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PREFACE

Manual Objectives

The primary objective of this manual is to provide a description of GRESS and to explain
how to use GRESS to enhance FORTRAN 77 models for gradient calculation.

The use of the GRESS precompiler, SYMG, is presented. A complete description of
how to enhance a source code for either forward or reverse propagation of derivatives using the
chain rule is provided.

Programming information is also provided to aid in the installation and maintenance of
the software.

Intended Audience

This manual is intended for programmers who have a basic understanding of calculus and
FORTRAN 77.
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1. SOFTWARE ABSTRACT

I

1.1. Software Identification

GRESS Version 2.0.

1.2. Description of Function
The GRESS FORTRAN precompiler (SYMG) and run-time libraryare used to enhance

conventional FORTRAN programs with analytic differentiation of arithmetic statements.

1.3. Method of Solution

GRESS uses a precompiler tO interpret FORTRAN statements and determine the

mathematical operations embodied in them° As each arithmetic assignment statement in a

program is interpreted, information necessary to allow the calculation of derivatives is generated.
The result of the precompilation step is a new FORTRAN program that can produce derivatives

for any REAL (i.e., single or double precision) variable calculated by the model. Consequently,
GRESS enhances FORTRAN programs or subprograms by adding the calculation of derivatives

along with the original output. Derivatives from a GRESS enhanced model can be used

internally (e.g., iteration acceleration) or externally (e.g., sensitivity studies). By calling CRESS
run-time routines, derivatives can be propagated through the code via the chain rule (referred

- to as the CHAIN option) or accumulated to create an adjoint matrix (referred to as the ADGEN

option). A third option, GENSUB, makes it poss_le to process a subset of a program (i.e., a

do loop, subroutine, function, a sequence of subroutines, or a whole program) for calculating
derivatives of dependent variables with respect to independent variables.

1.4. Restrictions

GRF__S accepts a majority of ANSI X3.9-1978 standard FORTRAN 77. Limitations are

presented in appendix A. Application programs with FORTRAN statements or characters not

recognized by GRESS will require modification prior to precompilation. An ADGEN

application requires the accumulation of derivatives; therefore, the size of problem to which it

may be applied is limited by the amount of virtual memory or disk space available.

1.5. Computers
V/,X, IBM RISC/6000, SUN, Hewlett-Packard 9000.

1.6. Execution Time

Execution time for both precompiler and enhanced application program are problem

dependent. Execution time for application programs will increase significantly after

enhancement. On a VAX 8600 computer, the precompiler will process an application

• FORTRAN program at a rate of approximately 1000 lines of code per 4 seconds of CPU time.
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1.7. Pro_'mnmin_ I.an_lal!_

FORTRAN 77; C.

1.a Operating Systems
VAX/VMS, UNIX, AIX, ULTRI_L

1.9. Machine Requirements

GRESS can be implemented on VAXNMS, VAXAJLTRIX, IBM RISC/6000, Hewlett-
Packard 9000, and SUN computers. The computer resources required are application

dependent. The amount of memory needed can increase by more tha, a factor of two after

precompilation depending on the application. To store an adjoint matrix requires a direct access
storage device. Though the amount of storage or memory necessary is application dependent,
it can be excessive.

1.10. Author

J. E. Horwedel

1.11. ConfiL,uration Control Facili!_

Radiation Shielding Information Center (RSIC)
P.O. Box 2008

Building 6025, MS-6362
Oak Ridge, TN 37831-6362

1.12. References

Horwedel J. E. (1989) Matrix Reduction Algorithms for GRE$S and ADGEN. ORNL/I'M- 11261,

Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab.

Oblow E. M. (1983) An Automated Procedure for Sensitivity Analysis Using Computer Calculus.
OR_-8776, Union Carbide Corp., Nucl. Div., Oak Ridge Natl. Lab. Available from the

National Technical Information Service, U.S. Dept. of Commerce, 5285 Port Royal Road, Spring

Field, VA 22161.



2. INTRODUC'IION

This chapter includes background information and a brief overview of the system. A

complete description of how to use the system in applications, including sample problems, is

provided in Chapter 3. Code limitations and sample problems are provided in the appendices.

