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ABSTRACT Optical communication is likely to significantly speed up parallel com-
putation because the vast bandwidth of the optical medium can be divided to pro-
duce communication networks of very high degree. However, the problem of con-
tention in high-degree networks rn .kes the routing problem in these networks the-
oretically (and practically) difficult. In this paper we examine Valiant’s h-relation
routing problem, which is a fundamental problem in the theory of parallel com-
puting. The h-relation routing problem arises both in the direct implementation
of specific parallel algorithms on distributed-memory machines and in the general
simulation of shared memory models such as the PRAM on distributed-memory
machines. In an h-relation routing problem each processor has up te h messages
that it wishes to send to other processors and each processor is the destination
of at most h messages. We present a lower bound for routing an h-relation (for
any h > 1) on a complete optical network of size n. Gur lower bound applies to
any randomized distributed algorithm for this task. Specifically, we show that the
expected number of comrmunication steps required to route an arbitrary h-relation
is Q(h + Vloglogn). This is the first known lower bound for this problem which

does not restrict the class of algorithms under consideration.
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1. Introduction

In current distributed-memory parallel computers, a number of processors equipped
with private local memory communicate by sending messages via a network of com-
munication links. Current technology restricts the network to be of low degree:
each processor in the network can communicate directly with only a few others,
and the remainder must be reached indirectly by routing messages along a sequence
of links. The emerging technology of optical communication challenges the assump-
tion that the network must be of low degree. In particular, the huge bandwidth
of the optical medium can be divided so that each processor has its own channel
for receiving messages and each processor can send on any channel. Even though
such an interconnection network is a complete graph, there remains the problem
of confention: no processor can receive messages simultaneously from two other
processors withe:it corruption. The problem of avoiding contention is much more
difficult in high-degree networks (such as optical networks) than in traditional low-
degree networks.

The problem of routing in optical networks is captured mathematically by An-
derson and Miller’'s OCPC model. In an n-processor completely connected Optical
Communication Parallel Computer (n-OCPC) n processors with local memory are
connected by a complete network. A computation on this computer consists of a
sequence of communication steps. During each communication step each processor
can perform some local computation and then send one message to any other pro-
cessor. If a processor is sent a single message during a communication step then it
receives this message successfully, but if it is sent more than one message then the

transmissions are garbled and it receives none of them.

The OCPC model was first introduced by Anderson and Miller {2, and has
subsequently been studied by several authors including Valiant {17}, Es’.aghian {7},
Geréb-Graus and Tsantilas [11], and Gerbessiotis and Valient '«{- ‘thouzh not
always under the name OCPC). Aside from its importance as = wu-¢e} fsv o7 ical
communication, the OCPC has the attraction of being a clean, mnthenatically
appealing model that allows us to study a single issue, namely tli» re olution of
contention between independent processors, in isolation from other {actors. It has
recently been observed that the n-processor OCPC is equivawi. o . ERCW
PRAM with n global memory cells. Thus our results carry over o b.: model. For
details, see [15].

In this paper we study a fundamental communication problem for multipro-
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cessor computers: that of routing h-relations. This problem arises both in the
direct implementation of specific parallel algorithms (2], and in the simulation of
shared-memory models, such as the PRAM, on more realistic distributed-memory
models [17]. An h-relation [17] is a communication problem in which each processor
has up to h messages that it wishes to send to other processors. The destinations
of these messages can be arbitrary except that each processor is the destination of
at most h messages. The goal is to design a fast n-OCPC algorithm that can route

an arbitrary h-relation.

Anderson and Miller [2] have observed that an h-relation can easily be routed
in h communication steps if all of the processors are given total information about
the h-relation to be routed. A more interesting (a1 - more realistic) situation arises
if we assume that each processor initially knows only about the messages that it
wants to send, and that processors learn about the the rest of the h-relation only
through receiving messages from other processors. This is the usual assumption,
and the one that will be made here.

Valiant [17], building on work of Anderson and Miller [2], developed a random-
ized algerithm that routes an arbitrary A-relation in O(h + logn) steps, on average.
Subsequently, Goldberg, Jerrum, Leighton, and Rao {12] presented a more complex
randomized algorithm for the same task that runsin O(h + loglogn) steps and has
failure probability n™* for any constant . The latter algorithm is asymptoticaliy
the fastest known, and it would be interesting to discover whether it is the best
possible. Our attention therefore turns to lower bounds.

Goldberg et al. [12] proved a lower bound for a restricted class of algorithms
known as direct, in which a processor may only send messages directly to their final
destination. (Thus the only freedom a processor has is in its choice of when to
attempt to send its messages.) They proved that for any (randomized) direct algo-
rithm there is a 2-relation that takes (logn) steps to route with success probabil-
ity % , thus showing that even in a completely connected network it is advantageous
to route messages indirectly.

Obtaining a lower bound for unrestricted algorithms has proved a much greater
challenge, owing, no doubt, to the rich variety of strategies that are available to a
non-direct algorithm. (Some of the possibilities will be glimpsed in Section 2.)
Indeed, no lower bound beyond the trivial §2(h) was previously known. The new
result in this paper is a lower bound on the number of steps required to route 2-
relations on an n-OCPC. We prove that for any randomized algorithm there is a

2-relation such that the expected number of steps required to route the relation is
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Q(VToglogmn ). (See Theorem 1 for a precise «iatement of the result.) Our result
implies that for any A > 1 the number of steps required to route an arbitrary
h-relation is Q(h 4+ y/loglogn). We note that our lower bound also holds for
routing ¢ + 1l-relations in the c-collision OCPC model studied by Dietzfelbinger
and Meyer auf der Heide {4].

