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ABSTRACT
A study on the sloshing response of nonuniform density liquid in a tank undergoing lateral
base excitations is presented. The system considered is a circular cylindrical tank containing a
liquid whose density increases with the liquid depth. The density distribution along the depth
* can be of any arbitrary continuous function. In the analysis, the liquid field is divided into n
layers. The thicknesses of the liquid layers can be different, but the density of each liquid layer
is considered to be uniform and its value is assigned to be the value of the original liquid density
at the mid-height of that layer. The problem is solved by the transfer matrix technique. The
effect of the nonuniform liquid density on the sloshing response is illustrated in a numerical
example in which the linear and cosine distributions of the liquid density are assumed. The
response functions examined include the sloshing frequencies, surface wave height, and the
associated convective hydrodynamic pressure. The resu.lts are presented in tabular and graphical
forms. It is found that the natural frequencies of the sloshing motion for nonuniform density
liquid are lower than those of the uniform density liquid of the same total depth contained in an
identical tank. Also, it is shown that for nonuniform density liquid, the maximum sloshing wave
height may increase significantly and the magnitude of the convective hydrodynamic pressure

may be quite different compared with that of a uniform liquid contained in an identical tank.

INTRODUCTION

The sloshing motion associated with the dynamic response of a homogeneous liquid in
a rigid tank undergoing lateral base motion has been studied by Housner (1957), Bauer (1964)
and Yang (1976). It is found that the natural frequencies of the sloshing motion can be computed
by a very simple closed-form equation, and these frequencies are independent of the liquid
density. For more information about this topic, the reader is referred to the above mentioned
references. However, these previous studies were based on the assumption that the liquid has

a constant density. Recently a paper by Bandyopadhyay (1991) indicates that a large number of
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high level waste (HLW) storage tanks at various U.S.”Department of Energy (DOE) facilities
contain liquid with nonuniform density. Thus, there is a need to understand the effect of
nonuniform density on the seismic response of the contained liquid. Exploratory studies on the
dynamic response of tanks containing two liquids have been performed by Tang (1993a, 1993b).
Those studies show that the dynamic response of a tank containing two liquids is quite different
from that of an identical tank containing only one liquid. Especially, the sloshing wave height
may increase significantly in a tank that contains two liquids. Therefore, to design and evaluate
the HLW storage tanks it is necessary to understand the sloshing response of tanks that contain
liquid with nonuniform density.

The objectives of this paper are (1) to present a method of analysis for the computation
of the sloshing frequencies, the sloshing diéplacement and the convective hydrodynamic pressure
of nonuniform density liquid contained in a tank undergoing lateral base excitations; and (2) to

~present the numerical results with which the effect of nonuniform density of the liquid on the
sloshing response can be elucidated. In the proposed approach, the liquid field is divided into
n layers along its height. These liquid layers may have different thicknesses, but the liquid
density of each layer'ié assumed to be uniform. The tank wall is assumed to be rigid. For each
layer the so-called impulsive component of thé response is solved first and then followed by the
~ convective component of the response quantity. For the definitions of impulsive and convective
components, the reader is referred to Housner (1957) and Veletsos (1984). Response functions
examined include the sloshing frequencies, sloshing wave height and the convective
hydrodynamic pressure. Even though, the solutions presented herein are for rigid tanks, they are
also applicable for flexible tanks because it has been shown by Haroun and Housner (1981) that

the sloshing motion is insensitive to the flexibility of the tank wall.

SYSTEM DESCRIPTION

The tank-liquid system investigated is shown in Fig. 1. It is a ground-supported upright
circular cylindrical tank of radius R which is filled with a nonuniform liquid to a height of H.
The density of the liquid is assumed to have a minimum value, denoted by p,, at the top of the
liquid surface. The liquid density is assumned to increase monotonously with the increase of the

liquid depth and reaches a maximum value, denoted by p,, at bottom of the liquid. The tank is

assumed to be rigid and clamped to a rigid base. The liquid is considered to be incompressible




and inviscid. The response of the liquid is assumed to be linear. The cylindrical coordinate
system, 1, 6, and z, is employed for the study with the origin defined at the center of the tank

base, e.g., z = 0, at the tank base and @ = 0 taken parallel to the direction of the seismic
excitation. The lateral excitation considered herein is denoted by %(t). The temporal variation

of X(t) can be arbitrary.

