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ABSTRACT

A study on the dynamic response of upright circular cylindrical liquid-storage tanks
containing two different liquids under a rocking base motion with an arbitrary temporal variation
is presented. Only rigid tanks were studied. The response quantities examined include the
hydrodynamic pressure, sloshing wave height and the associated frequencies, base shear and
moments. Each of these response quantities is expressed as the sum of the so-called impulsive
component and convective component. Unlike the case of tanks containing one liquid, in which
the response is controlled by one parameter, height-to-radius ratio, the response of tanks
containing two different liquids are controlled by three parameters: height-to-radius ratio, and
mass density ratio and height ratio of the two liquids. The interrelationship of the responses of
the tank-liquid system to rocking and lateral base excitations is established by examining
numerical results extensively. The study shows that some of the response quantities for tank-
liquid system under a rocking base motion can be determined from the available data for the

response of an identical tank under a horizontal base motion.

INTRODUCTION

Liquid storage tanks are importént components of industrial facilities and, when located
in earthquake prone regions, should be designed to withstand the earthquakes to which they may
be subjected. The dynamic response of liquid-storage tanks subjected to earthquakes has been
a subject of numerous studies in the past 30 years. For reviews of the previous studies on this
topic, the reader is referred to Haroun (1980), Haroun and Ellaithy (1985), Veletsos (1984),
Veletsos and Tang (1986) and Veletsos and Tang (1987) for responses of laterally, vertically and
rockingly excited tank-liquid systems. Most of the previous studies were focused on the tank

containing only one liquid. However, there are cases as stated in Tang (1993a) in which the
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density of the tank content is not uniform. For such cases, the dynamic responses of tanks
containing liquids with different densities must be studied. To respond to this need, Tang
(1993a) presented a solution for dynamic response of rigid tanks containing two liquids under
a horizontal base motion. In that study, however, the effect of the gravitation on the interface
motion of two liquids was neglected. This gravitational effect was later introduced in Tang
(1993b), and the dynamic characteristics of the flexible tanks containing two liquid was also
studied by Tang (1992). All these studies are aimed at the understanding of the dynamic
behavior of tanks containing two liquids under lateral base motions. Adding to these efforts
presented in this paper is the dynamic response of tanks containing two liquids under rocking
base motions. It should be noted that base rocking motion can occur in a ground-supported tank
or in an elevated tank under earthquake motions. Due to the flexibility of either the supporting
soil or the supporting tower, the tank base will experience a rocking component of motion, even
for a purely translational free field motion.

The objectives of this paper are: (1) to present the exact solution for the dynamic response
of tanks containing two liquids under base rocking motions; (2) to elucidate the interrelationship
of the responses of a tank to rocking and lateral base motions; and (3) to provide a foundation
for the study of the soil-structure interaction analysis of tanks containing two liquids. The
response functions examined are the hydrodynamic pressure, the sloshing motion and the
associated natural frequencies, the base shear and moments. How to utilize these response
functions in the tank design can be found in Veletsos (1984). In this paper, each of these
response functions is expressed as the sum of the so-called impulsive and convective components
of the response (Housner, 1957). This division is necessary because it is essential to the
approach used by Veletsos and Yang (1977), Veletsos and Tang (1989) and Tang (1992) in the
analysis of flexible tanks. The impulsive component of the response represents the effects of the
part of the liquid that moves in unison with the tank, whereas the convective component
represents the effects of the part of the liquid that associates with the sloshing motion.

In this paper, the interrelationship of the responses of a tank containing two liquids under
base rocking motion and under base horizontal motion is established by examining numerical data
of the response quantities under the two base motions extensively. It is found, similar to the case

of the responses of tanks containing one liquid, that for tanks containing two liquids some of the
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response quantities may be evaluated from the existing data for the same tank-liquid system
under lateral excitations. Similar to the response of tanks containing two liquids under horizontal
base motions presented in Tang (1993b), a tank containing two liquids under a base rocking
motion has two natural frequencies associated with each sloshing mode of vibration. These

natural frequencies are the same as those for tanks in lateral excitation.