2.1. Background Information

Computer programs with varying levels of complexity are being used in modeling and

design activities at a rapidly increasing rate. Understanding the behavior of predictive models
with respect to input data is important for (1) verifying the validity of a model, (2) determining

parameters for which it is important to have accurate values, and (3) understanding the behavior

of the system being modeled. This importance is increasingly recognized by modelers, reviewers,
and decision makers.

Sensitivity analysis of computer model results is one approach in determining the effect

of input data on model predictions. Traditionally, most sensitivity analyses have relied on direct

parameter perturbations (i.e., slightly altering the value of one parameter and re-executing the
model). However, sensitivity analysis is often limited to a subset of the model parameters
became of the immense amount of input data used by many computer models. The selection

of parameters to be included in a study is generally based on engineering analysis and judgment

or expert opinion. With the complexity of present-day computer models, reliance on subjective

methods for parameter selection can be a severe limitation.

For complex computer models used in engineering design and assessment, a cost-efficient

procedure for identifying the parameters that are important to a given model prediction is a
necessity. The GRE_S code was developed to meet this need. GRF__S employs a precompiler,
SYMG, to add derivative-taking capabilities to FORTRAN computer programs. Early

implementations of GRESS were used to calculate sensitivities of model results to user-selected

input parameters, but the present version of GRF_S includes the ability to calculate and report
the sensitivities of model results to ali input data. The GRESS technology makes it possible to

rapidly perform a comprehensive sensitivity analysis of FORTRAN models.
As originally developed, GRESS used forward propagation of derivatives via the calculus

chain rule referred to as the CHAIN option. Later the capability to automate the adjoint

sensitivtty methods (ADGEN option) into existing computer codes was developed. The ADGEN

option in GRESS generates an adjoint matrix. With the ADGEN option derivatives are
accumulated and solved in virtual memory or written to disk. Utility routines are used to

calculate derivatives based on the adjoint approach. A third option, GENSUB, is now available

" that allows processing of program units as small as a do loop or as large as an entire program.
GENSUB will use either forward or reverse chaining depending on which is most efficient for

" the given problem. The remainder of this manual discusses in detail the use of SYMG for



CHAIN, ADGEN, and GENSUB applications. Though the emphasis is on these applications,

SYMG is designed to allow extension to other computer calculus applications.

2.2. Definitions

Within the scope of this manual the following terms are defined.

Adjoint Matrix. The accumulated partial derivatives from ali (or a subset of all) floating point

assignment statements executed in the enhanced FORTRAN program.

Degendent Variable. Any program-calculated real number variable whose value is at least

partially determined by one or more independent variables.

Enhanced Model. Thz reference model enhanced for gradient calculation.

Forward Solution. The results that are obtained by running the code prior to preeompilation.

Independent Variable. Any re_l nvmber variable, input or calculated, that is explicitly declared

to be a parameter.

Parameter. Same as an independent variable.

Precompilation. A line-by-line translation of a FORTRAN program into an enhanced

FORTRAN program.

Reference Model. The user's source code prior to enhanceme:,t with SYMG.

Response. Any dependent variable s,_l_cted by the user for gradient calculation.

23. System Overview

In a FORTRAN program, calculated variables are mathematical functions of previously

defined variables and data. GRESS uses a precompiler to interpret FORTRAN statements and

determine the mathem_.:ical operations embodied in them. As each arithmetic assignment

statement in a program is interpreted, information necessary to allow "he calculation of

derivatives is generated. The r_zult of the precompilation step is a new FORTRAN program

that can produce derivatives for any REAL (i.e., single or double procision) variable calculated

by the model. Consexluently, GRESS enhances FORTRAN pragrarn_ by adding the calculation
of derivatives along with the ori_nal output. GRESS accepts a majority of _MqSI-X3.9

FORTRAN 77, including subroutines, common blocks, data statements, read statementt, user



functions, intrinsic functions, statement functions, block data subprograms, single precision

variables, double precision variables, and equivalence statements. GRESS does not process
COMPLEX variable types. Specific limitations are discussed in Appendix A.

The steps used to process a code with GRESS are illustrated in Fig. 2.1. A FORTRAN

model is input to the GRESS precompiler to create an enhanced program. The enhanced model

is compiled in the usual manner and then linked with a libraryof GRESS utility routines. When
the enhanced model is executed, derivatives are calculated for each arithmetic assignment

statement immediately before the statement is executed.