The proof presented here has elements in common with that of Beame and
Hastad’s lower bound for computing parity on a CRCW PRAM ([3]. However, our
proot technique (which is based on one used by MacKenzie in [14]) is stronger, in
that it applies to random inputs rather than worst-case inputs. (As a side note,
we mention that by modifying Beame and Hastad’s proof in accordance with our
proof technique, it is possible to show that their lower bound holds for probabilistic
CRCW PRAMs. It was known that their lower bound could be extended to the
probabilistic case, but the extension was indirect and rested on simulating random-
ized algorithms by deterministic ones, using a technique of Ajtai and Ben-Or [1].

Our technique, however, provides the first known direct proof of a lower bound for
parity on probabilistic CRCW PRAMs.)

The gap between the current upper and lower bounds on routing h-relations
deserves comment. Section 4 indicates why a lower bound of the form Q(v/Toglogn )
is the limit of the current technique. An example presented in that section points
to an issue that must be faced in any attempt to improve the current lower bound.
It appears that some new idea is necessary to make further progress on this front.

2. Some Preliminary Observations

Imagine that two processors p and ¢ wish to deliver a single message each to a
common destination processor within O(loglogn) steps. Assume that p and ¢ do
not know each other’s identity. A simple strategy is for p and ¢ each to flip a coin
and attempt to transmit its packet to the destination processor if the coin comes
up “heads.” After O(loglogn) steps, the probability that p and ¢ have failed to
transmit their packets is at least (logn)~ %M. If n®1) pairs of processors simul-
taneously employ this strategy to deliver their messages to separate destinations,
the probability that they all succeed is negligible. Some more subtle approach is
required.

One possibility, suggested by Rao, is the following. Suppose the processors are
assigned binary sequence numbers, and that the numbers assigned to p and ¢ are
pip2 -..pr and q1qz...¢r, where r ~ logn. By simultancously sending messages

to processors pipz...pr20...0 and q1g2...¢,/20...0, respectively, processors p
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and ¢ may discover whether their sequence numbers differ in the first 7/2 bits.
After about loglogn experiments of this general form, and using binary search, p
and ¢ can agree on a bit position at which their sequence numbers differ; this bit
can then be used to determine a priority for the processors, and hence resolve the
conflict. Note that this method (with slight modification) could be used by n(!)
pairs of processors simultaneously. Observe that p and ¢ are not sending messages
in order to get the content of the message to another processor, but to learn some

information about the competing processor.

A second strategy is replication of messages. In O(loglogn) binary replication
steps, p and ¢ can each prime a set of ©(logn) processors with the message they are
required to transmit. These two sets of processors then use the naive coin-flipping
strategy to attempt to send their cloned messages to a common target set of size
O(logn). In just a constant number of attempts, the probability that either a p-
message or a g-message fails to get through is reduced to n=%1) where the implicit
constant is arbitrary. Finally, the messages in the target set can be funueled into
the destination processor by a procedure which is an inverse to the cloning phase.
Note that the failure probability is much smaller here than for the naive strategy,
and can be expected to remain small when many pairs of processors simultaneously
attempt to send to distinct targets.

These two examples indicate the subtle strategies that are available to indirect
algorithms. With these in mind, it is possible to give a little of the flavor of the lower
bound argument. After ¢-steps, some set of processors (of size at most exponential
in t) will be aware that processor p or ¢ has a packet to send. Viewing the situation
crudely, these “agents” for p and ¢ can act in one of two modes, or possibly a
mixture: (a) they can send messages to some narrow set of destinations that is only
weakly dependent on the identity of the source processor, or (b) they can send to a
wide destination set, or one that is strongly dependent on the identity of the source
Processor.

The first strategy sketched above operates purely in mode (a), while the second
strategy relies on mode (b) to recruit the processors that are required in the repli-
cation phase. The key point is that the effectiveness of mode (a) is limited by the
collisions that inevitably occur, while mode (b) is limited in its ability to “advance
messages towards their destination.” The lower bound proof to be described in Sec-
tion 3 analyses the tradeoff between these modes. That both strategies described
above are effective suggests that the whole range of the tradeoff must be examined,

and explains some of the technical complexity of the proof.
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3. The Lower Bound Argument

Qur goal is to establish the followiug.

Theorem 1. Let A be a randomized algorithin that routes 2-relations on an n-

OCPC. Then there is a 2-relation on which the expected number of communication
steps used by A is at least \/loglogn/4.

Due to space constraints, we will defer the full proof of this result to the
appendix, and simply present some highlights of the proof in this extended abstract.

The first step is to reduce to the case of deterministic A. A certain restricted
class of 2-relations (to be defined presently) will be termed “relevant.” According
to a theorem of Yao (see [9]), proving Theorem 1 reduces to proving the following.

Theorem 2. Let A be a deterministic algorithm that allegedly routes 2-relations
in T = \/loglogn/2 steps. Let the input to A be drawn u.a.r. from the set of
relevant 2-relations. Then the probability that A successfully routes the input is
at most % g

We partition the n-OCPC into n*/5 ranges containing n!/® processors each.
For the purposes of the proof, a partial h-relation is a function from the set
{1,...,n} of processors to {0,1,*}. A partial h-relation is called an h-relation
iff no processor is mapped to ‘*’. Intuitively, a ‘1’ indicates that the processor has
a message to send and a ‘0’ indicates that it does not. In all cases the messages will
be destined for the first processor in the range containing the sending processor.
Let f. denote the partial h-relation which maps every processor to ‘*’. A partial
h-relation f is called a refinement of a partial h-relation f' if f'(p) = 1 implies
f(p) = 1, and f'(p) = 0 implies f(p) = 0. (We denote this by f < f'.) We will
say that an h-relation is a relevant 2-relation if it has exactly two processors in
each range mapped to ‘1’. We will say that a partial h-relation is a partial relevant

9-relation if it has a refinement which is a relevant 2-relation.

