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HYSTERESIS AND NONLINEAR ELASTICITY IN ROCKS

K. R. McCalland R. A. Guyer
Earth and Environmental Sciences Division

Los Alamos National Laboratory
Los Alamos, New Mexico 87545

INTRODUCTION

The macroscopic elastic properties of highly heterogeneous materials, such as
rocks, are unusual and much more complex than those of the materials from which
they are assembled. Equations of state for a typical rock, e.g., velocity vs pressure,
show nonlinearity that is orders of magnitude greater than that of conventional
materials [1,2]. Further, these equations of state are often hysteretic and possess
memory features called discrete memory or end point memory [3-5]. The
fundamental reason for the hysteretic nonlinear elastic behavior of rock is that rock
contains an enormous variety of mesoscopic structural features (cracks, joints,
contacts, etc., of typical size ,._ 1/_m) with elastic properties that are _pecific to their
structure. It is these mesoscopic elastic units that dominate the resp_nse _f the rock
to both the external pressure used to find a quasi-static equation of state and to the
internal pressure that accompanies an elastic wave.

The purpose of this paper is to describe a theory of the propa£ation of dastic
waves in hysteretic nonlinear elastic materials, e.g., rock. Ir t.he ._ext section, we
introduce the Priesach-Mayergoyz (P-M) model [6,7] of hy_¢.,r_<::_.:ss",_ter,:c and
adapt it to describe the hysteretic mesoscopic elastic uni_r _/4_E_ } dete.,,nining the

. elastic properties of a rock. We combine the P-M model _;_h _:_ct_'_e medium
theory (EMT) [8] to find the elastic response of a rock t,_,__hza cx'Cer_enced a
specified pressure history. Next, we consider elastic wave pr_]_gaL_on _n a hysteretic
nonlinear elastic system governed by a history dependent sq:i,=gio_ ¢I state,, We
consider one-dimensional propagation of compressional w_s>:, T_ _:;tuation of
motion for the longitudinal displacement field contains the _;<_,,_!Gsteretic
nonlinear interactions that characterize the equation of state. We solve the equation
of motion using the Green function technique developed by McCall [9]. This
solution lets us identify the qualitative features in harmonic generation that are
signatures of nonlinearity and hysteresis.

EQUATION OF STATE

We take a rock's macroscopic elasticity to result from a system of many
hysteretic mesoscopic elastic units (HMEU). Let the rock be modeled by a simple
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Figure 1. Hysteretic Mesoscopic Elastic Unit (HMEU). A HMEU is characterized
by a pair of pressures (Pc, Po) and a pair of elastic constants (We, Wo). At low
pressure the elastic constant of the HMEU is Wo. Upon raising the pressure to Pc,
the elastic constant of the HMEU becomes We. The elastic constant remains Wc
until the pressure is reduced to below Po.

cubic lattice of HMEU with lattice spacing nominally 10 _um. To each of the HMEU
we assign two pairs of numbers, a pair of pressures (Pc, Po), where P,: >_Po, and a
pair of elastic (spring) constants (We, Wo), where Wc > Wo (see Figure 1). Assume
for illustrative purposes that the structural features we are describing with the
HMEU are compliant cracks. Then, if the pressure applied to a unit is raised from
zero, the unit responds with spring constant I41o(o meaning open) up to pressure Pc
(c meaning closed). At Pc the spring constant of the unit changes to We, a value the
unit retains for all higher pressures. If the pressure is then dropped from a value
above Pc, the spring constant of the unit remains Wc until the pressure on the unit
is Po <_Pc, at which time the spring constant becomes Wo. Each of the HMEU has
hysteretic spring constant versus pressure behavior. For simplicity, we do not let the
equilibrium spacing enforced by the springs change as the pressure changes. We
may take (W¢, Wo) to have a statistical or deterministic connection to (Pc, Po).

In Figure 2(a), we show the pairs (Pc, Po) in P-M space from the example
below. The density of HMEU in the space of (Pc, Po) pairs is p(P_,Po). A pressure
protocol brings the rock from P = 0 to P # 0 with n pressure reversals. This
history leads to a separation of P-M space into two parts bounded by the curve
E(P¢,h) [see Figure 2(a)], where h stands for the pressure history leading to the
rock's current pressure state P. The history h of the rock, and therefore E(P,, h),
depends on the points of pressure reversal P1-.. P_, the maximum pressure which
the rock has experienced P==_, and the current pressure P. In Figure 2(a), the
HMEU below and to the left of E(P,, h) are in their closed configuration; the
HMEU above and to the right of E(Pc, h) are in their open configuration. We
calculate the macroscopic elastic constant using effective medium theory [8]. Thus,
the effective spring constant W is found from

o'= Jo deo (Po,Po)F(wo,w)
/;/?+ dPc dPop(Pc, Po)F(Wo,W) = O, (1)

(Pc)
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' where

F(W,,,W) = W,,(P_,Po) - W[E]
W,,(Pc, Po) + 2W[E]' (2)

and u stands for c or o. The equation of state is completely determined when values
are assigned to W_(Pc, Po) for each of the HMEU. Given W from Equation (1), we
take e2 = Wipe, where p,, the density of the rock, is a constant. Discrete memory
in the number of closed or open HMEU is a consequence of the structure of P-M
space and the nature of the possible curves E(Pc, h) [10]. Discrete memory for the
elastic constant and the sound velocity c follows from Equation (1). If p(Pc, Po) is
strictly diagonal, the velocity of sound may be a complicated function of P but
there is no hysteresis. The area of a hysteresis loop is related to the fraction of the
density p that is off the diagonal.

