to-cell and are, therefore,

stored for each cell. The geometric quantities maintained for each cell are

listed in Table 7.2.

Each of the geometric quantities is stored as a field variable. Every

geometric quantity is associated with a main node and identified in the same

way as the main node. Ouantities associated vlth faces of cells (between main

nodes) take the identify of the main node in the positive coordinate direction

normal to the face. Figure 7.7 shows the relation between the geometric

quantities and the main nodes.
my?

- The linear interpolation factor, FFn, is used to interpolate values at

.. main nodes to faces. The interpolation factor is based on the distance

between the main nodes (Ax) and the distance from the main node to the face

(_x). See Figure 7.8.
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_ __ L
w

J PROPS2 ] UpdateDensities& Viscosities

1 -
'ia.,

J FLOW2 J CalculateVelocities,Voids,&

Pressure _,_,, _ i,,

J PRINT .... ] PrintFieldVariables
Basedon InputSpec.

(} ProceedtoRnalOulputPhase •

Figure 7.3(a). Execution flov in routine CNTRL2 - FORCE2 theory. :_

START

! :i -F,Low_xi,,,_l A_ju=E_,Fto_ ..,
Distribution ;:_

[ __ MOOSMp, ] CalculateVelocities,Voids,& !.
Pressure ....

J __ BOiND ..... ] AdjustBoundaryValues

|:_ Retu_rn'2} Returnto FLOW2 -.

Figure 7.3(b). Execution flov In routine FLOV2 - FORCE2 theory.
It

",!

e.

Figure 7.3. Calculation phase for a steady simulation
in FORCE2 - FORCE2 theory.
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Start

l - VELSTO J LoadVelocitiesintoSolutionArray
_i :I:i ii ii'==--

;' I I...-\ U-S'FAR-_ ] CalculateMomentumEqu. Coefficients

...; I__ VELCOEF_ ] RelaxMorn,Equ.& CalculateResidual

• I,iii ,S.O,LVEC_I; ]. SolveMomentumEquations

' ! ..... I_ SM- ] CalculateTrialVelocities
, ,,,,, --_

. I PRcoE F _- J CalculatePressureEqu. Coefficients
,/ ......._ [ =-_ - _
.... ! - PRSOLV_ J SolvePressureEqu.- '

LD,,Loop _ _2 -i----i--
" Over l - CORRCT_ J CorrectPressure& Velocities
,_, Coordinate
•_, Directions

-- L i. V_FSTO-_-- | LoadVoidFractionintoSolutionArray
........ _ - -- _

._, [, VFRACS_--/ C_,ou,at_VoidEqu.Coefficients

.... i-- VFCOEF_ RelaxVoid Equ.&CalculateResidual

i ....

._ LP = Loop [ .......pRSOLV -"1 SolveVoid Equ.
Over -!_ - --

[2 Planes i VFCOR-R -_] Adjust Voidfor GlobalSolidsContinuity

__. [ -Return- 1 Returnto FLOW2-- -- _

f" Figure 7.3(c). Execution flow in routine MODSHP- FORCE2 theory.

_ Figure 7.3. Calculation phase for a steady simulation

l'.... in FORCE2- FORCE2 theory. (continued)
L_ -9 3-



,_F,'It

,t

[-- PROP2T ' l UpdateDensltles& Viscosities r

l TILDE i Calculate"Tilde"Terms .-

I FLOW2T ] Calculate Velocities, Pressure, &Voids

l .... BOUNT __ ] Set BoundaryValues "

,,,,,___ --

PRINT Write Predlctlonsto Print File, y

POSTA Post Processor Files, ,.

POSTT ErosionDataFile .,

ER,,OSWR_ _ .._

• .

......... Loopfor NextTimestep ,

Proceedto FinalOutputPhase "

Figure 7.4(a). Execution flow in routine CNTRLT - FORCE2 theory.
¢

i.

Figure 7.4. Calculation phase for a transient simulation
in FORCE2 - FORCE2 theory, -:'-
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Start
"_ _ i iii - LI --

........... _ ........ - --

_ __ ,., , _

, Solve for NodalVoid& Pressureand

,,i [ .... USTART _ +1 Velocitieson Facesot Main
ControlVolume

_"' --LN -"----

,+ $1- +

' Yes
Check for MaximumMacroIterates

"+' i
,)

:'_ Yes Checkfor FirstMacroIterate

,°,_.

Yes
•-_, MaximumMicroIterates> 1

....:, I Return 1 Returnto CNTRLT

"_" $1 = SweepAlongXl-Axis-_,_

"+' LN= LoopOver MainControlVolumesin Plane
' i -'

L_ Figure 7.4(b). Execution flow in routine FLOV2T - FORCE2 theory.

,,+

Figure 7.4. Calculation phase for a transient simulation
_- in FORCE2 - FORCE2 theory. (continued)
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Start _

_yes _IReturn VELS _ Checkfor FirstMacroIterate 2

I RESIDG J CalculateGasMassResidue ,.

H II Return VFRACT yes Checkfor ConvergenceBasedon EPSG

I PRIMET I AdjustPressure .,

I '" VELS j CalculateVelocitiesonMain
I Control Volume Faces _

I VFRACT I DetermineVoidFractions "

t

I RESIDG I CalculateGasMassResidue _

L..

[Return ] yes Check for Convergence Based on EPSG
.;

._-_

no Checkfor MaximumMicroIterations
_,.-

. .

Return Returnto FLOW2T s
=.._

Figure 7.4(c), Execution flov tn routine I/ST_Ul'f - F01tCE2 theory,

Figure 7.4. Calculation phase for a transient simulation -

in FORCB2 - FORCE2 theory. (continued) _
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- I RESTRT I WriteFieldVariablesto RestartFile

T!L3 -I CN - J PrintControlInformation:i

" I PROPS3 i PrintGas & SolidsProperties

_:_ [ GEOM3 J PrintGeometricInformation

,°.

