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Abstract

Network arrivals are often modeled as Poisson processes for ana-
lytic simplicity, even though a number of traffic studies have shown
that packet interarrivals are not exponentially distributed. We eval-
vate 21 wide-area traces, investigating a number of wide-area TCP
arrival processes (session and connection arrivals, FTPDATA con-
nection arrivals within FTP sessions, and TELNET packet arrivals)
to determine the error introduced by modeling them using Poisson
processes. We find that user-initiated TCP session arrivals, such
as remote-login and file-transfer, are well-modeled as Poisson pro-
cesses with fixed hourly rates, but that other connection arrivals
deviate considerably from Poisson; that modeling TELNET packet
interarrivals as exponential grievously underestimates the bursti-
ness of TELNET traffic, but using the empirical Teplib[DJCMES2}
interarrivals preserves burstiness over many time scales; and that
FTPDATA connection arrivals within FTP sessions come bunched
into “connection bursts”, the largest of which are so large that they
completely dominate FTPDATA traffic. Finally, we offer some pre-
liminary results regarding how our findings relate to the possible
self-similarity of wide-area traffic.

1 Introduction

‘When modeling network traffic, packet and connection arrivals are
often assumed to be Poisson processes because such processes have
attractive theoretical properties [FM94]. A number of studies have
shown, however, that for both local-area and wide-area network
traffic, the distribution of packet interarrivals clearly differs from
exponential [JR86, G90, FL91, DJCMES2]. Recent work argues
convincingly that LAN traffic is much better modeled using statisti-
cally self-similar processes [LTWW94], which have much different
theoretical properties than Poisson processes. For self-similar traf-
fic, there is no natural length for a “burst”; traffic bursts appear on a
wide range of time scales. In this paper we show that for wide-area
traffic, Poisson processes are valid only for modeling the arrival
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of user sessions (TELNET connections, FTP control connections);
that they fail as accurate models for other WAN arrival processes;
and that WAN packet arrival processes appear better modeled using
self-similar processes.

For our study we analyze 21 traces of wide-area TCP traffic. We
consider both previous and new models of aspects of FTP and TEL-~
NET traffic, discuss the implications of these models for burstiness
at different time scales, and compare the results of the models with
the trace data. We show that in some cases commonly-used Poisson
models result in serious underestimations of the burstiness of TCP
traffic over a wide range of time scales. (We restrict our study to
time scales of 0.1 seconds and larger.)

We first show that for interactive TELNET traffic, connection
arrivals are well-modeled as Poisson with fixed hourly rates. How-
ever, the exponentially-distributed interarrivals commonly used to
model packet arrivals generated by the user side of a TELNET con-
nection grievously underestimate the burstiness of those connec-
tions, and high degrees of multiplexing do not help. Using the em-
pirical Teplib [DI91, DJCME92] distribution for TELNET packet
interarrivals instead results in packet arrival processes significantly
burstier than Poisson arrivals, and in close agreement with traces
of actual traffic. From these findings we then construct a model of
TELNET traffic parameterized by only the hourly connection ar-
rival rate and show that it accurately refiects the burstiness found in
actual TELNET traffic. The success with this model of using Tcplib
packet interarrivals confirms the finding in [DJCMES2] that the ar-
rival pattemn of user-generated TELNET packets has an invariant
distribution, independent of network details.

For small machine-generated bulk transfers such as SMTP
(email) and NNTP (network news), connection arrivals are not well-
modeled as Poisson, which is not surprising since both types of con-
nections are machine-initiated and can be timer-driven. Previous
research has discussed how the periodicity of machine-generated
IP traffic such as routing updates can result in network-wide traf-
fic synchronization [FJ93], 2 phenomenon impossible with Poisson
models.

For large bulk transfer, exemplified by FTP, the traffic struc-
ture is quite different than suggested by Poisson models. As with
TELNET connections, user-generated FTP session arrivals are well-
modeled as Poisson with fixed hourly rates. However, we find that
FTPDATA connections within a single FTP session are clustered
into bursts. Neither FTPDATA connection nor FTPDATA burst ar-
rivals are well-modeled as Poisson processes. Furthermore, one of
our key findings is that the distribution of the number of bytes in
each burst has a very heavy upper tail; a small fraction of the largest
bursts carries almost all of the FTPDATA bytes. This implies that
faithful modeling of FTP traffic should concentrate heavily on the
characteristics of the largest bursts.



Poisson arrival processes are quite limited in their burstiness, es-
pecially when multiplexed to 2 high degree. Our findings, however,
show that wide-area traffic is much burstier than Poisson models
predict, over many time scales. This greater burstiness has im-
plications for many aspects of congestion control and traffic per-
formance. We conclude the paper with a discussion of how our
burstiness results might mesh with self-similar models of network
traffic, and then with a look at the general implications of our results.

2 Traces used

| Dataset | Date | Duration | What ]

Bellcore (BC) | 100ct89 13 days 17K TCP conn.
U.C.B.(UCB) | 310ct89 24 hours 38K TCP conn.
US.C.(USC) { 22¥an91 26 hours 13K TCP conn.
coNCert (NC) | 04Dec91 | 24 hours 63K TCP conn.
UK-US (UK) | 21Aug91 | 17 hours 26K TCP conn.
DEC1-3 See refs. 24 hours X3 | 195K TCP conn.
LBL 1-8 Seerefs. | 30days x8 | 3.7M TCP conn.
LBL PKT-1 17Dec93 | 2 hours 1.7M TCP pkts.
LBL PKT-2 19Jan94 | 2 hours 2.4M TCP pkts.
LBL PKT-3 20Jan%4 | 2hours 1.8M TCP pkts.
LBL PKT4 21Jan94 1 hour 1.3M pkts.

LBL PKT-5 28Jan9%4 1 hour 1.3M pkts.

Table 1: Summary of Wide-Area Traces

Table 1 summarizes the traces of wide-area traffic used in our
study. The first set of rows represent traces previously analyzed: the
BC, UCB, and USC traces in [DJCMES2]', the NC, UK, and DEC
traces in [P93], and the LBL traces in [P93, P94]. The “DEC 1-3”
rows represents three wide-area TCP SYN/FIN traces, each span-
ning 1 day, and the “LBL 1-8” row represents 8 wide-area TCP
SYN/FIN traces, each spanning 30 days. The final five rows reflect
new traces we gathered for our study. Each of these traces began at
2PM,; the first three captured all TCP packets, and lasted two hours.
The final two traces captured all packets and lasted one hour. In
the first set of traces, the fraction of dropped packets, where known,
was always < 5- 1075, For the second set, it was always < 0.001.

