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Off-shell formulations of WZW-models are known in N = 0, 1 superspace [1, 2].

For example, the N = 1 action is

S = f dazV+V_ [(gij + bij)V+¢iV-¢ j] , (1)

where ¢i is a unconstrained scalar superfield that coordinatizes the group manifold,

gij is the metric, and bij is the potential for the parallelizing torsion. It is known

that any even dimensional group allows for an N = 2 super Kac-Moody symmetry,

and a subset of these models have an N = 4 symmetry [3]. On dimensional grounds,

it in clear that N = 2, 4 superspace actions are simply functions of the superfields

without any derivatives; hence it is not evident how one can write 9 and b terms

separately. For example, if one writes an action that depends on the most familiar

N = 2 scalar multiplet, a chiral superfield, then one finds that g is necessarily Kghler

and b = 0 [4]. For WZW models, g is never Kghler and b ¢ 0, so chiral superfields

are not enough. This is a new feature of extended supersymmetry: the dynamics is

not determined entirely by the form of the action, but also by the kinematical nature
o

of the superfields. A particular example of a variant (twisted) scalar multiplet was

introduced by Gates, Hull, and Ro_ek [5] (see also [6]). In a recent paper [7], we

showed that the SU(2) x U(1) super WZW model can be formulated in N = 2, 4

superspace using a usual chiral and a twisted chiral superfield. We also showed that

all other WZW models require more exotic representations.

In this paper we will first briefly review the results of [7] for the off-shell for-

mulation of the SU(2) x U(1) super WZW model in N = 2 superspace. We will

then focus on the on-shell current algebra, mad, working in chiral N = 2 superspace,

explicitly show how the N = 2 superconformal algebra can be extended to N = 4.

Finally, we will go back to the classical level and perform a duality transformation

which leads to a dual sigma model. The latter has the interpretation of a black hole

solution to two-dimensional string theory.

In N = 2 superspace, we work with complex left and right handed spinor deriva-

tives D+ satisfying the algebra
b

{D+,D:t:} = 0±±, (2)



ali other anticommutators vanish. Here 0++ = 0z, etc. Chiral superfields obey:

D+¢ =0, D±(I) = 0. (3)

,_ In contrast, twisted chiral superfields obey [5]

D+A = 0, D_A = 0, D+A = 0, D_A = 0. (4)

Both superfields can be reduced to N = 1 superfields as follows: We define real

N = 1 spinor derivatives V± = D_ + D:_ and "extra" supersymmetry generators

Q_ = i(D_ - D_). The resulting N = 1 superfields ¢, A axe unconstrained scalars

with the following transformations under the extra supersymmetry:

= +iv±C,

Q+A =-iV+A, Q_A = +iV_A, Q+A = +iV+A, Q_A =-iV_A. (5)

However, it is known that extra supersymmetries can be written in N _ 1 superspace

[5]

Q+¢' -- J(_)'jV±CJ. (6)

Comparing (5) with (6), we can read off J(±), and find that they axe both con-

stant, distinct, commuting complex structures. This is a general feature of complex

structures on models constructed with only cl_ral and twisted chiral multiplets: the

resulting left and right complex structu:_ must; commute [5]. In [7] it was shown

that such commuting structures exist on SU(2) × U(1), but not on other group
manifolds.

A supersymmetric non-lineax a-model has N left and right handed supersymme-

tries when there exist two sets of N- 1 covariantly constant complex structures [8, 3].

All the complex structures within each set anticommute, and the metric has to be

hermitian with respect to all of them. When the connection has torsion, integrability

requires the vanishing of the Nijenhuis tensors and the left handed (right haaded)

• complex structures have to be covariantly constant with respect to the connection

consisting of the metric connection plus (minus) the torsion (F_ -- {} -b T).

, In the case of supersymmetric WZW models, these conditions were completely

solved in [3]. A complex structure is in one to one correspondence with a Cartan



decomposition of the Lie algebra. On the rootspace, the complex structure is diag-

onalized and has eigenvalue i or -.i, when the root is positive or negative, resp.; the

Caxtan subalgebra is mapped to itself. The existence of a second complex structure,

anticommuting with the first one, implies a third complex structure (the product of

the first two), i.e., N = 3 implies N = 4 supersymmetry. It turns out that N - 4

is only possible on a restricted set of group manifolds. These group manifolds axe

such that they can be written as a product of coset spaces which have the following

structure. Given a group G with Lie algebra g and a Caxtan decomposition, we

consider the highest root 0. Then E+0 and 0. H form a su(2) subalgebra, which we

call su(2)e. The remainder of the Caxtan subalgebra together with all roots perpen-

diculax to 0 form another subalgebra Hi. The coset spaz_ W = G/Ha_ × SU(2)e is

a Wolf space [9]. An N = 4 group manifold can be decomposed as products of coset

spemes of the form W × SU(2)0 x U(1). The second complex structure acts within

each of these coset spaces. The action on W is clear as it decomposes in doublets

under SU(2)e. The action on SU(2) x U(1) is such that E+0 get mapped to the

Caxtan subalgebra and vice versa. More details axe given in [3, 10, 11].

