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Introduction

In a large-eddy simulation (LES)of turbulent small-scale motions, u_, and results in the
flows, the large-scale motion is calculated explicitly
(i.e., resolved) and the small-scale motion is instantaneous_ velocity for _°nly .the large-scale
modeled (i.e., appro=imated with semi-empirical motions, ua, such that ua = ua + ua. The overbar
relations). Typically, finite difference or spectral represents a filtering operator (Kwak et al., 1975).
numerical schemes are used to generate an LES; the The small-scale motions which are modeled are
use of finite element methods (FEM) has been far referred to as the subgrid-scale (SGS) motion or
less prominent, residual field.

Only three publications were found in the open For a finite domain, the resolved field can be
literature where an LES was computed using FEM defined by cell volume-averaging,
(Kondo et al., 1986, Findikakis et al., 1978, and _ _ ,1 r_+--'Azt rzz+-_6-zz rx3+-'-_'z3 . •
Findikakis and Street, 1980). Kondo et al. (1986) _'_(x,t) =-:/ ? / ? / z ua(x,t)d x (1)
successfully simulated the coupled fluid/structure - A "I-_,',, _, ,_,-_a_, - -

problem of turbulent flow past an elastic shell, where A = (Ax_Ax_Ax3)H is the filter size.Findikakis et al. (1978) and Findikakis and Street
The filtered incompressible Navier-Stokes(1980) simulated turbulent stratified flows with a

free surface representing flow in reservoirs, lakes, equations are

: or estuaries. 0_', = 0 (2)
In this Study, we demonstrate that FEM in 3x a

combination with LES provides a viable tool for the

study of turbulent, separating channel flows, B_'_ --du: _9"_'_
specifically the flow over a two-dimensional o_ +u#-_p =--_ (3)backward-facing step. The combination of these
methodologies brings together the advantages of where the pseudo stress__term I is
each: LES provides a high degree of accuracy with a _gu

minimum of empi_cism for turbulence modeling _ = -P_,_ + _ -(L,_ +C,,t3+ R,_) (4)
and FEM provides a robust way to simulate flow in v°_
very complex domains of practical interest. Such a and

combination should prove very valuable to the _+1engineering community. _ = p _ u u
p 3,_rr

Governing Equations
The LES averaging of the instantaneous velocity /

for all the turbulent motions, u_, filters out the INeed v[a_/OXo+ 3_./3x | forcorrect/true_,_ous
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basis functions. The superscript h signifies that
up-u.u# _,ua and aretheapproximateweaksolutionson

C,¢ - u'. _ + _ u', a discretization of the computational domain (with
characteristic element size h). These approximate

R,_ = u_p- . solutions are defined continuously at all points in
the flow field, not just at discrete points as with

The terms C,p and R_ in (4), representing the finite difference schemes. The basis functions
small-scale motion, are the nonclosed terms that define the spatial variation of the solutions.
must be modeled by using what is typically called Substituting the expansions (8) and (9) into (5)
an SGS model. Following, e.g., Deardorff (1970), and (7) and setting v = ¢_ and w = V_ (i.e., the
we make the simplification here that Ca# = 0, and Galerldn finite element method), we have

thus, only R,¢ remains to be modeled. The term (¢ BO,_-..j

L_ can be solved explicitly. For the numerical LJ V_-':'z"lU,,o3x,,j-,=0 (10)
approached used here (i.e., one-point Gaussian

quadrature and cell volume-averaging over an (! /O_" (_..kl _u_'
element)we haveL,#= 0 (McCaIlen,1993). ¢_¢j"_ + # ¢_¢k

The weak forms obtained via (2) and (3) for the n

- v-- = 0 (6)

wherew andv areappropriatesetsoftestfunctions.
Integratingthe stressterm in(6)by partsand wheresummationoverjandkisnow implied.The
applyingthedivergencetheorem,we arriveatthe formofthenonclosedSGS termsdependson the
finalweakform SGS model.

![ (_ _du_ ( Ou _o,xp)o'xp _l_-p] Subgrid-Scale Model
v For, oanita, omonaoowoco s  ere

J (7) only two-dimensional problems to reduce the
computational resources required for the study.

= f vf Thus, we formulated the continuous model
mJ'* equations using two-dimensional turbulence theory.

