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HYSTERESIS AND NONLINEAR ELASTICITY IN ROCKS
K. R. McCall and R. A. Guyer

Earth and Environmental Sciences Division
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

INTRODUCTION

The macroscopic elastic properties of highly heterogeneous materials, such as
rocks, are unusual and much more complex than those of the materials from which
they are assembled. Equations of state for a typical rock, e.g., velocity vs pressure,
show nonlinearity that is orders of magnitude greater than that of conventional
materials [1,2]. Further, these equations of state are often hysteretic and possess
memory features called discrete memory or end point memory [3-5]. The
fundamental reason for the hysteretic nonlinear elastic behavior of rock is that rock
contains an enormous variety of mesoscopic structural features (cracks, jeints,
contacts, etc., of typical size & 1um) with elastic properties that are specific to their
structure. It is these mesoscopic elastic units that dominate the response >f the rock
to both the external pressure used to find a quasi-static equation of state and to the
internal pressure that accompanies an elastic wave.

The purpose of this paper is to describe a theory of the propasation of =lastic
waves in hysteretic nonlinear elastic materials, e.g., rock. Ir the -ext section, we
introduce the Priesach-Mayergoyz (P-M) model [6,7] of hys!:rec ¢ systens and
adapt it to describe the hysteretic mesoscopic elastic uniws (HVEU ) cJete..nining the
elastic properties of a rock. We combine the P-M model «irh efiectize medium
theory (EMT) [8] to find the elastic response of a rock thai has experienced a
specified pressure history. Next, we consider elastic wav= prejigaton in a hysteretic
nonlinear elastic system governed by a history dependent cqu2’ioa cf state. We
consider one-dimensional propagation of compressional wayg:. Th << juation of
motion for the Jongitudinal displacement field contains the s. v lsteretic
nonlinear interactions that characterize the equation of state. *Ve solve the equation
of motion using the Green function technique developed by McCall [9). This
solution lets us identify the qualitative features in harmonic generation that are
signatures of nonlinearity and hysteresis.

EQUATION OF STATE

We take a rock’s macroscopic elasticity to result from a system of many
hysteretic mesoscopic elastic units (HMEU). Let the rock be modeied by a simple
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Figure 1. Hysteretic Mesoscopic Elastic Unit (HMEU). A HMEU is characterized
by a pair of pressures (P, P,) and a pair of elastic constants (W,, W,). At low
pressure the elastic constant of the HMEU is W,. Upon raising the pressure to F,,
the elastic constant of the HMEU becomes W,. The elastic constant remains W,
until the pressure is reduced to below FP,.

cubic lattice of HMEU with lattice spacing nominally 10 pm. To each of the HMEU
we assign two pairs of numbers, a pair of pressures (P, P,), where P, > P,, and a
pair of elastic (spring) constants (W, W,), where W, > W, (see Figure 1). Assume
for illustrative purposes that the structural features we are describing with the
HMEU are compliant cracks. Then, if the pressure applied to a unit is raised from
zero, the unit responds with spring constant W, (o0 meaning open) up to pressure P,
(¢ meaning closed). At P, the spring constant of the unit changes to W, a value the
unit retains for all higher pressures. If the pressure is then dropped from a value
above P,, the spring constant of the unit remains W, until the pressure on the unit
is P, < P,, at which time the spring constant becomes W,. Each of the HMEU has
hysteretic spring constant versus pressure behavior. For simplicity, we do not let the
equilibrium spacing enforced by the springs change as the pressure changes. We
may take (W,, W,) to have a statistical or deterministic connection to (P, P,).

In Figure 2(a), we show the pairs (P, P,) in P-M space from the example
below. The density of HMEU in the space of (P, P,) pairs is p(P., P,). A pressure
protocol brings the rock from P = 0 to P # 0 with n pressure reversals. This
history leads to a separation of P-M space into two parts bounded by the curve
E(P., h) [see Figure 2(a)], where h stands for the pressure history leading to the
rock’s current pressure state P. The history h of the rock, and therefore E{Z,, k),
depends on the points of pressure reversal P, ... P,, the maximum pressure which
the rock has experienced P,,;, and the current pressure P. In Figure 2(a), the
HMEU below and to the left of E(P., k) are in their closed configuration; the
HMEU above and to the right of E(P,, ) are in their open configuration. We
calculate the macroscopic elastic constant using effective medium theory [8]. Thus,
the effective spring constant W is found from

Pmuz E(PC) o —
jo dP, /0 dP, p(P., P,) F(W., W)

o0 Pe
+ [ dr. [ iy @Ps PP PYF(Wo,T) = 0, (1)




where

W, (P., P,) — WIE] )
W, (P, P)) + 2WI(E)’

and v stands for c or o. The equation of state is completely determined when values
are assigned to W, (P,, P,) for each of the HMEU. Given W from Equation (1), we
take ¢? = W/p,, where p,, the density of the rock, is a constant. Discrete memory
in the number of closed or open HMEU is a consequence of the structure of P-M
space and the nature of the possible curves E(FP,, k) [10]. Discrete memory for the
elastic constant and the sound velocity ¢ follows from Equation (1). If p(P., P,) is
strictly diagonal, the velocity of sound may be a complicated function of P but
there is no hysteresis. The area of a hysteresis loop is related to the fraction of the
density p that is off the diagonal.