3 TCP connection interarrivals

This section examines the connection start times for several TCP
protocols. The pattern of connection arrivals is dominated by a
24-hour pattern, as has been widely observed before. We show
that for TELNET connection arrivals and for FTP session arrivals,
within one-hour intervals the arrival process can be well-modeled
by a homogeneous Poisson process; each of these arrivals reflects
an individual user starting a new session. Over one hour intervals,
no other protocol’s connection arrivals are well-modeled by a Pois-
son process. Even if we restrict ourselves to ten-minute intervals,
only FTP session and TELNET connection arrivals are statistically
consistent with Poisson arrivals, though the arrival of SMTP con-
nections and of FTPDATA “bursts” (discussed later in § 6) during
ten-minute intervals are not terribly far from what a Poisson pro-
cess would generate. The arrivals of NNTP, FTPDATA, and WWW
connections, on the other hand, are decidedly not Poisson processes.

These traces captured all WAN packets, but our analysis in this paper
uses only the TCP SYN/FIN connection start/stop packets.
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Figure 1: Mean, relative, hourly connection arrival rate for
LBL-1 through LBL-4 datasets.

Figure 1 shows the mean hourly connection arrival rate for
datasets LBL-1 through LBL-4. For the different protocols, we
plot for each hour the fraction of an entire day’s connections of that
protocol occurring during that hour.? For example, TELNET con-
nections occur primarily during normal office hours, with a lunch-
related dip at noontime; this pattern has been widely observed be-
fore. FTP file transfers have a similar hourly profile, but they show
substantial renewal in the evening hours, when presumably users
take advantage of lower networking delays. The NNTP traffic
maintains a fairly constant rate throughout the day, only dipping
somewhat in the early morning hours (but the mean size of each
connection varies over the course of the day; see [P93]). The SMTP
traffic is interesting because it shows a morning bias for the LBL site
(west-coast U.S.) and an afternoon bias for the Bellcore site (east-
coast U.S.); perhaps the shift is due to cross-country mail arriving
relatively earlier in the Pacific time zone and later in the Atlantic
time zone.

Figure 1 shows enough daily variation that we cannot reason-
ably hope to model connection arrivals using simple homogeneous
Poisson processes, which require constant rates. The next sim-
plest model is to postulate that during fixed-length intervals (say,
one hour long) the arrival rate is constant and the arrivals within

‘each interval might be well modeled by a homogeneous (fixed-rate)

Poisson process. Telephone traffic, for example, is fairly well mod-
eled during one-hour intervals using homogeneous Poisson arrival
processes [FL91].

To evaluate these Poisson models, we developed a simple statis-
tical methodology (Appendix A) for testing whether arrivals during
a given one-hour or ten-minute interval are Poisson with a fixed
rate. We test two aspects of each protocol’s interarrivals: whether
they are consistent with exponentially distributed interarrivals, and
whether they are consistent with independent interarrivals. If the
arrivals during the interval are truly Poisson, then we would expect
95% of the tested intervals to pass each test. Note that we would also
expect testing ten-minute intervals to perhaps be more successful
than testing one-hour intervals, because using ten-minute intervals
allows the arrival rate to change six times each hour rather than
remaining constant throughout the hour.

We applied our methodology to ali of the TCP connection traces

2In Figure 1, FTP refers to FTP sessions.



shown in the first half of Table 1. For each trace, we scparately
tested the trace’s TELNET, FTP, FTPDATA, SMTP, NNTP, and
WWW (World Wide Web) connections®. Here FTP refers to an
FTP session (i.e., an FTP control connection), while FTPDATA
refers to the data-transfer connections spawned by these control
connections®. We also tested arrivals of FTPDATA bursts (see § 6
below).
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Figure 2: Results of testing for Poisson arrivals.

Figure 2 shows the results of our tests, for both one-hour intervals
(top plot) and ten-minute intervals (bottom plot). Along the z-axis
we plot the percentage of tested intervals that passed the statistical
test for exponentially distributed interarrivals, and along the y-axis
the percentage that passed the test for independent interarrivals. The
dashed lines correspond to 2 95% pass-rate, which we would expect
on average if the arrivals were truly Poisson. In general, we expect
Poisson arrivals to cluster near the upper right corner of the plots.

Each letter in a plot corresponds to a single trace’s connection
arrivals for the given TCP protocol. Letters drawn in bold indicate
that the trace’s arrivals are statistically indistinguishable from Pois-

30nly two traces had significant WWW traffic.
4We first removed the periodic “weather-map” FTP traffic discussed
in [P94).

son arrivals (see Appendix A for details). A 4 or — after a letter
indicates that consecutive interarrival times are consistently either
positively or negatively correlated, even if the correlation itself is
not particularly strong (again, see Appendix A).

We see immediately that TELNET connection arrivals and FTP
session arrivals are very well modeled as Poisson, both for 1-hour
and 10-minute fixed rates. No other protocol’s arrivals are well
modeled as Poisson with fixed hourly rates. If we require fixed rates

- only over 10-minute intervals, then SMTP and FTPDATA burst ar-

rivals are not terribly far from Poisson, though neither is statistically
consistent with Poisson arrivals, and consecutive SMTP interarrival
times show consistent positive correlation. NNTP, FTPDATA, and
WWW arrivals, on the other hand, are clearly not Poisson.

That NNTP and to a lesser extent SMTP arrivals are not Poisson
is not too surprising. Because of the flooding mechanism used
to propagate network news, NNTP connections can immediately
spawn secondary connections as new network news is received from
one remote peer and in turn offered to another. NNTP and SMTP
connections are also often timer-driven. Finally, SMTP connections
are perturbed by mailing list explosions in which one connection
immediately follows another, and possibly by timer effects due to
using the Domain Name Service to locate MX records {S94].

That FTPDATA connection arrivals are clearly not Poisson can
be readily attributed to the fact that “multiple-get” file transfers often
result in a rapid succession of FTPDATA connections, one imme-
diately following another [P93]. Coalescing multiple FTPDATA
connections into single burst (§ 6) arrivals improves the 10-minute
Poisson fit somewhat, but still falls short of statistical consistency.

The finding that TELNET connection arrivals are well-modeled
as a Poisson process with fixed hourly rates is at odds with that of
[MM85], who found that user interarrival times looked “roughly
log-normal”. We believe the discrepancy is due to characterizing
the distribution of all of the interarrivals lumped together, rather
than postulating separate hourly rates.

Given that TELNET connection arrivals appear Poisson over
one-hour intervals, one might imagine that-other human-initiated
traffic such as RLOGIN and X11 will also fit this model. We find
that RLOGIN does and X11 does not. Weconjecture that the differ-
ence is that during a single X11 session (corresponding to running
an instance of xterm, say) a user initiates multiple X11 connections,
while TELNET and RLOGIN sessions are comprised of a single
TCP connection. Thus, TELNET connection arrivals correspond to
users deciding to begin using the network; X11 connection arrivals
correspond to users deciding to do something new during their use
of the network. The former behavior is likely to be close to uncor-
related, memoryless arrivals, since each arrival generally involves a
new user. The latter is much more akin to the creation of FTPDATA
connections during a single FTP session, since a single user is in-
volved in generating new arrivals. Because X11 connections are
created in this way, their arrivals do not have the memoryless prop-
erty and hence are not Poisson. If we could discern between X11
session arrivals and X11 connection arrivals, then we conjecture we
would find the session arrivals to be Poisson.

