
_ ,i_ 4_ _ _" _.... _ ; • _ _ --- _

f, ."

St.AC-PU B-5930

September i992
(E/l)

The Cheetah Data Management System

SLAC-IXJB--5930
Paul K Kunz

DE93 004010

Stan(ord Lin,aar Accelerator Center

Stanford IJniver_sity, Stanford, CA 94309, USA

Gary B. Word

Department of Physics and Astronomy

Rutgers University, Piscataway, NJ 08855-0849, USA

Cheetah is a data map,agelnCnt system based tm the C programming language, with support for other
languages. Its maul goal is to transfer data between memory and I/O streams in a general way. The
streams are either a,ssociatcd with disk tiles or are network data streams. Cheetah provides optional
convenience functions to assist in the management of C structures. Cheetah streams are seil-dc_ribing

so that general ptupose applications can fully understand an incoming stream. This infonnation can be
u._d to display the data in an incoming stream to the u._r of an interactive general application, complete

, with variable names and optional comments.

1. The Goal of the Cheetah System systems. C structures are clearly the equivalent of the

"banks" referred to by many ttEP developed data

The basic entities managed by Cheetah are structures management systems based on FORTRAN. These

as defined in ;he C programming language. To quote the FORTRAN-based systems ali suffer, to a greater or lesser

introductory paragraph in the chapter on structures in The degree, in poor integration with the compiler, the operating
C Programming l.x.tguage by Kemighan and Ritchie[l]. system, and/or the symbolic debugger. The goal of the

Cheetah system is to exploit the features of the C language

A structure i._a ¢'+,llettion (!/o,+e or more vari- while adding dat:L management tools such as input and

abies, i)os_itflv OI d({/erent t)'l)e.s, ,k,n)u/_ed to- outpui streams tt_ storage or to a client-server network

get/lcr under a single name ./or _onvenient connection. (?heetah is designed to allow the code writer to

handling. (Structure._ art' ('ailed "'re_'ord.s" in use native (? language constructs, with only a few required

some /all,t, tiage.s, notttb/v Pascal.) [..] S/rue- Cheetah function calls and a number of optional Cheetah

ture.s hell,, t_, o<_anize COmlHtcated data, I_artic "- ¢onvenience functions. Cheetah maintains symbol table

ularlv in large program._, be_'au._c in many information about the user's data, which is used to provide

situations they permit a group of related vari- machine-independent and self-describing data streams.

abies to he treated as a unit instead of as sepa- Cheetah also provides support for data structures of other

rate entities, languages such as C++ and FORTRAN.

The design of Cheetah is based on the premise thai the 2. Introduction to C Structures

structures of the C language are ideally suited to organize

t data within high energy physics (llEP) programs, such as In this section, a short and simplified introduction to C

Monte Carlo simulation programs and data acquisition structures is presented. Consider the following C structure

URB_
*Work supported by Departm I Energy, contract DE-AC(13-76SF()0515.

Contributed paper to the (o_/crem'e on Comt)uting in High Enerey Phv.sics, Annec_; l"rmlce, Selncmher 21-25, 1092.

, |,, ,, ,

........ The Cheetah Data Management System

definition which might be used to describe a track in a Having allocated storage for structures in this way, one

Monte Carlo program: can access members of the structure as illustrated in the

struct track { following code fragment:

float p[3] : ptot = tracks[i]-_ptot;
float ptot;

inr charge; The string tracks[i/-->lm_t can be used in an expression

}: anywhere a variable can be used. That is, it can appear

The keyword struct introduces a structure declaration either on the left or right side of the equal sign, used as ,an

which is a list of declarations enclosed in braces. The sym- argument of a function call, etc. Thus, one has clean and

boi track, called the structure tag, becomes a new data tylx_ concise mnemonic access to data in the structures. An

in the C language. The standard C declarations wittlin the important advantage, compared to FORTRAN-based

braces name the variables thai are members of a structure of systems, is thai the symbolic debugger can be used very

type track. Members of a C structure can be of any C data effectively since the syntax is a part of the C language.
type including pointers to other structures.