SYSTEM DESCRIPTION

The tank-liquids system investigated is shown in Fig. 1. It is a ground-supported upright
circular cylindrical tank of radius R that is filled with two liquids to a total height of H. The
lower portion liquid, identified as Liquid I, has heavier mass density, p,, and the upper portion
liquid, identified as Liquid II, has lighter mass density, p,. The heights of Liquid I and II are
H, and H,, respectively. The tank wall is assumed to be of uniform thickness and clamped to
a rigid base. Both liquids are considered to be incompressible and inviscid. The response of the
liquids is assumed to be linear.

Let 1, 6, z, denote the radial, circumferential, and vertical axial coordinates of a point in
the Liquid I, and let r, 6, and z, be the corrésponding coordinates for a point in Liquid II as
shown in Fig. 1. The origins of the two coordinate systems are at the central axis of the

cylindrical tank.

The base motion experienced by the tank is an angular acceleration, denoted by 8, (),

acting in the direction along the 8=90° coordinate axis. The temporal variation of 6, (t) can be

arbitrary.

GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

Given the conditions that the liquids are incompressible and inviscid, the hydrodynamic
pressures induced at Liquid I and Liquid II, denoted by p, and p, respectively, must satisfy the
Laplace equations

Vip, =0 (1a)

in the region OsrsR, 0<8s2n, and Osz,<H,, and



Vip, =0 (1b)

2
in the region OsrsR, 0s8<2x, and Osz,<H,.
The liquid acceleration at an arbitrary point along n-direction is given by

a
a=-L% @
p, dn .

for points in Liquid I, and

a3
2, = -+ 22 ©)
p, on
for points in Liquid II.
The boundary conditions for Liquid I are:
(@)  The vertical acceleration of Liquid I at the tank base must equal the acceleration of the

base plate, i.e.,

1 9p,
Py 9z,

= rcos6 6, (1) , (4a)

2,0

(b)  The radial acceleration of Liquid I adjacent to the tank wall must equal the acceleration

of the tank wall, i.e.,

1 9p,

ot -2, cos8 6,(t) , and | (4b)
T
1

=R

The boundary conditions for Liquid II are:

(a) The radial acceleration along the tank wall is given by

1 9p,
p, or

= ~(z, + H,) cos8 6,(t) , (40)

=R




(b) At free surface, the linearized boundary condition is

(62p2 + g apz] =0 (4d)
=K,

at? dz,

where g is the gravitational acceleration, and
The boundary conditions at the interface of two liquids are as follows.

(@  Continuity of vertical accelerations, i.e.,

_ 1 9p,
P azl

_ 1 9p,

— — de
p, 9z, (4

z, =H z,=0

and
(b) Kinematic and pressure conditions:

b.1  Kinematic condition. If n(r,0,t) represents the height of the small disturbance at
the interface above the still interface level, the 1(r,0,t) is related to p, by

9 1 op,| '
3T o ®)

at? p, 9z, o,
b.2  Pressure condition. If the gravitational effect is considered for the interface
motion, there is a discontinuity of the hydrodynamic pressure with the amount of (p, - p,)gn at

the interface, i.e.,

Pl .. ~ P, = (P - P)EM | | ©)

z,=H, z,=0
Eliminating 1 between Egs. (5) and (6) and making use of the Eq. (4¢), one obtains the following
equation for the interface boundary conditions in addition to Eq. (4e).

2 2
Y | @
at? dz at2 9z,

z,=H,

1 2,20

Also,

p; and p, are finite at r=0 (4g)




The solutions for p, and p, are expressed as the sum of the impulsive component and

convective component, i.e.,

P, =P +P; ©)

and

P, =P *+Ps (8)

where the superscript i = impulsive component; the superscript ¢ = convective component; and
the superscript r is used as a reminder for rocking.
The detailed derivation of these solutions are given in Appendix I. The solutions for these

functions are summarized as follows.

