SLAC-PUB-5930
September 1992
(E/1)

The Cheetah Data Management System

SLAC-PUB--5930

Paul F. Kunz

DE93 004010

Stan’ord Linzar Accelerator Center
Stanford lJniversity, Stanford, CA 94309, USA

Gary B. Word

Department of Physics and Astronomy
Rutgers University, Piscataway, NJ 08855-0849, USA

Cheetah is a data management system based on the C programming language, with support for other
languages. Its main goal is to transfer data between memory and /O streams in a gencral way. The
streams are cither associated with disk files or are neiwork data sueams. Cheetah provides optional
convenicnce functions to assist in the management of C structures. Cheetah streams are self-describing
s0 that general purpose applications can fully understand an incoming stream. This information can be
used o display the data in an incoming stream to the user of an interactive general application, complete

with variable names and optional comments.

1. The Goal of the Cheetah System

The basic entities managed by Cheetah are structures
as defined in ihe C programming language. To quote the
introductory paragraph in the chapter on structures in The
C Programming Language by Kernighan and Ritchie[1].

A structure is a collection of one or more vari-
ables, possiblv of different tvpes, grouped to-
gether under a single nunie for convenient
handling. (Structures are called “records” in
some languages, notably Pascal.) [...] Struc-
tures help 1o organize complicated data, partic-
ularly in darge programy, because in many
situations they permit a group of relared vari-
ables to be treated as a unit instead of as sepa-
rate entities.

The design of Cheetah is based on the premise that the
structures of the C language are ideally suited to organize
data within high energy physics (HEP) programs, such as
Monte Carlo simulation programs and data acquisition

systems. C structures are clearly the equivalent of the
“banks” referred to by many HEP developed data
management systems based on FORTRAN. These
FORTRAN-based systems all suffer, to a greater or lesser
degree, in poor integration with the compiler, the operating
system, and/or the symbolic debugger. The goal of the
Cheetah system is to exploit the features of the C language
while adding data management tools such as input and
output streams to storage or to a client-server network
connection. Cheetah is designed to allow the code writer to
use native C language constructs, with only a few required
Cheetah function calls and a number of optional Cheetah
convenience tunctions. Cheetah maintains symbol table
information about the user’s data, which is used to provide
machine-independent and self-describing data streams.
Cheetah also provides support for data structures of other
languages such as C++ and FORTRAN.

2. Introduction to C Structures

In this section, a short and simplified introduction to C
structures is presented. Consider the following C structure

* Work supported by Departm

! Encrgy, contract DE-ACO3-76SFO051S.

Conrributed paper 10 the Conjerence on Computing in High Enerev Phvsics, Annecy, France, September 21-25, 1992,
! 8 £ 8 .) /

The Cheetah Data Management System

definition which might be used to describe a track in a
Monte Carlo program:
struct track {

float pl3}:

float ptot;

int charge;
b
The keyword szruct introduces a structure declaration
which is a list of declarations enclosed in braces. The sym-
bol track, called the structure tag, becomes a new data type
in the C language. The standard C declarations within the
braces name the variables that are members ot a structare of
type track. Members of a C structure can be of any C data
type including pointers to other structures.

The structure declaration does not allocate any mem-
ory storage. Rather storage is allocated with a statement
like

struct track mytrack:

More frequently, one declares a variable which is a pointer
to storage which is allocated at execution time by calling
the C library function malloc. A code tragment that does
this looks like:

struct track *mytrack:
mytrack = malloc(sizeof (struct track))

where sizeof is a compiler operator which in this case re-
turns the number of bytes needed for the track structure.

In many cases, one handles a collection of structures of
the same type. There are many ways to handle this situation
in C, such as a linked list or an array of structures. One
convenient way is to allocate each structure individually as
needed and to allocate an array of pointers to these
structures. In the following code fragment:

struct track **tracks;
tracks = malloc(numtrks* (si1zeof (struct track *)))
tracks{i] = malloc! sizeof{struct track));

numtrks is a variable containing the number of pointers
desired and rracks[i] is a pointer to the i-th structure. These
statements may look complex to the beginning C
programmer, but they are commonly used and with more
experience they become quite tamiliar. One should also
note that compared to FORTRAN-based data management
systems, these few lines replace a very large amount of
complex code that 15 not any easier, and frequently much
harder, to understand. This method has the advantage of
making more efficient use of virtual memory space by not
requiring that the structures be contiguous in memory.