! PRINTF 1 PrintSelectedFieldVariables

:,j

_..

Loop Over AllVariables
"'!

.__.,

.... _.,

_:_ ExitProgram

j ,,

L_ Figure 7.5. Flnal output phase of FORCE2 - FORCE2 theory,
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X2 _L

JX3
X1 2) X1(3) XI(I'_X1)

NX2 - . - -X2(NX2) _;'__:_

NX2-1 ..
,, ,,, , w.'_-;.1

3
............ --X2(3)X2

2

1 • " -- X2(2) _,__i
1 2 3 NXI-1 NX1 _':

. ._Xl

1 2 3 NX1 ;i-i(_;_,

I

X3 2 -X3(3) _:C

3 _

_..

, ,, , ,, _
.,:.-

NX3-1 _!:,i,:

NX3 ..... X3(NX3)

Figure 7.6. FORCE2 grld system - FORCE2 theory, i_,



wv - w,.,. -

± . ,, , _

Ij' o,J,,,,
XI IP • J2M

_ Figure 7.7. Geometric quantities in FORCE2 - FORCE2 theory.

I!

,,,

,:: X a

FFn - 1 AX

..... Figure 7.8. Interpolation factors in FORCE2 - FORCE2 theory.

• ._

Y.I A Yo
.... • • y •

_,_,

....-: Xl t

i:d
Ŷ - FFn • Yo * 11-FFnlY. 1

, Figure 7.9. Main control volume interpolation in FORCE2- FORCE2 theory.
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6x _,J
FFn . 1 ---

_x

Therefore, the distance from a main node to the face below it is calculated:

8x - DXn * (i - FFn) _

.

Most quantities, both geometric and dependent variables, are associated _i_

with main nodes located at the center of a cell. To interpolate values stored

at main nodes to faces, the following expression is usedz

r'-.

y - FFn*Yo + (1 - FFn) Y-x

Where Y0 is the value at the main node above the face and Y-1 is the value at _

the main node below the face (see Figure 7.9). The interpolation factor is '_

identified with the main node above the face (i.e., the same as Y0)' ,,'_

Finally, the storage scheme for main control volume and momentum control

volume quantities should be noted. Quantities on the faces of main control ..
_..

volumes (velocities, areas, etc.) are stored in a "backwards" sense compared

to the main volume number. For example, in Figure 7.7, the Xl and X2 areas "'
..#

AXl (IP) and AX2 (IP), are on the lower (or "back") faces of main control _

volume IP. The velocities, which .are momentum.control volume quantities, .are :._..

defined in a similar manner. For example, U1 (IP) and U2 (IP) denote fluid _i

velocities in the Xl- and X2-directions on the lower Xl and lower X2 faces of

main volume IP. In contrast, the FLUFIX code uses a "forward" scheme. This "

difference should be kept in mind when comparing code predictions.

7.4 FIELD VARIABLES -'

The term "field variable" refers to any geometric quantity or dependent L

variable which must be maintained for each node of the discrete geometry. In

FORCE2, field variables are not stored as ordinary FORTRANvariables, instead

they are stored as data on disk.

Each field variable is divided into records corresponding to geometric _-

planes. A record consists of all values of a single-field variable
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corresponding to a single position in the X1 direction. Primary memory

" available for field variables is divided into buffers, each capable of storing

_: a single record. Buffer management and disk I/O are controlled by storage
'i

management routines (SMR). When a subroutine needs a field variable, it calls

the SMR to locate the buffer containing the record (plane) needed.
.!
,.

A code number is assigned to each field variable and is used to identify

the field variable within the program. Code numbers for geometric quantities

i_ and the fluid dynamic dependent variables are contained in the common block

•. FIELD. Code numbers for other field variables are assigned by the SMR when

, the field variable is defined. These codes must be retained by the module

defining the variable.
%

Planes (records) of a field variable are numbered in the positive Xl

direction. For field variables associated with Xl faces, planes are numbered

• from 2 to NX1. For other field variables, planes are numbered from 1 to NXI.

¢'L

_ The array FV is used to store field varlables in primary memory. It is

divided into buffers and managed by the SMR. When a subroutine needs a field

variable, it calls the storage management subroutine FLDGET. Arguments

identify the field variable and plane desired. FLDGET insures that the record

is in memory and returns the offset (index in the array FV) of the buffer

-_ containing the record. Subroutine FLDGET is detailed in section 7.8.4. .-.

.. Example: CALL FLDGET (KRHO, 2, 1, KPLN, JRHO)

This example requests a plane of densities, where ILRHO is the code

number for density, and KPLN is the number of the plane desired. After the

call, JRHO will contain the offset of the buffer. The other arguments are

.... described in section 7.8.4.

....)

,_ Assume that JRHO is the offset of the desired plane of densities. To

reference the density at a particular point, IP, in the plane, it would be

[_ coded as FV (JRHO+IP).

_. -101-
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To improve readability of the code, statement functions are defined so .-

that reference to the field variable is clearer. The statement function for ..

RHO, for example, would bes !_

P

RHO (IP) ffi FV (JRHO+IP) !

Therefore, a node of the plane can be referenced by coding RHO(IP) instead of

FV (JRHO+IP). (Refer to the FORTRANlanguage reference manual for a

description of statement functions.)

This makes a reference look like an array reference; but actually, it is

a statement-function reference. Statement functions are valid only on the

right- hand side of an assignment statement. To store a value at a particular

node, the notation FV (JRHO+IP) must be used. "_

By convention, offsets in FV are given the name of the variable with a J

prefix. With this convention, FV(JPHI+IP) refers to the same node and

variable as PHI(IP), where PHI is some variable name.

FORCF_ maintains additional information for dependent variables: _"
p-

DFIELD (1,KSV) Field variable name for input (4 characters) _

DFIELD (2,KSV) Field variable title for output (16 characters) "

KPRTF (KSV) Print control code

RELAX (KSV) Under-relaxatlon factor

RELAXI (KSV) Inertlal-relaxatlon factor

For a field variable with code number KF, the index KSV above is KF-KBASE.