APPROACH AND SOLUTIONS

The liquid field is first divided into n layers as shown in Fig. 2. The thickness of the
Layerj (j = 1, 2, 3 ... n) is denoted by H,. The thicknesses of the different layers may not be
the same. The liquid density for layer H; is taken to be the value of the original liquid density
at mid-height of the layer, and it is denoted by p;. It is assumed that the liquid is uniform in
each layer. Thus, the mathematical model that represents the physical system depicted in Fig.
1 is a system which has n layers of liquids with different thicknesses and liquid densities. For
the convenience of derivations, a local cylindrical coordinate system, r, 6, Z;, is introduced for
the Layer j where z is related to z by the equation

i-1 .
z=zj+§ H, for0szsH @
Given the conditions that the liquids are incompressible and inviscid, the hydrodynamic

pressure induced at Layer j, denoted by p;, must satisfy the Laplace equation
Vip, =0forj =12 3.n ()

inthe region0srsR,0<0<s2n,and0 s z; < H,. The liquid acceleration at an arbitrary point

in Layer j along s-direction is given by

a =199 3)
' p; 9s

The boundary conditions are:

1. The vertical acceleration of liquid at the tank base must be zero; i.e.,
a
il I )
az,
2,=0




2. The radial acceleration of liquid adjacent to the tank wall must equal the

acceleration of the tank wall, i.e.,

ap,
1 _& = %(t)cosH, i=1 2.n 5)
pj ar =R
3. At the free surface, the linearized boundary condition is
a?p ap
n + ] = O 6
( at? g 9z )z , ©

where g is the gravitational acceleration.

At the interface of Layers j and j+1, the boundary conditions are:

4. Continuity of the vertical acceleration, i.e.,
1 apj - _ 1 apjn )
Py 9%, Pt 9%,
and
5. Continuity of the hydrodynamic pressure, i.e.,
Pl = Pl o ®)

Note that, strictly speaking, if the densities of the liquids in Layers j and j+1 were indeed
different, the hydrodynamic pressure would have a jump at the interface, and Eq. 8 would have
to be replaced by (Tang 1993b)

2 2

p; g P, |, 9P;.

at? at. at? iz,,,
zj=Hj 3

)
However, the reason that p; is not equal to p;,, is derived from the mathematical modeling not

®

z.,=0

from the original physical system. It should be noted in the physical system the density of liquid
is continuous at the interface. Also, if one uses Eq. 9 instead of Eq. 8 to solve the problem, one

will obtain n distinct natural frequencies for each horizontal sloshing mode (Tang 1993b) which




is believed to be unrealistic for the physical system considered. Therefore, Eq. 8 instead of Eq.
9 is used in this study.
The solutions for p, is expressed as the sum of the impulsive component and the

convective component, i.e.,

P; = le + P : (10) -
where the superscript i stands for the impulsive component and the superscript ¢ stands for the

convective component.