IPmcompller
I

//" Enhanu4FORTRAN

anEss _

_ MoClol RINmlte

Fig. 2.1. Processing steps for a GRF__S application

Derivatives from a GRESS-enhanced model can be used internally (e.g., for iteration

acceleration) or externally (e.g., for sensitivity studies). GRESS can calculate and report

derivatives or parameter sensitivities. The parameter sensitivities calculated by GRESS are the
normalized fi_t derivatives of output variables with respect to input parameters. The normalized

sensitivity is calculated by multiplying a derivative by its associated input parameter value and

dividing by the associated_ output value. The resulting sensitivity is theretore unitless. A
normalized sensitivity of 0.1 means that, to the first order, a 1 percent change in that input

parameter would cause a 0.1 percent change in the output. A report of significant sensitivities

(i.e., usually those greater than 0.1) is generated.
GRESS provides two methods of calculating and reporting sensitivities. The CIL_IN

option calculates the sensitivities of a variable with respect to a user-selected subset of the input

data by repeated application of the chain rule. The CHAIN option reports sensitivities as the
" model is executing and is the recommended option when the user is only concerned with a very

small number of input parameters. The ADGEN option incorporates the adjoint sensitivity

analysis methods long used by nuclear engineers to calculate the sensitivities of selected model

responses with respect to thousands of input parameters. This me_hod, as implemented by



GRESS, is essentially the same as the reverse mode of automatic differentiation. When the

ADGEN option is chosen, partial derivatives for every equation in the model are accumulated.
The accumulated derivatives can be solved in virtual memory or output to a data set for later

processing. Matrix-solving routines are then used to calculate and report sensitivities for selected

results. The ADGEN option provides the user with the capability to calculate and report the

sensitivity of any calculated model result with respect to ali data input to the model. An

important advantage of the adjoint method over the chain rule method is that the derivatives of
selected model results can be calculated with respect to thousands of input parameters at a cost

comparable to that of executing only a few model runs. To approximate the same information

by direct parameter perturbations would require separate model runs for each input parameter.
The first time a new model is processed, it is best to compare a few GRESS results with

sensitivities estimated by perturbation methods to ensure that GRESS was applied correctly.

Any differences between the GRESS-calculated analytic sensitivities and those calculated by

parameter perturbation should be resolved.

2.3.1. Precompilation. During the precompilation step GRESS makes a single pass

through a FORTRAN program. A symbol table entry is created for each FORTRAN symbol

(i.e., variable name) as it is defined in a subprogram (i.e., function, subroutine, or main program).

When a new subprogram is encountered the symbol table is re-started. As READ statements
are encountered, logic is generated to initialize any impacted REAL variables. Statements

defining REAL variables are parsed (1) to determine mathematical o/aerations and (2) to create
a statement table. The statement table contains the name and N/pe of the FORTRAN

variable(s) used in the assignment statement as well as a character string representation of the

variable. The character string representation of a variable is the variable's name plus any

dimensional information that may be included with each occurrence of the variable. For

example, in the statement X(I) = Y(I)*X(J), X and Y are variable names, and 'X(I)', 'Y(I)', and

'X(J)' are character strings representing the usage of the variables. Using the statement table

and the defined mathematical operations, GRESS generates FORTRAN statements that

compute the partial derivatives of the term on the left with respect to the REAL variables

on the fight. The original statement is output, followed by a subroutine call for processing the

partial derivatives. The following FORTRAN program is used to demonstrate precompilation.

C Test program input tO GRESS
DOUBLE PRECISION X(4),Y(4),A,B
READ(5,*) (X(I),I= 1,4)
DO 10 I=1,4
Y(I)=X(I)*A + X(I)*B

10 COhrl'INLrE
END



Though the program generated by the precompiler appears more complicated, the

partial derivatives that GRESS stores in the DX array are easy to find and verify.

