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ABSTRACT Optical communication is likely to significantly speed up parallel com-

putation because the vast bandwidth of the optical medium can be divided to pro-

duce communication networks of very high degree. However, the problem of con-

tention in high-degree networks _ &es the routing problem in these networks the-

oretically (and practically) difficult. In this paper we examine Valiant's h-relation

routing problem, which is a fundamental problem in the theory of parallel com-

puting. The h-relation routing problem arises both in the direct implementation

of specific parallel algorithms on distributed-memory machines and in the general

simulation of shared memory models such as the PRAM on distributed-memory

machines. In an h-relation routing problem each processor has up to h messages

that it wishes to send to other processors and each processor is the destination

of at most h messages. We present a lower bound for routing an h-relation (for

any h > I ) on a complete optical network of size n. Our lower bound applies to

any randomized distributed algorithm for this task. Specifically, we show that the

expected number of communication steps required to route an arbitrary h-relation

is Ft(h + x/log log n ). This is the first known lower bound for this problem which

does not restrict the class of algorithms under consideration.
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1. Introduction

In current distributed-memory parallel computers, a number of processors equipped

with priw_te local memory communicate by sending messages via a network of com-

munication links. Current technology restricts the network to be of low degree:

each processor in the network can communicate directly with only a few others,

and the remainder must be reached indirectly by routing messages along a sequence

of links. The emerging technology of optical communication challenges the assump-

tion that the network must be of low degree. In particular, the huge bandwidth

of the optical medium can be divided so that each processor has its own channel

for receiving messages and each processor can send on any channel. Even though

such an interconnection network is a complete graph, there remains the problem

of con*.ention: no .processor can receive messages simultaneously from two other

processors withe:,_.t corruption. The problem of avoiding contention is much more

difficult in high-degree networks (such as optical networks) than in traditional low-

degree networks.

The problem of routing in optical networks is captured mathematically by An-

derson and Miller's OCPC model. In an n-processor completely connected Optical

Communication Parallel Computer (n-OCPC) n processors with local memory are

connected by a complete network. A computation on this computer consists of a

sequence of communication steps. During each communication step each processor

can perform some local computation and then send one message to any other pro-

cessor. If a processor is sent a single message during a communication step then it

receives this message successfully, but if it is sent more than one message thor: the

transmissions are garbled and it receives none of them.

The OCPC model was first introduced by Anderson and Miller [2j, and h_t_'_

subsequently been studied by several authors including Valiant [17], Fs ,aglua,n

Gerfib-Graus and Tsantilas [11], and Gerbessiotis and Valiant [t_,:, (thol,4h ,or

always under the name OCPC). Aside from its importance as ;, mo:.e.i fr;t o,_ ,:cal

communica.tion, the OCPC has the attraction of being a cleaa, "n-2.1,!le:rtatically

appealing model that allows us to study a single issue, name}y _!:: r,_.,o]ution of
ncontention between independent processors, in isolation from vthc_ ,_a¢ ,or_. It has

('recently been observed that the n-processor OCPC is equi\'aW_?_ _0 ,'_c, EI-t_W

PRAM with n global memory cells. Tiros our results carry over to bc : _aodel. For

details, see [1,5].

In this paper we study a fundamental communication problem for multipro-
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cessor computers: that of routing h-relations. This problem arises both in the

direct implementation of specific parallel algorithms [2], and in the simulation of

shared-memory models, such as the PRAM, on more realistic distributed-memory

models [17]. An h-relation [17] is a communication problem in which each processor

has up to h messages that it wishes to send to other processors. The destinations

of these messages can be arbitrary except that each processor is the destination of

at most h messages. The goal is to design a fast n-OCPC algorithm that can route

an arbitrary h-relation.

Anderson and Miller [2] have observed that an h-relation can easily be routed

in h communication steps if all of the processors are given total information about

the h-relation to be routed. A more interesting (al._ more realistic) situation arises

if we assume that each processor initially knows only about the messages that it

wants to send, and that processors learn about the the rest of the h-relation only

through receiving messages from other processors. This is the usual assumption,
and the one that will be made here.

Valiant [17], building on work of Anderson and Miller [2], developed a random-

ized algorithm that routes an arbitrary h-relation in O(h + log n) steps, on average.

Subsequently, Goldberg, Jerrum, Leighton, and Rao [12] presented a more complex

randomized algorithm for the same task that runs in O(h + log log n) steps and has

failure probability n -_ for any constant or. The latter algorithm is asymptotically

the fastest known, and it would be interesting to discover whether it is the best

possible. Our attention therefore turns to lower bounds.

Goldberg et al. [12] proved a lower bound for a restricted class of algorithms

known as direct, in which a processor may only send messages directly to their final

destination. (Thus the only freedom a processor has is in its choice of when to

attempt to send its messages.) They proved that for any (randomized) direct algo-

rithm there is a 2-relation that takes St(log n) steps to route with success probabil-

1 thus showing that even in a completely connected network it is advantageousity 3,
to route messages indirectly.

Obtaining a lower bound for unrestricted algorithms has proved a much greater

challenge, owing, no doubt, to the rich variety of s_irategies that are available to a

non-direct algorithm. (Some of the possibilities will be glimpsed in Section 2.)

Indeed, no lower bound beyond the trivial ft(h) was previously known. The new

result in this paper is a lower bound on the number of steps required to route 2-

relations on an n-OCPC. We prove that for any randomized algorithm there is a

2-relation such that the expected number of steps required to route the relation is
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f_(x/loglogn ). (See Theorem 1 for a precise ,':;atement or the result.) Our result

implies that for any h > 1 the number of steps required to route an arbitrary

h-relation is _(tz + v/loglogn). We note that our lower bound also holds for

routing c + 1-relations in tile c-collision OCPC model studied by Dietzfelbinger

and Meyer auf der Heide [4].