Impulsive Component

The function pji must satisfy

Vv2p.! = 0 forj =1, 2..n | | (11)

)

and the following boundary conditions:

P
Rl I (122)
9z,
z,=0
ani _ . .
_ = ~-p. X(t) cosH, j=1,2.n (12b)
or | .q !
Pa, , =0 (12¢)
ap.! ap;t
Ao 1 OBa (12d)
;9% 4H, P 9%, 1m0
P; Iz,’ﬂ, = pj'llz,,,-o (12¢)

The method of separation of variables is employed to solve Eq. 11, and the integration

constants are determined from the boundary conditions. Satisfying Eqgs. 11 and 12b, the function

p,-i takes the form



AL
1(%)

p;Rx(t)cosH, forj=1,2..n

(13)

where J; is the Bessel function of the first kind of order 1, A, = the kth zero of J',, the first

derivative of J,, and A;, and By, are the constants of integration that may be determined from the

boundary conditions. From Eq. 12a, one obtains
B, =0 for all k

and from Egs. 12d and 12e, one obtains

Bi.iy = sinhBy, A, + coshB, B, forj=1,2.n
and ‘
- b coshB. A. + b sinhf., B
Agen = o e S T o jk ik
3+ it
P :
1+ Yo forj=1,2..n
Pj1

respectively. Equations (15a) and (15b) can be cast into the matrix form given by

p; P, .

Aoy ) FL coshp,, }_ sinh Bis A,
B I B " B

G+hx sinh B, coshB, jk

(14

(15a)

(15b)

(15¢)
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where 8, = AHyR and )

2
- 16
Xk A: _ 1 ( )

To arrive at Eq. 15b, the following series expansion for /R is utilized.

- M=
I R
§=E p

k=1 3i(N) 17

With the aid of the recursive relation defined by Eq. 15¢ and the fact that B,, = 0, the constants,
A, and B, can be expressed in terms of the constant, A,,; then, A,, can be determined from the
following equation which is obtained from Eq. 12c.

A,, coshf + B sinhf, = % (18)
After A, is obtained, the constants A; and By for j = 2 ... n can be determined repeatedly by
making use of Eq. 15c.

Convective Component

The convective component of the hydrodynamic pressure, pj°, must satisfy

vip,© =0 forj =1, 2.n 19)

and the following boundary conditions:

a c

P1 =0 : (20a)
9z,

z,=0

ap;°
Bl <o (20b)
ar | .»

2. € 9 c 3 i

0°p, v g Pn - g Pa (200)
at? az, - aznz’ﬂ




p'c a je i
_1 % __ 1 9p, (20d)
p’ Zj z].H’ p".l aZjA»l zw.o
and
o =l (20e)
V lz-n, 10g,,=0

Following the same procedure used in solving Eq. 11, the function pi° that satisfies Eqgs.

19 and 20b takes the form

P =)

k=1

C,(®) cosh[kk _Zkz] + D, (1) sinh[xk %.]}

Aol
IMR

LN

P; R cos@ (21)

in which C,(t) and Dy (t) are the integration functions that may be determined by satisfying the
boundary conditions. From Eq. 20a, one obtains '

Dy=0 forallk (22)
and from Eqgs. 20d and 20e, one obtains

p; P .
C.. —3 coshf., — sinhf, C
6 I)k = p,' +1 ’k pj +1 Jk ’k (23)
Genk sinhB,, coshB, b

Similar to Eq. 15¢, Eq. 23 defines a relation between the integration functions of jth layer and
those of the (j+1)th layer. By repeating application of Eq. 23 from j=1 to j=n and making use
of Eq. 22, one obtains the equation that links the C,, with C, and D,. Symbolically, this

equation can be written as

C

nk

D

C
1k (24)
0

Tll T12
TZI T22

nk



where the 2x2 matrix in Eq. 24 is the transfer matrix, and T, T,,, T,, and Ty, are its elements.