REALDX(50)
- COMMON/ZZZZQ1/DX

DOUBLEPRECISIONX(4),Y(4),A,B
READ(S,')(X(I),I=1,4)
DO 90001 I= 1,4

CALL INNDXX(X(I),'X',I,I,X,I,1)
90001 CONTINUE

DO 90002 I= 1,4

DX(1)=A+B
DX(2)=X(1)
DX0)=X(I)
Y(I)=X(I)*A + X(I)*B
CALLLOCNXX(1,4,Y(I),X(I),A,B)

90002 CONTINUE
END

The call to subroutine INNDXX immediately following the READ statement serves to

initialize the array X. The partial derivatives are initially stored in the DX array. Subroutine

LOCNXX is a GRE_S routine that will move the partial derivatives into a buffer for later

processing. The call to subroutine LOCNXX is generated after the original FORTRAN

statement so that it does not degrade optimization by the FORTRAN compiler. By default

comments beginning with a 'C' or 'c' in column one are dropped by GRESS. As an option the

user can direct GRESS to pass ali comments through to the generated code.

As each arithmetic assignment statement is parsed, a statement table is generated. For

purposes of derivative calculation, the mathematical operations to solve the equation are broken

into unary and binary operations on terms in the statement table. A symbolic representation of

the adjoint matrix for the FORTRAN equation is set up and solved for the result on the left of

the statement, Y(I), with respect to the variables on the right, X(I), A, and B. Figure 2.2 shows

a sequence of binary operations that would compute the FORTRAN statement from the

example; the figure also shows the resulting symbolic adjoint matrix.

Internally GRESS creates a symbolic adjoint matrix and then symbolically solves the

adjoint matrix for each assignment statement as it is processed. Because the adjoint method is

used to calculate the derivatives, only symbolic addition and multiplication operations are

required, which greatly simplifies the coding of the GRESS precompiler. Once the symbolic

adjoint matrix is created, the derivatives of the term on the left with respect to the variables on

the right are resolved. Finally, the FORTRAN necessary to calculate those derivatives during

execution is generated. The user selects and controls the application by inserting FORTRAN

subroutine calls to the SYMG run-time library.



To oompute:

Y(1)-X(1)-A• x(m).o

Generate tomporary terms:

•u"l- X(I).A
1"2- X(I)-B
Y(i) - T1 + T2

Symbolic Adjoints ,_adjoint matrix of Y(I)

X_l)I 1 0 0 A B 0 1 0 0 A B A+B

0 1 0 X(I) 0 0 0 1 0 X(O 0 X(i)
0 0 1 0 X(O 0 0 0 1 0 X(I) X(I)

TI| 0 0 0 1 0 1.0 0 0 0 1 0 1.0

T2_ 0 0 0 0 1 1.0 0 0 0 0 1 1.0Y(I) 0 0 0 0 0 1 0 0 0 0 0 1

Fig. 2.2. Creating and solving a symbolic adjoint matrix

2.3.2. Controiline the application. The user inserts application dependent subroutine_ __

calls to control the execution. For the CHAIN option the user must identify parameters and

results of interest. This option is most efficient for cases involving a small number of parameters.

The CHAIN application allows derivatives for an unlimited number of calculated results to be

reported without greatly increasing the resource requirements.

For an adjoint application, parameters and results of interest must also be identified. Adjoint
methods are most efficient for cases involving a large number of parameters with only a few

results of interest. Automatic and manual declaration of parameters are included as options to

the user. Results of interest must be specified by the user by insertion of subroutine calls to

GR.F__Slibrary routines.
Once the calls to subroutines to control the application are inserted, the enhanced code is

ready for compilation with the FORTRAN compiler and link-editing. The result is an ,executable
version of the enhanced FORTRAN model. Since CHAIN uses forward propagation of
derivatives via the calculus chain rule, first derivatives and sensitivities are calculated along with

the normally calculated model results. The method and format for reporting derivatives and
sensitivities is under the control of the user and is discussed in detail in Chapter 3. An ADGEN

application, however, accumulates a matrix of partial derivatives. The partial derivatives are
either accumulated in virtual memory or output to a direct access storage device. Run-time

library routines are available for solving the adjoint matrix in memory. The BSOLVE program
solves the adjoint equation and calculates first derivatives from accumulated partial derivatives

8



that have been written to disk.