Having allocated storage for structures in this way, one
can access members of the structure as illustrated in the
following code fragment:

ptot = tracks{1i]-=>ptot;

The string tracks{i]->ptor can be used in an expression
anywhere a variable can be used. That is, it can appear
either on the left or right side of the equal sign, used as an
argument of a function call, etc. Thus, one has clean and
concise mnemonic access to data in the structures. An
important advantage, compared to FORTRAN-based
systems, is that the symbolic debugger can be used very
effectively since the syntax is a part of the C language.

3. The Chectah List

It is usually the case that a program will contain many
different structure types and for each type many structures
of that type. For example, a program may want to
manipulate a list of tracks, a list of vertices and a list of
calorimeter clusters. For ease of handling, the collection of
lists may themselves be collected into a list. Lists are
therefore important entities. Cheetah defines a list structure
called a chList which one can use for data management and
that Cheetah uses to manage input and output streams,

A chList is created by calling ¢hiNew with a list name,
a comment string, and information on the type of data
being maintained in the list. For example, in the following
code fragment:

chList *tracklist;
trackList = chNew({"Tracks", “MCtracks”,track_T{());

trackList is declared to be a pointer to a Cheetah list which
itself is created by the ¢hNew function call. The last
argument, track_T{(). is a function that returns the type
information. It and a utility to create it automatically will
be described in the next section.

A structure is added to a ¢hlist by using the function
chAdd. Thus, if mytrack is a pointer (o a structure of type
track, then it is added to the rrackList by:

chAadd(tracklList, mytrack };

The variable trackList becomes a convenient handle when
manipulating collections of structures. It collects the type
information and the pointers to the structures together
which is needed for Cheetah input and output.

A complete example of the use of Cheetah lists and
other Cheetah functions is shown in Fig. 1 with the Cheetah
tunctions highlighted in bold case. The example function

2 SLAC-PUB-5330

The Cheetah Data Management System

chList *findVees(chList *trackList)
{

chList *vertexList;

struct track **tracks;

struct vertex *avertex:;

int i, j. count;

if (:chIsKindOf(trackList, track_T())) {
fprintf(stderr, “findVees: bad input\n®);
return NULL:
}
vertexList = chNew("Vertices”, *2 prongs”,
vertex_T());
tracks = chbDataPtr(trackList);
count = chCount (trackList);
for (i = 0; 1 < count-1; i++) {
for (j = i+l; j < count; J++) |
avertex = goodVee(tracks(i].tracks(j])):

if (avertex != NULL) {
chAdd(vertexList, avertex);
}
}
}
return vertexList;

Fig. 1 Complete example of code with Cheetah.

takes as an argument a Cheetah list containing track struc-
tures and returns a Cheetah list containing all good two
prong vertices. The chlsKindOf() function is one of Chee-

tah's convenience functions. It checks that the contents of

the input Cheetah list is of the type expected. Other Chee-
tah convenience functions are chDataPir() and chCouni()
which return the contents of the list as an array of pointers
and the size of the array respectively. It is not difficult for an
experienced C programmer o imagine how these functions
are implemented or the fact that they may be implemented
as macros instead of true functions.

4. Creating Data Typing Information

In order for Cheetah to perform input and output
operations on data, it needs type information of the data for
each type in the stream. As stated in the previous section,
this information is returned by a Cheetah type function, i.e.
the functions with the traiiing _7 in the examples above.
These type functions can be generated by the chgen utility
which is modeled after Sun’s rpcegen utility[3]. 1t parses
files containing the declaration of the structures. The
syntax of the data definition language used in these files is
close to standard C structure declaration syntax. Two files
are generated by the chgen utility. They are a .h header file

and a .c source file. The .h file contains declarations of the
structure and the corresponding type function. The .¢ file
contains the source code of the type function.