4 TELNET packet interarrivals

The previous section showed that start times for TELNET connec-
tions are well-modeled by Poisson processes. In this section we
look at the packet arrival process within a TELNET connection.
We restrict our study to packets generated by the TELNET con-
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nection originator; this in general is a user typing at a keyboard.
Because these packets are initiated by a human, we might hope that
the arrival process is to some degree “invariant™; that is, the process
may be independent of network dynamics and instead mainly re-
flect the delays and bursts of activity associated with people typing
commands to a computer. Indeed, our empirical results of the inter-
arrival times between packets in a single TELNET connection are
consistent with the empirical Tcplib distribution found by previous
researchers. Unlike the exponential distribution, the empirical dis-
tribution of TELNET packet interarrival times is heavy-tailed; we
show that using the exponential distribution results in seriously un-
derestimating the burstiness both of TELNET traffic within a single
connection and of multiplexed TELNET traffic. Modeling TEL-
NET packet arrivals by a Poisson process, as is generally done, can
result in simulations and analyses that significantly underestimate
performance measures such as average packet delay.

0.0

3 2 3 0 1 2
Log10 Seconds

Figure 3: Empirical distributions of packet-interarrivals
within TELNET connections.

Figure 3 shows two empirical distributions of the interarrival
times of packets within TELNET connections. The solid line shows
the distribution used by Tcplib [DI91, DJICME92]; the dashed line
shows the same for the PKT-1 trace. Above 0.1 seconds, the agree-
ment is quite good, especially in the upper tail. That different sites
produce the same distribution argues heavily that the distribution is
independent of network dynamics and instead refiects human typing
dynamics. Below 0.1 seconds the interarrival times probably are
dominated by network dynamics; but, as stated earlier, in this paper
we are not concerned with time scales below 0.1 seconds.

Even ignoring the lower tail, the interarrival distribution is not
even close to exponential in shape (note that the z-axis is loga-
rithmically scaled). To dramatize this fact, we have also plotted
two logarithmically-scaled exponential distributions. The lefthand
one (“fit #1) has the same geometric mean as the PKT-1 distri-
bution, and the righthand one has the same arithmetic mean. The
exponential fits are very poor. On the other hand, the main body
of the distribution fits very well to a Pareto distribution (doubly-
exponential; see Appendix B) with shape parameter 8 = 0.9, and
the upper 3% tail to a Pareto distribution with # = 0.95. Inter-
estingly, a Pareto distribution with § < 1 has infinite mean and
variance; a very different beast than an exponential distribution.

It is not surprising that interactive packet arrivals do not fit a
Poisson model, since earlier work looking at many different compo-
nents of interactive traffic failed to find any statistically significant
exponential fits to the observed distributions {FJ70]. This leaves

the question: What are the consequences of using Poisson packet
arrivals rather than the Teplib distribution for TELNET traffic?
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Figure 4: Comparisons between Tcplib and exponential in-
terpacket times.

Figure 4 shows two views of packet arrivals from two simulated
TELNET connections, each lasting 2,000 seconds. The first graph
shows the first 200 seconds, and the second graph the entire 2,000
seconds. Row 1 for each graph shows a connection using inde-
pendent, identically-distributed (i.i.d.) interpacket times from the
Teplib distribution, and row 2 shows a connection vsing i.i.d. in-
terpacket times from an exponential distribution with a mean of 1.1
seconds (to give roughly the same number of packets as the Tcplib
distribution). We have plotted a dot for each packet arrival, with
the z-axis giving the time of the arrival. In all, there were 1,926
Teplib interarrivals and 2,204 exponential interarrivals. Over both
time scales, the packets from the connection with Tcplib interpacket
times are dramatically more clustered. Simulation also shows that
the greater burstiness of Tcplib connections persists even with 100
multiplexed TELNET connections [PF94].

One of the natural performance measures for TELNET traffic is
average packet delay. It would not be hard to construct simulations,
one using Teplib and the other using exponential interarrivals, where
making the mistake of using exponential interarrivals instead of
Teplib significantly underestimates the average queueing delay for
TELNET packets.

The above shows that the Tcplib packet interarrival distribution
behaves quite differently than a Poisson process, even in the pres-
ence of multiplexing. We now show that for measured network
traffic, these differences extend far beyond the time scale of indi-
vidual packets. To look at the difference in burstiness at different
time scales, we first extracted all TELNET originator packets® from
the two-hour PKT-2 trace. These packets belonged to 277 sepa-
rate TCP connections. Of these connections, 4 were anomalously
large and rapid (more than 2'® bytes transferred by the originator at
sustained data rates exceeding 8 bytes/sec). These are unlikely to
correspond to human typing, were clear outliers, and are probably
better modeled as bulk transfer connections. Removing the outliers
left us with 273 connections.

We then synthesized several two-hour packet traces as follows.
For each of the TELNET connections, we synthesized a connection
with the same starting time within the two-hour period and the same
size (in packets). One of the synthesized traces used the Tcplib em-
pirical distribution for the packet interarrivals within each connec-
tion (“TCPLIB™); one used exponential interarrivals with mean 1.1
(“EXP”); and one uniformly distributed each connection’s packet
arrivals over the interval between when the connection began and

SExcept for “pure ack” packets, containing no user data.



when during the PKT-2 trace the connection terminated (“VAR-
EXP™). This last method corresponds to exponential interarrivals
with the mean adjusted to reflect the connection’s actual observed
packet rate, Thus, for the TCPLIB and EXP schemes, we gener-
ated connections with the same starting times and sizes (in packets)
as their counterparts in the PKT-2 trace, but perhaps with different
durations, while with the VAR-EXP scheme, the generated connec-
tions shared starting time, size, and duration.

A valuable tool for assessing burstiness over different time-scales
is the “variance-time plot” [LTWW94, GW94], which we describe
here by example rather than rigorously. Suppose we have a count
process consisting of 72,000 observations, corresponding to a two-
hour trace viewed every 0.1 seconds. Each observation gives the
number of packet arrivals during that 0.1 second interval. If we
are interested in the process’s burst-structure on a time scale of 10
seconds, we could construct a “smoothed” version of the process
by averaging the first 100 observations to obtain the process’s mean
value during the first 10 seconds, the next 100 observations for
the next 10 seconds, and so on. In general we can do this sort
of smoothing for any aggregation level M, where in the previous
example M = 100.