2.3.3. _timization algorithms used with ADGEN. Two optimization techniques were

developed to improve the implementation of the ADGEN option by reducing the number of

elements in the adjoint matrix: (1) forward reduction; and, (2) back reduction. Forward

reduction eliminates those terms that are not dependent on the input data and is implemented

by defaulL Back reduction further reduces the data stored by keeping only those terms that

impact the user-selected results and is implemented by using the BREDUCE program or the

REDUXX run-time library routine.

rc'hen performing a sensitivity analysis of existing FORTRAN 77 programs the user is

often interested in only a subset of the actual FORTRAN equations that are solved. Figure 2.3
illustrates forward- and back-

reduction algorithms applied to

a sample program. Because the
variable D is not declared as a ,_

B

parameter and is not dependent O-2 1 0 0 Q (_) 0 0

on any parameters, the w-a 1 0 0 (_) e 0
forward-reduction algorithm D-4 1 1 e e 8

treats D as a constant. Any x.o,o 1 0 0 (_)

'- partial derivatives with respect Y-_.2.o-.2.w.-2 _ s8 (_

to D are set to 0.0. The result --_ e-v-._.w.._ 1 o
R is not dependent on variable I:I,,ToX.De,_L_Y 1

S; therefore, back reduction - -

drops the column associated -- 1bomdroppedby_orwm_lreduction

with S from the matrix. Only --) Rowor columndroppedby back rocluctlon
C) Terrnemstmustbekeptthe circled terms are needed to

completely calculate the Fig. 2.3. Matrix of partial derivatives with parameters Q and
derivatives of the result, R, W, and result R
with respect to the declared

parameters, Q and W.



3. APPLICATION INFORMATION

This chapter provides the basic information needed to use the SYMG precompiler. The

processing steps are discussed in detail. The method for controlling the application is presented.

Each command and utility routine is described with examples. Sample problems are provided

in the appendices that exercise most of the major program options.

3.1. Precompilation Step

The first step in processing a code for either the CHAIN or adjoint application is the

precompilation step.

3.1.1. Source code as input. The FORTRAN program to be enhanced is the input data

to the precompiler. During precompilation, the code is translated and enhanced for gradient

calculation. The source code must be written in FORTRAN 77 with some language restrictions.

Directives to the precompiler may be inserted into the source code prior to enhancement.
Subroutine calls to control the application can be inserted before or after precompilation.

SYMG is not a FORTRAN compiler. It is absolutely necessary that there are no

FORTRAN syntax errors in the source code. Syntax errors that would cause a FORTRAN

compilation to fail could cause SYMG to go into an infinite loop. If the user modifies the

source code prior to enhancement, the code should be re-compiled with a FORTRAN compiler

to ensure that no syntax errors were introduced.

Specific FORTRAN 77 language limitations are discussed in Appendix A. In general, those
functions that would cause mathematical discontinuities are not supported. Complex functions

are not supported. In this case, not supported means that derivatives will not be calculated with

respect to those functions. However, in most situations, the enhanced code will still calculate

the forward solution correctly.

Due to language restrictions and limitations, it may be necessary to replace lines of code with

logically equivalent, but SYMG-compatible, lines of code. It is not always possible to know in

advance which lines of code will need modification. Therefore, the precompilation is generally

an iterative process. The user should review the code for obvious incompatibilities. After

precompilation, it may be necessary to make further modifications to the source code based on

error messages or other information obtained from the precompilation step. The precompilation

step would then be repeated.

3.1.2. Precompiler directiveL Prior to enhancement, the user may insert directives into

the code to control the precompiler. With the exception of the *CHAIN directive, which is

required for the CHAIN application, ali other directives are optional. Table 3.1 shows the
available directives and their function. An expanded discussion of each directive with examples

is provided at the end of this chapter. The use of the directives in applications is shown in the

appendices.

10



Table 3.1. Directives to the SYMG precompiler

3.1.3. Execution of the precompiler. Once the code is prepared for pre.c,ompilation, it

is necessary to make the appropriate logical unit assignments and execute SYMG. Shown in
'fable 3.2 are the default logical unit numbers and their purpose.

Table 3.2. Default logical units used by SYMG
-- I

, i!i_i_!i___ _!i,__i_,ii__!i_'iii _,ii_iil__ii_ _

I

.=

3.1.4. Data ___-tscre__te_Jdurin_ precompilation. The only data set created during

" precompilation is the enhanced source program. The default logical unit for the enhanced code
is 7. The enhanced source program is a FORTRAN 77 program.