The structure declaration does not allocale any mere- 3. The Cheetah List

ory storage. Rather storage is allocated with a statement

like lt is usually the case that a prograrn will contain many

struct tra<'k mytrack; different structure types and for each type many structures
of that type. For example, a program may want to

More frequently, one declares a variable which is a pointer manipulate a list of tracks, a list of vertices and a list of

to storage which is allocated at execution time by calling calorimeter clusters. For ease of handling, the collection of

the C library function mallow'. A code fragment that does lists may themselves he collected into a list. Lists are

this looks like: therefore important entities. Cheetah detines a list structure

called a chList which one can use Ibr data nmnagement and
struct track "mytrack:

that Cheetah uses to nmnage input and output streams.mytrack = mal]oc(sizeof(struct track));

A chLi._t is created by calling chNew with a list name,

where sizeofis a compiler operator which in this case re- a comment string, and information on the type of data

turns the number of bytes needed for the track structure, being mainlained in the list. For example, in the following
In many cases, one nandles a collection of structttres of c_le fragment:

the same type. There are many ways to handle this situation
chList *t:rackList ;

in C, such as a linked list or un array of structures. One trackList = chNew("Tracks','MCtracks", track T());

convenient way is to allocale each structure individually as

needed and to allocate an array of pointers to these tra_'kList is declared to be a pointer to a Cheetah list which
structures. In the following code fragment: itself is created by the chNew function call. The last

struct t:rack "'tracks; argument, tna'k_7"(), is a function that returns the type
information, lt and a utility to create ii automatically willtracks : ma_loc(numtrks* (sizeof (struct track ")))

tracks[ii : malloc! sizeof(struct track)); be described in the next section.
A structure is added to a ('hl.i,_t by using the function

numtrks is a variable containing the number of pointers chAdd. Thus, ii" mvtrack is a pointer to a structure of type

desired and trncks[i] is a pointer to the i-rh st_ucture. These truck, then it is added to the truckList by:
statements may look complex to the beginning C

chAdd(trackg_st., mytrack);
programmer, but they are commonly used and with more

experience they become quite familiar One should also The v:uiable trm'kLi._t becomes a convenient handle when

note that compared to FORTRAN-based tl:ua m;magement manipulating collections of _tructures. lt collects the type

systems, these few lines replace zt very large amt_unt of information and the pointers to the structures together

complex code that is not any easier, and fretluelltly much which is needed ftu (?heetah input and output.

harder, to understand. This method has the advantage of A conlplelc example of the use of Cheetah lists and

making more effLcient u_e of virtual memory space by not other Cheetah functions is shown in Fig. ! with the Cheetah

requiring that the structures be contiguous in memory, furtctiorts highlighted in bold case. The example function

-
i - i iii IFIII I II I

2 sLAc-PUB-S930

ii, i , ,111

The Cheetah Data Management System

chList *findVees(chList *trackList) and a .c source file. The .h file contains declarations of the

t structure and the corresponding type function. The .c file

chList *vertexbist ; contains the source code of the type function.
struct track **tracks;

struct vertex *avertex: The Cheetah typing mechanisnl is not limited to C
inr i, j, count. ; structures. Most commonly used data structures, even those

in other in-ogranlming languages, can be described to

i f (!eh'rsl_:i.ndOf(t rackList, trackT())) { Cheetah. For example, data contained within a FORTRAN
fprintf(stderr, "findVees: bad input\n"); common block,oreven thewhole common block,can be
return NULL ;

} handled by Cheetah as if it were a C structure, lt is by this
vertexList = el'_ew("Vertices", "2 prongs", means that Cheetah can provide support for FORTRAN

vertex__T()) ; data structures and the Cheetah chgen utility can even be

tracks = chDataPtr(trackList) ; used to produce flies that are to be included in FORTRAN
count : chCount(trackList) ;

source code.
for (i : O: i < count-l; i+*) {

for (j : i+1: j < count; 3+*) { The Cheetah data description hmguage allows for a

avertex = goodVee (tracks [i] , tracks [j]) ; rich assortment of data types including structures, vectors,

if (avertex !: NULL) { variable-length arrays, enumerations, discriminated

clotdd(vertexh_.sr_, avertex); unions, C-style pointers, and FORTRAN 77 style

) "pointers" (relative word offset pointers). Multiply}
) referenced data, such as occur in doubly-linked lists, are
return vertexList ; also handled correctly.