P (1.8:2,,t) = C'(1,2,) %.(t) p,RcosB ©

p2'(1,6,2,t) = C,"(r,2,) %.(t) p,Rcosd (10)
L 2

pr(8:z,5t) = |3 Y Cu(nz,) As(® | p,Rcos8 '¢5)
n=]l k=1

and

p,Rcos6 (12)

2
n=1 k=1

P; (1,8,2,t) = [Z Yy C (r.2,) An(®
where superscripts 1 and II denote Liquids I and II, respectively. The expressions for
dimensionless functions C:'(r,zl), Co"'(r, z,) C,,',:(r, z,) and Cn':'(r, z,) are given in Appendix I; X.(t)
= Héb (t) = the horizontal acceleration of the tank wall at the level of the still liquid surface, and

the functions A, (t), k= 1 and 2 are the pseudoacceleration functions for the nth sloshing mode

of vibration, J; (}‘n -I%)’ and are defined by

AL® = o, [ Osin(w,t-7))dt (13)




in which w,, k=1,2, = the natural frequencies associated with the nth sloshing mode of vibration.
Note that for the nth sloshing mode of vibration there are two natural frequencies, w,, and w,,.
This phenomena has been discussed in Tang (1993b). Introducing the notation, A, for a

nondimensional coefficient that is related to w, by the equation

w:kR
Ank = 7\. g (14)

It is shown in Appendix I that A, k=1, 2, are the roots of the characteristic equation given by

aAl-bA +c=0 (15)
where

a =1+ atanhf tanhP, (16a)

b = tanhf,, + tanhf, (16b)
and
| ¢ = (1-a) tanhf, tanhf,, : (16¢)

H
in which B, = A T‘, B,, = A ..1%2_ and o = p,/p,.

It can be shown that the discriminant of Eq. (15) D = b? -4ac > 0 for a > 0; therefore,
Eq. (15) has two real and unequal roots. Explicitly, these two roots are given by

A, =b*VD_ | a7n
2a
and
A,=2-VD (18)
2a

Obviously, A,; > Ay; hence w,, > w,,. The reasons for this reverse order numbering for the
natural frequencies were given in Tang (1993b). Note that, the Eq. (15) is identical to the
characteristic equation presented in Tang (1993b) for tanks subjected to a lateral base motion,

i.e., the natural frequencies for the sloshing motion in a tank undergoing rocking motion are the



same as those of the sloshing motion in an identical tank subjected to a lateral excitation. The

numerical results for values of w,, are available in Tang (1993b).

PRESENTATION OF RESULTS

The dynamic response of a tank containing two liquids under rocking base excitations is
controlled by three parameters, H/R, H,/H, and a, which are the same control parameters as those

for the dynamic response of a tank containing two liquids under lateral base excitations.

Hydrodynamic Pressure: Impulsive Component

The impulsive pressure exerted on the tank wall is conveniently expressed in the form
p*(6,2,t) = Cy(z) %,(t) p,RcosH 19

where C,(2) is given by

Co(2) = C(,"(r,zl)lr=R for0sz=sH (20a)

Co(2) = c:tCt,"'(r,zz)L==R for H, <zsH (20b)

The coordinate z used in Eq. (19) is related to z, and z, by the equations

z =1z for 0 <z s H, (21a)

and
z=12z +H forH szs H (21b)
It is clearly shown in Eq. (19) that the timewise variation of the impulsive pressure is the
same as that of the base excitation. This indicates that the impulsive pressure is produced by a

portion of liquid that moves in unison with the tank wall.
The distributions of C,'(z) for a = 0.25, 0.5, 0.75 and 1 for a broad tank, H/R=0.5, and

a tall tank, H/R=3 are shown in Fig. 2 for Hy/H, = 0.5 and in Fig. 3 for HyH, = 2. Note that
for a broad tank, the impulsive pressure decreases monotonically from bottom to top, whereas
for a tall tank the shape of impulsive pressure distribution has a double curvature. The maximum

value occurs at a point away from the bottom. These trends are in agreement with those
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presented in Veletsos and Tang (1987) for tanks containing one liquid undergoing rocking
motion. The impulsive pressure decreases as the value of a decreases. This reduction is more

pronounced in tall tanks and for larger values of H,/H,.