7.5 VARIABLE NAMING CONVENTIONS ii_

The first letter of variable names usually indicates its function In the _

program. Following the naming convention makes the code easier to understand.
?,
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Ixxxxx - General index or counter.

IP - Index of a point In a plane.

ITER - Number of current iteration during a run.

Jxxxxx - Offset (or index) into the secondary storage
i array, FV. in general, JXYZ is the name of the

offset for field variable XYZ.

JCP - Offset for field variable CP.

JU1 - Offset for the current plane of axial velocities
(u1).

j2P - Offset of the next node in the positive X2
direction. In other words, IP + J2P is the index
of the next no, in the positive X2 direction
from the node wi_ index IP.

Nxxxxx

• NX1 - Number of nodes in the X1 direction.

NITER - Total number of iterations.

i Mxxxxx - Maximum number of items which the code can handle
with current dimensions or limiting value of a
count.

MXl - Maximum number of nodes In the Xl direction. No
problem can be run vlth more than MXl nodes.

MITER - Maximum number of iterations for this run.

. Kxxxxx - Miscellaneous integer codes and parameters.

KU1 - Secondary storage code for variable U1.

KPHASE or KPH - Phase number, I (gas) or 2 (solids)

A complete list of common variable names is provided in section 7.9.

7.6 MODULE INTERFACING

A module is a collection of subroutines which implements a physical

_ model. Each module contains four subroutines which interface the module and

_ the main code. These subroutines are called by the main code for module

-_ specific processing of: input, calculation, output and computation of source



terms for other modules. By convention, these subroutines are numbered 1 _;.

through 4. For example, the flow module contains of the following
i/

subroutines z

Subrou t ine Function _

FLOWI Flow input processing

FLOW2 Flow calculations

FLOW3 Flow output

FLOW4 Source-term calculation for other variables

Additional subroutines are called by the four interface routines, t

7.6.1 Input Routlne__ _,

The input routine is responsible forz

o Reading data from the input file.

o Reading and writing the restart file.

o Performing set-up processing.
r"

Overall flow of processing in the input routine is shown in Figure 7.10. ;_.

f*

Input must be read using the subroutine INPUT or INPUTD (described in

section 7.8).

Data which must be retained for a restart is written on the restart

file. The restart file is an unformatted file. Each record begins with two _

vordss the record number and the number of data words in the record. Records

must be written to the file in sequence by record number. Each module is ,,

assigned a restart code as n x i000 (e.g., I000, 2000, 3000, etc.). The _
_L

restart code is passed to the module when it is called. The record numbers

consist of the restart code plus a three-dlglt number to uniquely identify the i
record. _"

Field variables are not available when the input routine is called and &

cannot be accessed from the input routine. New field variables necessary for
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L t
this module are allocated by using subroutine FLDDEF. All field varlables are

automatically restarted. ,_

bu.

7.6.2 Calculation Routine

L
The calculation routine is called either once per iteration or plane by

plane depending on the module. It calculates all field variables for which it ,_"

is responsible. _.

7.6.3 Output Routine

r'

The output routines are responsible for module output, which is written

to Unit 6 for printing or to Units 69, 70 and 71 for the graphical post-

processor and the ANL erosion code. The frequency at vhtch output is written _
/

is specified by the user in the control input paragraph. _-

r

Output routines for printing are called from subroutine PRINT. PRINT is

called once after all input is processed, several times during steady or

transient execution depending on user specifications and finally after all _

steady iterations or transient timesteps are complete. A single argument is '-

passed, indicating vhich call thts tsl 0 or 1 after input, and 9 after ,"

tterations. "

p_

The output routine is responsible for updating the global line counter, _,.

LINCNT. It must be decremented for each line printed. Vhen LINCNT is zero or
m

less, subroutine HBADBR is called to skip to a nev page and reset the line i
count.

7.6.4 Source-Term Calculation Routine _,.
,i -- . .ii iiiii . Z_ [iii iiiiii iiii . .... [ _ __

The source-term calculation routine is responsible for calculating i

source terms for field variables. It is called by subroutine SOURCE.

The module source term routine (e.g., FLO_;4) is passed a single _"

argument, KF, the field variable code number. The routine calculates source _'

terms from this module for the current plane (KPLN) of variable KF. il

, _i
,w..
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• For standard field variables, the codes are stored in the FIELD common

" block. For example, if KF is equal to KU2, then this is the momentum equation

•* for the U2 veloolty. Nonstandard field variables (defined through FLDDEF) can

be tested by comparing DFIELD (I, KF) vlth the field variable name.

,: The standard form of the flnlte-dlfference equation for some variable o
Isz

_' ap_p . a._. + a,_, + aw_ + a,_, + a_ r + ab_, + S
,;.

Where the a L are the finite-difference coefficients, and S is the source

term. The provision is made for the source term to be expressed as a linear

function of the variable.

S . Sc + Sp_p

-_ Two temporary field variables, SC and SP, are used for storing the source

. term, where the source term for a particular cell ist

" SC(IP) + SP(IP)*PHI(IP)

The components of the source term must be calculated for each cell and added

to SC and SP, respectively.

Source-Term Linearization for Steady Simulation. The recommended

linearization for a source term is based on a Taylor series for the source

terms
.i

s(_). s(_") + _-_ '¢- _% + ...

.,. - s(_n) - _ ' _ '

..... Therefore,

.... 6S _nsc . s(_n)_
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n . iter-1
_°

However, because the solution techniques currently used in the code de not use

pivoting, the diagonal terms must dominate for numerical accuracy. This !.

implies that Sp should be negative since it contributes to the diagonal term.
,,

If Sp is positive, numerical problems may result, i

7.7 FORCE2 SOURCE CODE FILES

Each subroutine is stored as a separate file. Common blocks are stored

in separate files and included in the subroutines via the FORTRAN INCLUDE

statement. This guarantees that the common blocks are identical in each

subroutine and facilitates modification of common block definitions. Default

values for variables in common are defined by data statements in another file.