} C++ object persistence is in development, as well as

support for Fortran 90 derived data types. A subset of the
Fig. I Complete example of code with Cheetah. data description language can be used to achieve common,

named access to data in FORTRAN common blocks from

takes as an argument a Cheetah list containing track strut- both FORTRAN and C.
tures and returns a Cheetah list con,aining ali good two

prong vertices. The chlsKindOf() function is oJ_e of Chee- 5. Cheetah Input and Output
tah's convenience functions. II checks that the c(mtents of

the input Cheetah list is of the type expected. Other Chee- Cheetah input and output is modeled after the C I/O

tah convenience functions are _'hl)at_;Plr() and _'hCount() system. There are functions to open a stream, which return

which return the contents of the list as an array of pointers a pointer to the opened stream. Ti_ere are several kinds of

and the size of the array respectively, lt is not difficult for an Cheetah streams. They can be binary or plain text. The

experienced C programmer to imagine how these functions b_nary streams can either use the industry-standard XDR

are implemented or the fact that they may be implemented format[3], the architecture's native format, or a

as macros instead of true functions, close-packed format. The text streams can either be in a

format similar to C-style initialization, or in a

4. Creating Data Typing Information binary-faithful formal, which is a direct translation of the

format used in the binary file. A stream can be opened

In order for Cheetah to perform input and output either to a file system, a TCP/lP network connection or to a

operations on data, it needs type information of the data for memory buffer.

each type in the stream. As stated in the previous section, The Cheetah read and write functions take two

this information is returned by a Cheetah type function, i.e. arguments as shown in Fig. 2. The first is the pointer to the

the functions with the trailing +T in the examples above, stream and the second is a Cheetah list. No distinction is

These type functions can be generated by the chgen utility needed on what kind of stream is being used. Thus,

which is modeled after Sun's rpcgen utility[3], lt parses Cheetah I/O is network transparent. In the example, the

files containing the declaration of the structures. The ,rain program writes the contents of a Cheetah list called

syntax of the data definition language used in these fih',s is event to a file. The contents of event is a Cheetah list

close to standard C structure declaration syntax. Two files containing tracks and if any vertices are found a Cheetah

are generated by the chgen utility. They are a .h header file list containing vertices+

SLAC-PUB-5930 3

, ,, , ,

The Cheetah Data Management System

main() { References
chList "eventList. "trackL_st, 'veLtexLzst

ehFile "chout; []] B. W. K,:rnighan and 1). M. Ritchie, The C

chout :- chODenFile(",.),_t! u: ch.idt,J", "wi;" Drt),kra/li/ili/t £, l..,z_,tm_,e (Prentice tlali. Englewood
eventList : chNew("S('__'vent", "MC Event", Cliffs, 1978)

enlist. T()) ;
trackL1st : HCF,vent (): [2] Sun Microsystems, lhc., rpcgen Programmin8

vertexL_st : flndVertlces _ trackLzst) ; Guide, (see also man pages on UNIX systems)
¢l_&dd(eventList, trackList);
if (vertexList &a chCount(vertexList) > 0) { [3] Sun Microsystems, lnc.,Xl)RExternalData

¢_d (eventLi st, vertexList): Representation Standard, RIzC !014, (see also man

pages on UNIX systems)..
¢hW_clte(chout, eventLzst) ;

}

Fig. 2 E._ample using Cheem/10Utlmt fi, nction.

The Cheetah read function returns a Cheetah list which

is a replica of the one writwn. Thus nol only is the data

re-established in memory, but also the type information.

The type information can be used to check that the data is

of the expected type (e4,'. with the chl._KindOf() function).
lt can also be used by general puq_ose interactive programs

to present Iu the user detailed lnformatio|l on what wa,.
read.]'his information includes the type information for
members of (" slruclures, their names, and even comments

6. Summary

Cheetah is a useful and llexible data management

system based on the C programming language with support

for other languages, lt facilitates the transfer of data
between memory and 1/O streams while minimizing
interference with the native methods of data access. The

streams are associated with disk tiles, memory buffers, or
are network data streams. The ('heetah list construct is used

to direct the l/O and can optionally be used by the

programrner to help manage the data.
]'he Cheetah kernel is v, rlttcn In ANSI st;.mdatd (7. but

can be compiled using ('*+ c_mpllers ('heetah i,, highly

portable _,ith no n_achlne-dcl)CndCl_l _,_,_.lh:hes The source

code and complete d_culllCl/lallt_ll ft_l ('heetah ,,_11 be

made available via anonymous lip from lhc file server
heplib, slac. stanford, edu.

i i i ii i

4 SLAC-PUB-5930