We now analyze the case of SU(2) x U(1) in detail. Following'the discussion

above, we have essentially unique candidates for J(+)"

J(±)E+ = lE+, J(±)E_ = -iE_,

J(+ (Ho+ iH ) = ±i(Ho+ iH ) , J(± (Ho- ig ) =  =i(Ho- ig ), (7)

where H0 generates U(1) transformation and E+,/-/3 are the generators of SU(2).

The form is fixed by the ._ondition that J(+) and J(_) commute. Eq. (6) implies

analogous relations for the Lie algebra valued currents:

(g-,_+g)a = j(+)ab(g-lV+g)b ' (Q-gg-')_' = J(_)"b(V_gg-') b. (S)

Using the explicit form of J(±) (7), and the relation to the N -- 2 derivatives D =

!(V + iQ) D I(V- i_)), we can lift the relations (8) to g 2 superspace. This2 ' -- 2 "-"

leads to the following paxametrization of g in terms of a chiral superfield _ and a

twisted chiral superfield A:

g= V@_+AA -_ X ' (9) ,
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where 8 = -½1n(O_ + AA). This gives an off-shell N = 2 formulation of the group

SU(2) × U(1). In these coordinates, the metric on the group manifold is:

dOd¢ + dAdA

ds2 - (I)_ + AA " (10)

In [5], it was shown that the metric can be expressed in terms of a potential function

(analogous to a Kfi]aler potential in the case without torsion)" ds 2 - K¢¥d@d'_-

KAxdAdA. Here, we find

AA

d---xln(1 +x) +ln(I)ln_. (11)X

This is the N = 2 superspace lagrangian. We can read off the torsion potential from

Ii'cK , etc. (see [5]).

As noted above, SU(2) x U(1) actually admits N = 4 supersymmetry. In N = 2

superspace, the necessary condition for N = 4 supersymmetry is K¢% + KAX = 0,

i5], which is clearly satisfied in this case. In [5, 12], the general N - 4 superspace

description is given. For the case at hand, this was further worked out in [7].

The existence of a fidly off-shell formulation of the model has an important

consequence: it is straightforward to deform the model while maintaining full N - 4

supersymmetry, and hence conformal invariance [7]. Such CFT's have recently been

proposed as a stringy instmaton solutions [13].

We will now take a brief look at the quantum theory and discuss the N = 4

superconforrnal symmetry at the level of on-shell current algebra.

Let us first say a few general things about the on-shell current algebra in N = 2

superspace for the supersymmetric WZW model, with level k, on a group G of even

dimension. This theory was first worked out by Hull and Spence in [14].

We pick a complex basis for the Lie algebra, labelled by a, a, a - 1,2,...,

i dim G, which is such that the complex structure related to the second supersym-2

merry has eigenvalue +i on the generators Ta and -i on the generators Ta. The

' N -= 2 affine Kac-Moody currents Qa and Q a can then be characterized by the

following constraints (we will only discuss the currents that are chiral in the sense

that they are annihilated by D_ and D_; for brevity we will write D for D+ and D



for_+)

D a 1 ¢a obt_c _Q_=_ 1 -Qe
Q = 2(k + h)a _¢ _ ' 2(k + h)fageQb " (12)

In here h is the dual Coxeter number of G and the the f's are the structure constants "

in the complex basis. The fundamental OPE's of these N = 2 superfields are

o12on

Qa(Z,)Qb(Z2) = Ox2fabcQc(Z2) -t 7zf .cf aQ Q (7,2)z12 zn k +

Q_(z,)Q_(&) = o_f_Q_(z_) Ol_l_ 1 _ r_ _ a
Z12 Z12 k + h f _f gQ Q (Z2)

_a(Zl)Qg(Z2) (k "Jr"h)[gag 012012 1 ag 1 ]- --H ('_g + f_odf g_()Lz_2 z)2 2(k + h) j

•-FO12fabc_c(Z2) + 012fage_e(Z2)
Z12 Z12

012012 ]" ae g d g" ]

+_z_,. :"_oDQ_(&)+ _+---vfkJ _2 Q (z_)], (13)
where

1
012 Ol 02, _i_

"-- 01 -- 02_ and z12 -- z 1 -- z 2 -- 2(0102 @ 0102). (14)

Let us now focus on the N = 2 superconformal algebra. The appropriate gen-

eralization to N = 2 superspace of the well-known Sugawara construction gives the

following formula for the N = 2 super stress tensor in terms of the super Kac-Moody

currents Q_ and Q_ ([14])

7"-- i a g 1 (ADQ_+ A_Qa), (15)k + _g°_(QQ ) k+

where ga_ = 6_, fa = g_fa te and f_ = gtefa be. It satisfies the OPE

1 ck [OnOa2 On On--_ OnOa2 ]T(Z1)T(Z2) = z_2 3 i z_2 +--Dzl2 -- Z12 -_ --02Z12 7-(Z2). (16) .