Base Shear: Impulsive Component

The impulsive component of base shear, Qi(t), is given by

Q¥ (1) = f:" fo“* p/l RcosBdzde

r=R

+ f:" fo“’ pil RcosBdz,de 22)

r=R
Substituting Egs. (9) and (10) into Eq. (22) and performing the integration, one obtains the
expression for Qf(t) which is gi&cn as

Q@) = Sp' M,, %.(t) + So" M, £,(t) (23)
in which M, = p,nR*H, = total liquid mass of liquid I; M,, = pR*H, = total mass of liquid
I; and S;" and S, = dimensionless coefficients dependent on the values of H/R, H,/H, and a.

In Eq. (23), the first term on the right-hand side is the base shear contributed from Liquid

I, and the second term is from Liquid II. Since Eq. (22) involves only simple integrations of
hyperbolic functions, the expressions for S," and S, are not given herein. The expression given

by Eq. (23) has a physical meaning; it gives the volume ratio of each liquid that may be
considered as added mass to the tank wall. However, to study the effect of two liquids on the

total base shear, it is also desirous to have an expression that can be used for comparison with

an identical tank that contains one liquid. Therefore, Q™ (t) is also expressed as
Q¥(®) = 1oy M/ %1 24)
in which M,1 = np,R?H = the total liquid mass if the tank is filled with Liquid I; and r(,': =

dimensionless coefficient related to S,* and S, by the equation



- Se' H, +aSg"H,

Loy = H (25)

The values of S," and S, for different control parameters, H/R, H/H, and o, are

available in Tang and Chang (1993). It is found that for the same values of H/R and H/H,, the

value of Sy" increases as the value of o increases, whereas the value of S{™ decreases with

increasing value of a.
Examination of the numerical value of r,: reveals that this quantity can be computed from

the quantities in the expressions for the base moment at a section immediately below the tank
base of an identical tank-liquid system excited laterally. Specifically, presented in Tang (1993b),
for an identical system excited laterally by an acceleration of %(t), the base moment Mi(t) at a

section immediately above the tank base can be expressed as

M) = ¢ M H (1) (26)
and the base moment induced by the pressure exerted on the tank base, denoted by AM(t), is
given by '

AMIi(t) = Argy M H (1) 27

Then, it is found that the value of r,; is related to the values of 1y and Arg), by the equation

Tos = Ty *+ Algy (28)

The relation defined by Eq. (28) may be explained by a generalization of Betti’s principle
stated in Veletsos and Tang (1987). In that paper, the same relation as that defined by Eq. (28)

is found for tank containing one liquid under rocking motion. Numerical values for Toy and

Argy have been presented in Tang (1993a) and Tang and Chang (1992); therefore, the value ofry,

may be computed by direct application of Eq. (28).
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Base Moments: Impulsive Components

The base moment M¥(t) at a section immediately above the tank base is computed from

Mif(t) = L”‘ fo“' p/| Rz cosBdzde

=R

+ fo”‘ [ % pl| R(z +H,) cosbdz,d6 (29)

r=R

and the result is expressed as

M*(t) = Com %y(t) MyH, + Cout %:() M, H, (30)
Again, since Eq. (29) involves only the simple integrations of hyperbolic functions, the
Ir

. 1 . .
expressions for Cyy and Cp, are not given herein.

The numerical values of Cgy; and Cgy are available in Tang and Chang (1993). It shows

that for the same values of H/R and H,/H,, the value of Cpy, increases as the value of o

has an opposite trend.

increases, but the value of ’{"

Equation (30) is also rewritten as
M) = 1oy M, H %.(1) (31
in which ry; = a dimensionless coefficient defined by

. H : . ’
iy = CX [ﬁ) ‘o Cl [_;II&] (32)

The value of roi{, is presented graphically in Fig. 4 for different values of H,/H, as a function of
a. Four different values of H/R are considered; they are 0.5, 1, 2 and 3. From Fig. 4 it is noted
that the value of roi{, decreases with decreasing value of «, and the decrease is more rapid for

large values than for small values of H,/H,.
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The base moment induced by the impulsive pressure exerted on the tank base is denoted

by AM"(t) which is given by the following equation

r2cos8drd@ (33)
z,=0

ami@ = [ (" py

and may be expressed in the form as

AMU(®) = ACey %:(t) M, H, (34)
in which ACyy = a dimensionless coefficient. The value of ACyy, is available in Tang and

