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Introduction

In a large-eddy simulation (LES) of turbulent
flows, the large-scale motion is calculated explicitly
(i.e., resolved) and the small-scale motion is
modeled (i.e., approximated with semi-empirical
relations). Typically, finite difference or spectral
numerical schemes are used to generate an LES; the
use of finite element methods (FEM) has been far
less prominent.

Only three publications were found in the open
literature where an LES was computed using FEM
(Kondo et al., 1986, Findikakis et al., 1978, and
Findikakis and Street, 1980). Kondo et al. (1986)
successfully simulated the coupled fluid/structure
problem of turbulent flow past an elastic shell.
Findikakis et al. (1978) and Findikakis and Street
(1980) simulated turbulent stratified flows with a
free surface representing flow in reservoirs, lakes,
or estuaries.

In this study, we demonstrate that FEM in
combination with LES provides a viable tool for the
study of turbulent, separating channel flows,
specifically the flow over a two-dimensional
backward-facing step. The combination of these
methodologies brings together the advantages of
each: LES provides a high degree of accuracy with a
minimum of empiricism for turbulence modeling
and FEM provides a robust way to simulate flow in
very complex domains of practical interest. Such a
combination should prove very valuable to the
engineering community.

Governing Equations
The LES averaging of the instantaneous velocity

for all the turbulent motions, u,, filters out the
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small-scale motions, u'a, and results in the
instantaneous velocity for only the large-scale

motions, u,, such that u, =u, +u,. The overbar
represents a filtering operator (Kwak et al., 1975).
The small-scale motions which are modeled are
referred to as the subgrid-scale (SGS) motion or
residual field.
For a finite domain, the resolved field can be
defined by cell volume-averaging;
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where A = (Ax,Ax,Ax, )% is the filter size.
The filtered incompressible Navier-Stokes
equations are
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The terms C,4 and R, in (4), representing the
small-scale motion, are the nonclosed terms that

must be modeled by using what is typically called
an SGS model. Following, e.g., Deardorff (1970),

we make the simplification here that C_4 =0, and
thus, only R,; remains to be modeled. The term

L., can be solved explicitly. For the numerical

approached used here (i.e., one-point Gaussian
quadrature and cell volume-averaging over an

element) we have L, = 0 (McCallen, 1993).
The weak forms obtained via (2) and (3) for the
domain2 ars
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where w and v are appropriate sets of test functions.
Integrating the stress term in (6) by parts and
applying the divergence theorem, we arrive at the
final weak form

ou __du du_ v
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where f, =n,T,, is the (user-supplied) natural
boundary condition, JQ is the boundary surface,
and n, is the surface outward normal in the -

direction. In this formulation, the natural boundary
condition includes the small-scale motion.

The velocity components u_ and pressure P are
expanded into the appropriate basis functions ¢,
and y; as follows:
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where N is the total number of velocity basis
functions and M is the total number of pressure

)

basis functions. The superscript h signifies that

—h =k . .
u, and P are the approximate weak solutions on

a discretization of the computational domain (with
characteristic element size h). These approximate
solutions are defined continuously at all points in
the flow field, not just at discrete points as with
finite difference schemes. The basis functions
define the spatial variation of the solutions.
Substituting the expansions (8) and (9) into (5)

and (7) and setting v=¢, and w=y, (i.e., the
Galerkin finite element method), we have
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where summation over j and & is now implied. The
form of the nonclosed SGS terms depends on the
SGS model.

Subgrid-Scale Model

For the initial demonstration, we considered
only two-dimensional problems to reduce the
computational resources required for the study.
Thus, we formulated the continuous model
equations using two-dimensional turbulence theory.
The vorticity model developed by Leith (1969) for
two-dimensional LES was employed for the SGS
model.