Let A be any deterministic algorithm for an n-OCPC and let f be a partial
2-relation. For the purposes of this proof sketch, we informally define the (¢, f)-
knowledge set of a processor p as the subset of processors mapped to ‘*’ by f which
could affect the state of p within the first ¢ steps of A when it is run on an input

2-relation ¢ that refines f.

Now define the following constants and functions of n:

k; = 3i, Sp = nl/s, w; = .9}“‘/21/6,-2, ri = st and s; = w:g (for = 2 1).

1
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A partial horelation f s called t-good if the following three conditions are satisfied.
1. »¢ ranges have s¢ processors that are mapped to ‘x’ by f, and no processors
that arc mapped to ‘1" by f, while the remaining ranges have no processors

mapped to ‘x’ by f, and two processors that are mapped to ‘1’ by f.
2. The (t, f)-knowledge set of each processor p has size at most one.
3. Each processor ¢ is in the (¢, f)-knowledge set of at most k, processors.
I q ) g t 1

Condition (2) captures a crucial idea, which can be traced to Fich et al. (8],
and may be expressed informally as follows. Suppose that A is run on input ¢,
where ¢ is a 2-relation that refines f. Then the entire state of the n-OCPC
at time t depends in a particularly simple way on the restriction of g to the
processors p with f(p) = ‘*’.

At the heart of the proof is a randomized procedure CONSTRUCT(t, f) that
takes a time t and a partial 2-relation f and returns a new partial 2-relation f' that
is a refinement of f. Aside from the parameters t and f, CONSTRUCT depends
implicitly on the algorithm A, in particular on the action of A at time step ¢ + 1.
(‘The approach here is similar to that used by MacKenzie in the context of lower
bounds for load balancing [14].) The procedure CONSTRUCT has two important
properties, the first of which is concerned with invariance. Let T = \/W

Lemma 3. [ft < T and CONSTRUCT is called with parameters (t, f), where
f is t-good, then with probability at least 1 — n~%2 CONSTRUCT will return a
partial relation f' that is (¢ + 1)-good.

The second property is that CONSTRUCT is unbiased. Specifically, suppose
that GENERATE is a procedure that starts with the relation fo = f., and ap-
plies CONSTRUCT T times to generate a sequence of partial relevant 2-relations
fo=fc =2 fi 2> fr > f in which each f; = CONSTRUCT(t, ft—1) is a
refinement of fi—, and f is a relevant 2-relation generated u.a.r. from the set of
refinements of fr.

Lemma 4. The relevant 2-relation f produced by GENERATE is uniformly dis-
tributed.

Note that from Lemma 3 we also have.
Lemma 5. With probability at least 1 - n~' | the partial relation fp is T -good.

It is not possible to give a complete description here of the procedure CON-
STRUCT, still less a proof of correctness. However, some of the main ideas may be
sketched. Suppose that CONSTRUCT is called with parameters (¢, f) where the
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partial 2-relation f s t-good. Let the jth range be denoted IR, and let S, denote
the set of processors in R that are mapped to *+ by f. Let J be the set of indices
j such that |S;] > 0. We say that a processor p zero-affects a processor ¢ if there
is a processor p' such that p is in the (¢, f)-knowledge set of p', and for any rele-
vant 2-relation ¢ which refines f and has g(p) = 0: when A is run with input g,
processor p' sends to q on step t + 1. The notion of p one-affecting processor ¢
is defined analogously. Whenever it is the case that a processor p is zero-affected
or one-affected by a processor q there is a risk that the (¢ + 1, f)-knowledge set
of p will grow to size greater than one. Recall that the aim of CONSTRUCT is
to produce a refinement f' of f that is (f + 1)-good; in particular this entails ar-
ranging that the (¢ + 1, f')-knowledge set of p has at most one. CONSTRUCT’s
strategy is to nominate, for each range R; with j € J, a certain subset S;- of S;,
and then randomly select a refinement f' of f such that undetermined part of f'
lies precisely over the union of the S;- . Observe that there is a (unique) probability
distribution on refinements that is consistent with GENERATE being unbiased.

To form S}, CONSTRUCT starts with S; = S; and removes processors
from S% in four stages. To a certain degree of approximation, these are as fol-
lows.

1. For each j € J, shrink S} so that for every processor p, either (i) p is zero-
affected by at most one processor in Sy, or (ii) p is the site of a collision of

messages at step t 4+ 1.

2. For each j € J, further shrink S} so that for every processor p either (i) p is
one-affected by at most one processor in S;, or (ii) p is the site of a collision
of messages at step t + 1. This stage uscs a theorem of Erdés and Rado [6]
concerning the existence of large “sunflowers” in a set system. A sunfloweris a
collection of sets such that if an element is in two of the sets then it is in all of
them. The set system in question comprises sets of the form “all processors that

)

are one-affected by some processor p,” where p ranges over S;. The “corolla”
of the sunflower guaranteed by Erdés-Rado contains the collision sites, while
the “petals” contain processors that are one-affected by a single processor. A

similar construction was used by Grolmusz and Ragde [13].