To construct a variance-time plot, we smooth the process for
different values of M and then plot the variance of the smoothed
process on the y-axis vs. the aggregation level (M) on the z-axis,
using logarithmic scales.

. Variance-time plots are useful for gauging burstiness over many
different time scales; straight lines on variance-time plots with
slopes more shallow than —1 are also suggestive of self-similarity
(see § 7 for further discussion).
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Figure 5: Variance-Time Plot for TELNET packet arrival
process. The line from the upper left corner has slope —1.

Figure 5 shows such a plot for the PKT-2 TELNET trace and for
the three schemes discussed above. Here the unaggregated process
(M = 1) corresponds to 72,000 observations of the number of
TELNET originator packets arriving during 0.1-second intervals.
The y-axis is the variance of the aggregated process normalized by
dividing by the square of the average number of packets per 0.1-
second. This normalization allows us to compare the variance of
processes with different numbers of arrivals.®

From the plot it is immediately clear that the variance of the
TCPLIB scheme agrees closely with the PKT-2 trace data, while

$The traces consisted of between 82,500 and 86,000 packets.

(=)
¥
©
h-)
[~
Q
3 St
({)-—
w
s
Q
(=N
2ol
@ B
x
Q
<
o
o} . L
4000 6000
Time (in Seconds)
Telnet Trace Data.
o
=
@
°©
o
o
g8l
) -~
w
-
[+
[=8
2ol
o n
=X
[*]
[~
a
o 1 2. A A,
0 2000 4000 6000

Time (in Seconds)
Telnet Trace, Substituting Exponential interpacket Times.

Figure 6: Comparisons of actual and exponential TELNET
packet interarrival times.

both EXP and VAR-EXP exhibit far less variance, indicating they
are much less bursty over a large range of time scales.

Figure 6 shows this explicitly. Here we plot the arrival process
corresponding to 5-second intervals (M = 50) for the PKT-2 trace
and for the EXP trace. The z-axis shows the time in seconds, and
the y-axis shows the total number of TELNET packets in each 5-
second interval. The average number of packets in the two traces
are similar; the PKT-2 trace has an average of 59 packets in each 5-
second interval, and the fixed-rate exponential trace has an average
of 57 packetsin each 5-second interval. The variances, however, are
quite different. With 5-second bins, the PKT-2 trace has a variance
of 672, while the exponential trace has a variance of 260.

Clearly, this difference in the packet-generation rate over 5-
second intervals could have consequences for queueing delays in
simulations using these two different traces. As the variance-time
plot shows, the PKT-2 trace is more bursty over many time in-
tervals, not only over the five-second intervals shown here. The
conclusions are that using exponential packet interarrival times for
TELNET connections results in substantial underestimations of the
burstiness of multiplexed TELNET traffic, but using i.i.d. interar-
rivals drawn from the Teplib distribution faithfully reproduces the
burst structure.

5 Fully modeling TELNET originator
traffic

Section 3 has shown that over 1-hour periods, TELNET connection
arrivals are well-modeled as Poisson processes, and § 4 has shown
that within a TELNET connection, packet interarrival times can be
modeled using the heavy-tailed distribution in Tcplib. The connec-




tion size in bytes has been previously modeled by a log-extreme
distdbution [P93]; the distribution of the connection size in packets
is somewhat different, and seems to be better modeled by a log-
normal distribution (see below). In this section, we put these three
pieces together to construct a complete model of TELNET orig-
inator traffic that is parameterized only by the connection arrival
rate. Variance-time plots show that this model corresponds well to
empirical measurements.

First, we look at the difference in the distributions of origina-
tor bytes per connection vs. originator packets. Previous work re-
ports that the number of bytes sent by the originator in a wide-area
TELNET connection is well-modeled using a log-extreme distri-
bution with location parameter = log, 100 and scale parameter
B = log, 3.5 [P93]. We experimented with using this distribution
to produce sizes for an equal number of TELNET connections as
appeared in the PKT-2 trace. We found that the distribution con-
sistently generates connection sizes (in bytes) much larger than the
connection sizes (in packets) observed in the trace. We attribute
this difference to two effects:

o The [P93] fit was made using month-long traces of TELNET
connections, allowing for much longer and larger connec-
tions than are present in our two-hour trace;

o The [P93] fit models connection size in bytes and not in
packets. One generally assumes that each TELNET origi-
nator packet conveys one byte of user data, corresponding
to a keystroke. Often, however, a packet carries more than
one byte, either due to effects of the Nagle algorithm or be-
cause the TELNET connection is operating in “line mode”
[S94]. For example, the PKT-2 TELNET originator traffic
comprised about 85,000 packets carrying 139,000 user data
bytes.

Given these difficulties, we attempted to fit the observed TELNET
connection sizes (in packets) with another simple analytic distri-
bution. We found that a log,-normal distribution with log,-mean
Z = log, 100 and log,-standard deviation o = 2.24 fit the con-
nection size in packets well visually’, considerably better than a
log-extreme distribution with parameters fitted to the data.®

Putting all of this together, we have a complete model for TEL-
NET traffic, FULL-TEL, parameterized only by the TELNET con-
nection arrival rate. FULL-TEL uses Poisson connection arrivals,
log-normal connection sizes (in packets), and Tcplib packet inter-
amrivals.

We then used FULL-TEL to generate three synthetic traces of
TELNET originator traffic, using a connection arrival rate of 273
connections in 2 hours. Because such traces start off with no traffic
and build up to a steady-state corresponding to the connection arrival
rate, we trimmed the traces to just their second hour. We then used
variance-time plots to compare the traces with the second hour of
the PKT-2 TELNET trace.

Figure 7 shows the results of the comparison. In general the
agreement is quite good, though the models have slightly higher
variance than the trace data for M > 10%. We conclude that FULL-
TEL faithfully captures TELNET originator traffic, except to be a
bit burstier on time scales above 10 seconds.’

7The exact numerical values of Z and & should not be taken too seriously,
as they came from a small sample.

8We also found that a log-extreme distribution fit the connection size in
bytes better than a log-normal distribution.

9We also tested the model’s fit to the PKT-1 and PKT-3 TELNET traces;
the results were similar.
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Figure 7: Variance-time plot comparing PKT-2 trace data
with the complete TELNET model, FULL-TEL.

6 FTPDATA connection arrivals

This section investigates arrival processes for FIP traffic. Model-
ing FTP is particularly important because FTPDATA connections
currently carry the bulk of the data bytes in wide area networks
([CBP93]). Section 3 showed that while FTP session arrivals can
be modeled as Poisson processes, this is not the case for FTPDATA
connection arrivals. This section shows that FTPDATA connections
within a session are clustered in bursts, and that the distribution of
burst sizes in bytes is quite heavy-tailed; half of the FTP traffic vol-
ume comes from the largest 0.5% of the FTPDATA bursts. These
large bursts are likely to completely dominate FTP traffic dynamics.