Following Smagorinsky (1963), we set

R,p = Uglty =8 gl ll, =205 5 (12)
where
1( 9w, 9%
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and v, is the eddy viscosity coefficient. Leith

(1969) developed a vorticity relation for v in two
dimensions which accounts for the -3 power
spectrum and the enstrophy cascade to small scales
in two-dimensional simulations. (Enstrophy is
defined as one-half the square of the vorticity,

®*[2.) Using dimensional analysis coupled with
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Smagorinsky's procedure, Leith (1969) shows that
if the truncation wave number k. lies within a -3
power spectrum, the eddy viscosity coefficient is
proportional to k.* (or A%). The derived vorticity
relation for the eddy viscosity coefficient is

v_=(c A)[Va (13)

where V@ is defined by Leith (1969) as "the finite
difference approximation to the vorticity gradient”
and ¢y is a constant.

In two dimensions, where the resolved or large-

scale vorticity is @ = o, _ 9% , we have
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Numerical Method
The discretized continuity and momentum
equations (10) and (11) can be written in matrix
form
C'u=0 (15)
Mu+[K+NG@Ju+CP=F (16)

where u is the nodal velocity vector, P is the
pressure vector, and in three-dimensional space,

after substituting the SGS model,
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where v! for the two-dimensional case is the eddy
viscosity defined by the vorticity model (13) with
the expansion (8) substituted for the velocites.

In the current study, the discrete Poisson
equation for pressure is solved in place of the
continuity equation (15), so that continuity and
momentum are decoupled and an explicit time-
integration scheme is used. The discrete Poisson
equation for pressure is an approximation of the
continuous Poisson equation. The continuous
Poisson equation is derived by taking the
divergence of the momentum equation and applying
the continuity equation,V-@& =0. The analogous
discrete Poisson equation isderived by multiplying
the matrix form of the momentum equation (16) by
CT M-!, and since and d CT & / d1=0, we obtain
C'™M*CP=C"M"[(K+N®)) & -F] (17
where the coefficient matrix CTM-1C is a discrete
approximation of the Laplacian operator. Thus, the
final spatially discretized equations in matrix form
are (16) and (17).

To reduce computational cost, a lumped mass
matrix M is employed and the coefficient matrices
are generated using reduced order integration based
on one-point Gaussian quadrature. The coefficient
calculations are performed at the element level using
isoparametric quadrilateral elements with bi-linear
basis functions for the velocity expansion and
piecewise-constant basis functions for the pressure
expansion. The element contributions are then
added to form the global matrices using standard

-3-



FEM assembly techniques. The pressure Poisson
equation (17) is solved directly with a skyline solver
(one back substitution per time step of the
previously factored matrix) and an explicit forward
Euler time integration scheme is used for the
velocity solution.

Balancing tensor diffusivity (BTD) is a
technique for applying an additive diffusivity
(correction) to the diffusion matrix which balances
the negative diffusion caused by the explicit Euler
time integration (Gresho et al.,, 1984). This
correction is applied at the element level at each time
step.

When one-point quadrature is used, zero energy
modes may be present (Gresho et al., 1984). These
zero energy modes are undiffused 'waves' that are
null vectors of the diffusion matrix. In two
dimensions, there is one 2Ax by 24y wave, which
has alternating nodal values of +1. To insure
diffusion of these waves, an hour-glass correction
matrix is added to the one-point quadrature
diffusion matrix (Goudreau and Hallquist, 1982 and
Gresho et al., 1984).

The solution of the advection term n (u) can be

expensive because of the integration of a triple
product. To reduce the triple product to a double
product, Gresho et al. (1984) suggest a
simplification using what they term a 'centroid
advection velocity’, in which, at the element level

—t Ny ]
u = u (1)‘k
Po 1ad Pet] i of Q

where N is the number of nodes per element. We
employ this simplification in (16) and (17).