Chang (1993). It shows that the value of ACyy decreases rapidly as the value of H/R increases.
- For the reason identified earlier, Eq. (34) is also expressed as

AM(t) = Argy %.() My H (35)

to compare the result with that corresponding to & =1. The coefficient Argy, is related to ACyy

by the equation

2
H
Argy = ACqy (-ﬁ-] (36)

The values of Aroi;, are shown in Fig. 5. It can be seen that for a tall tank this moment is much

smaller than that for a broad tank. Note that in Fig. 5, the vertical scale for H/R=1 is one-fifth
of that for H/R = 0.5.

Hydrodynamic Pressure: Convective Component

The convective pressure exerted on the tank wall may be obtained by evaluating the
pressures defined by Egs. (11) and (12) at r=R. This approach is similar to that used in obtaining
the impulsive pressure exerted on the tank wall presented above. However, in this paper a
physically motivated approach is used to derive the convective pressure instead, and the results

obtained by the two approaches will be checked against each other.
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Since the natural modes of vibration and the natural frequencies of the sloshing motion
in a tank-liquid system are independent of the excitation that the system is experienced, the
heightwise distribution of the convective hydrodynamic wall pressure induced by the rocking
motion will be identical to that induced by the lateral motion. If the heightwise distribution of
the convective component of the hydrodynamic pressure under lateral excitation is given by the
function C,(z),(see Tang 1993a), then, following from the above argument, the convective

pressure, p“(z,0,t), under rocking can be expressed as

® 2

PU@8,0) = |3 Y Yy Cu(@ Au(t)|p,Reosd G7

a=1 k=1

in which y,, = a dimensionless proportionality factor that remains to be determined.

Base Shear: Convective Component
It is shown in Tang (1993b) that the convective base shear, Q%(t), for tank-liquid excited
laterally is given by

® 2

Qe = [E Y Su A,

n=1 k=1

(39

2
n=1 k=1

M, + [ E St A0

or, it may be expressed differently as

@ 2

Q:® =1} Y m A0

n=l k=1

M, (39)

in which A (t) = the instantaneous pseudoacceleration induced by a base acceleration X(t) in a
SDF system of circular natural frequency w,,. A,(t) is obtained from Eq. (13) by replacingX..(t)
by %(t). By application of the same analogy used in obtaining convective pressure, Eq. (37), for

system in rocking motion from that for system in lateral motion, one obtains the convective base

shear for system in rocking motion from Egs. (38) which is given as
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® 2

Q“(t) = Z E Yok Sn]k A'nrk(t) Mu

a=1 k=1

% 2

+ XY v, Sk An®) | M, (40)

a=1 k=}

or from Eq. (39), one obtains

n=l k=1

@ 2
Qe = [E Y Yax T A,.i(t)] M, (41)

Note that Eqgs. (40) and (41) can also be obtained from Eq. (22) by replacing function p“(t) by
the function p®(t) of Eq. (37) and performing the integrations.

Base Moments: Convective Components
It is shown in Tang (1993b) that the convective base moment, M%(t), at a section
immediately above the tank base for tank-liquid system excited laterally can be expressed as

L] 2

MO = |3 Y Ci' A0

n=1 k=1

IVI!I III

@ 2

+ X Y cX'A,0

n=1 k=1

M, H, “

and the base moment induced by the pressure exerted on the tank base, denoted by AM®(t), is

given by
® 2
AM@® = |3 Y ACY A, ()| M, H, “43)
n=1 k=1

Eqgs. (42) and (43) can be expressed differently as
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® 2
M E(t) = lz; f: e A,(O|M'H (44)
and
AM () = f} zzj Ary A (M H (45)
n=l k=1

Equations (42) and (43) are useful for providing the information about the contribution of each
liquid, and Eqgs. (44) and (45) are useful for comparing with the results of an identical tank filled
with one liquid to assess the effect of two-liquid interaction.