3. At the start of this stage, a processor p may be zero-affected by one processor
in S;, one-affected by another, and have a third in its (¢, f)-knowledge set.
Now we further shrink S} so that at most one of these possibilities occur.
This is accomplished by constructing a dependency graph on processors, and

choosing a large independent set as gnaranteed by Turdn’s theorem. A similar
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construction was used by Fich, Meyer auf der Heide, and Wigderson [8].

4, At this point each processor p may still be affected by several processors,
though at most one of these will come from any given S7. In the final stage,
the ranges {R; : j € J} are divided into groups; these groups are considered
in turn, and the sets 5;- shrunk further, so that no processor is affected by
more than one processor from any of the groups processed so far. Also at this
stage, the restriction of f to the group being processed is refined — by making
random assignments to the various sets S — S'} within the group — to yield the
restriction of f' to that group. The satisfactory processing of a group depends
on decisions made in earlier groups; however, it turns out that the probability
that CONSTRUCT fails while processing a particular group, conditioned on
the choices made in all previous groups, is very small. A probabilistic lemma
assures us that with high probability all groups will be processed successfully.

At the end of these four stages, the (¢ + 1, f')-knowledge sets of the processors
are all of size at most one. The other claims about f’ implicit in Lemma 3 come
from the bounds provided by the Erdés-Rado and Turan theorems, and from the
probabilistic argument mentioned in connection with stage (4) of CONSTRUCT.

The proof of Theorem 2 follows quickly from Lemmas 4 and 5, provided we
are prepared to set aside a minor technical complication, which is dealt with in the
Appendix. With high probability, the partial 2-relation fr produced by GENER-
ATE has many ranges with no processors mapped to ‘1’ by fr. In these ranges the
target processor has a (T, fr)-knowledge set of size at most one; thus the target

processor can have received at most one of the messages destined for it.
4. The prospect for tightening the bound

Recall the situation in which two processors p and ¢ each have a single message to
transmit to a common destination. Consider the following OCPC “algorithm” which
is a parallel version of a strategy consider in Section 2. In ©(y/Toglogn) steps, p
and ¢ recruit k = O(exp(v/Toglogn)) “agents” to help discover a bit position
at which the binary sequence numbers for p and ¢ differ. This is done using the
method of Section 2, but with k-way search in place of binary scarch: a p-agent and
a q-agent simultancously attempt to transmit a message to processors with sequence
numbers of the form 0...0piyy ... pigrk0...0 and 0...0giyy ... ¢igryx0...0, re-
spectively, and hence discover whether the sequence numbers of p and ¢ differ on
a particular block of #/k bits. This would scem to give a O(y/log logn ) algorithmn

for delivering the messages.
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Of course, the cateh is that a p-agent that finds a block on whicli the sequence
numbers of p and ¢ differ is unable to alert the other p-agents to the discovery,
at least, not sufficiently quickly to obtain an improvement over the original binary
search strategy. Unfortunately, the lower bound argument presented here is obliv-
ious to a cheating “algorithm” in which an agent that finds an appropriate block
broadcasts its discovery to the other agents in one step. The problem is that in the
lower bound argument, the behavior of a processor is considered to be a function

of a partial 2-relation f that provides far more information than a processor could
in reality know.
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Appendix - Proof of the Lower Bound
An Q(/loglogn) Lower Bound for Routing in Optical Networks
Leslie Ann Goldberg, Mark Jerrum, and Philip D. MacKenzie

First we state the following facts about the functions which were defined in the
abstract.

Fact 6. Fort < T, k, < 3Vloglogn

13

Fact 7. For large enough n and t < T, s, > 28 .

Fact 8. For large enough n and t < T, 3k; < w:ﬁ.

Fact 9. r/wi/” > .

1. Generating a random 2-relation

Algorithm RANDOMSET will be used to randomly generate a relevant 2-
relation one processor at a time. It is called with a partial relevant 2-relation f
and a set P of processors which are mapped to ‘*’ by f. The processors in P
are randomly mapped to ‘0’ or ‘1’ in such a way that the resulting function f' is a

partial relevant 2-relation and Claim 10 holds.

Function RANDOMSET(f, P)
Let f' = f
For each p € P
Let s = |{q¢ | ¢isin the range of p and f(q) = ‘x’}|
If no processors in the same range as p are mapped to ‘1’ by f
With probability 2/s set f'(p) =1
With probability 1 —2/s set f'(p) =0
If one processor in the same range as p is mapped to ‘1’ by f
With probability 1/s set f'(p) =1
With probability 1 —~1/s set f'(p) =0
Otherwise set f(p) = 0
Return f’
End RANDOMSET
Claim 10. An h-relation f generated solely by calls to RANDOMSET is a rel-
evant 2-relation generated uniformly at random (u.a.r.) from the set of relevant

2-relations.

Proof:  Straightforward. o
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2. Defining the knowledge set and t-good partial r-relations

Now we make some definitions that deal with the running of a deterministic

algorithm on an n-OCPC.

Let A be any deterministic algorithm for an n-OCPC and let f be an h-
relation. The (0, f)-trace of processor p is defined to be the tuple < p, f(p) >.
The (¢, f)-trace of processor p (for t > 0) is defined to be the tuple <
P, f(P), A1,...,A¢ > in which }; is the message that processor p receives at step j
if such a message exists and JA; is the null symbol otherwise.

Note that we lose no generality by assuming that if p sends a message on step
t then it sends its entire (¢ — 1)-trace. (Since each processor is allowed to know the
algorithms that the other processors run we can simulate an algorithm which sends
different messages by an algorithm which sends traces using the same pattern of
communications.)