The vorticity model developed by Leith (1969) for
where fa =rip z'_, is the (user-supplied) natural two-dimensional LES was employed for the SGS ,
boundary condition, o3f1is the boundary surface, model.

and np is the surface outward normal in the fl- Following Smagorinsky (1963), we set

direction. In this formulation, the natural boundary _ 3 8,c--condition includes the small-scale motion. R_ = u_u# - U'rffr = -2 vrS,¢ (12)

The velocity components _ and pressure P are where

1 (a_,, a_u_.a)expanded into the appropriate basis functions ¢i S_-- --+
and % as follows: 2 _igx# igx_,)

N
_h and v r is the eddy viscosity coefficient. Leith
ua (x,t) = _-'_u'-_j(t) #j(x) (8) (1969) developed a vorticity relation for vr in two

j=!
dimensions which accounts for the -3 power
spectrum and the enstrophy cascade to small scales

P'(x,t)=_PJ(t) V/.(x) (9) in two-dimensional simulations. (Enstrophy isj=l !

where N is the total number of velocity basis defined as one-half the square of the vorticity,
functions and M is the total number of pressure (.o2/2.) Using dimensional analysis coupled with
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So,o s s,r  o i ,'969,shows'l :t
ff the truncation wave number k. lies within a -3 n (u) 0

power spectrum, the eddy viscosity coefficient is N = q0 n..(u)

proportional to k.-3 (or A3). The derived vorticity 0 0 ns(u)
relation for the eddy viscosity coefficient is

VT - n (u)= ¢*_c
where Vt0 is def'med by Leith (1969) as "the finite _ a #
difference approximanon to the vorticity gradient"

and eta is a constant. Cc::1 I

In two dimensions, where the resolved or large- " B@_

scale vorticity is _ = igVh_xa _)x2i)_, we have C = c.v / c,,.. =-a _s _% J

+ :-csoc].

,Vm[= -_-_ k_j j ] (14, [fio,] =/',.t'2"
]' a,u]' F=If I"fq.,

Numerical Method where v r for the two-dimensional case is the eddy
The discretized continuity and momentum viscosity defined by the vorticity model (13) with

equations (10) and (11) can be written in matrix the expansion (8)substituted for the velocities.
form In the current study, the discrete Poisson

• cru=0 (15) equatioi_ for pressure is solved in place of thecontinuity equation (15), so that continuity.and

Mu+[K +N(u)_+CP= F (16) momentum are decoupled and an explicit ume-_ - integration scheme is used. The discrete Poisson
where u is the nodal velocity vector, P is the equation for pressure is an approximation of the
pressure vector, and in three-dimensional space, continuous Poisson equation. The continuous
after substitutingtheSGSmodel, Poisson equation is derived by taking the

[_o 0 O} divergence of the momentum equation and applying

M = rn# m# = I @_s the continuity equation, V. _ = 0. The analogousdiscrete Poisson equation isderived by multiplying
0 me a the matrix form of the momentum equation (16) by

CT M -1. and since and d cT_ I dt=O, we obtain

K = ko_ .. where the coefficient matrix CTM'IC is a discrete

I/_ k::J approximationoftheLaplacianoperator.Thus, thek final spatially discretized equations in matrix form
L %. #o_ are (16) and (17).

!(_,_( )L'_-r_Xr_ 1 T° reduce c°mputati°nal c°st' a lumped mass

h_( B¢i cg_s_ v h B@_ c9@_ matrix M is employed and the coefficient matricest = v+v r +
v(,_) r o3x, % are generated using reduced order integration basedon one-point Gaussian quadrature. The coefficient

calculations are performed at the element level using
isoparametric quadrilateral elements with bi-linear
basis functions for the velocity expansion and

piecewi.se-constant basis functions for the pressure
expanston. The element contributions are then
added to form the global matrices using standard
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FEM assembly techniques. The pressure Poisson proportionality can be described by either a
equation (17) is solved directly with a skyline solver logarithmic, power, or linear law-of-the-wall
(one back substitution per time step of the relation depending on the type of flow simulation
previously factored matrix) and an explicit forward and location of the f'n'st grid point relative to the
Euler time integration scheme is used for the wall. The normal velocity component at the wall is
velocity solution, set to zero. With LES, the approximate boundary

Balancing tensor diffusivity (BTD) is a conditions must be applied everywhere on a plane
technique for applying an additive diffusivity surface parallel to the wall and are time dependent.
(correction) to the diffusion matrix which balances Piomelli et al. (1987) has provided a detailed
the negative diffusion caused by the explicit Euler review of wall models used in LES's by past
time integration (Gresho et al., 1984). This researchers fornonseparatingflows. However, for
correction is applied at the element level at each time high Reynolds-number flows with separation, the
step. results of past research do not provide guidance or