Example

A set of 500 points (Pc, Po) were generated according to the rules

_1/3 (3)Pc = 100 rc-1/3, Po = 100 Pc ro ,

where rc and ro are random numbers uniformly distributed between 0 and 1.
Representative points (Pc, Po) generated from Equation (3) are plotted in
Figure 2(a). The rock is carried through the pressure protocol shown in Figure 2(b)
in which the pressure was raised and lowered three times. Values of the pressure are
in arbitrary units. We took (We, Wo) to be uncorrelated with (Pc, Po) and to be
separately distributed according to p(W,,) = 4, where 0.25 < 14/o< 0.5 and
0.75 < Wc < 1.

At point A on the pressure protocol in Figure 2(b) the pressure history has
included four points of pressure reversal, denoted 1... 4. The corresponding
separation curve E[Pc, h(A)] is shown on Figure 2(a). In Figure 2(c) we show the
elastic constant W, calculated from Equation (1), as a function of the pressure
history. The pressure protocol is such that each hysteresis loop is swept out in a
counterclockwise direction. We take each loop to be made up of in-phase and
out-of-phase components. The in-phase component is the average of the two values
of W associated with each pressure. The out-of-phase component is the difference at
each point in the loop between W and the appropriate in-phase value. In
Figure 2(d) we show the in-phase and out-of-phase components for the largest loop
in Figure 2(c). The other two loops look similar. The in-phase component is in
phase with the pressure and represents the reversible part of the nonlinearity. The
out-of-phase component is out of phase with the pressure, has the sense of the rate
of change of the pressure and represents the hysteretic part of the nonlinearity.

ELASTIC WAVE PROPAGATION

In this section we apply a Green function formalism developed in Reference 9
to describe elastic wave propagation in rock. We wish to focus on the consequences
of hysteresis and will therefore limit ourselves to the propagation of compressional
waves in a single dimension.
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Figure 2. Example elastic equation of state. (a) The points (Pc,Po)in
Priesach-Mayergoyz (P-M) space; 500 points generated from Equation (3) are
shown. Because Po < Pc, the density of points p(Pc,Po) iGnon-zero on or below the

diagonal. The heavy curve corresponds to E(Pc, h) for the pressure protocol at
point A in (b). (b) The pressure protocol followed in constructing the equation of
state. (c) The elastic constant as a function of pressure for the pressure protocol
shown in (b). (d) The in-phase (circles) and out-of-phase (squares) components of
the largest loop shown in (c).



• We begin with the equation of motion for the displacement field in a rock that
has been brought to ambient pressure P by a prescribed pressure protocol

02u 0 {[l + _(x,t)] Ou}0--w = Co + (4)

where u is the z-component of the displacement field, S(x) is the external source
that drives the system, and Co2 is the velocity of sound at pressure P. The quantity
r(z, t) is the modification of the velocity of sound induced by the pressure
fluctuation _P(z,t). Thus, t_(x,t)is a functional of the pressure or the displacement
field.

Using the Green function method, we develop a systematic treatment of
Equation (4) without initially specifying _(z, t). The procedure is as follows (see
Reference 9): (1) Specify the external disturbance. (2) Find the Green function
g(z,z',w) for the r(z,t) = 0 problem and the specific geometry to be studied. (3)
Develop tt(x,t) and r(z,g) in powers of the strength of the source S. For the leading
correction to the displacement field u0 induced by S(z, t) one finds

/ / 0

g(='=" ) 0=' '

where ¢ = w- w', ,0(z,w) = ,[Uo(X,w)] and Uo is

- [ dz' g( z, z', w)S( z', w). (6)
d

For hysteretic materials such as rocks, we showed that pressure cycles cause a
change in the elastic constant that is not an analytic function of u(z,t) or 6P(x,t).
The P-M space and EMT model lets us assess the effect on the elastic constant of
fluctuations in E(Pc, h) brought about by _P. The nonanalyticity of r(z,t), and
therefore the velocity of sound, comes from the nonanalyticity of E[Pc, h(P + _P)]
at points of pressure reversal.