We will say that processor p is a direct (¢, f)-receiver of processor ¢ if either
p = q or when A is run with input f, p receives a message from ¢ in the first ¢
steps. We will say that p is an indirect (¢, f)-receiver of ¢ if either p is a direct
(t, f)-receiver of ¢, or when A is run with input f, there is some processor k and
some time-step t' < ¢ such that & is an indirect (¢, f)-receiver of ¢ and p receives
a message from k during steps t' +1,...,¢.

Let g be any partial h-relation. We will say that a set S of processors is
a (t,g)-dependency' set of a processor p if it is the case that for any relevant 2-
relations f; and f; which refine ¢ and have fi(¢) = f2(g) for every processor
g € S, the (¢, f1)-trace of p is the same as the (¢, f2)-trace of p. (Intuitively, p is
not dependent on processors outside S, since these could not affect its trace.) Note
that if S’ and S” are (t,¢)-dependency sets of a processor p then so is S’ NS,
so p has a unique (t,g)-dependency set of minimum size, which we will call p’s
(t,9)-knowledge set.

Suppose that ¢ is a partial h-relation and that f is a relevant 2-relation which
refines g. Note that if g(p) = ‘*’ and ¢ has a (¢, ¢)-dependency set which excludes
p then g cannot be an indirect (¢, f)-receiver of p. Also note that if g(p) # ‘*’

then p is not in the (¢, g)-knowledge set of any processor.

We make use of the definition of t-good given in the abstract.

3. Refining partial 2-relations with CONSTRUCT
Below we give an algorithm CONSTRUCT which is called with a time ¢ and a
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partial 2-relation f, and which randomly refines f based on the action of algorithm
A at step t + 1.

Function CONSTRUCT (¢, f)
For each 7 € {1,...,¢}

Let V; =0

For each j € J;
Let $ =0
Let ' =0

While |5] < wi/” and |W; =S —5'] >0
Let p be the lowest numbered processor in W; — S — S’
If thereisno p' € V4 U---U V;_; such that
AFFECTS(p) N AFFECTS(p') # 0 Then
Let S = SU{p}
Else
Let 8" = S'U {p}
Let f = RANDOMSET(S; — S, f)
If f maps any processor in S; —S to ‘1’ Then
Let f = RANDOMSET(S, f)
Next j
Else
Let Vi = S
For each remaining j' € J;
Let f = RANDOMSET(Sj, f)
Next @
Let f' = f
Return f'
End CONSTRUCT

To explain algorithm CONSTRUCT, we use the definitions given in the ex-
tended abstract and add the following definitions.

Let W} be a subset of S; which is as large as possible and has the property
that if two processors p; and p; are in WJ' and zern-affect the same processor ¢,
then two processors in Sj — W/ also zero-affect processor ¢. Let W} be a subset
of W]’ which is as large as possible and has the property that if two processors p,
and py are in W}' and one-affect the same processor ¢, then all processors in W'

one-affect processor gq.
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For cach processor p in range R; we define the set AFFECTS(p) as follows.

1. If p is in the (¢, f)-knowledge set of any processor ¢ then put ¢ in
AFFECTS(p).

2. If p zero-affects any processor ¢ and there are not two processors in S; — WJ'
which zero-affect ¢ then put ¢ in AFFECTS(p).

(The intuition here is that if there are two processors in §; — W) which zero-
affect ¢ and all of the processors in S; — W; are mapped to ‘0’ there will be a
collision at processor q at step t + 1 so ¢ will not be affected by p.)

3. If p one-affects any processor ¢ and there is some processor in W]'~' which does
not one-affect ¢ then put ¢ in AFFECTS(p).

(The intuition here is that if every processor in W' one-affects g and all of the

processors in S; — W' are mapped to ‘0’ there will be a collision at processor

g at step t +1 so ¢ will not be affected by p.)

Let W; be a subset of W;' which is as large as possible and has the property
that for any two processors p; and p; in W;, AFFECTS(p;) N AFFECTS(p,) is
empty. (Intuitively, at this point, we would like each processor to be affected by at
most one processor in each W;)

In CONSTRUCT, we split J into groups Jy, Jo,...,Je each of size rt/w?ﬁ,
with the last group possibly smaller. For each group J; CONSTRUCT will con-
struct a set V; containing some of the processors from up to one of the ranges in J;.
The sets will have the property that if two processors p and p’ are in {J; Vi, then
AFFECTS(p) N AFFECTS(p') is empty. Intuitively, this means that no processor
could be affected by two processors in |J; Vi. We will let V' denote | J; V;. We will

say that algorithm CONSTRUCT is successful if each set V; has size w:ﬁ.
4. Analysis of CONSTRUCT

Claim 11. If f is t-good then |AFFECTS(p)| < 3k for each p.

Proof:  Since f is t-good, each p is in the (¢, f) knowledge set of at most k,
processors. Each of these k; processors can_cause p to zero-affect at most one other

processor and to one-affect at most one other processor. o

Claim 12. If f is t-good then each processor q is in at most 3 sets AFFECTS(p)
with p € W'.
Proof:  Since f is t-good, the (t, f)-knowledge set of ¢ has size at most one.

Therefore, ¢ is added to at most one set AFFECTS(p,) using the first part of the
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definition of AFFECTS(p). By the construction of W}, ¢ is added to at most one
set AFFECTS(p2) using the second part of the definition of AFFECTS(p). Finally,
by the construction of VV;’, q is added to at most onc set AFFECTS(p;) using the
third part of the definition of AFFECTS(p). o

Claim 13. If f is t-good then for each j € J we have |W(| > |S;]/(2ke +1).