Introducing a coefficient, n,, that represents the ratio of D, to C, i.e.,

an = nnk an (25)
from Eq. 24 m,, is given by
T21
= __ 26
nnk T ( )

1

Finally, C,, may be determined by the following equation which is obtained from boundary

condition Eq. 20c
(COShﬁnk + nnk Sinhﬁnk) énk(t)

* _g-lg—k- (Sinh Bnk * Mok cosh Bnk) Cﬂk(t)

__gh

= (A sinhB, + B, coshf, ) X(1) 27

The natural circular frequency for the kth vibration mode of the sloshing motion, denoted by w,,
can be obtained from the free vibration equation associated with Eq. 27, and the result is given

. by

w? = gh [ My * tanhBy, (28)
R 1 +m,, tanhf

where the coefficients A,, and B, are obtained from the preceding section for the impulsive
component. The solution to Eq. 28 is given by |

Ank tanhﬁnk + Bnk
nnk + tanhﬁnk

C.() = ‘( ] AW 29

where A,(t) is the pseudoacceleration function for the kth vibration mode of the sloshing motion

and is defined by

A = o, fo‘ %(t) sin(o, (t-v))d< (30)




The convective component of the hydrodynamic pressure for the nth layer, p,’, is then

obtained from Eq. 21 by setting j = n and substituting Eqgs. 25 and 30 into the resulting equation.

The result is given by

pS = - i: (Ank tanhf , + B,.k) [cosh A %’1 +m,, sinh A, %‘_‘.

k=1 nnk + tanthk

] I
1MR

5(M)

A ® p, R cosb (31)

. The sloshing wave height, d(r, 8, t), of an arbitrary point at the liquid surface is determined from .

[

Pa

b = Pa 8 d(nB) (32)
and the result is expressed as
T

- 3N =
_ | 2 A (D ’( R) -
d(,6,t) = kz; r, (li . 1] - ) R cos# (33)

in which r, is a dimensionless coefficient which is equal to one if the liquid has uniform density;
therefore, 1, represents the effect of the nonuniform liquid density on the kth mode of sloshing
wave height. Also, another dimensionless coefficient, o, is introduced to assess the effect of

nonuniform liquid density on the sloshing frequencies; a, is defined by rewriting Eq. 28 as
2 gh H
W, = —— tanh —_— 34
- [ () e

Again, o, has a value of one if the liquid has uniform density. Note that for the case of n=2 the
closed form solutions for r, and o, are available in Tang (1993a). After C,, is obtained from Eq.

24, the coefficient C,, may be computed by the equation given by

Cy = = Ca (33)

1k
11

10



which is derived from Eq. 24. With the information for D,, given in Eq. 22, the coefficients Ci
and Dy, for j = 2, 3,.., n can be calculated from Eq. 23 recursively, and the convective
hydrodynamic pressure given by Eq. 21 can be computed as well. The maximum convective
hydrodynamic pressure exerted on the tank wall is obtained by evaluating Eq. 21 at r = R, and

0 = 0; the result can be cast into the following equation

Pt =Y @ A PR (36)

k=1

Note that in Eq. 36, the magnitude of the pressure is normalized by p, which is the maximum

value of the liquid density.

NUMERICAL RESULTS

Unlike the case of a tank containing uniform liquid where H/R is the only parameter that
control§ the response, for tanks filled with nonuniform liquid, the parameters that control the
response are H/R, p,/p,, and the density variation along the liquid depth. For the numerical study
présented herein, the variation of the liquid density between p, and p, is assumed to be either a
linear or a cosine function. More precisely, if p(z) represents the density 'at liquid depth of z,

the linear function is given by

H -
P =p, + ( - Z) (P, - P - (37)
and the cosine function is given by

p@ = p, + (p, - P,) <o (-;_-‘%) (38)

It is important to determine the number of layers needed to approximate the liquid field
in order to get accurate results. Therefore, the study for the convergence of the natural frequency
and sloshing displacement is performed first. Since the major contribution to the sloshing
response comes from the fundamental mode of vibration, the convergence study for the frequency
coefficient &, and r, for k = 1 is presented in Tables 1 and 2, respectively, assuming either linear
or cosine variation for the liquid density. In these tables, values of o, and r, for tanks with H/R
= 0.5 and 3 filled with liquid with p/p, = 0.25, 0.5 and 0.75 were obtained by using different