When one-point quadrature is used, zero energy consensus on wall modeling. The commonly used
modes may be present (Gresho et al., 1984). These law-of-the-wall approximations are accurately
zero energy modes are undiffused 'waves' that are known only for two-dimensional geometries and
null vectors of the diffusion matrix. In two then only for steady attached flows. For example,
dimensions, there is one 2zlx by 2Ay wave, which Ruderich and Fernholz (1986) have shown that for
has alternating nodal values of +1. To insure flows with separation, reverse flow, and
diffusion of these waves, an hour-glass correction reattachment, the near-wall flow does not follow a
matrix is added to the one-point quadrature logarithmic law-of-the-wall. Reynolds(1989)also
diffusion matrix (Goudreau and Hallquist, 1982 and states that assuming that the law-of-the-wall is
Gresho et al., 1984). satisfied instantaneously is 'an unlikely

The solution of the advection term n.(u) can be assumption'.
,J A plausible option is to use the LES approach all

expensive because of the integration of a triple the way to the wall without resolving the wall
product. To reduce the triple product to a double region. In other words, an SGS model is used even
product, Gresho et al. (1984) suggest a for the elements in the wall region. This implies
simplification using what they term a 'centroid that the small-scale motion at the wall (i.e., motion
advection velocity', in which, at the element level that is smaller than the resolved scale) is the same

--, [_k ] as, or at least similar to, the small-scale motionu • ___- ¢6 away from the wall. This seems to be a reasonable
t._=_ " J,--_,,_ *I a. assumption, especially for the shedding vortices of

where N is the number of nodes per element. We a backward-facing step, where the wall region and
employ this simplification in (16) and (17). the core flow are similar (i.e., the grid-size eddies at

the walls are similar to eddies away from the walls).
Boundary Conditions It is clear from the above brief review that the

To simulate the wall region 'exactly' requires use of wall models for separated flows in
the specification of a no-slip boundary condition, conjunction with the LES approach is still under
very fine discretization of the region, and the development. In the current work, it would be
equations of motion must account for the low preferable to resolve the wall region, but this would
Reynolds-number flow close to the wall (e.g., the require excessive computer resources. Instead, the
SGS stresses should asymptotically go to zero at the above described approach of using the SGS model
wall). The Stanford group (Moin et al., 1978, also in the wall region is utilized in the current
Moin and Kim, 1981, Spalart, 1988) have work.
simulated wall regions as accurately as possible for
simple (nonseparating) flows. However, most Results
researchers applying LES to more complicated Our test bed problem was the two-dimensional,
geometries utilize wall models (artificial boundary backward-facing step problem at a Reynolds
conditions) to represent the physics in the region number of 10,000 (based on the inlet velocity and
close to the wall (Deardorff 1970, Schumann 1975, two times the inlet channel height). The problem
Mason and Callen 1986). This is usually done by geometry was a channel of unit height with a step
setting the instantaneous stress at the wall height of 0.5 and a total channel length of 10.0
proportional to the tangential velocity at the first grid channel heights. The computational domain begins
point away from the wall. The coefficient of at the step with a nearly flat inflow velocity profile

of 1.0 specified at the step. The boundary
-4-



conditions used wer¢ no-penetration and no-slip at examined velocity time histories for several nodes.
the walls, and homogeneous natural boundary While the small-scale details of the behavior at a
conditions at the outflow. The vorticity model tingle point in the flow field are not particularly well
constant c =(0.1)_=0.2154. (The value0.1 is represented (Figs. 2 and 3), thelarge-scale features

,, are represented well. For example, at
typically used for the Smagorinsky SGS model
constant c for three-dimensional simulations, and (x ,x 2) = (2.0,0.25) the oscillation period of th for

we appropriately set c = (c) _ (Findikakis, the LES is within I% of the DNS period. Also,,) power spectra calculated from these time histories
1980)). show that LES is predicting the correct dominant

Because we have chosen a two-dimensional frequencies (Figs. 4 and 5).
problem where u = 0 and c_/dx3 = 0 by A profile plot at one snapshot in time (Fig. 6)3

construction, it is impossible to compare our shows the variation of o r in the cross-stream
" numerical results to experimental results which are direction. Corresponding profile plots of vorticity

three-dimensional with significant velocities and for the same snapshot in time are shown in Fig. 7.
gradients in the third dimension. Therefore, in The magnitude of o r is less than three times the
order to validate our results for this numerical molecular viscosity, v. These results also indicate
experiment, we fhst completed a direct numerical that the SGS model contribution is the same order
simulation (DNS) of the test problem using the of magnitude as the molecular diffusion term.
Navier-Stokes portion of the same code (i.e., The velocity profiles near the channel outlet for
omitting the R term in (11)). A series of mesh a snapshot in time (Fig. 8) are smooth in the cross-