11



3.1.5. Output information from precompilation_ The printed output from the

precompiler is written by default to logical unit 6. If the run is successful, the information
provided includes the number ofsubroutines or functions translated, and the number of input

lines. Following is an example of the output to unit 6 from a successful precompilation.

SymG Version 2.0

Enhancing code for derivative/sensitivity calculations.

SYMG HAS DETERMINED THERE ARE 2 USER FUNCTIONS.
USER FUNCTIONS:

DUNKUP

EXPH1

---- NUMBER OF PROGRAM MODULES TRANSLATED = 16

---- NUMBER OF INPUT LINES TRANSLATED = 1482

Note that the names are provided for functions that SYMG has decided are user functions.
This list must be reviewed carefully. SYMG does not check the list of user functions to ensure

that those functions are actually in the code. Names listed that are not user defined functions

indicate possible problems. Unsupported functions would be listed as user functions. Also,

arrays erroneously not recognized by SYMG could appear on the list of user functions.
The following example shows the output from an unsuccessful precompilation. If the

precompilation is unsuccessful, SYMG will usually generate error messages to help the user find

the problem. Also, if a given line of FORTRAN is causing a problem, SYMO will include that

line in the printed output as shown.

SymG Version 2.0

Enhancing code for derivative/sensitivity calculations
**** ERROR NUMBER 17 ****

***** DO WH'HOUT LABEL NOT SUPPORTED *****

CURRENT INPUT STATEMENT LINE NUMBER... 3

do i=1,4

... COMPILATION STOPPED ON FATAL ERROR...

The input line causing the difficulty is a do loop without a statment label. SYMG does not

support do loops without statement labels. The user should add a statem,mt label.
q
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3.2. Controlling the Appfication

To control the application, the user inserts subroutine calls to GRESS run-time library
routines. The calls to control the application may be inserted before or after precompilation.

" With no inserted calls the enhanced code provides the same results as the reference model.

Inserted subroutine calls are used to declare the purpose of the run, define independent

variables, identify results of interest, and retrieve selected gradients. The order and location of

the inserted calls is extremely important. A description of each run-time library routine and any
restrictions on its use is included at the end of this chapter.

3.2.1. CHAIN option. Table 3.3 includes the name and function of each run-time library
routine that is available for the CHAIN application. If derivatives are to be calculated with the

CHAIN option, the AUTOXX routine must be called. CALL AUTOXX must appear as the
first executable line in the code.

Table 3.3. GRESS run-time libraryroutines for the CHAIN option

._lame :. :iii_ii_::!::_:i::::__i!i_:i:_iiI:::__._:!_/_i:_:_!:_:_:_._i_!i_!_!_.._?_._._" ::

• AUTOXX .. S_esi_e number Of!paSchen td !be.d_lared ..
BUSTXX ' i_::_.:i::::Estimatm_the.:.m0unt:if0ri_rki_pa_.i__ng : ._:_ii.:ii i .::::

GETNXX:.: :: Retn'_i:gr_e_tb_::o_i!Pa_eter:inumber:_-::._::::.:! . :

NINDXX::, ._::::ii:::::iReS: the::_nt. num_:ofii_!_:parameters: :::
PRNTDXX.:: : iPrinLS::gr_dien__d ._it_t_! _ do'tileprecisionresult
PRNTXX: :.i::_p_ gr_ents_and s_it_ti_ !forSingle*precision result

In the following example, AUTOXX is used to specify, that derivatives are to be forward

propagated using the chain rule. The second argument in the call to AUTOXX sets the upper

" limit on the number of parameters to be declared in this run to ten.
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DIMENSION X(4),F(4,4,4),RS(8)
INTEGER 100001(5)
REAL R00001(5)
DOUBLE PRECISION _1(5)
call autmm(-1,10)

e

e

To prepare an enhanced code for forward propagation of derivatives, it is necessary to

initialize the gradient work space. This is accomplished with the AUTOXX utility routine.

CALL AUTOX_ specifies the total number of parameters, N, to be declared in a run and must

be executed prior to defining any parameters. Calls to either DEFIXX or DEFAXX can be

inserted after the location in the code that initializes the parameter value (e.g., READ(S,100)
X, Y=9.9, etc.). The define routines would be used to declare N parameters, where N is the

value of the second argument in the call to AUTOXX. Derivatives are then retrieved with the

GET routines (i.e., O_ or GETGXX) or reported with the PRNTXX routine• The

following example shows a partial listing of an enhanced code using DE_ to declare two
parameters and PRNTXX to retrieve and report sensitivities.