In this paper, we do not attempt to model FTPDATA packet ar-
rivals within a connection. Unlike TELNET connections, where
the originator packet arrival process is largely determined by packet
generation pattern at the source, the packet arrival process for an
FTPDATA connection is largely determined by network factors
such as the available bandwidth, congestion, and details of the
transport-protocol congestion control algorithms. Previous studies
have found that FTPDATA packet interarrivals are far from expo-
nential [DJCME92]; this is not surprising, since the above network
factors lead to a process quite different from memoryless arrivals.

To begin, § 3 showed that FTPDATA connection arrivals are not
well-modeled as Poisson. Each FTP session spawns a number of
FTPDATA connections; one key question is how these connections
are distributed within the duration of the FTP session.

We computed the distribution of spacing between FTPDATA
connections spawned by the same FTP session for six datasets:
LBL-1, LBL-5, LBL-6, LBL-7, DEC-1, and UCB. Here, “spacing”
refers to the amount of time between the end of one FTPDATA
connection within a session and the beginning of the next. Fig-
ure 8 plots the results. In each case the upper tail of the distribution
is much heavier than exponential (the z-axis is logarithmic), and
is better approximated using a log-normal or log-logistic distribu-
tion. Furthermore, all of the distributions show infiection points
at spacings between 2 and 6 seconds. We conjecture that spacings
shorter than these points reflect sequential FTPDATA connections
due to multiple transfers (the FTP “mget” command) or a user is-
suing 2 “list directory command” very shortly followed by a “get”.
Such closely-spaced connections might well be interpreted as corre-
sponding to a single “burst” of file-transfer activity. We somewhat
arbitrarily chose a spacing of < 4 seconds (the dashed vertical line)
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Figure 8: FTPDATA Intra-session Connection Spacing.

as defining connections belonging to the same burst, and we note
that such spacings are not inordinately larger than the 1-2 second
spacings that can occur internal to a single FTPDATA connection
due to TCP retransmission timeouts.
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Figure 9: Percentage of all FTPDATA bytes due to largest
10% FTPDATA bursts.

With this definition of a burst of FTPDATA. connections, we ana-
lyzed the same datasets to measure the distribution of the number of
bytes transferred during a single connection burst. The distribution
proves to be remarkably heavy-tailed. Figure 9 shows percentage of
all FTPDATA bytes (y-axis) due to the largest 10% of the FTPDATA
bursts (z-axis). The numbers in parentheses in the legend give the
total number of FTPDATA bursts occurring during each trace. The
first vertical line marks the upper 0.5% of the FTPDATA bursts, and
the line to its right, the upper 2%.

The key point to draw from this figure is that the upper 0.5% tail
of the FTPDATA bursts holds between 40% and 60% of all of the
data bytes. Thus, at any given time FTP traffic will most likely be
completely dominated by a single or small handful of bursts. This
finding means that for many aspects of network behavior, modeling
small FTP sessions or bursts is irrelevant; all that matters is the
behavior of a few huge bursts. The sizes and durations of these
bursts will vary considerably from one time to another; but they
will be present.'”

10Qur finding that the size of an FTP burst has a heavy tail matches a

We did simple fitting of the upper tail of the distribution of data
bytes per FTPDATA burst and found that for all six datasets, the
upper 5% tail is fit well to a Pareto distribution with 0.9 < 8 < 1.1.
As the Pareto distribution is heavy-tailed (see Appendix B), this
agrees with our findings in Figure 9."!
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Figure 10: Proportion of FTPDATA traffic due to largest 2%
(shaded) and 0.5% (black) connection bursts.

Figure 10 graphically illustrates the dominance of the upper
FTPDATA-burst tail. The four plots show the FTPDATA trafficrate
in bytes/minute for the PKT-1, PKT-2, PKT-3, and PKT-5 datasets.
The shaded areas represent traffic contributed by the largest 2% of
the bursts, and the black areas the largest 0.5%. The numbers in
parentheses give the number of bursts and FTPDATA connections
comprising the 2% burst upper-tail. (For example, the upper 2%
tail of the PKT-1 bursts was made up of 7 bursts consisting of a
total of 19 FTPDATA connections.) We see that sometimes bursts
contain many separate connections and sometimes not. Indeed, the
distribution of the number of connections per burst is well modeled
as a Pareto distribution."

For PKT-1 (364 bursts) and PKT-3 (552 bursts), the upper 2%
and 0.5% tails hold around 50% and 15% of all the traffic; for
PKT-2 (483 bursts) and PKT-5 (238 bursts), 85% and 60%. The
large degree of difference between PKT-1/PKT-3 and PKT-2/PKT-5
illustrates how volatile the upper-tail behavior is; a trace comprising
400 bursts (and substantially more FTPDATA connections) might
well be completely dominated by 2 of the bursts, or it might not,
since 2 is a very small sample of the upper-tail behavior. Thus we

survey conducted by Irlam [I93] of the sizes of files in 1,000 file systems
comprising 12 million files and 250 GB of data: 1.9% of the files accounted
for 71% of the bytes, and 0.5% accounted for 54% of the bytes.

Hn contrast, the upper 0.5% tail of an exponential distribution always
holds about 3% of the entire mass of the distribution, regardless of the
distribution’s mean.

12For example, one of the bursts in the LBL-7 dataset was made up of
979 separate FTPDATA connections.



are left in the difficult position of knowing that upper-tail behavior
dominates traffic, but with such small numbers of bursts that we
cannot reliably use large-number laws to predict what we are likely
to see during any given trace.

We would also like to know whether the arrivals of the upper-tail
bursts can be modeled as a Poisson process, as that would provide a
first step toward predicting their effect on network traffic. We ana-
lyzed the 199 upper-0.5%-tail LBL-6 bursts, first removing effects
due to daily variation in traffic rates by looking at interarrivals in
terms of number of intervening bursts instead of seconds. We found
that the dataset failed the statistical test (Appendix A) for exponen-
tial interarrivals at all significance levels. Thus, caution must be
used if approximating large-burst arrivals using a Poisson process;
further analysis is needed to model the burst-clustering.

7 Large-scale correlations and possible
connections to self-similarity

We have argued in the previous sections that on any time-scale
smaller than user-session arrivals, modeling wide-area TCP traffic
using Poisson processes fails to faithfully capture the traffic’s dy-
namics. Recent work [LTWW94] shows that local-area Ethemnet
traffic (and perhaps wide-area TCP traffic) is much better modeled
as a self-similar process, which displays substantially more bursti-
ness over a wide range of time scales than do Poisson processes.
In this section we discuss the degree of “large-scale correlation”
present in the PKT-1 through PKT-5 traces of TELNET traffic,
FTPDATA traffic, and general wide-area traffic. We also consider
the evidence for whether such correlation is well modeled using
self-similar processes. We begin with a discussion of the concepts
of “large-scale correlation”, “long-range dependence”, and “self-
similarity”. We next give an overview of two existing methods
for generating truly self-similar traffic, along with two new meth-
ods of generating “pseudo-self-similar” traffic. We then discuss
how the traffic models developed in this paper might match these

methods. We finish with a preliminary assessment of the possible -

self-similarity of aggregate wide-area traffic. We find the evidence
inconclusive, though the traffic clearly exhibits large-scale correla-
tions inconsistent with Poisson processes.