F(W,,W) =

Example
A set of 500 points (P, P,) were generated according to the rules
P.=100r73, P, =100 P.r}/3, (3)

where r, and r, are random numbers uniformly distributed between 0 and 1.
Kepresentative points (P, P,) generated from Equation (3) are plotted in

Figure 2(a). The rock is carried through the pressure protocol shown in Figure 2(b)
in which the pressure was raised and lowered three times. Values of the pressure are
in arbitrary units. We took (W, W,) to be uncorrelated with (P, P,) and to be
separately distributed according to p(W,) = 4, where 0.25 < W, < 0.5 and

0.7 < W, < 1.

At point A on the pressure protocol in Figure 2(b) the pressure history has
included four points of pressure reversal, denoted 1...4. The corresponding
separation curve E[P,, h(A)] is shown on Figure 2(a). In Figure 2(c) we show the
elastic constant W, calculated from Equation (1), as a function of the pressure
history. The pressure protocol is such that each hysteresis loop is swept out in a
counterclockwise direction. We take each loop to be made up of in-phase and
out-of-phase components. The in-phase component is the average of the two values
of W associated with each pressure. The out-of-phase component is the difference at
each point in the loop between W and the appropriate in-phase value. In
Figure 2(d) we show the in-phase and out-of-phase components for the largest loop
in Figure 2(c). The other two loops look similar. The in-phase component is in
phase with the pressure and represents the reversible part of the nonlinearity. The
out-of-phase component is out of phase with the pressure, has the sense of the rate
of change of the pressure and represents the hysteretic part of the nonlinearity.

ELASTIC WAVE PROPAGATION

In this section we apply a Green function formalism developed in Reference 9
to describe elastic wave propagation in rock. We wish to focus on the consequences
of hysteresis and will therefore limit ourselves to the propagation of compressional
waves in a single dimension.
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Figure 2. Example elastic equation of state. (a) The points (P, P,) in
Priesach-Mayergoyz (P-M) space; 500 points generated from Equation (3) are
shown. Because P, < P,, the density of points p(P., P,) is non-zero on or below the
diagonal. The heavy curve corresponds to E(P,, k) for the pressure protocol at
point A in (b). (b) The pressure protocol followed in constructing the equation of
state. (c) The elastic constant as a function of pressure for the pressure protocol
shown in (b). (d) The in-phase (circles) and out-of-phase (squares) components of
the largest loop shown in (c).




We begin with the equation of motion for the displacement field in a rock that
has been brought to ambient pressure P by a prescribed pressure protocol

w=aZ{u s} +s) (@

where u is the z-component of the displacement field, S(z) is the external source
that drives the system, and c? is the velocity of sound at pressure P. The quantity
k(z,t) is the modification of the velocity of sound induced by the pressure

fluctuation 6 P(z,t). Thus, x(z,t) is a functional of the pressure or the displacement
field.

Using the Green function method, we develop a systematic treatment of
Equation (4) without initially specifying x(z,t). The procedure is as follows (see
Reference 9): (1) Specify the external disturbance. (2) Find the Green function
g(z,2',w) for the x(z,t) = 0 problem and the specific geometry to be studied. (3)
Develop u(z,t) and k(z,t) in powers of the strength of the source S. For the leading
correction to the displacement field uo induced by S(z,t) one finds

du' Oup(z’,
u(z,w) = /dm'/é—;— (m,x',w);;—, [No(z',w')—u—oa(zfq&')'] ) (5)

where ¢ = w — W', Ko(z,w) = £lug(z,w)] and up is

uo(z,w) = [ da'g(z,',w)S(',w). (6)

For hysteretic materials such as rocks, we showed that pressure cycles cause a
change in the elastic constant that is not an analytic function of u(z,t) or 6 P(z,t).
The P-M space and EMT model lets us assess the effect on the elastic constant of
fluctuations in E(P,, h) brought about by 6 P. The nonanalyticity of x(z,t), and
therefore the velocity of sound, comes from the nonanalyticity of E[P,, h(P + 6P)]
at points of pressure reversal.