numbers of layers, and for simplicity the thicknesses of these layers are taken to be the same.
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As one can see from these tables that for larger value of p/P, and linear variation of density the
convergence for o, and r, is faster. Also, from the tables one may conclude that with n = 300,
the results are quite accurate. Thus all solutions presented hereinafter are obtained by using n
= 300. It should be mentioned herein that the approach presented in this paper is implemented
into a FORTRAN computer program that runs on PC 486 machine, and for n = 600 the CPU
time spent is less than 5 seconds.
The frequency coefficient o, and sloshing displacement coefficient r, for k =1 are plotted
in Figs. 3 and 4, respectively, for linear and cosine variations of density as a function of p/p,.
Four different values of H/R, 0.5, 1, 2 and 3, are considered. Examining the information
~presented in Figs. 3 and 4, one notices that the effects of nonuniform liquid density on the
sloshing response are: (1) it decreases the fundamental natural frequency of the sloshing motion;
and (2) it may increase the sloshing wave height. This effect is more pronounced for broad tanks
with low value of p/p,, and these effects are not particularly sensitive to the detailed variation
- of the density value between p, and p,. The increase of the wave height may be significant; for
example, the value of r, is more than double for H/R = 0.5 and p/p, < 0.25 compared with that
for H/R = 0.5 and p/p, = 1, the uniform density. To further confirm this finding, the maximum
sloshing wave height of a liquid with p/p, = 0.25 in a tank of radius R = 25 ft (7.63 m) and
~ liquid height H = 12.5 ft (3.81 m) subjected to the 29-second horizontal component of the
September 16, 1978 Tabas earthquake of Iran is computed. The peak acceleration of the Tabas

recorded is denoted by X . The maximum sloshing wave height, denoted by d,,,, may be
obtained by evaluating Eq. 33 at r = R and 6 = 0. For the first three modes of vibration, d,,,
may be expressed as '

.A‘_(t).+d2ﬁ2.£tl+3_A_3_(2 39)
g g g

dmlx = dl
in which the subscripts 1, 2 and 3 represent the first, second and third mode, respectively, and
the coefficient d,, i=1,2 and 3 has the unit of length. The first three natural frequencies, denoted
by f, the value of d; and the maximum values of A(t), denoted by SA,, for i = 1,2 and 3 are
tabulated in Table 3 for the cases of linear, consine and uniform liquid density variations. Also,
listed in the Table 3 are the d,,, obtained from Eq. 39 by the square root of the sum of the

squares (SRSS) of the three components. One, again, can see clearly that the sloshing wave

12



height increases from the uniform density case to the linear variation case by 67%, and for the
cosine variation case the increase is 46%.

The distribution function of the convective hydrodynamic pressure exerted on the tank
wall, ¢,(z), k = 1, is plotted in Figs. 5 and 6 for H/R = 0.5 and 3, respectively, for the values of
p/Py = 0.25 and 0.75 for the linear and cosine variations of liquid density. Plotted in the same
figures and shown by the dotted lines are the corresponding information for the case of uniform
liquid density of p,. It is clearly shown in these two figures that the convective hydrodynamic
pressure may be far off the true solution if uniform liquid density is assumed. It is noted herein
that the accuracy of the pressure computed has been checked against those presented in Tang
(1993a) for the case of n = 2.

CONCLUSIONS

A study on the effect of nonuniform liquid density on the sloshing response of an upright
circular cylindrical tank is presented. The response quantities examined include the natural
sloshing frequencies and surface sloshing displacement. It shows that nonuniform liquid density
has two main effects on the sloshing response: (1) it increases the sloshing wave height; and (2)
it decreases the sloshing frequencies, and the magnitude of the convective hydrodynamic pressure
induced may be quite different from that of uniform liquid. Also, it is shown in the numerical
example that if the effect of the nonuniform liquid density is considered, the maximum sloshing
wave height may be increased by more than 50 percent when compared with that of the identical

tank filled with uniform liquid.
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Table 1. Convergence Table of Sloshing Frequency Coefficient, o,

p/py = 0.75 p/Py = 0.50 p/py = 0.25
No. of
Layers Linear Cosine Linear Cosine Linear Cosine
H/R = 0.5