Proof:  We use the following procedure, which we call Procedure A:

Procedure A
Foreach j € J

Let S' =0

Let S = S5;

While |S| > 0

Select a processor p € S
Let S=S-p

Let ' = S'U {p}
For each processor ¢ which p zero-affects
Let Z = {v|v zero-affects ¢ and v € S}
If Z > 1 Then
Let p;,ne be two processors in Z
Let S = S5~ {p1,p2}
Else
If Z =1 Then
Let p; be the processor in Z
Let S =S~ {p1}
End A

Using procedure A we can construct a set S C S such that if two processors
p1 and p; are in S’ and zero-affect the same processor ¢, then two processors in
S; — S' also zero-affect processor ¢q. Procedure A starts by setting S = S;. Since
f is t-good each processor p € S zero-affects at most k; processors. So for each
iteration of the while loop at most 2k; + 1 processors are removed from S with
exactly one of them placed in S'. Thus |S'| > |S;|/(2k + 1). By the definition of
Wi, (Wl 2 |5 = [S51/(2ke +1). ©

Claim 14. If f is t-good then for each j € J we have |W}'| > IW;|1/("')/k¢.
Proof:  For p € W/, let D(p) be the set of processors which p one-affects. Then

|D(p)| < k¢. A sunflower is defined as a collection of sets such that if an element is
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in two of the sets, then it is contained in all of the sets. The Erdos-Rado Theorem
says: Let ¢ and m be positive integers and let F' be a family of sets such that
every clement of F has size at most ¢ and |F| > t!(m — 1)'. Then F contains a
sunflower of size . If we let F' be the family of sets D(p) for p € W}, then F
contains a sunflower of size (lW]‘I/ktl)‘/k' > |WJ’-|1/"‘ /kq. If two processors p; and
p2 correspond to two sets in this sunflower and they one-affect the same processor
q, then (by the definition of D(p) and sunflower) all p corresponding to sets in this
sunflower one-affect ¢, and since W;’ is the largest set of processors which satisfy

this property, [W}'| > IW;[V"‘/kt. o
Claim 15. If f is t-good thep for each j € J we have |W;| > |W]'|/Tk,.

Proof:  Construct a graph G = (W}, E) where (p,q) € E if AFFECTS(p) N
AFFECTS(q) is non-empty. Then an independent set S in this graph has the
property that for p;, p2 in S, AFFECTS(p,) N AFFECTS(p,) is empty. Then
W; is simply the largest independent set in this graph. By Turan’s Theorem,
W;| > [W!?/IW}| + 2|E]. By Claim 11 and Claim 12, for each p € W/,
|AFFECTS(p)| < 3k¢, and each ¢ is in at most 3 sets AFFECTS(p). Thus each
p € W} is an end-point of at most 6k; edges in E and therefore |E| < 3k |[W|.
We conclude that [W;| > [W/'|/Tk,. o

Corollary 16. If f is t-good then for each j € J we have |W;| > w,.

Proof:  Since f is t-good [Sj| = s¢. Then the corollary follows from Claim 13,
Claim 14, and Claim 15. o

Claim 17. If f is t-good then the number of groups used by algorithm CON-
STRUCT is w!’".

Proof:  This follows from the definition of ¢-good and from the fact that the size
of the groups is rt/w:ﬁ. o

Claim 18. If f is t-good and t < T then the while loop in algorithm CON-
STRUCT always terminates with |S| = w,lﬁ.

Proof: = We will show that if f is ¢-good then |S]| < w,l/7 implies |W; — S —
S'l > 0. Suppose that some vertex p in W; cannot be added to S. Then for
some p' € Vi U---UVi_; we have AFFECTS(p) N AFFECTS(p') # 0. But
/7

. . 1 ..

the size of each set V, 1s at most w,”" and ¢ is at most the number of groups,
C 4/7 .

which is equal to w,/ by Claim 17. Furthermore, for cach p' € Vi u..--UV;_,,

[AFFECTS(p )| < 3k¢. So at most 3k¢w?/7 members of R; will be put in §'. By
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Fact 8, Bk,'wts/? < wy - w:’” for t < T and big enough n. We conclude that if
|S] < w:ﬁ then |W; - S5 -- 5| > w, — (w:ﬂ) — (wy — w:”) =0.c

Claim 19. If f is t-good and t < T then the probability that CONSTRUCT is
-2

successful is at least 1 —n
Proof: = We have already shown in the proof of Claim 18 that if f is t-good then
the while loop in algorithm CONSTRUCT always terminates with |S| = w;/". It
remains to show that with probability at least 1 — n~? each group i has a range j
such that the function f returned by the call “Let f = RANDOMSET(S; — S, f)”
does not map any processor in S; — S to ‘1’. Assume that this is true for groups
l1toi—1. Forl1 <v <1i-1,let X, be the random variable equal to the
index of the first such range in group v. For 1 < 5 < rt/wfﬁ, let Y;; be a

binary random variable which is 1 when range j is such a range for group ¢. Let

4/7
Z; = }:‘.r;/lw‘ Y; ;. Note that Z; is zero if and only if group ¢ does not have such
a range. Note that for j # j', Yi; and Y; ;s are independent. By construction,
for any b;,...,bi—1 € [l,rt/w:/7], using the facts that s, > glog!/® n (from Fact 7,

and rt/w?/7 > s (from Fact 9), and assuming n is large,

PI‘(Z,‘ = OIXi—l = b,'_.l,...,Xl = bl)
e Jwdl
= Pr{ >0 Yi; =0|Xioy = biey,..., X1 = b

j=1

r,/w‘“
= Pr (ﬂj:l ¢ (Y,‘,j = O)IX,‘_l = b,’..],...,Xl = b])