The proof presented here has elements in common with that of Beame and

Hastad's lower bound for computing parity on a CROW PRAM [3]. However, our

proof' technique (which is based on one used by MacKenzie in [14]) is stronger, in

that it applies to random inputs rather than worst-case inputs. (As a side note,

we mention that by modifyi'.lg Beame and Hastad's proof in accordance with our

proof technique, it is possible to show that their lower bound holds for proba,bilistic

CROW PRAMs. It was known that their lower bound could be extended to the

probabilistic case, but the extension was indiree* and rested on simulating random-

ized algorithms by deterministic ones, using a technique of Ajtai and Ben-Or [1].

Our technique, however, provides the first known direc* proof of a lower bound for

parity on probabilistic CRCW PRAMs.)

The gap between the current upper and lower bounds on routing h-relations

deserves comment. Section 4 indicates why a lower bound of the form f_(x/log log n )

is the limit of the current technique. An example presented in that section points

to an issue that must be faced in. any attempt to improve the current lower bound.

It appears that some new idea is necessary to make further progress on this front.

2. Some Preliminary Observations

Imagine that two processors p and q wish to deliver a single message each to a

common destination processor within O(loglogn) steps. Assume that p and q do

not know each other's identity. A simple strategy is for p and q each to flip a coin

and attempt to transmit its packet to the destination processor if the coin comes

up "heads." After O(loglogn) steps, the probability that p and q have failed to

transmit their packets is at least (logn) -°(1) If n n(1) pairs of processors simul-

taneously employ this strategy to deliver their messages to separate destinations,

the probability that they all succeed is negligible. Some more subtle approach is

required.

One possibility, suggested by Rao, is the following. Suppose the processors are

assigned binary sequence numbers, and that the numbers assigned to p and q are

pip2 • • •p,- and qlq'2 • • •q,- , where r ,-_ log n. By simultaneously sending messages

to processors plp2...p,./20...O and qlq2...qr/20...O, respectively, processors p

3



4

• C '
I

and q may discover whether their sequence numbers differ in the first r/2 bits.

After about log log n experiments of this general form, and using binary search, p

and q can agree on a bit position at which their sequence numbers differ; this bit

can then be used to determine a priority for the processors, and hence resolve the

conflict. Note that this method (with slight modification) could be used by n n(1)

pairs of processors simultaneously. Observe that p and q are not sending messages

in order to get the content of the message to another processor, but to learn some

information about the competing processor.

A second strategy is replication of messages. In O(log log n) binary replication

steps, p and q can each prime a set of @(log n) processors with the message they are

required to transmit. These two sets of processors then use the naive coin-flipping

strategy to attempt to send their cloned messages to a common target set of size

@(log n). In just a constant number of attempts, the probability that either a p-

message or a q-message fails to get through is reduced to n -_(1) where the implicit

constant is arbitrary. Finally, the messages in the target set can be funneled into

the deutination processor by a procedure which is an inverse to the cloning phase.

Note that the failure probability is much smaller here than for the naive strategy,

and can be expected to remain small when many pairs of processors simultaneously

attempt to send to distinct targets.

These two examples indicate the subtle strategies that are available to indirect

algorithms. With these in mind, it is possible to give a little of the flavor of the lower

bound argument. After t-steps, some set of processors (of size at most exponential

in t ) wi tl be aware that processor p or q has a packet to send. Viedring the situation

crudely, these "agents" for p and q can act in one of two modes, or possibly a

mixture: (a) they can send messages to some narrow set of destinations that is only

weakly dependent on the identity of the source processor, or (b) they can send to a

wide destination set, or one that is strongly dependent on the identity of the source

processor.

The first strategy sketched above operates purely in mode (a), while the second

strategy relies on mode (b) to recruit the processors that are required in the repli-

cation phase. Tile key point is that the effectiveness of mode (a) is limited by the

collisions that inevitably occur, while mode (b) is limited in its ability to "advance

messages towards their destination." The lower bound proof to be described in Sec-

tion 3 analyses the tradeoff between these modes. That both strategies described

above are effective suggests that the whole range of tile tradeoff must be examined,

and explains some of the technical complexity of the proof.
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3. The Lower Bound Argument

Our goal is to (;stablish tile tbllowiltg.

Theorem 1. Let A 5e a randomized algorithm that routes 2-relations on an n-

OCPC. Then there is a 2-relation on ,vhid_ the expected number of communication

steps used by A is at least v/loglogn/4.

Due to space constraints, we will defer the full proof of this result to the

appendix, and simply present some highlights of the proof in this extended abstract.

The first step is to reduce to the case of deterministic A. A certain restricted

class of 2-relations (to be defined presently) will be termed "relevant." According

to a theorem of Yao (see [91), proving Theorem 1 reduces to proving the following.

Theorem 2. Let A be a deterministic algorithm that edlegedly routes 2-relations

in T = v/loglogn/2 steps. Let the input to A be drawn u.a.r, from the set of

relevant 2-relations. Then the probability that A successfully routes the input is
1 _a.

at most 7"

We partition the n-OCPC into n 4/5 ranges containing n 1/_ processors each.

For the purposes of the proof, a partial h-relation is a function from the set

{1,...,n} of processors to {0,1,,}. A partial h-relation is called an h-relation

iff no processor is mapped to ' ,'. Intuitively, a 'i' indicates that the processor has

a message to send and a '0' indicates that it does not. In all cases the messages will

be destined for the first processor in the range containing the sending processor.