Boundary Conditions

To simulate the wall region ‘exactly’ requires
the specification of a no-slip boundary condition,
very fine discretization of the region, and the
equations of motion must account for the low
Reynolds-number flow close to the wall (e.g., the
SGS stresses should asymptotically go to zero at the
wall). The Stanford group (Moin et al., 1978,
Moin and Kim, 1981, Spalart, 1988) have
simulated wall regions as accurately as possible for
simple (nonseparating) flows. However, most
researchers applying LES to more complicated
geometries utilize wall models (artificial boundary
conditions) to represent the physics in the region
close to the wall (Deardorff 1970, Schumann 1975,
Mason and Callen 1986). This is usually done by
setting the instantaneous stress at the wall
proportional to the tangential velocity at the first grid
point away from the wall. The coefficient of

proportionality can be described by either a
logarithmic, power, or linear law-of-the-wall
relation depending on the type of flow simulation
and location of the first grid point relative to the
wall. The normal velocity component at the wall is
set to zero. With LES, the approximate boundary
conditions must be applied everywhere on a plane
surface parallel to the wall and are time dependent.

Piomelli et al. (1987) has provided a detailed
review of wall models used in LES's by past
researchers for nonseparating flows. However, for
high Reynolds-number flows with separation, the
results of past research do not provide guidance or
consensus on wall modeling. The commonly used
law-of-the-wall approximations are accurately
known only for two-dimensional geometries and
then only for steady attached flows. For example,
Ruderich and Fernholz (1986) have shown that for
flows with separation, reverse flow, and
reattachment, the near-wall flow does not follow a
logarithmic law-of-the-wall. Reynolds (1989) also
states that assuming that the law-of-the-wall is
satisfied instantaneously 1is 'an unlikely
assumption'.

A plausible option is to use the LES approach all
the way to the wall without resolving the wall

- region. In other words, an SGS model is used even

for the elements in the wall region. This implies
that the small-scale motion at the wall (i.e., motion
that is smaller than the resolved scale) is the same
as, or at least similar to, the small-scale motion
away from the wall. This seems to be a reasonable
assumption, especially for the shedding vortices of
a backward-facing step, where the wall region and
the core flow are similar (i.e., the grid-size eddies at
the walls are similar to eddies away from the walls).

It is clear from the above brief review that the
use of wall models for separated flows in
conjunction with the LES approach is still under
development. In the current work, it would be
preferable to resolve the wall region, but this would
require excessive computer resources. Instead, the
above described approach of using the SGS model
also in the wall region is utilized in the current
work.

Results

Our test bed problem was the two-dimensional,
backward-facing step problem at a Reynolds
number of 10,000 (based on the inlet velocity and
two times the inlet channel height). The problem
geometry was a channel of unit height with a step
height of 0.5 and a total channel length of 10.0
channel heights. The computational domain begins
at the step with a nearly flat inflow velocity profile
of 1.0 specified at the step. The boundary
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conditions used were no-penetration and no-slip at
the walls, and homogeneous natural boundary
conditions at the outflow. The vorticity model

constant ¢_ = (0.1)* =0.2154. (The value 0.1 is

typically used for the Smagorinsky SGS model
constant ¢ for three-dimensional simulations, and

we appropriately set cm=(r:)2’3 (Findikakis,

1980)).
Because we have chosen a two-dimensional

problem where u =0 and J[dx,=0 by

construction, it is impossible to compare our
numerical results to experimental results which are
three-dimensional with significant velocities and
gradients in the third dimension. Therefore, in
order to validate our results for this numerical
experiment, we first completed a direct numerical
simulation (DNS) of the test problem using the
Navier-Stokes portion of the same code (i.e.,

omitting the ch term in (11)). A series of mesh

refinement studies showed that a simulation using a
uniform 100x1000 element mesh and a time step of
0.005 resolves virtually all relevant scales.

The DNS showed a complicated time-varying
flow with vortices shedding off both the step and
top wall and propagating downstream. The
simulation went through a transient and then
developed a periodic solution which we used for
verification of the LES results. We believe that the
periodic solution was a result, in part, of not
perturbing the inflow velocity field.

The DNS should be filtered (i.e., cell volume-
averaged) for comparison to the LES. However,
we found that the filtered DNS varied only slightly
from the unfiltered DNS (McCallen, 1993). Thus,
in the current study the DNS was directly compared
to the LES.