For example, the basic FORCE2 common blocks are stored in FORCECOM, and ""

default specifications for the variables are stored in FORCEDEF. i

Module specific common blocks are stored in a separate file and included

in the module subroutines (more than one common file may be used). Default

values for data in common are specified as DATA statements in an additional

file and are included in the input module.

Single precision (adequate for steady simulations) or double precision

(recommended for transient simulations) versions of FORCE2 can be created by ..

modifying the DOUBLE and FORCECOM files. The default is a double precision

version. By modifying the declarations in DOUBLE and replacing FORCECOM (the

default) with FORCECOM.sEI, a single precision version of the code can be

created.

7.8 UTILITY ROUTINES

?

7.8.1 Transport Coefficient Calculation

Subroutine COEF calculates the finite difference coefficients for the
.l

gas and solids phase transport equations for the steady simulation.
.,,
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• Subroutine COEFT performs a similar task for the transient simulation. The

" transport coefficients are calculated for a single plane and stored in

.... temporary field variables. The offsets of these coefficient planes are stored

' in common block FCOEF.

i Both COEF and COEFT require a single argument, KF, the code number of
_._

the variable. In addition, variable KPLN (in common block FCNTRL) must be set

_ to the number of the geometric _lane being considered

7.8.2 Tilde Term Calculation

For the transient simulation, subroutine TILDE calculates the "tilde"

terms for each phase in each coordinate direction. A sweep over all Xl-planes

is performed by TILDE. At each plane, subroutines TILDXI, TILDX2 and TILDX3

are called to calculate the XI-, X2- and X3-direction tilde terms,

: respectively. These routinesare passed an argument, KF, that identifies the

_ phase velocity in the direction of interest.

7.8.3 Error Subroutine

An error subroutine is available for error handling! all error messages

'_: should be printed by the error subroutine.

!-_- Subroutine ERROR has 3 arguments8

KLEV Error levelr .

i_

1 -- Varnlng only

i-,_

I. 2 -- Noncritical error, continue

_i 3 -- Critical error! may not produce a usable run.

But corrective action has been taken, and

LI procession can continue

[_ 4 Fatal error, run cannot be made

L -109-



NCHAR Number of characters in error message

XMSG Error message ;i

___
By convention, error messages have the following format: j!_

I_ program I_-I_ message E
The first space is for carriage control, "program" is the subroutine name and

"message" Is the error message text. For example." i.,

CALL ERROR (2, 32, 32H PROPSI - Numeric value expected) _

7.8.4 Field-Variable Definition i,!_
_2

Subroutine FLDDEF is used to define new field variables. _

Subroutine FLDDEF has three arguments'

VNANE A unique four-character name for the variable. :-

Thls name is used for Input related to the '_
("

variable. _,i

VTITLE(4) A print tltle, four words of four characters each.

This title is used to identify the variable in the

printed output.
'_.

KF Output, code number for the variable. "

7.8.5 Field-Variable Access

Secondary storage is organized into planes of variables, i.e., each

record in secondary storage is a single plane of a single variable. Access to _

secondary storage is by the routine FLDGET. FLDGET reads and writes secondary

storage records into a main storage buffer (the array FV). In response to °

requests FLDGET returns offsets into the buffer (indexes in FV). The

arguments to FLDGET are: ,

L.
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KF(NV) Code numbers of the variables to be accessed.

• KA(NV) Access codes: 1-temporary, 2=read only, 3=update and

4-vrite only.

_i NV Number of variables requested.

KPLN Number of the plane requested for all variables.

JV(NV) Offsets of planes in main storage buffer (e.g., node IF

° is specified by FV(JV(N) + IP)).

Figure 7.11 shows the processing flow for storage management.

Access read.or update. When the access code specifies read or update,

FLDGET is requested to obtain plane KPLN for variable KF and return the offset

_' as JV. If the values are not changed, read-only access (2) is specified,

indicating that the data need not be rewritten on secondary storage after it

is used. If the values are changed, the update access is specified to insure

that the data is rewritten.

i Access temporary. Occasionally a routine needs some array space to

temporarily store data when it is running. Since the need is temporary, it,is

.... useful to have storage allocated only when it is needed. Therefore FLDGET

provides the ability to allocate a plane of storage for temporary use. In this

case, KF is ignored by FLDGET since no variable on secondary storage is

.... associated with the request. Nhen the program is done with temporary storage,

it is freed by calling RFREE.

Access write only. At the beginning of the program, there are no values

for the field variables on secondary storage. They must first be initialized.

Wrlte-only access is used to specify that the variable is being initialized.

Space is allocated for the variable in the buffer but nothing is read into it.

_ The variable is then written to secondary storage after it is used.

o.

Internal allocation of buffer space. When buffer space is needed to

satisfy a request, the storage management routine uses free space in the



i

TEMPORARY
REQUEST?

ALLOCATE SPACE

IN BUFFER _*i
L"

J _

NO :'_,

READ REQUESTED I _'_
DATA FROM ISECONDARY STORAGE r_,

,i

® t "
i i |1 2.;.,

I i"
RETURN OFFSET _;_

OF BUFFER

Figure 7.11. Storage management in FORCE2.- FORCE2theory. _:,._
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buffer to satisfy the request. If there is no free space, the least recently

requested record is used. If it was allocated with a ;/RITE or UPDATE request,

_i the data is written to secondary storage before it is used.

With this scheme of operation, a record cannot be expected to remain in

memory for a very long time. As a general rule, data needed by a routine is

requested each time that the routine is entered.
"4

There is another potential problem with this scheme. If a particular

calculatlon requires more data than can be held in the buffer, it will not

run. The data management routines cannot guarantee that sufficient space is

available. However, when the buffer is initialized, a check is made to insure

that a reasonable number of records can be stored in memory.