Let jr, denote the partial h-relation which maps every processor to ','. A partial

h-relation f is called a refinement of a partial h-relation f' if f'(p) = 1 implies

f(p) = 1, and f'(p)= 0 implies f(p)= 0. (We denote this by f _< f'.) We will
say that an h-relation is a relevant 2-relation if it has exactly two processors in

each range mapped to '1'. We will say that a partial h-relation is a partial relevant
2-relation if it has a refinement which is a relevant 2-relation.

Let A be any deterministic algorithm for an n-OCPC and let f be a partial

2-relation. For the purposes of this proof sketch, we informally define the (t, f)-

knowledge _et of a processor p as the subset of processors mapped to ' ,' by f which

could affcct the state of p within the first t steps of A when it is run on an input

2-relation g that refines f.

Now define the following constants and functions of n:

l/v (for i > 1).4 and 8 i --=- Wi_ 1ki = 3i ,so = n 1/5 wi = ,sl/k'/21k_, ri = si
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ix,pa,rt,i_l h. v(qa,ti()tl ./ i_ c_lh,¢l t -!/ood if tim f<)lh)wing tllree ¢'¢)n<liti()llsare s_tistied.

I. rt railges ha.re ,_t pr(wessors t,lmt arc m;H)ped to '.' by f, and no l)r()ce,s,'-;ors

ttlat are m;q))ed to 1'i - ' l)y f whih_' the remaining ranges httve i',() processors

inapped to _,' by J', tuld two processors thttt ,tr.• e lnapped to '1' by f.

2. The (t, f)-knowlc'dge set of each processor p has size at most one.

3. Each processor q is in the (_, f)-knowledge sc't of ttt most k,_ processors.

Condition (2) captures a crucial ideth which can be traced to Fich et al. [8],

and may be expressed informally as follows. Suppose that A is run on input g,

where g is a 2-reltttion that refines f. Then the entire state of the n-OCPC

at time t depends in a pttrticularly simple way on the restriction of g to the

processors p with f(p) = '.'.

At the heart of the proof is a randomized procedure CONSTRUCT(t, f) that

takes a time t and a partial 2-relation f and returns a new partial 2-relation f_ that

is _Lrefinement of f. Aside from the parameters t and f, CONSTRUCT depends

implicitly on the algorithm A, in particular on the action of A at time step t + 1.

(The approach here is similar to thttt used by MacKenzie in the context of lower

bounds for load balancing [14].) The procedure CONSTRUCT has two important

properties, the first of which is concerned with invariance. Let T = v/loglogn/2.

Lemma 3. If t < T trod CONSTRUCT is called with parameters (t,f), where

f is t-good, then with probability a_ le_t 1 - n -2 CONSTRUCT will return a

p_tit:1 relation f_ that is (_ + 1)-good.

The second property is that CONSTRUCT is unbiased. Specifically, suppose

that GENERATE is a procedure that starts with the relation f0 = f,, and ap-

plies CONSTRUCT T times to generate tt sequence of partial relewtnt 2-relations

fo = f. :> f_ >_ "'" >_ fT _> f in which each ft = CONSTRUCT(t, ft__) is a

refinement of ft-1, and f is ,u relevant 2-relation generated u.a.r, from the set of

refinements of fT.

Lemma 4. The relevant 2-relation f produced by GENERATE is uniformly dis-
tributed.

Note that from Lemma 3 we also haw,.

Lemma 5. Wit,h l)robability at l¢,_,_t1 ....n -I , t,h(, l)art.i;ll relation f'r i.'_7'-got,d.

It, is llot 1)ossil)le to give a. colnplete (lescriI)ti()_ 11('I'(, ()f tl_c l)rt)cetl_ve (_()N

STI{UCT, still less a. l)r()(>f()f c()rr(:ct_(,ss, llowev('v, s,)_))(,(,f (,l)e Ill;till i(l('as x_ay I)(:
l (r s
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imrli;)l 9-r('l;Lti()l) f is t--good. L(:(. tlm j th railp;(_ b(, (l(,ll()(.('d I_) nn(l h'.t ,5'j (Icllo(,('

tl)(' s('(. ,.)f I)r()c(,ss()rs i)l l_.j l.ha.t are. llla.l)l)(:d to '*' l)y f. I,('.(>,I l)(' tim s('t of il)(li('es

j sll('l_ that lSjl > O. We say that a processor 1) zero-a,C.l>cL, a l)roc('ssor q if tllere

is a i)rocessor p' such that p is in the (t, f)-knowh:dge set of p', a.nd for any rel(>

vant 2-relation :t which refines f and has g(p) = 0: wtmn A is run with input g,

processor p' sends to q on step t + 1. The notion of p one-affecting processor q

is defined analogously. Whenever it is the ease that a processor p is zero-affected

or one-affected by a processor q there is a risk that the (t + 1, f)-knowledge set

of p will grow to size greater than one. RecM1 that the aim of CONSTRUCT is

to produce a refinement f' of f that is (t + 1)-good; in particular this entails ar-

ranging that the (t + 1,f')-knowledge set of p has at most one. CONSTRUCT's

strategy is to nominate, for each range Rj with j C J, a certain subset S_ of Sj,

and then randomly select a refinement f' of f such that undetermined part of f'

lies precisely over the union of the S_. Observe that there is a (unique) probability
distribution on refinements that is consistent with GENERATE being unbiased.

To form S_, CONSTRUCT starts with S_. = Sj and removes processors

from Sj in four stages. To a certain degree of approximation, these are as fol-
lows.

1. For each j E J, shrink 5'j so that for every processor p, either (i) p is zero-

affected by at most one processor in S}, or (ii) p is the site of a collision of

messages at step t + 1.