Although we have obtained LES results on a
number of different mesh densities and
configurations (McCallen, 1993), we will report the
results obtained on a 32x244 element graded mesh.
This mesh was uniform in the core of the flow and
graded in the wall regions. A 6 to 1 mesh grading
was used for the 6 elements closest to the walls. To
demonstrate the ability of LES to represent the
large-scale phenomena, we present in Fig. 1 a series
of snapshots of the stream function from both the
LES and the DNS over one shedding period. A
comparison of these figures illustrates that the LES
captures the vortex shedding off both the step and
the upper wall with great fidelity. The downstream
propagation of the vortices is also well represented.
The propagation speed in the LES simulation is only
1% higher than that in the DNS. We have also

examined velocity time histories for several nodes.
While the small-scale details of the behavior at a
single point in the flow field are not particularly well
represented (Figs. 2 and 3), the large-scale features
are represented well. For example, at

(x,,x,) = (2.0,0.25) the oscillation period of #, for

the LES is within 1% of the DNS period. Also,
power spectra calculated from these time histories
show that LES is predicting the correct dominant
frequencies (Figs. 4 and 5).

A profile plot at one snapshot in time (Fig. 6)
shows the variation of v; in the cross-stream
direction. Corresponding profile plots of vorticity
for the same snapshot in time are shown in Fig. 7.
The magnitude of v, is less than three times the
molecular viscosity, v. These results also indicate
that the SGS model contribution is the same order
of magnitude as the molecular diffusion term.

The velocity profiles near the channel outlet for
a snapshot in time (Fig. 8) are smooth in the cross-
stream direction and vary smoothly as we move
upstream. This implies that the zero natural
boundary condition at the channel outlet is a useful
outlet condition. The natural boundary condition is
defined by our equation formulation, and in our
formalation, it includes the SGS motion (see
equations {4) and (7)).

In addition to the analysis of the transient
results, we also compared time-averaged results for
the reattachment length of the major recirculation
zone. The reattachment length for the DNS was 3.4
step heights while the LES results gave a length of
3.1 step heights, or 9% shorter. The reattachment
lengths for these two-dimensional simulations are
not expected to compare with experimental results
which are inherently three-dimensional. The LES

time-averaged E: velocity at selected locations are

shown in Fig. 9 along with the associated
streamline plot for the time-averaged velocity.

To clearly show the improvement in the solution
by the addition of the SGS model, we next present
results for the 32x244 mesh without the SGS model
(i.e., a direct numerical simulation). The time
histories in Figs. 10 and 11 show that the DNS with
the 32x244 mesh are not periodic and do not
compare well to the DNS with a 100x1000 mesh.
Also, the predicted velocities for the DNS with the
32x244 mesh showed wiggles in the wall region
whereas wiggles were not present when the SGS
model was used with the same mesh. Therefore,
even though the SGS model contribution is small

(i.e., the v, values are comparable in magnitude to
the molecular viscosity), it successfully stabilizes
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the calculations and provides an accurate solution at
a significant reduction in computational effort.

Conclusions

These results show that the LES/FEM approach
to simulating turbulent flows around complex
geometries has potential as an efficient and effective
method. For the case presented here the
combination of LES with FEM and a graded mesh
produced an accurate simulation of the large-scale
flow using only 7,808 elements in comparison to
100,000 elements needed for the DNS. While this
work must be extended to more complex problems
and to three-dimensions before a final judgment can
be made, we feel that LES/FEM shows great
promise as a tool for analyzing turbulent flows in
complex geometry.
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LES with 32 x 244 Mesh Direct Numerical Simulation

Fig. 1. Time series of stream function plots for the LES and DS. (One period is shown for the same
specified stream function levels for each case at 0, 1/6, 2/6, 3/6, 4/6, and 5/6 of a DNS period.)
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ordinate axis are shown.)
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