The total central charge is the sum of contributions dk = 3 mmG(1- :;' ) for each
2 3(k+h)

simple factor of G. Of course, the N - 2 superfield 7- has as its component fields



the bosonic stress tensor T, two supercurrents G and G and the U(1) current J,

which together form the familiar N = 2 current algebra.

- In the example of G = SU(2) x U(1), the Milne Kac-Moody currents Q_ and Q_

can be expressed in the coordinate fields A, A, (I), and • as follows

Qx = (k+2)(¢DA_ AD¢)
1-2

Q2 = _i(k + 2) (ADA + _D(I))
r 2

Q i = (k+2)(¢DA_AD¢)
r 2

Q_ = i(k + 2) (ADA + ¢D¢) (17)
r2

where

r 2 = AA + ¢_. (18)

Via the above they lead to an N = 2 superconformal algebra of central charge

9(1 4 3 _ which isc=4for k= 1 and approaches c= 6ifck = _ a(k+2)) + fi = 6 k+2,
]g -'--_ C_).

The above makes manifest the N = 2 superconformal symmetry of our model.

However, we already mentioned that the model actually posseses a N -- 4 super-

conformal symmetry. The appropriate algebra is the so-called 'large' N = 4 super-

 onform amgCbr[15].[18]. Tins algebra has 16 generators, which are: the spin-2

stress tensor T, 4 spin-3/2 supercurrents G i, 7 spin-1 currents generating the affine

extension of SU(2) x SU(2) x g(1) and 4 spin-l/2 currents F _. The unitary rep-

resentations of this algebra can be characterized by two integers k+ and k_, with a

corresponding central charge equal to c(k+, k_) = 6 k+k_/(k+ + k_). The parameter

1 k+-k_ is a measure for the asymmetry between two affine SU(2) subalgebras
Ol -- 2k++k-

which have level k+ and k_, respecticely. The projective subalgebra is isomorphic
1

to D(2, 1; a - 5)"

It was shown in [18, 19] that the level k SU(2) x U(1) WZW model gives a

realization of this N = 4 superconformal algebra with k+ = (k + 1), k_ = 1. (For

k = 0 the bosonic SU(2) WZW model decouples and this realize' "on reduces to the

c = 3 realization with one free boson and four free fermions which was first discussed

' in [16]). We will now derive explicit formulas for the generators of the full N = 4

algebra in terms of the fundamental superfields A and (I)of the model.

7



When written in (chiral) N = 2 superspace, the full N = 4 algebra is generated

by (i) the super stress tensor T, which has conformal spin 1, (ii) two spin-l/2

superfields .4 and B and (iii) a spin-0 superfield 2". Each of these provides four

component fields, so that we find the correct total number of 16 currents.

To determine the extra currents .4, B and 2",we will use the results of [11], where

the relation between the affme currents and the N -- 4 superconformal algebra was
worked out in detail in N - 1 superspace. The explicit relation between the N - 1

super Kac-Moody currents Q_, Qa in chiral N = 1 superspace (z, 01) [2] and the

N = 2 super Kac-Moody currents is as follows (there are actually equal numbers of

both since the g = 2 affine currents are constrained, see (12)), [14]

1

Q'_ = Q"- i02(vO_ + k + hff _QbVC)

1 a r,
Q_ = Q_ + iO2(VO _"+ ----_f _Q Q ). (19)k+

In here, 02 is the second fermionic coordinate. These relations together with the

results in [11] make it possible to determine the extra currents. We find

1 i Q2 D--I = 1 i Q_
DZ = x/1 -4a 2 k +--_ ' x/1 --4a 2 k +------2

A = - - u = + (20)
k

where a = 2(k+2)" Together with the expression for the stress energy tensor,

i 1 (DQ__ _Q2), (21)
•1" _. /¢ .j__.__(_l_l _[_ _2_2) /¢ + 2

these relations express all the generators of the N = 4 superconformal algebra in

terms of the N = 2 affine Kac-Moody currents and thereby, through (17), in terms

of the fundamental fields. Comparing with (17), we may conclude that 2" is given
by

1

2" = x/1 - 4a 2 Inr _ . (22)