7.8.6 Page Heading

" Subroutine HEADER causes a page eject on the printer and prints a

i standard heading. It also resets the llne counter, LINCNT.

7.8.7 Input Processing

The basic input routine is INPUT. It reads an input statement, breaks

it into elements (fields) and stores the data in an array.

Subroutine INPUT. The subroutine INPUT stores its data in the arrays

XVALUE and RTYPE. In addition it sets two other values, XFLAG and NVALUE.

Varlable Contents

XFLAG An integer code, a value of 99 indicates an end of

file for the current input section.

, NVALUE Number of elements (fields) specified on the input

: s ta temen to

I,,_A

-- -113-

•._



XVALUE(I) The value of the Ith element of the input statement.

A numeric field is stored as a real number. A

character field is stored as an A4 containing the :J

first four characters.

D
XTYPE(I) An integer code indicating the type of data stored in

XVALUE (I). _

0 no data (XVALUE(I) = 0.0) -!
i

1 numeric data _._

-1 character data

CODE Equivalent to XVALUE(1)

CODEX Equivalent to XVALUE(2) =

F
_..

Subroutine INPUT has no arguments. After calling INPUT, XFLAG is

checked for 99 and treated as an end of filel otherwise, the input statement

is processed, i

7.9 VARIABLE NAME DICTIONARY "/

The commonly used variables are listed in Table 7.3. A variable name _
f

containing a lower case "n" stands for three variables, one for each ,..

coordinate direction. The actual names have the "n" replaced by a digit (1,

2, or 3) for the coordinate direction. Unless local is specified under the ;.

type column, the variable is in common. For arrays, the dimensions are

specified under type.

Since statement functions are used to reference field variables, the _.:,

statement function names are included in this list. The notation SF appears 2_

in the type column for statement functions.

k,
7.10 SUBROUTINE LIST

The subroutines which make up FORCE2 are listed in Table 7.4, which

includes a brief description of each subroutine. All subroutines are :.

i.":
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classlfled into four groups, as indicated under the function column. The four

functions groups ares input, output, calculation and utility. FORCE2
" contains some routines not listed In Table 7.4. Such routines are inactive

yet have been retained to maintain program logic. FORCE2 was derived from a

_: more general model that included heat transfer and combustion.

Table 7. I

! FORCE2 GEOMETRICVARIABLES
t_

_ Variable Contents

NX1 Number of nodes in the X1-directlon

• NX2 Number of nodes in the X2-directton

NX3 Number of nodes in the X3-dtrection

XI(NXl) Xl-face coordinates

X2(NX2) X2-face coordinates

_i X3(NX3) X3-face coordinates

Table 7.2

GEOMETRICVARIABLESFOR EACHCELL IN THE FORCE2GRID SYSTEM

Quant t ty Nam_.__e

Area of cell face normal to direction n AXn

Distance (arc length) between main nodes along
direction n DXn

= Linear interpolation factor in direction n
, (based on distance) FFn

,_, Momentum interpolation factor for velocity in
directionn (based on areas) FXn

.:: Area APn

Area x density ARn

Area x effective viscosity AVn

.:- Volume of cell VOL

:: -115-



Table 7.3

VARIABLE NAME DICTIONARY FOR FORCE2

JV

Name T__ Descrlptlon

EAPn SF Area x Permeability at lower face in direction n. !

APnP SF Area x Permeability at lower face in direction n _.

on the next plane.

ARn SP Area x Permeability x Density at lower face in

direction n.

ARnP SP Area x Permeability x Density at lower face in "
direction n on the next plane. ,_

AVn SP Area x Permeability x Viscosity at lower face in =
direction n.

AVnP SF Area x Permeability x Viscosity at lower face in :
direction n on the next plane.

CODE First field of card input (equlvalence with r
XVALUE(1)).

CODEX Second field of card input (equivalence with
XVALUE(2)).

CON SF Constant term in finite-difference equations.

CP SF Coefficient of the main node in the finite- _.
difference equations (the diagonal coefficient).

CnM , SF Coefficient of the lower node in direction n for
the finite-difference equations.

CnP SF Coefficient for the higher node in direction n for
the finite-difference equations.

CVOL SP Volume x Porosity of control volume for current .
variable.

DFIELD (5,MFV) Dictionary for solution field variables.
t"

DPROP (5,MPROP) Dictionary for properties. !/

DXn SF Distance bet_een main node and lower node in
direction n _/

DXnP SF Distance between main node and lower node in

direction I on the next plane.

(,;
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- Table 7.3
VARIABLE NAME DICTIONARY FOR FORCE2

._ EPSG Gas resldual solution tolerance for transient
solution.

FFn SF Interpolation factor for computing main node
values at faces. The ratio of the distance from

'_ the high node to the face and the distance from
": node to node.

FFnP • SF Same as FFn but in the next plane.

FV (MWORD) Field variable storage in primary memory, only the
-4 values currently in use are stored in PV.

' FXn SF Interpolation factor for momentum control volume.

"i FXnP SF Same as FXn but in the next plane.

IP Local Index of a point in a plane.

IPO Local First value for IP in a DO loop.

IP1 Local Last value for IP in a DO loop.

IPREF Node within plane KPREF associated with the
reference pressure.

T
ITER Current iteration counter. During a run, ITER

• goes from I to MITER.

.... ITRYX Micro iteration counter for transient solution.

ITRYMX Maximum micro iterations at a node for transient

,- solution.

.... Jxxx Offset in FV for xxx.

JCON Offset in FV for CON.

...._ JCP Offset in FV for CP.

JCnM Offset in FV for CnM.

JCnP Offset in FV for CnP.

JCVOL Offset in FV for CVOL

JRES Offset in FV for RES.
P

L JSC Offset in FV for SC.

E JSP Offset in FV for SP.

L



Table 7.3 _"
VARIABLE NAME DICTIONARY FOR FORCE2

JV Local Offsets returned by FLDGET for planes retrieved. ,.