7.1 Definitions

We use the term “large-scale correlation™ as an informal way of
describing correlations that persist across large time scales. For
example, the lower right plot in Figure 10 shows a 40-minute long
burst of highly correlated traffic.

A related, more precise notion of sustained correlation is that of
“long-range dependence”. A stationary process is long-range de-
pendent if its autocorrelation function r(k) is nonsummable (i.e.,
>, (k) = c0) [C84]. Thus, the definition of long-range depen-
dence applies only to infinite time series.

The simplest models with long-range dependence are self-similar
processes, which are characterized by hyperbolically-decaying au-
tocorrelation functions. Self-similar and asymptotically self-similar
processes are particularly attractive models because the long-range
dependence can be characterized by a single parameter, the Hurst
parameter (which can be estimated using Whittle’s procedure
[GW94, LTWW94]).

In the following sections, we look at ways in which long-range
dependence in general, and self-similarity in particular, might arisc
in wide-area network traffic. An important point to bear in mind
is that, even if the finite arrival process derived from a particular
packet trace does not appear self-similar, if it exhibits large-scale
correlations suggestive of long-range dependence then that process
is almost certainly better approximated using a self-similar process
than using Poisson processes. Thus, we believe that self-similar
modeling is a promising successor to Poisson modeling. It may not
be exactly right, but given our current understanding of networking
phenomena, it appears in any case a good approximation.

7.2 Methods for generating self-similar traffic

There are several methods for producing self-similar traffic that
could account for self-similarity in wide-area TCP traffic. As dis-
cussed in [LTWW94], self-similar traffic can be produced by multi-
plexing ON/OFF sources that have Poisson start times, a fixed rate
in the ON periods, and ON/OFF period lengths that are heavy-tailed
(see Appendix B).

A second method for generating self-similar traffic that could
fit TCP traffic is an M/G/oo queue model, where customers arrive
according to a Poisson process and have service times drawn from
a heavy-tailed distribution with infinite variance [C84, LTWW94].
In this model, X, is the number of customers in the syster at time ¢.
The count process { X }¢=o,1,2,... is asymptotically self-similar (see
[PF94] for further discussion). The M/G/oo model implies that
multiplexing constant-rate connections with Poisson connection ar-
rivals and a heavy-tailed distribution for connection lifetimes would
result in self-similar traffic.

We have found two additional methods of generating arrival pro-
cesses that possibly exhibit self-similarity. We refer to these meth-
ods as generating “pseudo-self-similar’ traffic, because we have not
shown in any solid way that they are truly self-similar processes.
Both methods are very fast. The first is Fourier-transform based
(see [PF94] for details). Traffic generated using this method passes
Beran’s goodness-of-fit test for fractional Gaussian noise [B92a].
The second method is to construct arrivals using i.i.d. Pareto in-
terarrivals with 8 = 1, and to consider the corresponding count
process (the number of arrivals in consecutive intervals). In [PF94]
we develop some intuition behind why this method might generate
asymptotically self-similar traffic.

7.3 Relating the methods to traffic models

As explained in [LTWW94], straight lines on variance-time plots
with slopes more shallow than —1, such as that for the PKT-2 TEL-~
NET trace in Figure 5, are suggestive of self-similarity. In general,
the slope of an arrival process’s variance-time plot is a function of
the process’s autocorrelation function [C841, and a long-range de-
pendent process will exhibit slowly-decaying variances on such a
plot'2.

In addition to looking at variance-time plots of the TELNET
traffic, we also applied Whittle’s procedure [GW94, LTWW94] and
Beran’s goodness-of-fit test {B92a]. All of the results are consis-
tent with self-similarity on scales of tens of seconds or more. One
way of explaining such findings of self-similarity is to note that

3That is, the variance-time plot declines in a more shallow fashion than
with slope — 1, though not necessarily in astraight line. Animportantpointis
that such slow decline can also occur due to the presence of non-stationarity.



our model of TELNET connections presented in § 5 in some re-
spects matches the M/G/oo model described in the previous section.
For example, TELNET connection sizes-in packets have a long-
tailed [WT92] distribution, in that the tail function of a log-normal
distribution decreases more slowly than any exponential function
(although the log-normal distribution is not heavy-tailed {PF94]).
Thus, the M/G/co model can give some intuition to the suggested
self-similarity of our TELNET traces and models.

Another source of possible TELNET self-similarity arises from
the fact that within individual TELNET connections, packet inter-
arrivals are well modeled as i.i.d. Pareto (§ 4). Thus, individual
TELNET connections match the i.i.d. Pareto method of generat-
ing pseudo-self-similar traffic. Since the aggregation of multiple
self-similar traffic sources remains self-similar, this would lead to
aggregate TELNET traffic appearing self-similar.

Our model of FTP traffic also fits in some respects to the M/G/co
model of Poisson arrivals with heavy-tailed lifetimes. The distribu-
tion of bytes per FTPDATA burst is heavy-tailed, and FIP sessions
have Poisson arrivals. Over larger time scales the packet arrival
process within an FTPDATA burst can be plausibly approximated
as constant-rate. If we approximated FTPDATA burst arrivals as
Poisson (a bit of a stretch, as shown in § 3 above), and assumed that
each FTPDATA burst received the same average rate, then the ag-
gregate FTP traffic would fit the M/G/oo model above, and should

be self-similar.

Itturns out, though, that variance-time plots, Whittle’s procedure,
and goodness-of-fit tests of our FTP traces all suggest that our FTP
traces are not self-similar, although the heavy-tailed distribution
of FTPDATA bursts clearly leads to large-scale correlations. The
following paragraphs discuss several ways that aggregate FTP traf-
fic differs from the M/G/oco model of self-similar traffic described
earlier. While these factors could account for our lack of finding
self-similarity in our FTP traces, they do not imply the absence of
long-range dependence.

First, even in the absence of congestion, different FTP connec-
tions can have quite different average rates; the average rate for a
particular connection depends on such factors as the TCP window
and the roundtrip time. This could be a major discrepancy between
our trace data and the M/G/oo model. Of particular relevance would
be the average rates of the biggest FTP bursts.