Applying the same analogy that used in obtaining the convective components of the
hydrodynamic pressure and base shear for system in rocking from the corresponding results for
system excited laterally, one obtains, from Egs. (42) and (43), the expressions of the convective

components of the base moments for system in rocking

Mo = 2 > e G ALO M, B
; ): > 1 A" A,.i(t)] M, B, @
and
AMe () = [f; é v, ACyx A,,;(t) M, H, @7
or from Egs. (44) and (45), one obtains
Me(t) = [f; é Y, T A, |M'H (48)
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L 2

AMe(®) = |13 Y v, Ay A [ M H (49)

n=1 k=l

Surface and Interface Sloshing Displacements
The surface sloshing wave height, d'(r,6,t), of an arbitrary point at the liquid surface may

be determined from
p{'l,‘,,,z = p,gd(r,6,1) (50)

and the sloshing wave height at the interface of the two liquids, n(r,0,t), may be determined from

- 1 _ et
@Y m(p v ") 6D

Substituting p,” and p," in Egs. (50) and (51) by Egs. (11) and (12), one may obtain the

expressions for d(r,0,t) and n(r,0,t), and the expressions for the maximum values of these two
functions are obtained by evaluating d(r,6,t) and n(r,8,t) at r = R and 6 = 0. Alternatively, the
expressions for these maximum values may be obtained as follows. If the expressions for
computing these maximum values for two liquids tank system excited laterally are given by
(Tang 1993b)

d(R,0,1) = i zzj d, A g (52)
n=1 k=i g
and
N e k(t)
nR,0) =Y Y n, =2 (53)
n=1 k=1

their counterparts for the same system in rocking may be expressed as

d*(R,0,t) = fj 22: Yo Aoy A0 g (4

n=1 k=1 g

and
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TROY =3 Y 1y m 220 R 65)
n=l k=l g

Once the proportionality factor, y,,, is known, the maximum values of the surface and interface

sloshing wave heights may be computed from the corresponding solutions for liquid-tank system

excited laterally by making use of Egs. (54) and (55).

Now, the generalized Betti’s principle stated in Veletsos and Tang (1987) is invoked
herein to determine the proportionality factor, y,,. In noting that for a tank subjected to lateral
and rocking base motions of the same timewise variations and for each mode of vibration of the
sloshing motion in the tank, the work done by the base shear for the tank in rocking through the
displacement of the laterally excited tank is equal to the work done by the foundation moment
for laterally excited tank acting through the rotation of the tank in rocking, from Egs. (41), (44)
and (45) one obtains |

Yo Tok = Tk *+ ALy (56)
therefore,
M M
Iy + Ar,
Yox = k—,—k (57)
rnk

With vy, determined, all the convective components of the response quantities for tank in
rocking can be calculated. Note that the determination of y,, from Eq. (57) requires only the
results for the laterally excited tank; therefore, there is no need to solve the governing equations
and the boundary conditions to obtain the convective components of the response for tank in
rocking. However, in this paper, for the purpose of confirming the accuracy, the convective
components of the response quantities are also computed from the convective pressure defined
by Egs. (11) and (12) which are obtained by direct solving the governing equations and the
boundary conditions. The identical numerical results obtained by two approaches confirm the
accuracy.

Extensive numerical data for laterally excited tank containing two liquids are available

in Tang (1993a and 1993b), and also because all the convective component of the response
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quantities for tank in rocking can be computed from their counterparts for the laterally excited

tank, no numerical results for the convective components of the response are presented herein.