JnM Offset in a plane of the lower node in direction n
(e.g., for node IP the lower node in direction 2 r_

is IP+J2M) _

JnP Offset in a plane of the higher node in direction

n (see JnM). if!

KAPn Code number for APn. ,.

KARn Code number for ARn.

KAVn Code number for AVn.

KAXn Code number for AXn. _"

FAn Local Array of access codes passed to FLDGET for
allocating planes.

?,BASE Base for solution variable code numbers (e.g., RHO ....
is solution variable KRHO-KBASE).

KDXn Code number for DXn.
,p

KFn Local Array of code numbers passed to FLDGET for
allocating planes.

KFFn Code number for FFn.

KFV (MFV) Array containing I/O record numbers for each field
variable (e.g., the I/0 number for RHO is
KFV(_O) ).

KPXn Code number for FXn. •

KP Code number for pressure, P. L

KPHASE Phase identifier, 1 (gas), 2 (solids).

KPH Local Same as KPHASE. "'

KPLN Number of current plane. _,

KPREF Number of the plane containing the reference
pressure node. "

KPEEST Restart parameter. '"

KPRTD Debug print parameter.

KPRTF (MSV) Solution variable print parameters.
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Table 7.3
VARIABLENAMEDICTIONARYFOR FORCE2

- KPRTG Geometry print parameter.

- KPRTP Properties print parameter.

i: KPRTg Print width, number of values per line.

KPRTX Filler parameter, unused.

KPSAVE Restart save parameter.

KPSTAT Print control for subroutine calls and file I/O
" statistics.

KRNO (3) Code number for density, RHO.

KUn (2) Coda number for velocity, Un.

KVISC (2) Code number for viscosity, VlSC.

KVOL Coda number for volume, VOL.

KX Code number for cartesian X coordinate.

KY Code number for cartesian Y coordinate. ,

.- I(Z Code number for cartesian Z coordinate.

" LINCNT Print line counter.

LINMAX Maximumnumber of lines per page.

MPV Maximum number of field variables.

MITER Number of iterations to be performed for this run.

MPROP Maximum number of properties.

.. MVALUE Maximum number of fields per input card.

M_ORD Number of words of buffer storage in array FV.

MXn Maximum number of nodes in direction n.

NFV Number of field variable stored on secondary
storage.

. NGEOM Code number for type of geometry.

- NIT Macro iteration counter for transient solution.

NITER Total number of iterations.

r
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Table 7.3
VARIABLE NAME DICTIONARY FOR FORCE2

NLINE Input llne number. _ii

NITMAX Maximum macro iterations at a timestep for the
transient solution. ,_,

NP Number of nodes per plane.

NPRI0 (3) Rank of flow directions as to predominance of flow _,
in that direction.

NPROP Number of properties, i'_

NSTEPS Total number of timesteps for this run.
p

NSTEPT Total number of timesteps for this problem.
L

NSV Number of solution variables.

NVALUB Number of fields on previous input card.

NXn Number of nodes in direction n.

P SF Local pressure.

PDELTA The local pressure at the reference pressure node.

PM 8F Local pressure on next lover plane. "_

PP SF Local pressure on next higher plane, i_

PREF Reference pressure level (the pressure at any node
is the sum of the reference pressure and the local _

pressure).

PRHO Nominal density. _

PTIMB Problem time.

PVISC Nominal viscosity.

RELAX (MSV) Under-relaxation factors for solution variables.

RELAXI (MSV) Inertial-relaxation factor for solution variables. _

RBS SF Cell residuals, updated by solve each time it is
called.

!

RHO SF Density.

RNDATE (3) Current date, used in print heading. _'

RSAVG (MSV) Average absolute residual for each solution
variable, p
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- Table 7.3
VARIABLE NAME DICTIONARY FOR PORCE2

RBMAX (MSV) Maximumabsolute residual for each solution
variable.

SC SF External source-term constant.
m_

: SP SF External source-term coefficient of the current
variable.

TILnG SF Tilde term for Ea8 momentum equation in direction
_ no

" TILnS SF Tilde term for solids momentum equation in
direction n.

.._ TSTEP Problem timestep.

. TITLE (20) Problem title from tnpuC.

Un SP Velocity in direction n.

UnG SF Eas velocity in direction n.

UnM SF Velocity in direction n on the next lover plane.

UnP SP Velocity in direction n on the next higher plane.

UnS BP Solids velocity in direction n.

VlSC SF Viscosity.

VOL SP Volume of main control volume.

- VOP_ (500) Vork array used by utility routines.

XFLAG Code for end of paragraph and end of file form
routine input.

XTYPE (MVALUE) Type of input filed in corresponding element in
XVALUEtl=number, -l=alpha, O.unspecifted.

XVALUE (MVALUE) Value of input field, either numeric or
- alphabetical, depending on content.

Xn (MXn) Face coordinates in direction n.

,.Q
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Table 7.4 "-

SUBROUTINESIN FORCE2 F

Routine Functlon Description

ANLRES Calculation implements ANL distributed resistance model for a
tube bundle.

BANNER Output Prints output banner, ii

BLKSgT Utility Initializes a specified range of a field varlable.

BOUN2T Calculation Adjusts tilde terms to account for yell boundary _
conditions.

BOUND Calculatlon Calculates exit-plane boundary conditions.

BOUND1 Calculation Performs setup calculations for blockage logic.

BOUND2 Calculation Adjusts finite-difference coefficients to account
vall boundary conditions. "

BOUNT Calculation Sets boundary conditions for transient solution.

CNDIFT Calculation Calculates convection and diffusion in a single
direction for the tilde term. _'

t

CNTRLO Input Restart input paragraph interpretation routine. "

CNTRL1 Input Control input paragraph interpretation routine.

CNTRL2 Control Controls overall calculation sequence.

CNTRL3 Output Control output routine.

COEF Calculation Finite difference equation coefficient calculation.

CONDIF Calculation Calculates convection and diffusion in a single
coordinate direction.

COEFT Calculation Finite difference equation coefficient calculation
for the tilde term. COEFT calls CNDIFT.