2. For each j e J, further shrink S} so that for every processor p either (i) p is

one-affected by at most one processor in S}, or (ii) p is the site of a collision

of messages at step t + 1. This stage uses a theorem of Erd6s and Rado [6]

concerning the existence of large "sunflowers" in a set system. A sunflower is a

collection of sets such that if an element is in two of the sets then it is in all of

them. The set system in question comprises sets of the form "all processors that

are one-affected by some processor p," where p ranges over S}. The "corolla"

of the sunflower guaranteed by ErdSs-Rado contains the collision sites, while

the "petals" contain processors that are one-affected by a single processor. A

similar construction wins used by Grohnusz and Ragde [13].

3. At the start, of this stage, a processor p may be zero-ait)'cted by one processor

in S}, one-affected by another, and have a third in its (t,f)-knowledge set,.

Now we further shrink ,5'} so that at most one of these i)ossil)ilities ocmlr.

'this is accomt)lished by constrllcting a (t(.'l)(:lldency gral)ll on processors, and

choosing a large indel)end(:nt set as guarallt(:ed by Turhu's theor(:ln. A silnila, r
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construction was use_! by Fich, Meyer a.uf der tt(_i(l(,.,a,nd Wig(|crsoil [8].

4. At this point each processor p may still be affe_ct(_(lby several processors,

though at most one of these will conic from any given 5'j.. In the final stage,

the ranges {Rj : j G J} are divided into groups; these groups are considered
t

in turn, and the sets Sj shrunk further, so that no processor is affected by
more than one processor from any of the groups processed so far. Also at this

stage, the restriction of f to the group being processed is refined- by making

- ' within the group-- to yield therandom assignments to the various sets Sj Sj
restriction of f to that group. The satisfactory processing of a group depends

on decisions made in earlier groups; however, it turns out that the probability

that CONSTRUCT fails while processing a particular group, conditioned on

the choices made in all previous groups, is very small. A probabilistic lemma

assures us that with high probability all groups will be processed successfully.

At the end of these four stages, the (t + 1, f')-knowledge sets of the processors

are all of size at most one. The other claims about f' implicit in Lemma 3 come

from the bounds provided by the ErdSs-Rado and Turin theorems, and from the

probabilistic argument mentioned in connection with stage (4) of CONSTRUCT.

The proof of Theorem 2 follows quickly from Lemmas 4 and 5, provided we

are prepared to set aside a minor technical complication, which is dealt with in the

Appendix. With high probability, the partial 2-relation fT produced by GENER-

ATE has many ranges with no processors mapped to '1' by fT". In these ranges the

target processor has a (T, fT)-knowledge set of size at most one; thus the target

processor can have received at most one of the messages destin.ed for it.

4. The prospect for tightening the bound

Recall the situation in which two processors p and q each have a single message to

transmit to a common destination. Consider the following 0CPC "algorithm" which

is a parallel version of a strategy consider in Section 2. In O(x/log log n) steps, p

and q recruit k = O(exp(x/loglogn)) "agents" to help discover a bit position

at which the binary sequence numbers for p and q differ. This is (tone using th,.

method of Section 2, but with k-way search in place of binary search: a p-agent and

a q-agent siinultaneously attempt to transmit a message to processors with sequence

mlmbers of the form 0... 0pi+l ... Pi+r/k()''' 0 and 0... 0qi+l ... qi+r/kO... 0, re-

stmctively , and henc(_ discover whether the sequenc(_ numbers ()f p and q differ on

;t l)arti(:,_lar M()ck ()f r/k bits. This would seem t() give a O(x/iiT_;4-l_iUg_z) algorithm

f()r (Mivering t,tle messages.

8
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()f(:(_itrs(;,tll(_'(;at,ellist,lmt a l_-agmlttllat[iIl(:Isa block()t_w}licl_tl_cs,.'qlm.l.>,

numb(_'rs of p mid q differ is unable to alert ttle other p-ag(.nts t,o t,ll(, (lisc_,w_ry,

at least, not sufficiently quickly to obtain an improvement ow;r the original binary

search strategy. Unfortunately, the lower bound argument i)rescnted lmr(' is ol)liv-

ious to a cheating "algorithm" in which an agent that finds an appropriate block

broadcasts its discovery to the other agents in one step. The problem is that in the

lower bound argument, the behavior of a processor is considered to be a function

of a partial 2-relation f that provides far more information than a processor couhl

in reality know.
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Appendix- Proof of the Lower Bound

An Ct(x/10glogn) Lower Bound for Routing in Optical Networks

Leslie Ann Goldberg, Mark Jerrum, and Philip D. MacKenzie

First we state the following facts about the functions which were defined in the

abstract.

Fact 6. For t __ T, kt __ 3@°gl°sn

Fact 7. For/arge enough n and t <_ T, st __ 2l°g11_"

Fact 8. For large enough n and t < T, 3kt <_ w_ 17

, 4/7
Fact 9. rt/w t > s3.

1. Generating a random 2-relation

Algorithm RANDOMSET willbe used to randomly generate a relevant2-

relationone processor at a time. It is called with a partial relevant 2-relation f

and a set P of processors which are mapped to ',' by f. The processors in P

are randomly mapped to '0' or '1' in such a way that the resulting function ff is a

partial relevant 2-relation and Claim 10 holds.

Function RANDOMSET(f, P)

Let f' := f

For each p E P

Let s = [{q [ q is in the range ofp and f(q) = ','}[

If no processors in the same range as p are mapped to '1' by f

With probability 2/s set f'(p) = 1

With probability 1- 2/s set if(p) = 0

If one processor in the same range as p is mapped to '1' by f

With probability 1/s set f'(p)= 1

With probability 1- 1/s set f'(p) = 0

Otherwise set f(p) = 0

Return f'

End RANDOMSET

Claim 10. An h-relation f generated soIeIy by calIs to RANDOMSET is a rel-

evant 2-.relation generated uniformly at random (u.a.r.) from the set of relevant

2-relations.