The elastic constant as a function of ¢ the fraction of closed HMEU can be

written oW
W(go + 69) = W(go) + s 6g(z,1). (7)
=90
Then, the velocity of sound and «(z,t) are given by
¢ = c5[1 + B8q(z,t)), K(z,t) = B bg(2,1), (8)

where c2 = W/p, and B = (0W/8q)/W evaluated at go. Fluctuation in the fraction
of closed elastic units is the source of fluctuation in the velocity of sound. Let
8go(z,w) denote the fluctuation in ¢ brought about by ug. From the discussion of
the in-phase and out-of-phase components of a hysteresis loop, we know that to
leading order in the amplitude of § P, 6¢o(z,w) is a sum of components in phase and
out of phase with §P. Thus, if ug = U sin(koz — wot) and §P = —K(0u/0z), where
K is the compressibility of the rock at pressure P, we can write §go(z,w) as a
Fourier series in 7 = kgz — wpt:

ao

foe) (e ]
5 + D ancosnt + Z bysinnr, (9)

n=1 n=1

bgo(z,t) =




where the a, are the in-phase amplitudes and the b, are the out-of-phase
amplitudes. The amplitudes a,, and b, are proportional to 6P;. We have chosen ¢}
so that ag = 0.

Using the Green function for an infinite, homogeneous material, and
up = U sin 7, we find the perturbation displacement u;(z,t) is

BkoUx

cos T i ¢y cos(nT — ¢y), (10)

n=1

uy(z,t) = —

where ¢, = y/a2 + b2 and tan ¢, = b,/an.

There are several observations of general validity about u;(z,t). (1) The
amplitude at distance = from the source is proportional to z, independent of the
choice of xo(z,t). This proportionality represents the fact that nonlinear elastic
waves interact in the system over the entire range between source and observer.

(2) The amplitude is proportional to (koU)?. The first factor of koU comes from the
incident elastic wave. The second factor comes about because ¢, o § Py o koU.
(3) Hysteresis exhibits itself in the phase of the scattered wave.

We may reduce Equation (10) to a number of known results.
(a) Standard cubic anharmonicity:
ko(z,t) = BkoU cos . (11)

This choice of k& vs 6P is the solid line in Figure 3(a). In Equation (9), a,, = kU,
and b, = 0. Then u; in Equation (10) is the well known result

BkiUx

ul(mﬂt):: - 4

[cos 2T +1]. (12)

(b) For an entirely hysteretic nonlinear elastic response, consider
ko(z,t) = PkoUsinT, (13)
the dashed circle in Figure 3(a). In this case, a, = 0 and b, = koU6p,1. For u; we

find

BkAU?z

u(z,t) = — sin 27. (14)

Note the phase difference between these two results. The elastic wave response to a

hysteretic nonlinearity is 90° out of phase with the response to a nonhysteretic
nonlinearity.

(c) Choose a simple hysteretic function for £ which is composed of parabolic pieces:

1- %72, O<r<m
no(x’t)_ﬂkoU{l—%r+%Tz, T<T<2r’ (15)

the short-dashed curve in Figure 3(a). In Equation (9), a, = 8koU/(7n)? and
b, = 16koU/(7n)? for n odd; a, = b, = 0 for n even. The first order nonlinear
displacement u; as a function of 7 resulting from this choice of & is shown in
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Figure 3. Models of «(z,t) for wave propagation. (a) x as a function of the pressure
fluctuation 6§ P. The solid line is from Equation (11), the long-dashed line is from
Equation (13), and the short-dashed line is from Equation (15). (b) uo(T)
(short-dashed line), (7) from Equation (15) (long-dashed line), and the resulting
uy(7) (solid line).

Figure 3(b), along with « and uo. The displacement u; has a substantial dc offset,
has a discontinuous derivative at 7 = nm, and oscillates at twice the frequency of uo.

ENERGY LOSS; Q

The out-of-phase component of x(z,1) is described by the b, terms in
Equation (9) and contributes to the attenuation. We define @ by

1 AE
=T (16)

where AE is the energy loss per cycle and E is the average energy in the wave
during a cycle. For AE we take

AE = fade, (17)

where § stands for integration over one cycle in time, o is the stress, and € is the
strain. The stress o is found from the first term on the right hand side of
Equation (4),

o= &1+ x(z,1)] ?a':‘ (18)

We develop AE as a series in the strength of the nonlinearity 8, in direct
analogy with the method of solution to Equation (4) in Reference 9. We find to first




order in A that AF = AEy + AE,, where AE; is the contribution to the energy loss
due to the linear elastic response of the system and

Bug O cwo(koU)’ ,
AE, = c%f K(z,t) 6:00 azOdt = 2 0(20 ) fx(x,t) sin 27dt. (19)
The integral around a cycle in time picks out the term in «(z,t) that is proportional
to sin27. It is the amplitude b, of the out-of-phase component of the nonlinear
elasticity that is responsible for the attenuation. We have

-22- - Zzl"o  Bby. (20)

where Q= = AE/[E, Q;' = AEo/E and E = pcd (koU)>.

Recall that b, ox 6Py o koU. The hysteretic part of the nonlinear elasticity is
responsible for the amplitude dependent attenuation, i.e., the nonlinear attenuation.
The coefficient b, is a measure of the size of this nonlinear attenuation. In the work
of Day and Minster [11], nonlinear attenuation @ is found to be the cause of
hysteresis. Here, in contrast, we find hysteresis to be the cause nonlinear
attenuation.
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