A second factor concemns the effect of bandwidth limitations on
multiplexed FTP traffic. The simplest way to incorporate the limited
bandwidth on a congested link would be to assume alimited capacity
in the M/G/oco model for generating self-similar traffic, where the
actual arrival times of individuals would occasionally have to be
delayed until there was available capacity. This would transform
the M/G/oo queue into an M/G/k queue. While this limited capacity
would have the effect of reducing the fit of the aggregate trafficto a
self-similar model, it does not eliminate the underlying large-scale
correlations.

A third factor concerns the effect of FTP traffic competing with
other families of traffic on a congested link. The three main classes
of traffic in our link traces are TCP, Mbone (primarily multicast
UDP audio traffic) and DECnet. Because the UDP protocol does not
incorporate congestion-avoidance mechanisms, when FTP traffic is
competing for bandwidth with UDP sources, only the FTP traffic
will adjust to fit the available bandwidth. The UDP traffic will
continue unimpeded. The effect of this interaction on the overall
structure of FTP traffic remains an open question.

7.4 Large-scale correlations
wide-area traffic

in aggregate
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Figure 11: Variance-time plot for all TCP / all link-level
packet arrivals.

We finish with a preliminary look at whether wide-area traffic ag-
gregated over different protocols appears self-similar. Figure 11
shows variance-time plots for all of the “PKT" traces listed in Ta-
ble 1. Here, the unaggregated process (M = 1) cormresponds to
observing the packets arriving during each 0.01 second interval.

Recall that the first three traces captured all TCP packets for two
hours, and the last two captured all wide-area packets appearing on
the gateway Ethernet for one hour. The first three traces consist
of between 1.7 and 2.4 million packets, and the last two traces
each have around 1.3 million packets. The corresponding rates of
packets/hour are above those of the “low hours” in [LTWW94], so
we would hope to find that the traces exhibit exact self-similarity.

We see in Figure 11 that PKT-4 and PKT-5, the full link-level
traces, both yield straight lines with shallow slope, consistent with
asymptotic self-similarity for M > 10 (0.1 second). For the TCP
traces, PKT-1 is concave down for small and large M, inconsistent
with exact self-similarity, PKT-2 appears consistent with asymptotic
self-similarity for M > 10° (10 seconds), and PKT-3 has a straight
section between M = 10 and M = 10°, but not before or after,
also inconsistent with exact self-similarity.

In contrast, use of Whittle’s procedure and goodness-of-fit tests
suggest that the link-level PKT-4 trace and the TCP PKT-1 and
PKT-3 traces are consistent with self-similar processes, while the
link-level PKT-5 trace and the TCP PKT-2 trace are not. As Figure
10 shows, the FTP traffic in the PKT-5 and PKT-2 traces is heavily
dominated by a few large FTP bursts. Thus, while large-scale cor-
relations are clearly present in these traces, it might be difficult to
characterize the correlations over the entire trace with a single Hurst
parameter. Clearly, further work is required to fully understand the
correlational structure of wide-area traffic.



We end with a comment regarding the balance between link-
level modeling and protocol-specific modeling. One approach to
investigating self-similarity is to model aggregate link traffic as
self-similar, without attempting to model individual connections.
This approach could have many uses in simulations and in analysis.
For example, aggregate self-similar traffic could be used instead of
Poisson traffic to model cross-traffic, or aggregate self-similar traffic
could be used in simulations investigating link-sharing between two
different classes of traffic.

However, for many simulations, the simulator needs to model in-
dividual sources. Forexample, in simulations that investigate the ef-
fects of different transport protocols or different gateway scheduling
algorithms on network traffic, the simulator requires source models;
the traffic patterns on the link will depend on the transport protocols
and scheduling algorithms that are used in the simulations, as well
as on the pattern of traffic generated by the source.

8 Implications

This paper’s findings are summarized in the Introduction. In this
section we conclude with a look at the implications of our results.

Several researchers have previously discussed the implications
of long-range dependence (burstiness across different time scales)
in network traffic. Modeling TCP traffic using Poisson or other
models that do not accurate\ly reflect the long-range dependence in
actual traffic will result in simulations and analyses that significantly
underestimate performance measures such as average packet delay
or maximum queue size. R

[FL91]examines the burstiness of data traffic over a wide range of
time scales, and discusses the impact of this burstiness for network
congestion. Their ¢onclusions are that congested periods can be
quite Iong, with losses that are heavily concentrated; that, in contrast
to Poisson traffic models, linear increases in buffer size do not result
in large decreases in packet drop rates; and that a slight increase in
the number of active connections can result in a large increase in
the packet loss rate. They suggest that, because the level of busy
period traffic is not predictable, it would be difficult to efficiently
size networks to reduce congestion adequately. They observe that,
in contrast to Poisson models, in reality “traffic ‘spikes’ (which
cause actual losses) ride on longer-term ‘ripples’, that in turn ride
on still longer-term ‘swells’ . They suggest that a filtered variable
can be used to detect the low-frequency component of congestion,
giving some warning before packet losses become significant.

[LTWW94] discusses some additional implications of long-range
dependence of packet traffic. These include an explanation of the
inadequacy of many commonly-used notions of burstiness, and the
somewhat counter-intuitive observation that the modeling of indi-
vidual connections can gain insight from an understanding of the
fundamental characteristics of aggregate traffic. In this paper ob-
servations of the characteristics of aggregate traffic motivated our
revisitation of models for individual connections: indeed, we origi-
nally set out to challenge the notion that wide-area traffic might be
self-similar, and have come full circle.

[GW94] has examined the long-range dependence of variable-
bit-rate (VBR) video traffic. Their empirical measurements of VBR
traffic show strong low-frequency components, and they propose
source models for video traffic that display the same long-range de-
pendence. Given the likelihood that VBR traffic will soon comprise
a large fraction of Mbone traffic, we soon will have wide-area traffic

of which a substantial portion is perforce self-similar, simply due
to the source characteristics of its individual connections.

There are some additional respects in which the burstiness and
long-range dependence of TCP traffic can affect traffic performance.
Consider a link with priority scheduling between classes of traffic,
where the higher-priority class has no enforced bandwidth limita-
tions (other than the link bandwidth itself). In such a partition,
interactive traffic such as TELNET might be given priority over
bulk-data traffic such as FTP. If the higher-priority class has long-
range dependence and a high degree of variability over long time
scales, then the bursts from the higher-priority traffic could starve
the lower-priority traffic for long periods of time.

A second impact of the long-range dependence of packet traffic
concemns classes with admissions control procedures that are based
on measurements of recent traffic, rather than on enforced traffic
parameters of individual connections. As has been show by numer-
ous researchers, such admissions control procedures could lead toa
much more effective use of the available bandwidth. Nevertheless,
if the measured class has high burstiness consisting of both a high
variance and significant long-range dependence, then an admissions
control procedure that considers only recent traffic could be easily
mislead following a long period of fairly low traffic rates.!