4/

7
= H;;(;v‘ PI'(Y;,) = lei—l = bi—la"' ,.Xl = bl)
/7

Wwl/7 "l/w:
3

IN

3 o /:
|

o=

—

IAIA

The probability of failing in any group can then be bounded by
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w7
Zl:!l Pr(Z; = 0|ZI—I == 1’_‘.,21 e 1)
447
= Z?::tl Zbl!'-'»bl’—IE[l,rt/w:/7] PI‘(Z; = OIX,'_.l = b,'_l,...,Xl = b])
PI‘(X,_l = b,'_.l,...,Xl = b])
4/7
n= T Zb,,...,b‘-_le[l,r,/w:‘/"] Pr(Xi-1 = bi-1,..., X1 = b1)

4/1 _
w,/na

IA

-2

IA

n u]

Corollary 20. If f is t-good and algorithm CONSTRUCT is successful then
after CONSTRUCT is executed ry4+1 ranges have s,;; processors that are mapped
to ‘x’ by f', and no processors that are mapped to ‘1’ by f', while the remaining
ranges have no processors mapped to ‘x’ by f', and two processors that are mapped
to ‘1’ by ;7

Proof: Immediate from the definition of successful and from Claim 17.0

Claim 21. If f is t-good then after CONSTRUCT is executed every processor q
that is in the (t + 1, f')-knowledge set of a processor p has p € AFFECTS(q).

Proof: By the definition of dependency sets, we can form a (¢ + 1, f') depen-
dency set D of p by taking the union of the (¢, f)-knowledge set of p and the
(t, f)-knowledge sets of all processors p' satisfying the following: there is some
refinement ¢ of f which is a relevant 2-relation and on which p’ sends to p on
step t + 1. Note that D is the union of the (¢, f)-knowledge set of p and the
set of processors that zero-affect p and the set of processors that one-affect p. If
¢ is in the (¢, f)-knowledge set of p then p is in AFFECTS(g) by the first part
of the definition of AFFECTS. Suppose that ¢; is a processor in some range j
which zero-affects p and that p ¢ AFFECTS(q). By the second part of the def-
inition of AFFECTS we know that there are two processors in S; — W} which
zero-affect ¢q. If both of these are mapped to ‘0’ by f' then for any refinement of
f' processor p has a conflict at step t +1 so D — ¢, is a (¢t + 1, f')-dependency
set of p. If, on the other hand, one of these is mapped to ‘1’ by f' then algorithm
CONSTRUCT maps every member of the range of ¢; to ‘0’ or ‘1’ so D — q; 1is
a (t+ 1, f')-dependency set of p. (Recall that if f'(q1) # ‘*’ then ¢; cannot be
in the (¢ + 1, f')-knowledge set of any processor.) Similarly, suppose that ¢ is a
processor in some range j which one-affects p and that p ¢ AFFECTS(q). By
the third part of the definition of AFFECTS we know that every processor in W'
one-affects ¢. If all of the processors in S; — W}' are mapped to ‘0’ by f' then for

any refinement of f' that is a relevant 2-relation processor p has a conflict at step
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t41s0 D~gqyisa (t+1,f")-dependency set of p. If, on the other hand, one of
these is mapped to ‘1’ by f' then algorithm CONSTRUCT maps every member of
the range of ¢z to ‘0’ or ‘1’ so D —¢qg isa (t + 1, f')-dependency set of p. o

Claim 22. If f is t-good and algorithm CONSTRUCT is successful then after
CONSTRUCT is executed the (t + 1, f')-knowledge set of every processor p has
size at most one.

Proof: We know from Claim 21 that every processor p has a (t + 1, f')-
dependency set D which contains only those processors ¢ such that p €
AFFECTS(q). Suppose that two processors ¢ and ¢' have f'(q) = f'(¢') = ‘*'. (If
a processor ¢ is not mapped to ‘*’ by f' then it is not in the (¢ + 1, f')-knowledge
set of any processor so it is not in the (¢ + 1, f')-knowledge set of p.) Then ¢ must
be in some W; C W}’ C W] and ¢’ must be in some W C W} C W}, and both
q and ¢' are in the set V constructed by algorithm CONSTRUCT. If j = j', then
the definition of W; guarantees that AFFECTS(¢g) N AFFECTS(q') = @, implying
that p is in just one of these sets, and thus either g or ¢' is not in D. If, on the
other hand, j # j' by the construction of V, AFFECTS(q) N AFFECTS(¢') = 0,
implying p is in just one of these sets, and thus either ¢ or ¢' is not in D. Thus
[D| <1.a

Claim 23. If f is t-good then after CONSTRUCT is executed each processor q
is in the (t + 1, f')-knowledge set of at most k¢, processors.

Proof: Let ¢ be a processor which is in the (¢ + 1, f')-knowledge set of a
processor p. By Claim 21, p € AFFECTS(q). But by Claim 11, |AFFECTS(q)| <
3ks = k¢t41. The claim follows. o

Lemma 24. Ift < T and CONSTRUCT is called with (t,f), where f is t-good,
then with probability at least 1 — n=2 CONSTRUCT will return a function f
which is (t + 1)-good.