COEFV Calculation Relaxes the steady finite difference equation for '
void fraction as described in section 4.4.2.

CONFAC Calculation Calculates upwind factor based on input velocity :

CORRCT Calculation Corrects velocity and pressure after solution of
pressure equation in the steady solution method.
CORRCT performs step No. 7, section 6.2.

CTDMA2 Calculation Coupled trtdtagonal matrix solver
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Table 7.4
SUBROUTINES IN FORCE2

- Routlne Functlo_._ n VescriPtlOn

- CTIMER Utility Accumulates number of calls and cpu time for each
subroutine which calls it.

; DENSO Calculation User routine to calculate phase microscopic
density.

DRAG Calculation Calculates drag coefficient for gas-solids flow
based on Main Control volume parameters.

DRAGSP Calculation Calculates drag coefficients for momentum
. equations. DPAGSP is used for both transient and

steady solutions and calls DRAG extensively.

EROSWR Output Wrltes hydrodynamic predictions to Unit 71 for
subsequent input to the ANL erosion model. EROSWII
is called only during a transient solution.

ERROR Utility Error message output routine.

FIND Utility General linear interpolation routine.

; FINIT Utility Random access file I/0 initialization routine
(system dependent).

FLDDEF Utility Field variable creation routine.

FLDGET Utility Field variable allocation routine.

FLDSET Utility Field variable initialization routine.

FLDEV1 Input Distributed resistance input routine.

FLDEV2 Calculation Performs setup calculations for the distributed
resistance modelling.

PLDEV3 Output Output routine for distributed resistance
modelling.

FLDEV4 Calculation Calculates distributed resistance parameter for
finite difference equations.

FLOFLG Input Input routine for cell flow flags.

FLOW1 Input Input routine for flow solution.

FLOW2 Control Manages overall flow solution for the steady
:- simulation.

• FLOW2T Control Manages overall flow solution for the transient
simulation.
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Table 7.4
SUBROUTINES IN FORCE2

Routine Function Descripti?n _

FLOW3 Output Output routine for flow solution parameters _• _'

C

FLOW4 Calculatlon Calculates flow source terms for steady solutlon.

FLOW5 Calculation Adjusts finite difference equations for flow _:_
blockages in steady solution _

FLOW5T Calculation Adjusts tilde terms for flow blockages. -

FLOWEX Calculation Adjusts exit velocity profile for steady solution. _'
FLOWEX performs step No. 9 pf the steady solution
sequence, section 6.2.

FORCE2 Control Haln program, controls all processing.

FREED Utility Random access file I/O input routine (system _
dependent). _

F_TRITB Utility Random access file I/O output routine (system "
dependent). _

GAMAS Input Input routine for permeabilities and porosities.

GEOMI Input Geometry paragraph interpretation routine.

GEOM2 Input Calculates geometric quantities (AXn, DXn, FXn, _
FFn, VOL, etc.). !i

GEOM3 Output Geometric output. _

GEOM5 Calculation Adjusts finite difference equations for geometric
boundaries.

GEOM5T Calculation Adjusts tilde terms for geometric boundaries.

GETFUN Control Initializes commons with field variable numbers
that are frequently used in various calculatioflal "_
routines. /:

HEADER Utility Produces output page break and resets llne counter. _.

INITL1 Calculation Initializes pressure distribution based on minimum "
fluldization condition•

INITL Input Initialization paragraph interpretation routine• _

INPUT Utility Reads and input card and converts fields to array
of values for interpretation by calling routine, i_

INITLS Calculation Calculates solidsmass for initial run of problem.
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Table 7.4
:_ SUBROUTINES IN FORCE2

_i_ R?utine Function Description

.... INTFLI Control Manages temporal integration of certain field
variables.

_ INTFL2 Calculation Performs temporal integration and stores result.

MODSMP Control Manages flow and void solution in for steady
'; simulation This routine performs steps 3-8 of the
.... steady solution sequence, section 6.2.

_! POSTA Output Writes all field variables to Unit 69 for
/ subsequent use with the FORCE2 graphical post

processor.

.,i POSTT Output Writes tlmewlse data to Unit 70 for subsequent use
:_ wlth the FORCE2 graphical post processor.
..,

PRCOEF Calculation Calculates finite difference coefficients for the
_; steady pressure correction equation, performed in

Step 6 of the steady solution sequence, section
6.2.

PRESSI Input Input routine for steady pressure solution•

'_ PRIMET Calculation Pressure correction routine for transient solution.

PRINT Control Printed output driver

PRINTD Utility Prints coefficients, residuals and variables for
_ debug purposes.

PRINTF Utility Prints a single field variable.

PRINTR Utility Print maximum and average residuals for each field
.... variable.

,_ PROPSI Input Properties input paragraph interpretation routine.

.... PROPS2 Calculation Controls phase properties calculations.

' PROPS3 Output Properties output other than field variables.

::_ PROP2T Calculation Calculates macroscopic phase densities and
viscosities for the transient solution.

_ PROPCT Calculation Calculates microscopic phase densities and
'_ viscosities.

_J

PROPS2U Calculation Calculates Area X Density and Area X Viscosity
!'i parameters on faces of Main Control Volume based on
,, upwind values for properties.
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Table 7.4
SUBROUTINES IN FORCE2

Routine Function Description _

PRSOLV Calculation Solves finite difference equations over flow domain _

uslnE trldlagonal matrix approach. The pressure __correction and gas void equations are solved in
PRSOLV.

RESIDG Calculation Calculates gas mass residual at a cell for the _i
transient solution.

RESTRT Input Field variable restart input and output.

RFREE Utility Secondary storage - free a record.

RGET Utility Secondary storage - get a record. !

RINIT Utility Secondary storage initialization.

RPRINT Output Radiation module special print routine. _

RSTAT Utility Secondary storage statistics output.
.,'

SETUP Input Calculates geometric control parameters and "_
initializes secondary storage.