CONCLUSIONS

The complete solutions for tanks containing two liquids under rocking excitation have
been presented. Each dynamic response quantity is expressed as the sum of the impulsive and
convective components so that the solutions presented may provide a rational basis for evaluating
the effects of tank flexibility and soil-structure interaction. It is found that many response
quantities for a tank in rocking may be evaluated from the corresponding response quantities for
an identical tank excited laterally; especially, all the convective components of the response

quantities can be evaluated by such way.
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APPENDIX I. SOLUTION FOR RIGID TANKS

Impulsive Component of Solution

The impulsive component of the hydrodynamic pressures p

Vpli' =0
and
Vp, =0

and the following boundary conditions:

ap," .
L 1 (cose
P, 9z 2,20
1 apir
- = -z 8, (t)cos6
pl ar r=R
1 apir
2 .
- — = —{z, + H,) 0 _(t)cos0O
p2 or B ( 2 1) b()
ir -
P> Lz’Hz
1| _ 1 9p
p, 9z, - p, 9z, 40
P1 L’Hx =P L=0

p;" and p," are finite atr = 0

19

and p," must satisfy

(58a)

(58b)

(592)

(59b)

(59¢)

(59d)

(5%)

(599

(59)



The method of separation of variables is employed to solve Eqs. (58a) and (58b), and the

integration constants are determined from the boundary conditions. Satisfying Eqs. (58a), (59b),

and (59g), the function p," takes the form

1A, =
Z, R v z, : zZ || \" R .
A+ Ry A cosh|n, 22| + B sinh|A, 2 R

H+Hn1[ Cos[ R)+ o™ ( R]] g | PR

ir

| -

(60)
and, similarly, on satisfying Eqs. (58b), (59¢) and (59g), p " takes the form

T(A, =
z,+H 2 S L)
pir = |1 (B _fl_ )3 (c cosh( %] + Dnsinh(x_ fRi)) \ R /| p,R#,(t)cos6

n=1

| (61)
In Eqs. (60) and (61), %(t) = H8, (1), J; = Bessel function of the first kind of order 1, A, = the

nth zero of J', (), the first derivative of J,; and A, B,, C, and D, = constants of integration that

may be determined from the boundary conditions defined by Eqs. (59a), (59d), (59¢) and (59f).
After evaluating these constants of integration, and substituting them back into Egs. (60) and

(61), the results are cast into the following forms
pli'(r,e,zl,t) = Col'(r,zl) p,R%.(t)cos6 (62)
and

pzi’(r,B,zz,t) = C[,"'(r,zz) p,R& (t)cosH (63)

in which Co"(r,zl) and CO"'(r, z,) = dimensionless coefficients given by
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yn L
® G i R
Co'(ns )-.{...zl+ﬁz_Acosh)\._zl + B_sin| A, .
RHE HZ A, R 1, (%)
(64)
and
i 1 (= "'H) R «- G, Z,
Co (1) = T 'ﬁz; T C,cosh|A, =2 =
A N
+ D.sin|pn 2 Al (65)
R)) I(n)
where
A, = _}:"_ (sinhB,,coshB,, + a coshB,,sinhB,,)
H
+ (@-1) =L coshB,, - & « (662)
I R
B, = - TZ (coshB,, coshB,, + a sinhp,, sinhp,) (66b)
C =2 sinhp, - H coshp + (1-a) 22 sinh h (66¢)
2 = 3 inhf, X coshf, + (1-a) X sinhf,  coshf,,
D =- 2 cosh 1y 2 sinh g, - 2 « sioh (66d)
L = Tcos B,, + (o~ )_i_51n B,, coshf, _R..a51 B,
G, =2 (66¢)
A2 -
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A, = coshf, coshf, + o sinhf,, sinhB, (665)

Convective Component of Solution

The convective component of the hydrodynamic pressures p;" and p,” must satisfy
Laplace’s equations

Vip =0 (67a)
and

V2p = 0 | (67b)

along with the boundary conditions

3 plcr
=0
5z, (68a)
z,=0
3 cr
S TG ) - (68b)
pl ar r=R
S cr
- __]_'_ P2 =( (680)
p, Or R ‘
az cr ) cr 9 ir
t Zz z,=H, 22 z,=H,
_ 1 aplﬂ’ - 1 ap;r (686)
p, 9z - p, 9z, 5e0
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3 cr 9 cr ) ir
- P22 . P2 P2 (68f)
at 0z, dz, 40
p; and p," are finite at r = 0. (68g)