In summary: we should abandon Poisson-based modeling of
wide-area traffic for all but user session arrivals. For TELNET
traffic, we offer a faithful model of originator traffic parameterized
by only the hourly connection arrival rate. Modeling the TELNET
responder remains to be done. For FTP traffic, we have shown that
modeling should concentrate heavily on the extreme upper tail of
the largest bursts. A busy wide-area link might have only one ot
two such bursts an hour, but they tend to strongly dominate that
hour’s FTP traffic. Finally, our look at aggregate TCP and all-
protocol traffic suggests that anyone interested in accurate modeling
of wide-area traffic should begin by studying self-similarity.
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A Methodology for testing for Poisson
arrivals

To test whether a trace of connection arrivals corresponds to a non-
homogeneous Poisson process, we first pick an interval length I
over which we hypothesize that the arrival rate does not change. If
the trace spans a total of T" time units, we divide the entire trace
into N = T'/I intervals each of length I. We then separately test
each interval to see whether the arrivals during the interval are con-
sistent with arrivals from a Poisson process with rate fixed so that
the expected number of arrivals is the same as the number actuaily
observed. Thus, we reduce the problem of testing for nonhomoge-
neous Poisson arrivals to that of testing a number of intervals for
homogeneous Poisson arrivals.

Poisson arrivals have two key characteristics: the interarrival
times are both exponentially distributed and independent. We dis-
cuss testing for each in tumn.

For each interval, we test the interarrivals for an exponential
distribution using the Anderson-Darling (AY) test, recommended
by Stephens in {DS86] because it is generally much more powerful
than either of the better-known Kolmogorov-Smirmov or x? tests.
A? is also particularly good for detecting deviations in the tails of
a distribution. A2 is an empirical distribution test; it looks at the
entire observed distribution, rather than reducing the distribution
into bins as is required by x2.

We associate a significance level with each A test. For example,
a test with a significance level of 5% will correctly confirm the null
hypothesis (if it is correct) with probability 0.95; with probability
0.05, the test will erroneously declare the hypothesis false. Thus,
the significance level indicates the proportion of “false negatives”
(in general it is difficult to assess the corresponding percentage of
“false positives™). We can use significance-level testing as follows.
Suppose we test N intervals for exponential interarrivals and K
of them pass the A? test at the 5% significance level. If the null
hypothesis is correct, then the probability of K successesin JV trials
will be given by a binomial distribution with parameter p = .95. If
we find that the probability of observing K successes was less than
5%, then we conclude with 95% confidence that the arrival process
is inconsistent with exponential interarrivals.

We also need to test the interarrivals for independence. One indi-
cation of independence is an absence of significant autocorrelation
among the interarrivals. Autocorrelation can be significant in two
different ways: it can be too strong in magnitude, or it can be too
frequently positive or negative. We address each of these in turn.

Given a time series of n samples from an uncorrelated white-
noise process, the probability that the magnitude of the autocorre-
lation at any lag will exceed 1.96/+/n is 5%. Thus we can test
for independence by observing how often this occurs and using a
binomial test similar to the one outlined above.

Because for many non-Poisson processes autocorrelation among
interarrivals peaks at lag one, to keep our test tractable we restrict
it to just the lag one autocorrelation.

We also apply one further test for independent interarrivals. If
the interarrivals are truly independent, then we would expect their
autocorrelation to be negative with probability 0.5 and positive with
probability 0.5. For Poisson arrivals, then, the number of positive
lag one autocorrelation values should be binomially distributed with
parameter p = 0.5. Given this assumption, we assess the proba-
bility of at least the observed number of positive values occurring.
If its probability is too low (< 2.5%) then we conclude that the

R B El b e N KA T DA/ N A

11

interarrivals are significantly positively correlated. Similarly, if the
observed number of negative values has probability < 2.5%, then
the interarrivals are significantly negatively correlated.

B Pareto distributions

In this paper the Pareto distribution plays a role both in TELNET
packet interarrivals and in the size of FTPDATA bursts. This ap-
pendix discusses the Pareto distribution and its occurrence in the
physical worid.

The classical Pareto distribution with shape parameter £ and lo-
cation parameter a has the cumulative distribution function [HK80]:

F(z) = P[X <z)=1-(a/2)’, 0,620, z23q,
with the corresponding probability density function:
f(z) =BaPzPL.

If 8 < 2, then the distribution has infinite variance, and if # < 1,
then it has infinite mean.

The Pareto distribution (also referred to as the power-law dis-
tribution, the double-exponential distribution, and the hyperbolic
distribution) has been used to model distributions of incomes ex-
ceeding a minimum value, and sizes of asteroids, islands, cities and
extinction events [K93, M63].

In communications, heavy-tailed distributions have been used to
model telephone call holding times [DMRW94] and frame sizes for
variable-bit-rate video [GW94]. The discrete Pareto (Zipf) distri-
bution arises in connection with platoon lengths for cars at different
speeds traveling on an infinite road with no passing [A83, p.95]
[F66, p.40], a model suggestively analogous to computer network
traffic.

Following [LTWW94], we define a distribution as heavy-tailed
if for some constant c,

P[X>z]~cz™®, asz—o0, B20.

A more general definition of heavy-tailed defines a distribution as
heavy-tailed if the conditional mean exceedance (CME;) of the ran-
dom variable X is an increasing function of z [HK80], where

CME; = E[X — z{X > z].

Using this second definition of heavy-tailed, consider a random
variable X that represents a waiting time. For waiting times with a
light-tailed distribution such as the uniform distribution, and for =
such that f(z) > 0, the conditional mean exceedance is a decreas-
ing function of z. For such a light-tailed distribution, the longer
you have waited, the sooner you are likely to be done. For waiting
times with a medium-tailed distribution such as the (memoryless)
exponential distribution, the expected future waiting time is inde-
pendent of the waiting time so far. In contrast, for waiting times
with a heavy-tailed distribution, the longer you have waited, the
longer is your expected future waiting time. For the Pareto distri-
bution with 8 > 1 (that is, with finite mean), the conditional mean
exceedance is a linear function of =z [A83, p.70]:

CME: = z/(8 - 1).

The Pareto distribution is scale-invariant, in that the probability
that the wait is at least 2z seconds is a fixed fraction of the probability
that the wait is at least z seconds, for any z > a. A related result



shows that the Pareto distribution is the only distribution that is
invariant under truncation from below [M83, p. 383] [A83, p.81].
That is, for the classical Pareto distribution, fory > =z,

P[X >ylX > I()] = P[(Io/a)X > y].

Mandelbrot argues that because the asymptotic behavior of
Pareto distributions with 8 < 2 is unchanged for a wide variety of
filters (including aggregation, maximums, and the weighted mixture
of distributions), and because this is true of no other distribution,
this could in some respects explain the widespread observance of
Pareto distributions in the social sciences [M63] [M83, p. 344].
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