SOURCE Calculation External source term calculation via module source _
term routines.

SMPINI Calculation Sets up arrays for direct solution method used for ii
steady simulation. _:

SOLSTR Calculation Calculates the solid stress source terms for the _

steady solution.

SOURCT Calculation Calculates source terms and distributed loss i
coefficients for the transient solution.

TDMA Calculation Trldlagonal matrix solver.
_,.

TILDE Control Manages calculation of tilde terms.

TILDXI Calculation Calculates tilde terms in the XI-Directlon. 7

TILDX2 Calculation Calculates tilde terms in the X2-Directlon. _L

TILDX3 Calculation Calculates tilde terms in the X3-Directlon. i_

TRNINI Calculation Sets up arrays to store operating conditions during
a transient simulation. Arrays are used to restore

conditions at an earlier time if convergence i
problems arise with transient method.

!
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Table 7.4
SUBROUTINES IN FORCE2

Routine Function Description

TRNSTR Calculation Periodically stores operating conditions during a
._ transient slmulatlon.

UEST Calculation Performs point solutlon of steady momentum
equations. Check for solids flow out of a Main

_ Control volume that may not contain any solids.

.... UHATSM Calculation Calculates trial velocities for steady momentum
_ equations, parts of Steps 3, 4, and 5 of the steady

solution sequence, section 6.2.

USRRES Calculation Routine to be developed by the User to calculate
- distributed loss coefficients.

USTAR Calculation Momentum equation setup for steady solution.

USTART Control Manages the solution of the momentum and gas void
equations at a single node for the transient
solution method.

VELCOEF Calculation Calculates momentum equation residuals, relaxes the
equations, and calculates the final finite
difference equation coefficients prior to their
solution for a steady simulation.

VELS Control Manages the solution for velocities on the faces of
,: a Main Control volume during the transient

solution.

VELSX1 Calculation Calculates phase velocities on the Xl-faces of a
Main Control volume during the transient solution.

VELSX2 Calculation Calculates phase velocities on the X2-faces of a
Main Control volume during the transient solution.

VELSX3 Calculation Calculates phase velocities on the X3-faces of a
Main Control volume during the transient solution.

VFCOEF Calculation Calculates the void equation residual, relaxes the
equation, and calculates the final finite

:._ difference equation coefficients prior to their
solution for a steady simulation

VFMOD Calculatioh Modifies steady void based on global solids
_' continuity, Step 8 of the steady solution sequence,

section 6.2.

VFRACS Calculation Calculates finite difference coefficients for the

steady void equations.



Table 7.4
SUBROUTINES IN FORCE2

Routine Function Descripti0n

VFRACT Calculation Calculates the gas void fraction in a Main Control

volume during the transient solution.

VISCO Calculation Routine to be developed by the User to calculate
phase microscopic viscosity.

L

&.,,
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Appendix A

COUPLED TRI-DIAGONAL MATRIX SOLVER

The gas and solids momentum equations are solved simultaneously along

lines using a coupled tri-diagonal matrix algorithm (CTDMA, Fortino 1989).
/

_ The formulation of this method is given in this appendix.

_, The coupled momentum equations may be expressed, along a J-line, ast
,/

where J indicates a node along the line and the variables _ and _ represent

velocities in the current application.

l_e assume a solution of the form:

and will develop recursive relations for the F's, G's and H's.

Equations A-3 and A-4 are combined to give,

where

.. Ul_ = (GIj + FIj . G2j)/Dj

-- HI_ - Hlj/Dj

A-I



_h,e

_I_. rlj • s2jlDj L
m

a2_. (a2j . nj . Glj)/Dj . _L

.,;..,j/D_ [
F2; = F2j • AljlDj

D1 VlI . nj _= 1.0- , ,_

Also from Equations A-5 and A-6, ve get

Equations A-7 and A-8 are used to eliminate _.j-1 and _J"l from Equation
A-I. By comparin8 this equation to Bquatlon A-3, the folloving expressions

for F1, G1 and B1 =ay be dert veds :.

Flj = (Clj + Blj . Flj. 1 . B2_.I)/D1 j _"

Glj = (Sl I + Blj . (]11.1 + Blj . Flj. 1 • G2_.1)/D1 j '

Elj = Plj/Dlj

mj. Plj - Blj • (.lj_ 1 + eli. 1 • F2__1) '

The same is done using Equation A-2 to define F2, G2 and H2 as follovsz

F2j = (C2j + B2j • F2j.I . HI;_I)/D2j il

G2j.(s2:l+ B21• G2j.I +B2:I. F2:1_I• GI_'_I)/D2.1 i
t_

A-2



H2j . P2j/D2j

-_ D2j - P2j - B2j(H2j. 1 + F2j. i , Fl_. 1)

_L

": The F's, G's and ll,s at node j are nov defined In terms of knovn coefficients

in Equations A-1 and A-2 and in terms of the F's, G's and II's at node J-1.

. The solutlon is then developed as follovs,

_s Define f's, G's and It's at J=l

At the first node, Equations A-! and A-2 are used to define the F'et O's

_ and H's as follovss

G11 - Sll/P11

_ 811 - All/P11

,i F11 1 Cll/P11

"' G21 = $211P21

.. H21 = A211P21

F21 = C21/P21

: _s Define F's, G's and It's from J=2 to J.N

_- Using the recursive relation for the F's, G's and H's at node J in terms

of their values at node J-l, the Fes, Gee and Has are defined along the line

to node N, the last node.

Step 3 s Solve for _q and _N

t At the last node, Equations A-3 and A-4 become:

!', N" GI, F1N . N
i

I_ A-3

L



q_

%. a_.+F2..% _

These are solved simultaneously to give

f
_I " (G1N + F1N ' G2N)iDN

_I " (G2N + F2N " G1N)/DN
i

_s Solve for +:} and ,j from J-N-1 to 1-1 r
i.

Equations A-3 and A-4 are now used to solve gor OJ and Oj.
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