,¢ stream direction and vary smoothly as we move
refinement studies showed that a simulation using a upstream. This implies that the zero natural
uniform 100x 1000 element mesh and a time step of boundary condition at the channel outlet is a useful
0.005 resolves vixtually all relevant scales, outlet condition. The natural boundary condition is

The DNS showed a complicated time-varying defined by our equation formulation, and in our
flow with vortices shedding off both the step and formulation, it includes the SGS motion (see
top wall and propagating downstream. The equations (4) and (7)).
simulation went through a transient and then In addition to the analysis of the transient
developed a periodic solution which we used for results, we also compared time-averaged results for
verification of the LES results. We believe that the the reattachment length of the major recirculation
periodic solution was a result, in part, of not zone. The re.attachment length for the DNS was 3.4
perturbing the inflow velocity field, step heights while the LES results gave a length of

The DNS should be filtered (i.e., cell volume- 3.1 step heights, or 9% shorter. The reattachment
averaged) for comparison to the LES. However, lengths for these two-dimensional simulations are
we found that the filtered DNS varied only slightly not expected to compare with experimental results
from the unfiltered DNS (McCallen, 1993). Thus, which are inherently three-dimensional. The LES

in the current study the DNS was directly compared time-averaged u" velocity at selected locations areto the LES.
Although we have obtained LES results on a shown in Fig. 9 along with the associated

number of different mesh densities and streamline plot forthe time-averaged velocity.
configurations (McCallen, 1993), we will report the To clearly show the improvement in the solution
results obtained on a 32x244 element graded mesh. by the addition of the SGS model, we next present
This mesh was uniform in the core of the flow and results for the 32x244 mesh without the SGS model
graded in the wall regions. A 6 to 1 mesh grading (i.e., a direct numerical simulation). The time
was used for the 6 elements closest to the walls. To histories in Figs. 10 and 11 show that the DNS with
demonstrate the ability of LES to represent the the 32x244 mesh are not periodic and do not
large-scale phenomena, we present in Fig. I a seres compare well to the DNS with a 100x1000 mesh.
of snapshots of the stream function from both the Also, the predicted velocities for the DNS with the
LES and the DNS over one shedding period. A 32x244 mesh showed wiggles in the wall region
comparison of these figures illustrates that the LES whereas wiggles were not present when the SGS
captures the vortex shedding off both the step and model was used with the same mesh. Therefore,
the upper wall with great fidelity. The downstream even though the SGS model contribution is small
propagation of the vortices is also well represented. (i.e., the t)T values are comparable in magnitude to
The propagation speed in the LES simulation is only the molecular viscosity), it successfully stabilizes
1% higher than that in the DNS. We have also
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the calculations and provides an accurate solution at Gresho, P.M., Chart, S.T., Lee, R.L., and
a significant reduction in computational effort. Upson, C.D., 1984, "A Modified Finite Element

Method for Solving the Time-Dependent
Conclusions Incompressible Navier-Stokes Equations. Part 1:

These results show that the LES/FEM approach Theory.," Int. J. Num. Meth. in Fluids, 4, pp. 557-
to simulating turbulent flows around complex 598.
geometries has potential as an efficient and effective Kondo, N., Tosaka, N., and Nishimura, T.,
method. For the case presented here the 1986, "Finite Element Analysis for Turbulent Flows
combination of LES with FEM and a graded mesh - Elastic Shell Interaction," Proceedings from Sixth
produced an accurate simulation of the large-scale International Symposium on Finite Element
flow using only 7,808 elements in comparison to Methods in Flow Problems, 16-20 June 1986,
100,000 elements needed for the DNS. While this Antibes, France, pp. 177-181.
work must be extended to more complex problems Kwak, D., Reynolds, W.C., and Ferziger,
and to three-dimensions before a final judgment can J.H., 1975, "Three Dimensional Time Dependent
be made, we feel that LES/FEM shows great Computation of Turbulent Flow," Report No. TF-
promise as a tool for analyzing turbulent flows in 5, Stanford University, Department of Mechanical
complex geometry. Engineering.
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LES with 32 x 244 Mesh Direct Numerical Simulation

Fig. 1. Time series of stream function plots for the LES and DS. (One period is shown for the same
specified stream function levels for each case at 0, 1/6, 2/6, 3/6, 4/6, and5/6 of a DNS period.)
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averaged velocity.
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