The OPE's of the currents T, ,4, B and Z are given by (16) and

•_r-( Z1 ):Z-(Z2) i[012D 012_ 012012 02 ]= - - z(z)
LZl2 z,,2 _ J



[0,20,2 1 012D Oa2_ 0,20,2 ] 2a B

" r(z,)B(z,)= o,=D o.o. ][ Z212 ]Z12 Z12 ZI2 ZI2

,4(z_)_(z_) = _' _ 01_1_i 2_ [D,-_]Z(Z_)3 z12 z,2 '_ (Z2) + x/1 -- 4a 2

B(Z_)B(Z2) = c_ 1 0_2012i T(Z2) + [D,-D]Z(Z2)3 z12 Z12 2 x/l -- 4a 2

c2 012012i
A(Z_)B(Z_)= ---

3 z2x2 2

1 012012 ] 1
-i [012D- O'2"-D+ --02 Z(Z2)

[.z12 z12 2 z12 J _/1 -- 4a 2

z(z,)A(z_) = o,_ _41- 4,_ ts(z_)
Z12 2

Z(Zl)B(z_) = o_._,__41 - 4_2.4(z_)
Z12 2

_c_.kkIn zl_, (23)Z(Z_)Z(Z2) = 3

_ 1 3 (k + 2) and c2 2_ 3 k.where cl - l_-:T_2ck= ] = 1_--2-_-_2ck=

We now return to the off-shell N = 2 superspace action given in (11). This

action has the form that admits a duality transformation [20, 5, 21]. From the

general theory, we know that after the transformation, all the superfields will be

chiral, and the manifold will therefore be K/ihler (with vanishing torsion). We will

now explicitly compute the metric of this manifold.

The first step of the duality transformation is to rewrite the action (11) in a first

order form. The first order lagrangian depends on the chiral superfields ¢, ¢ and 7/

a_d _ and on the real quantity X. We define

[_x dx ln(1 + x) + In • InZ(x(_,¢,_,0) = -_ -2
+ a [X + ln(¢_)](r] + 0), (24)

• where a is a constant # 0. When varying the first order action w.r.t. 7/and 0, we

should keep in mind that these are constrained superfields. It can be shown that the



most general expression for X that is compatible with the r/, ,_ field equations is

X = ln(AA) - ln(¢_), (25) .

u

where A, A is a twisted chiral superfield. Substituting this back into the first-order

action (24) one finds back the original action (11).

Let us now treat the first order action differently, and use the field equations of

the field X instead of those of r/, 0. They lead to

1 + ex = e_('+_) . (26)

We now define the following variables

x=e_', ¢=ln¢+ar/. (27)

Notice that both X and _ are chiral N = 2 superfields. Substituting the above into

the first order action (24), we arrive at the following second order action

K(O,¢,X,_) = _ fx_-I d.._xlh( 1 + x)+ In(xP- 1)ln(x_)X

1

-_(ln(xx)) 2 -{- _. (28)

This lagrangian describes a theory which is dua: to the original theory. Although

both theories are equivalent at the level of the classical equations of motion, their

geometric interpretation is very much different: the original WZW model describes a

group manifold (with torsion), whereas the dual model describes a K_hler geometry

(without torsion) with the I(_ihler potential given by (28).

The geometry associated with the dual model clearly splits as a product of a

torus (with coordinates _ and _) and a disk bearing the singular metric

dx = 1)" (29)

In terms of the coordinates u - 1/X this metric takes the simple form

du d-_
ds 2 m • (30)1 - u_

10



If one follows the process of passing from the original to the dual formulation at the

level of the functional integral, one finds that, apart from the change of metric, the

° transition leads to a non-vanishing dilaton field in the dual formulation (see [21] for

a carefifl discussion). In our case the dilaton field is given by

¢ = ln(1 - u_). (31)

lt can be observed that the above combination of metric and dilaton fields is

such that the sigma model is conformally invariant. Due to this, this geometry can

serve as a consistent background for a string theory with a two-dimensional target

sp_e-time. This observation has been worked out by Witten [22], who proposed

the interpretation of this geometry as a back hole solution to D = 2 string theory.

We would _ke to remark that our derivation of this geometry (through a duality

transformation in N = 2 superspace) is similar to, although independent from,

Witten's derivation, which is based on a gauging a U(1) subgroup in the SU(2)

WZW model. (The relation has recently been clarified in [23].)

It would be interesting to work out the duality transformation a_ the quantum

3k where the c-- 3 partlevel. The central charge ck can be written as Ck -- 3 + -£'4-5'

corresponds to the free fields ¢, ¢ and the remaining part describes the interacting

sigma-model with metric (30). The fate of the N = 4 superconformal symmetry

in the dual model is not yet clear. On first inspection, one finds that the duality

breaks the N = 4 supersymmetry, but one still expects that some remnant of it

could survive and might have some interesting applications in the (super)string

theory interpretation of the model. We leave these issues for further study.
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