Proof:  This follows from Claim 19, Corollary 20, Claim 22, and Claim 23. o

5. Proof of the Theorem

We use the following function, which calls CONSTRUCT to generate a sequence
of partial relevant 2-relations fo = fu > f; > -+ > frr > f in which each f; isa
refinement of f,_;, f is arefinement of fr, and f is a relevant 2-relation generated
u.a.r.
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Function GENERATE

I:Ct f() = f.,,
Let f = fo
Let t =0

While t < T Do
If for some p, f(p) = ‘*’ Then
Let fy = CONSTRUCT(t, f)

Else

Let fo = f
t=t+1
f=F

Let P = {p|f(p) = ‘*’}
Return RANDOMSET(f, P)

End GENERATE

Lemma 25. With probability at least 1 —n~! fr is T-good.

Proof: Let 7, be a random variable which is equal to 1 when CONSTRUCT
succeeds at step t. Then by Lemma 24,

Pr(Zy = 0|1Z4-1 = 1,...,2; = 1) = Pr(Z, = 0|fy is t-good) < n”2.

The probability of failing at any step ¢ < T can then be bounded by

T

Y P2 =0|Zt1 = 1,...,Z0=1) < Tn P <n7! oo

t=1
Theorem 26. Let A be a deterministic algorithm that allegedly routes 2-relations
in T = y/loglogn/2 steps. Let the input to A be drawn u.a.r. from the set of
relevant 2-relations. Then the probability that A successfully routes the input is
at most 1/2.

Proof:  We will generate a relevant 2-relation by running algorithm GENERATE.
By Claim 10 algorithm GENERATE generates relevant 2-relations u.a.r. GENER-
ATE also produces a sequence fo > --- fr > -+ f in which f is the final relevant
2-relation. By Lemma 25, fr will be T-good with probability at least 1 — 1/n.
Suppose that fr is T-good. Then there is a range R that has a set S of sr

processors which are mapped to ‘*’ by fr. R has no processors which are mapped
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fo ‘1" by fr. Let d denote the first processor in range R. (d is the destination of
the messages in range R2.) The (7, fr)-knowledge set of d contains at most one

processor. There are three cases which must be examined concerning fo:

CASE 1:  The (7, fr)-knowledge set of d contains a processor ¢ which is a
member of S

We wish to bound the prebability that A succeeds, given that fr is in case 1.
Let F; denote the set of relevant 2-relations which refine fr and map ¢ to ‘1’ and
let Fo denote the set of relevant 2-relations which refine fr and map ¢ to ‘0’ One
can see by examining algorithm RANDOMSET that the probability that f is in
Fi is 2/s7 and the probability that f is in Fp is 1 — 2/s7. We now examine the
following sub-cases concerning f.

CASE 1A: fisin Fy:

We wish to bound the probability that A succeeds, given that f is in F;.
There is a particular trace 7 which is the (T, f')-trace of d for every input h-
relation f' € F;. Since A runsin T steps processor d uses this trace 7 to deduce
the pair of messages that were destined for d in every input h-relation that is in
F1. But there are st — 1 such pairs of messages, each of which is equally likely
to come up in a randomly chosen member of F;. So the probability that A is
successful given that f isin Fy is at most 1/(st —1).

CASE 1B: f isin Fy:

We wish to bound the probability that A succeeds, given that f is in Fp.
There is a particular trace 7 which is the (T, f')-trace of d for every input h-
relation f' € Fy. Since A runsin T steps processor d uses this trace 7 to deduce
the pair of messages that were destined for d in every input h-relation that is in
Fo. But there are (’T{l) such pairs of messages, each of which is equally likely
to come up in a randomly chosen member of F;. So the probability that A is

aT—l) )

successful given that f isin Fy is at most 1/(°7,

Therefore the probability that A succeeds given that fr isin case 1 is at most
(2/sT) /(s — 1))+ (1 - 2/571)(1/(""2“1)) which is at most 2/(°7,7!).
CASE 2: The (T, fr)-knowledge set of d contains a processor ¢ which is not a
member of S

Similar arguments to those used in case 1 show that the probability that A
succeeds given that [y is in case 2 is at most 1/(°T).

CASE 3:  The (T, fr)-knowledge sct of d is the empty set:
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Similar arguments to those used in case 1 show that the probability that A
succeeds given that fp is in case 3 is at most l/(’z') :

Finally, we conclude that the probability that A successfully routes f in T
steps is at most the sum of 1/n ( an upper bound on the probability that fr is
not T-good, by Lemma 25) and (1 — 1/n) x 2/(°7,"!) (an upper bound on the
probability that A succeeds given that fr is T-good). We can use Fact 7 to show
that this quantity is at most 1/2.

Therefore, with probability at least 1/2, an f drawn u.a.r. from the set of
relevant 2-relations will not be routed by algorithm A in T steps. o

Corollary 27. Let A be a deterministic algorithm that routes 2-relations. Let
the input to A be drawn u.a.r. from the set of relevant 2-relations. Then the
expected number of communication steps used by A is at least \/loglogn/4.

Proof:  The corollary follows from the fact that /loglogn/4 < (1/2)(T +
1). square

Theorem 28. Let A be a randomized algorithm that routes 2-relations. Then
there is a 2-relation on which the expected number of communication steps used by
A is at least \/loglogn/4.

Proof:  Using a Theorem by Yao, the expected number of communication steps
used by A maximized over all possible inputs is at least the expected running time

for the uniform distribution on relevant 2-relations, minimized over all deterministic

algorithms, which is at least /loglogn/4 by Corollary 27. o
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