The Cheetah typing mechanism is not limited to C
structures. Most commonly used data structures, even those
in other programming languages, can be described to
Cheetah. FFor example, data contained within a FORTRAN
common block, or even the whole common block, can be
handled by Cheetah as if it were a C structure. It is by this
means that Cheetah can provide support for FORTRAN
data structures and the Cheetah chgen utility can even be
used to produce files that are to be included in FORTRAN
source code.

The Cheetah data description language allows for a
rich assortment of data types including structures, vectors,
variable-length arrays, enumerations, discriminated
unions, C-style pointers, and FORTRAN 77 style
“pointers” (relative word offset pointers). Multiply
referenced data, such as occur in doubly-linked lists, are
also handled correctly.

C++ object persistence is in development, as well as
support for Fortran 90 derived data types. A subset of the
data description language can be used to achieve common,
named access to data in FORTRAN common blocks from
both FORTRAN and C.

5. Cheetah Input and Output

Cheetah input and output is modeled after the C I/O
system. There are functions to open a stream, which returm
a pointer to the opened stream. There are several kinds of
Cheetah streams. They can be binary or plain text. The
binary streams can either use the industry-standard XDR
format[3], the architecture’s native format, or a
close-packed format. The text streams can either be in a
format simitlar to C-style initialization, or in a
binary-faithful format, which is a direct translation of the
format used in the binary file. A stream can be opened
either to a file system, a TCP/IP network connection or to a
memory buffer.

The Cheetah read and write functions take two
arguments as shown in Fig. 2. The first is the pointer to the
stream and the second is a Cheetah list. No distinction is
needed on what kind of stream is being used. Thus,
Cheetah 1/0 is network transparent. In the example, the
main program writes the contents of a Cheetah list called
event to a file. The contents of event is a Cheetah list
containing tracks and if any vertices are found a Cheetah
list containing vertices.

SLAC-PUB-5920 3

The Cheetah Data Management System

main() {
chList *eventlList, *trackbList, *vertexList:
chFile *chout:

chout - chOpenFile("oarputl chadata”™, "wb”
eventList = chNew("MCEvent”, “"MC Evenr~,
chbxst T()).

trackList = MCEvent():

vertexList = findVertices(trackList);

chAdd(eventiList, trackList);

if (vertexList && chCount(vertexList) > 0) {
chAdd(eventlist, vertexList);

)

chWwrite(chout, eventlList);

Fig. 2 Example using Cheetah output function.

The Cheetah read function returns a Cheetah list which
is a replica of the one written. Thus not only is the data
re-established in memory. but also the type information.
The type information can be used to check that the data is
of the expected type (¢.g. with the chlsKindOff) function).
It can also be used by general purpose interactive programs
to present to the user detaled information on what was
read. This information ncludes the type information for
members of C structures, their names, and even comments

6. Summary

Cheetah is a usetul and flexible data management
systemn based on the C programming language with support
for other languages. It facilitates the transfer of data
between memory and [/O streams while minimizing
interference with the native methods of data access. The
streams are associated with disk files, memory buffers, or
are network data streams. The Cheetah list construct is used
to direct the I/0 and can optionally be used by the
programmer to help manage the data.

The Cheetah kernelis written in ANSI standard C, but
can be compiled using C++ compilers Cheetah is highly
portable with no machine-dependent switches. The source
code and complete documentation tor Cheetah will be
made available via anonvmous fip from the file server
heplib.slac.stanford. edu.

References

{11 B. W. Kernighan and D. M. Ritchie, The C

Programming Language (Prentice Hall, Englewood
Clitfs, 1978)

[2] Sun Microsystemns, Inc., rpcgen Programming
Guide, (see also man pages on UNIX systems)

[3] Sun Microsystems, Inc., XDR External Data
Representation Standard, RIFC1014, (see also man
pages on UNIX systems)..

4 SLAC-PUB-5930