Again, the method of separation of variables is employed to solve Egs. (67a) and (67b),
and the integration constants are determined from the boundary conditions. Satisfying Eqgs. (67a),

(67b), (68a), (68b), (68c), (68¢) and (68g), the function p,” takes the form

z

e J1 ;"n %
pr (r,6,z,,t) = |3, D,(t) cosh A Rl 3 p,Rcos (69a)

a=1

and p," takes the form

P (66,2,0 = (Y [E_(t)cosh (xn %) + D_(t)sinh B, sinh (xn %))

n=1

I(n L

1 n

Rcos9 69b
| PR (69b)

in which E_(t) and F,(t) = integration functions that can be determined by satisfying Egs. (68d)
and (68f). Substituting Egs. (62), (63), (69a) and (69b) into Eq. (68d), one obtains a differential

equation




. A .
sinhf,, sinhB, E + Eﬁi sinhB, coshB, E, + coshf, F,

- gh,
R

R G, , .
HE % + C, sinhB, + D, coshB, | %.(t)

gh, .
+ < sinhB, F, =
(70)

and substituting Egs. (63) and (69b) into Eq. (68f), one obtains another differential equation

.. A "
coshf, E + (1-a) an sinhB, E - oF,

gA

» R, G, A, , .
= -~ | . e (1-a) + A, sinhf, + B coshB, - aD,|x.(t) (71)

R x,
then, Egs. (70) and (71) can be solved for E (t) and F,(t).

Taking the Laplace transformation on both sides of Egs. (70) and (71) and assuming the
homogeneous initial conditions for E (t) and F,(t), one obtains two algebraic equations for
determination of the Laplace transforms of E (t) and F (t). The required solutions for E (t) and
F,(t) are then obtained by finding the inverse Laplace transforms; then replacing E, (t) and F,(t)
in Egs. (69a) and (69b) with the results obtained, one can cast the final expressions into the form
presented in Egs. (11) and (12). The derivation is not difficult but tedious; hence, it is omitted

herein. However, the details of the derivation are available in Tang and Chang (1993).

The expressions for Ci(r, z,) and C,}'(r,2,) for k=1 and 2 are given as follows.

r
G 1 z B2 R
C,,’{(r, z) = -2 x, cosh {A, — (72a)
A A, R Jl(ln)
y(n L
_G 1 n
C:;(r,zl) = 0.1 y, cosh |A_ i R (72b)
An n2 R Jl()"n)




z
Cnllh(r,zz) =-_". 7\_1_ xzcosh(%.n _;2..] + X, sinhﬁlnsin[l._ _l_:.)}
n nl
LA, =
R (73a)
Jl(xn)
e _ G,, 1 z, inh "N z,
Ca2 (1,2) = - i y,coshi A x|tV sin B, sin| A X
n n2
1A,
R (73b)
Ji(A)
where
go-nh % | (74a)
Anl - Anz
y= T Az (74b)
' Anl - Anz
x. = Ay 45— (740)
: Anl - An2
and
=B A G | (74d)
? Anl - Anz
in which
q = s, coshf, + as, (752)
! A

25



s, sinh,

9% = —— (75b)

s, coshP, - s, sinhB,, sinhf,

q; = A (75¢)
1-0) sinhf, - s, sinh h
q = s, (1-a) sinhf, As1 sinhP,  coshp,, (754)
and
A
s, =(1-a) T’i + A, sinhf, + B, coshf, - aD, (76a)
A
s, = T" + C, sinhB, + D, coshB,, (76b)

v The characteristic equation for the natural frequencies can be obtained from the associated
eigenvalue problem of Egs. (70) and (71). Letting %.(t) = 0 and E (t) = E,e™, F,(t) = F,e™ in

Egs. (68) and (69), one obtains two homogeneous equations which are expressed by

E

F

, [sinh B,, sinhP, coshp,
-w

coshP, -a

Es 77
P =0 a7

sinhP, coshP, sinhp,

(1-a)sinhf, 0

g,

R

It is easy to show that the determinant of Eq. (77) is Eq. (15), the characteristic equation.
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mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
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