2 0.976 0.975 0.947 0.948 0911 0.917
5 0.957 0.949 0.899 0.884 0.813 0.797

10 0.950 0.938 0.880 0.856 0.769 0.738 "
f 50 0.944 0.928 0.864 0.832 0.729 0.682
100 0.943 0.927 0.862 0.829 0.724 0.674
150 0.943 0.927 0.861 0.827 0.722 0.672
200 0.943 0.927 0.861 0.827 0.721 0.670
250 0.943 0.927 0.861 0.827 0.721 0.670
300 0.943 0.926 0.860 0.826 0.720 0.669
600 0.943 0.926 0.860 0.826 0.720 . 0.668

H/R = 3.0

2 1.000 1.000 0.999 0.999 0.999 0.999
0.996 0.995 0.990 0.987 0.978 0.973

10 0.992 0.988 0.979 0.970 0.947 0.933 “
50 0.987 0.980 - 01964 0.957 0.909 0.874
100 0.986 0.979 0.962 0.944 0.902 0.864
150 0.986 0979 0.961 0.942 0.900 0.862

200 0.986 0.979 0.960 0.942 0.899 0.860 "
250 0.986 0.978 0.960 0.941 0.898 0.859
300 0.986 0.978 0.960 0.941 0.898 0.858
0.978 0.960 0.940 0.897 -0.857




Table 2. Convergence Table of Sloshing f)isplacement Coefficient, o,

Displacement “
p/p, = 0.75 p/p, = 0.50 PYPy = 0.25
No. of
Layers Linear Cosine Linear Cosine Linear Cosine
H/R = 0.5 |
2 1.064 1.067 1.150 1148 1271 1248 |
5 1112 1.134 1.290 1337 1.628 1.689
10 1130 1.162 1348 1428 1.825 1.979 “
50 | 1145 1185 1.401 1514 | 2031 | 232
100 1147 1188 1.408 1526 | 2061 | 2375 “
150 1147 1190 1410 153 | 20m | 2393 |
200 1147 1.190 1411 1532 | 2076 | 2402
250 1148 1190 1412 1533 2079 | . 2.408
300 1148 1911 1413 1534 | 2081 | 2411
600 1148 | 1191 | 1414 153 | 2087 | 2421 |
HIR = 3.0 |
2 1.009 1.009 1.021 1.021 1.038 1035 |
5 | 1030 1.040 1.079 1101 1174 1203 |
10 1.042 1.060 1116 1158 1282 | 1360
50 1.055 1.079 1.156 1222 1415 1.576
100 1,057 1.082 1.161 1231 1435 1611
150 1.057 1.083 1.163 1.235 1.442 1623 |
200 1.057 1.083 1.164 1.236 1.446 1629 |
250 1.058 1.084 1.165 1237 1.448 1.633 ll
300 1.058 1.084 1.165 1238 1449 1.636
600 1.058 1.084 1.166 1.239 1453 1642 |
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Table 3. Comparison of Response Ql,lantitiés of the Tank-Liquid Systems
Considered in Numerical Example

lr Linear Cosine Uniform “
£, (Hz) 0.151 0.140 0200 |
£, (Hz) 0343 0322 0415 |
|| £, (Hz) 0.462 0.438 0.528
| a/r 1742 2.018 0.837
/R 0.09 0.148 0,07
d/R 0.04 0.05 0.03
SA 0212 0.157 0.265
g
5S4, 0.523 0.534 0.442
g .
“ SAy 0.574 0.471 0.769
g
onax 0376 0331 0.225
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Fig. 5. Convective Pressure Exerted on Wall of Rigid Tanks with H/R = 0.5
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Fig. 6. Convective Pressure Exerted on Wall of Rigid Tanks with H/R = 3