Proof: Straightforward. []
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2. Defining the knowledge set and t-good partial h-relations

Now we make some definitions that deal with the running of a deterministic

algorithm on an n-0CPC.

Let A be any deterministic algorithm for an n-0CPC and let f be an h-

relation. The (0, f)-trace of processor p is defined to be the tuple < p, f(p) >.

The (t,f)-trace of processor p (for t >_ 0) is defined to be the tuple <

P, f(p), _1,..., .),t > in which )_j is the message that processor p receives at step j

if such a message exists and Aj is the null symbol otherwise.

Note that we lose no generality by assuming that if p sends a message on step

t then it sends its entire (t - 1)-trace. (Since each processor is allowed to know the

algorithms that the other processors run we can simulate an algorithm which sends

different messages by an algorithm which sends traces using the same pattern of

communications.)

We will say that processor p is a direct (t, f)-receiver of processor q if either

p = q or when A is run with input f, p receives a message from q in the first t

steps. We will say that p is an indirect (t, f)-receiver of q if either p is a direct

(t, f)-receiver of q, or when A is run with input f, there is some processor k and

some time-step t t < t such that k is an indirect (t j, f)-receiver of q and p receives

a message from k during steps t j + 1,...,t.

Let g be any partial h-relation. We will say that a set S of processors is
a (t,g)-dependency set of a processor p if it is the case that for any relevant 2-

relations fl and f2 which refine g and have f_(q) = f2(q) for every processor

q E S, the (t, ]'1)4race of p is the same as the (t, f2)-trace of p. (Intuitively, p is

not dependent on processors outside S, since these could not affect its trace.) Note

that if S' and S" are (t,g)-dependency sets of a processor p then so is S _fq S",

so p has a unique (t,g)-dependency set of minimum size, which we will call p's

(t, g)-knowledge set.

Suppose that g is a partial h-relation and that f is a relevant 2-relation which

refines g. Note that if g(p) = '.' and q has a (t, g)-dependency set which excludes

p then q cannot be an indirect (t, f)-receiver of p. Also note that if g(p) _ ','

then p is not in the (t, g)-knowledge set of any processor.

We make use of the definition of t-good given in the abstract.

3. Refining partial 2-relations with CONSTRUCT

Below wc give an algorithm CONSTRUCT which is called with a time t and a
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partial 2-rela,tion f, and which randomly refines f b_ised on the action of algorithm

A at step t+ 1.

Function CONSTRUCT(t, f)

For each i C {1,...,g}
Let E =0

For each j C Ji
Let S = 0

Let S I = 0

While ISI < wt and IWj-S- I > 0

Let p be the lowest numbered processor in Wj - S - S _

If there is no p_ E V1 U... U _-1 such that

AFFECTS(p) ClAFFECTS(p') ¢ 0 Then

Let S = SU{p}
Else

Let S' = S'U {p}

Let f = RANDOMSET(Si - S, f)

If f maps any processor in Sj- S to '1' Then

Let f = RANDOMSET(S,f)

Next j
Else

Let I,_ = S

For each remaining j_ E Ji

Let f = RANDOMSET(S/,, f)
Next i

Let f'= f

Return f'
End CONSTRUCT

To explain algorithm CONSTRUCT, we use the definitions given in the ex-

tended abstract and add the following definitions.

Let W_ be a subset of Sj which is as large as possible and has tile property

that if two processors pl and t)2 are in W} and zer_-afl'ect the same processor q,

then two processors in ,5"j- W} also zero-affect processor q. Let .jI41!tbe a subset

of W_ which is as large as possible and has the property that if two processors pj

and P2 are in W__ and one-affect the same processor q, thell all processors in W;'
one-affect processor q.
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For each processor p in rlmge l_j we define the set AFFECTS(p) as follows.

1. If p is in tile (t,f)-knowledge set of any processor q thcn put q in

AFFECTS(p).

2. If p zero-affects any processor q and there are no_ two processors in Sj - Wj

which zero-affect q then put q in AFFECTS(p).

(The intuition here is that if there are two processors in Sj - l_ which zero-

affect q and all of the processors in Sj - Wj are mapped to '0' there will be a

collision at processor q at step t + 1 so q will not be affected by p.)

3. If p one-affects any processor q and there is some processor in Wj _ which does

not one-affect q then put q in AFFECTS(p).

(The intuition here is that if every processor in W_' one-affects q and all of the

processors in Sj - W}' are mapped to '0' there will be a collision at processor

q at step t + 1 so q will not be affected by p.)

Let Wj be a subset of W_' which is as large as possible and has the property

that for any two processors pl and p2 in Wj, AFFECTS(p1)D AFFECTS(p2) is

empty. (Intuitively, at this point, we would like each processor to be affected by a.t

most one processor in each Wj )

. 4/7
In CONSTRUCT, we split J into groups J1,J2,...,Jt each of size rt/w t ,

with the last group possibly smaller. For each group Ji CONSTRUCT will con-

struct a set I_ containing some of the processors from up to one of the ranges in Ji.

The sets will have the property that if two processors p and p' are in [.Ji Yi, then

AFFECTS(p) N AFFECTS(p') is empty. Intuitively, this means that no processor

could be affected by two processors in [..JiE" We will let V denote _i E" We will
1/7

say that algorithm CONSTRUCT is aucceaaful if each set Vi has size w t .

4. Analysis of CONSTRUCT

Claim 11. If f is t-good then IAFFECTS(p)[ <_ 3kt for each p.