The elastic constant as a function of q the fraction of closed HMEU can be
written

"W(qo + _q) = _(qo) + "_q 6q(z, t). (7)q=qo

Then, the velocity of sound and tz(z, t) are given by

c2 = c_[1 + B @(z, t)], _(x,t) = _@(x,t), (8)

where c_o= W/pr and/3 = (O'W/Oq)_ evaluated at qo. Fluctuation in the fraction
of closed elastic units is the source of fluctuation in the velocity of sound. Let

,Sqo(z,w) denote the fluctuation in q brought about by u0. From the discussion of
the in-phase and out-of-phase components of a hysteresis loop, we know that to
leading order in the amplitude of ,SP, @o(z,w) is a sum of components in phase and
out of phase with 6Po. Thus, if uo = U sin(koz- wot) and _P = -K(i)u/i)x), where
K is the compressibility of the rock at pressure P, we can write @0(x,w) as a
Fourier series in r = koz- wot:

ao

,Sqo(z,t) = _. + _ a,, cosnr + _ b, sin nr, (9)
n=l n=l
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• where the amare the in-phase amplitudes and the bn are the out-of-phase
amplitudes. The amplitudes an and b, are proportional to _P0. We have chosen C2o
so that a0-= 0.

Using the Green function for an infinite, homogeneous material, and
u0 = U sin r, we find the perturbation displacement ul(z,t) is

_koUx oo
¢o_• X:_ co_(_- ¢_), (10)ul(x, _)= 2 .=1

where c, = x/a2, + b_ and tan ¢, = b,.,/a,.

There are several observations of general validity about ul (x, t). (1) The
amplitude at distance x from the source is proportional to x, independent of the
choice of _0(x,t). This proportionality represents the fact that nonlinear elastic
waves interact in the system over the entire range between source and observer.
(2) The amplitude is proportional to (koU) 2. The first factor of koU comes from the
incident elastic wave. The second factor comes about because c,_cx ,hPo cx koU.

(3) Hysteresis exhibits itself in the phase of the scattered wave.

We may reduce Equation (10) to a number of known results.

(a) Standard cubic anharmonicity:

no(x,,) = BkoUcost. (11)

This choice of _; vs SP is the solid line in Figure 3(a). In Equation (9), am= koU_,_,l
and bn = 0. Then ul in Equation (10) is the well known result

_(_,,) = -_k°_u__ [_o_2_+ 1]. (12)4

(b) For an entirely hysteretic nonlinear elastic response, consider

_o(x,t) = _koUsinr, (lU)

the dashed circle in Figure 3(a). In this case, an = 0 and b, = koU$,,1. For ul we
" find

u_(x t) = -_k_U2.x sin 2r. (14)' 4

Note the phase difference between these two results. The elastic wave response to a
hysteretic nonlinearity is 90° out of phase with the response to a nonhysteretic
nonlinearity.

(c) Choose a simple hysteretic function for _ which is composed of parabolic pieces:

_r , 0<r<r
_o(x,t)=_k0U 1- 2 24r . 2r2 (15)1 _- "r_ , r<r<2r '

the short-dashed curve in Figure 3(a), In Equation (9), an = 8koV/(Trn) _ and
b, = 16koU/(rn) 3 for n odd; an = b, = 0 for n even. The first order nonlinear
displacement ul as a function of r resulting from this choice of _ is shown in



Figure 3. Models of _(x, t) for wave propagation. (a) ,_ as a function of the pressure
fluctuation SP. The solid line is from Equation (11), the long-dashed line is from

Equation (13), and the short-dashed line is from Equation (15). (b) uo(r)
(short-dashed line), _(r) from Equation (15) (long-dashed line), and the resulting
u,(r) (solid line).

Figure 3(b), along with _ and u0. The displacement ul has a substantial dc offset,
has a discontinuous derivative at r = nr, and oscillates at twice the frequency of u0.

ENERGY LOSS; Q

The out-of-phase component of _(x, t) is described by the b, terms in

Equation (9) and contributes to the attenuation. We define Q by

1 AE (16)

where AE is the energy loss per cycle and _ is the average energy in the wave

during a cycle. For AE we take

AE = fade, (17)

where § stands for integration over one cycle in time, a is the stress, and e is the
strain. The stress a is found from the first term on the right hand side of

Equation (4),
Ou (18)=4P+

We develop AE as a series in the strength of the nonlinearity/_, in direct

analogy with the method of solution to Equation (4) in Reference 9. We find to first



• order in _ that AE = AEo + AE1, where z_E0 is the contribution to the energy loss
due to the linear elastic response of the system and

AE, c_ J " . OuoOi_o,. c_°w°(k°U)2 f tc(x,t)sin2rdt. (19)= = 2

The integral around a cycle in time picks out the term in _(x,t) that is proportional
to sin 2r. It is the amplitude b_ of the out-of-phase component of the nonlinear
elasticity that is responsible for the attenuation. We have

1 1
¢x _b2. (20)

Q Q0

where Q-_ = AE/_, Qo _ = AEo/7_ and _ = pC2o(koV) _.

Recall that b2 c¢ 6Po c¢ koU. The hysteretic part of the nonlinear elasticity is
responsible for the amplitude dependent attenuation, i.e., the nonlinear attenuation.
The coefficient b2 is a measure of the size of this nonlinear attenuation. In the work

of Day and Minster [11], nonlinear attenuation Q is found to be the cause of
hysteresis. Here, in contrast, we find hysteresis to be the cause nonlinear
attenuation.
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