Proof: Since f is t-good, each p is in the (t, f) knowledge set of at most kt

processors. Each of these kt processors can cause p to zer0:affect at most one other

processor and to one-affect at most one other processor. D

Claim 12. If f is t-good then each processor q is in at most 3 sets AFFECTS(p)

_ with p E W_'.

Proofi Since f is t-good, the (t, f)-knowledge set of q has size at, most one.

Therefore, q is added to at most one set AFFECTS(p1) using the first i)_rt of the
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definition of AFFECTS(p). By the construction of I4_, q is added to at most one
set AFFECTS(p2) using the second part of the definition of AFFECTS(p). Finally,
by the construction of W". .. j , q is added to at most one set AFFECTS(p3) using the
third part of the definition of AFFECTS(p). []

Claim 13. If / is t-good then for each j 6 J we have 114_1> ISjl/(2k, + 1).

Proof." We use the following procedure, which we call Procedure A"

Procedure A

For each j 6 J
Let S' = 0

Let S = Sj

While isl > 0
Select a processor p E S

Let S =S-p

. Let S' = s'v{p}
For each processor q which p zero-affects

Let Z = {vlv zero-affects q and v e S}
If Z > 1 Then

Let pl,p2 be two processors in Z

Let S = S-{pI,p2}
Else

If Z = 1 Then

Let p! be the processor in Z

Let S =S-{pl}
End A

Using procedure A we can construct a set S t c Sj such that if two processors

pl and p2 are in S' and zero-affect the same processor q, then two processors in

Sj - S _ also zero-affect processor q. Procedure A starts by setting S = Sj. Since

f is t-good each processor p E S zero-affects at most kt processors. So for each

iteration of the while loop at most 2kt + 1 processors are removed from S with

exactly one of them placed in S'. Thus IS'I :> ISjl/(2kt + 1). By the definition of

Iw;I >__Is'l >_Isjl/(2k,+ o

Claim 14. If f is t-good then for each j e J we have IW_'l >_ IW_ll/(k'>/kt.

Proof: For p C W_, let D(p) be the set of processors which p one-affects. Then
ID(p)l <_ kt. A sunflower is defined as a collection of sets such that if an element is
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in two of tim sets, then it is contailmd in all of the sets. The Erdos-Rado Theorenl

says: Let t and m be positive integers a.,l(l let F be _t farnily of sets such that

every element of F has size at most t and IF[ > t!(rn- 1)t. Then F conta.ins ;t

sunflower of size m. If we let F be the f_unily of sets D(p) for p C W_, then F

contains a sunflower of size (IW/il/kt!) >_Iwjil'/k,/k,. If two processors p, and

p2 correspond to two sets in this sunflower and they one-affect the same processor

q, then (by the definition of D(p) and sunflower) all p corresponding to sets in this

sunflower one-affect q, and since W_' is the largest set of processors which satisfy

this property, ]W_'[ > IW_l'/k'/kt. u

Claim 15. If f is t-good then for each j E J we have IWjl > JW_'l/7kt.

Proof: Construct a graph G = (W_',E) where (p,q) E E if AFFECTS(p)(3

AFFECTS(q) is non-empty. Then an independent set S in this graph has the

property that for p_, p2 in S, AFFECTS(p_)N AFFECTS(p2) is empty. Then

Wj is simply the largest independent set in this graph. By Turgn's Theorem,

IWjl > )w;'l=/]w;'l + 2]E]. By Claim 11 and Claim 12, for each p e W/,

[AFFECTS(p) I < 3kt, and each q is in at most 3 sets AFFECTS(p). Thus each

p e W_' is an end-point of at most 6kt edges in E and therefore IEI _< 3kt IW_'].

We conclude that IWj[ >_ IW_']/Tkt. o

Corollary 16. If f is t-good then for each j E g we have ]Wj] > wt.

Proof: Since ] is t-good [Sjl = st. Then the corollary follows from Claim 13,

Claim 14, and Claim 15. r_

Claim 17. If f is t-good then the number o/' groups used by algorithm CON-
. 4/7

STRUCT is w t

Proof= This follows from the definition of t-good and from the fact that the size
/ 4/7

of the groups is rt/w t . o

Claim 18. If f is t-good and t < T then the while loop in algorithm CON-

STRUCT always terminates with ISi = w_/r .

1/7
Proof: We will show that if f is t-good then [SI < wt implies IWj- S-

S' I > 0. Suppose that some vertex p in Wj cannot be added to S. Then for

some p' C V_ U... t0 V___ we have AFFECTS(p) fl AFFECTS(p') # 0. But
I/7

tile size of each set, Vo is at most w t _md i is at most the number of groups,
4/7

which is cqlml to w t by Claim 17. Furthermore, for each p' E Vl tO ... tOV/-l,

I:\r"r'_'_'r .... ,-,, , .. s/7r t x_,v.tot, p )1 :> 3kt. So a.t in()st 3ktw t Incml)ers of l_.j will l)e t)ut in S'. B5'
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5/7 l/r
Fact 8, 3ktu, t < u,t- w t for t < T and big enough n. We conclude that if

1/7'/_ th(._.1% - s--s'l > w,-(,v_/_)-(,,,,- ,,,, ) = o.isl < w,

Claim 19. If f is t-good and t < T then the probability that CONSTRUCT is

successful is at/east 1 - n -2 .

Proof." We have already shown in the proof of Claim 18 that if f is t-good then

tile while loop in algorithm CONSTRUCT always terminates with IS[ = _,,_/v. It

remains to show that with probability at least 1 - n -2 each group i has a range j

such that the function f returned by the call "Let f = RANDOMSET(S i - S, f)"

does not map any processor in S i - S to '1'. Assume that this is true for groups

1 to i- 1. For 1 < v < i- 1, let Xv be the random variable equal to the
I 4/7

index of the first such range in group v. For 1 <_ j < rt/w t , let _,j be a

binary random variable which is 1 when range j is such a range for group i. Let

V,r,/wffr
Zi = z_.,i=l Yi,j. Note that Zi is zero if and only if group i does not have such

a range. Note that for j # j', l_,j and Yi,j, are independent. By construction,

for any bl, ..,bi-1 e [1, , 4/71 n• rt/wt l, using the facts that st >_ 21°_/3 (from Fact 7,
,1/7 .

and rt/w t > s_ (from Fact 9), and assuming n is large,

Pr(Zi = OlXi-1 -- bi-1,...,Xl = bl)

)= Pr /=1 Yi,/ = O]Xi-1 = bi-1,...,X1 = bl

-- Pr(N r'/_'4/, bi-1,.. X1 bl)
-- j=l (Y/,j -- O)[Xi-1 -" ., -"

= l-It'w4'/' Pr(Y_,/ OlXi-1 .,llj=l : : bi-1,.. Xl = bl)

t/r rt/w_ Ir

_<(,-
e-st

-3< n

The probability of failing in any group can then be bounded by
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/_i=1 Pr(Zi = OJZi-1 = 1,...,Z1 = 1)

__ _'_w_/r
- z__i=l _b_ .... ,b___e[1,r,/w4/r]Pr(Z_ = OIXi-1 = bi-1,...,X1 = bl)

Vr(X,-1 -- bi-1,..., Xl -" bl)
. 4/7

<_ n -3 _7dl _'_bt,...,b,_te[1,r,/w_/,] Pr(Xi-1 = bi-1,...,X1 = bl)

-- wl/Tn-3

< n-2. o

Corollary 20. If f is t-good and algorithm CONSTRUCT is successful then

after CONSTRUCT is executed rt+l ranges have s,+ l processors that are mapped

to ',' by f', and no processors that are mapped to '1' by f', while the remaining

ranges have no processors mapped to '.' by if, and two processors that are mapped
.a

to '1'by i

Proofi Immediate from the definition of successful and from Claim 17.v

Claim 21. If f is t-good then after CONSTRUCT is e'xecuted every processor q

that is in the (t + 1, f')-knowledge set o[ a processor p has p 6 AFFECTS(q).

Proofi By the definition of dependency sets, we can form a (t + 1,f') depen-

dency set. D of p by taking the union of the (t,f)-knowledge set of p and the

(t,f)-knowledge sets of all processors p' satisfying the following: there is some

refinement g of f which is a relevant 2.-relation and on which p' sends to p on

step t + 1. Note that D is the union of the (t,f)-knowledge set of p and the

set of processors that zero-affect p and the set of processors that one-affect p. If

q is in the (t, f)-knowledge set of p then p is in AFFECTS(q)" by the first part

of the definition of AFFECTS. Suppose that ql is a processor in some range j

which zero-affects p and that p _ AFFECTS(q). By the second part of the def-

inition of AFFECTS we know that there are two processors in Sj - W_ which

zero-affect q. If both of these are mapped to '0' by f' then for any refinement of

f' processor p has a conflict at step t + 1 so D -ql is a (t + 1, f')-dependency

set of p. If, on the other hand, one of these is mapped to '1' by f' then algorithm

CONSTRUCT maps every member of the range of ql to '0' or '1' so D - ql is

a (t + 1,f')-dependency set of p. (Recall that if f'(ql) # '*' then q, cannot be

in the (t + 1, f')-knowledge set of any processor.) Similarly, suppose that q_ is a

processor in some range j which one-affects p and that p ¢ AFFECTS(q). By

the third part of the definition of AFFECTS we know that every processor in W_'

one-affects q If all of the processors in Sj - W" are mapped to '0' by f' then for• "'3

any refinement of f' that is a relevant 2-re|ation processor p has a conflict at step
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t+ 1 so D -- q2 is a (t + 1,f')-dc'pendency set of p. If, (m tlu_ other Iron(l, one of

these is mapped to '1' by f' then algorithm CONSTRUCT znaps cw:ry inember of

the range of q2 to '0' or '1' so D-q2 is a (f + i, f')-dependency set of p.

Claim 22. If f is t-good and algorithm CONSTRUCT is successful then after

CONSTRUCT is executed the (t + 1,f')-knowledge set of every processor p has
size at most one.

Proof: We know from Claim 21 that every processor p has a (t + 1,f')-

dependency set D which contains only those processors q such that p E

AFFECTS(q). Suppose that two processors q and q' have if(q) = f'(q') = ','. (If

a processor q is not mapped to ','by f' then it is not in the (t + 1, ff)-know!edge

set of any processor so it is not in the (t + 1, f')-knowledge set of p.) Then q must

be in some Wj C W;' C W; and q' must be in some W2 C W;I C W;, and both
q and q' are in the set V constructed by algorithm CONSTRUCT. If j = j', then

the definition of Wj guarantees that A.FFECTS(q) N AFFECTS(q') = 0, implying
that p is in just one of these sets, _nd thus either q or q' {s not in D. If, on the

other hand, j .¢ j' by the construction of V, AFFECTS(q) n AFFECTS(q') = 0,

implying p is in just one of these sets, and thus either q or q' is not in D. Thus

IOl< 1. o

Claim 23. If f is t-good then after CONSTRUCT is executed each processor q

is in the (t + 1,ff)-knowledge set of a_ mos* k,+l processors.

Proof: Let q be a processor which is in the (t + 1, f')-knowledge set of a

processor p. By Claim 21, p E AFFECTS(q). But by Claim 11, [AFFECTS(q)[ <
3kt = kt+l. The claim follows, u

Lemma 24. If t < T and CONSTRUCT is cMled with (_,f), where f is t-good,

then wi_h probability at least 1 - n -2 CONSTRUCT will return a function f'

which is (t + 1)-good.

Proof: This follows from Claim 19, Corollary 20, Claim 22, and Claim 23. u

5. Proof of the Theorem

We use the following function, which calls CONSTRUCT to generate a sequence

of partial relevant 2-relations fo = f. >_ fl >_"" > fT > f in which each ft is a

refinement of ft-1, f is a refinement of fir, and f is a relevant 2-relation generated
u.a.r.
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Function GENERATE

I,ct f0 = f.

Let f = f0
Let t = 0

While t < T Do

If for some p, f(p) = ',' Then

Let f, = CONSTRUCT(t, f)
Else

Let ft = f
t=t+l

I=f
Let P = {PIf(P) = '*'}

Return RANDOMSET(f, P)
End GENERATE

Lemma 25. With probability at least 1 - n -1 fT is T-good.

Proof: Let Zt be a random variable which is equal to 1 when CONSTRUCT

succeeds at step t. Then by Lemma 24,

Pr(Z, = O[Z,_I = 1,...,Z, = 1) = Pr(Z, = O[f_ is t-good) < n -2.
i

The probability of failing at any step t _<T can then be bounded by
..

T

EPr(Z, = 0[Z,-1 = 1,...,Z1 = 1) _<Tn -2 <_n-' o
t--1

Theorem 26. Let A be a deterministic algorithm that allegedly routes 2-relations

in T = x/logiogn/2 steps. Let the input to A be drawn u.a.r, from the set of
relevant 2-relations. Then the probability that A successfully routes the input is

at most 1/2.

Proof: We will generate a relevant 2-relation by running algorithm GENERATE.

By Claim 10 algorithm GENERATE generates relevant 2-relations u.a.r. GENER-

ATE also produces a sequence fo > "'" fT >_ "" f in which f is the final relevant

2-relation. By Lemma 25, fT will be T-good with probability at least 1 - 1In.

Suppose that fT is T-good. Then there is a range R that has a set S of ST

processors which arc mal_ped to ',' by fT. R has no processors which are mapped
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t,_'i'by f'r,Let d denotethefirstprocessorinrangeR,.(d isthedestinationof

the messat4c's in rtmge l i'.) The (T, fT)-knowledgc set of d contains at most one
processor. There ttrc three cases which must be examined concerning ill" :

CASE 1: The (T, fT)-knowledge set of d contains a processor q which is a
member of S:

We wish to bound the probability that A succeeds, given that fT is in case 1.

Let .7"1denote the set of relevant 2-relations which refine fT and map q to '1' and

let _'0 denote the set of relevant 2-relations which refine fT and map q to '0' One

can see by examining algorithm RANDOMSET that the probability that f is in

:'1 is 2ST and the probability that f is in .To is 1 - 2ST. We now examine the

following sub-cases concerning f.

CASE 1A: f is in :'1:

We wish to bound the probability that A succeeds, given that f is in :'1.

There is a particular trace r which is the (T, ff)-trace of d for every input h-

relation ff E _'1. Since A runs in T steps processor d uses this trace r to deduce

the pair of messages that were destined for d in every input h-relation that is in

:'1. But there are ST- 1 such pairs of messages, each of which is equally likely

to come up in a randomly chosen member of _1. So the probability that A is

successful given that f is in :'_ is at most 1/(ST -- 1).

CASE 1B: f is in .To:

We wish to bound the probability that A succeeds, given that f is in .To.

There is a particular trace r which is the (T, ff)-trace of d for every input h-

relation ff E .To. Since A runs in T steps processor d uses this trace r to deduce

the pair of messages that were destined for d in every input h-relation that is in

.To. But there are (_-_) such pairs of messages, each of which is equally likely
to come up in a randomly chosen member of .7"1. So the probability that A is

successful given that f is in .7"1is at most 1/('T2--1) .

Therefore the probability that A succeeds given that fT is in case 1 is at most

(2/ST)(ll(sT -- 1)) + (1 -- 2/ST)(1/('_-')) which is at most 2/('_-1).

CASE 2: The (T, fT)-knowledge set of d contains a processor q which is not a
member of S:

Similar arguments to those used in case 1 show that the probability that A

succeeds given that f'r is in case 2 is at most 1/(s2r) .

CASE 3: The (T, fT)-knowledge set of d is the empty set:
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Similar arguments to those used in case 1 show that tile prot,alfility tl_at A

succeeds given that f'r is in case 3 is at most 1/(_").

Finally, we conclude that thc probability that A successflally routes f in T

steps is at most the sum of 1/n ( an upper bound on the probability that fT is

not T-good, by Lemma 25) and (1 - l/n) × 2/(st; ') (an upper bound on the

probability that A succeeds given that fT is T-good). We can use Fact 7 to show

that this quantity is at most 1/2.

Therefore, with probability at least 1/2, an f drawn u.a.r, from the set of

relevant 2-relations will not be routed by algorithm A in T steps, o

Corollary 27. Let A be a deterministic algorithm that routes 2-relations. Let

the input to A be drawn u.a.r, from the set of relevant 2-relations. Then the

expected number of communication steps used by A is at least x/log log n/4.

Proofi The corollary follows from the fact that x/loglogn/4 <_ (1/2)(T +

1). square

Theorem 28. Let A be a randomized algorithm that routes 2-reMtions. Then

there is a 2-relation on which the expected number of communication steps used by

A is at least x/log log n/4.

Proof'. Using a Theorem by Yao, the expected number of communication steps

used by A maximized over all possible inputs is at least the expected running time

for the uniform distribution on relevant 2-relations, minimized over all deterministic

algorithms, which is at least x/log log n/4 by Corollary 27. o
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