INTEGER 100001(5)
REAL R00001(5)
DOUBLE PRECISION D00001(5)
call au_-l,2)

READ(5,100)X
aal'X
Y=9.9

aal ac_(Y,' V ")

D-X*Y

prnt)
STOP
END

3.Z2. Preparing the enhanced code to cream an adjoint matrix. For adjoint matrix
m

generation the user must declare the purpose of the run, declare parameters, declare potential

responses, and either clear the matrix buffers or solve the matrix in memory. The name and
q

function of utility routines used in an adjoint application are defined in Table 3.4. SETRXX is
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used to specify that the purpose of the run is to generate an adjoint matrix. The user must

. insert at least one CALL POTRXX (or POTDXX for a double precision variable) to identify

a response of interest. _'OTRXX will create an entry in the response dictionary for the

requested dependent variable. The response dictionary is kept in memory until either the adjoint

matrix is solved, or it is output to disk if the accumulated derivatives are output for later

processing. CLEARXX clears the matrixbuffers. BSOLXX solves the matrix in virtual memory.
In most situations, either CAI_ BSOLXX or CALL CLEARXX will be the last executed

stater-,ent before ending the job.

Table 3.4. GRESS run-time library routines for an ADGEN application
I

DECLARXX Togglesauto_tic:.pa_ete.tdeclarati0n:.:.:_:..::.:.:::.::.i.::.::::.,:..!.._i_:i_ii_.::.• ii_i:_i::i!:!:::.:-
DIAOXX .. ._ts,.out:diign_tiCinfo_ti0_i_psiff:S0methingis_ng .:_i:iii:i_i.i_i::_:::.,..
DLIBXX ::.: Mds_doublep_iOn:i_iflei_ito!_pammeter!!diction_iiiii;iii!iii_:i_:i:::•i::!iiii!i:_:!!:!/....:

DRAYXX .:i.::"::_i!do@!e:p__!i_y :!01!!p_et_i_0na_!!i_th _mer i!i:ii_i!_::::_::::::._.
POTDXX: ...... Decla_:a::.dbdb_i_ibni:it_uif_&:!de_t_ei_l_tiO_i_i::: "-_.:!i!i::!:!:!!;:::i_: •
POTRXX....i_:_!a single ::.p_iO_!!i_ii !_ ide__:!cai_iatiOn_:i: i:::i:: :"_;::.:"

- RLIBXX AddssinglepreciSioUi_able.t_i::_eter._ctionary ::i;.i:i :::i,.:
RLINXX . :i.,_:s_gle::pr_ion._variable:t0:iiparametcrdictionary:w/0xa counter:: -

. RRAYXX i_Mds,ai_si_e":p_:_i_y!!_!_!_arame_!diction"_-:withi!_:icounter!_::-:....

REAL or DOUBLE PRECISION variables input via a FORTRAN read statement are by

default automatically added to the parameter dictionary. If the automatic declaration is

acceptable, there are no other necessary calls to insert. However, if either the automatic
declaration is not acceptable or additional variables that were not "read" are desired as

parameters, variables can be added to the parameter dictionary by inserting subroutine calL_to
the appropxiate GRESS run-time library routines. The automatic declaration feature can be

toggled with the DE RXX utility. Refer to Table 3.4 for library routines that can be used

to include parameters in the parameter dictionary.

32.3. GENSUB option. Table 3.5 includes the name and function of each run-time

library routine that is available for the GENSUB option. If derivatives are to be calculated with

the GENSUB option, independent variables must be declared at the beginning of the section

of code being processed. They must have been assigned values before the section of code is

executed. Run-time routine GENRESXX is used to identify responses. The user must supply

a two-dimensional, single-precision result array for storing the derivatives. The result array

should be dimensioned N by M, where N is the number of dependent variables, and M is the
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number of independent variables declared in the sub-section of the program. At the end of the

sub-section (e.g., function or subroutine) being processed with the GENSUB option, the user
should insert a call to subroutine CHAINGG with the result arrayas an argument. CHAINGG

will apply the chain rule in either forward or reverse mode to solve for the derivatives of the

dependent variables with respect to the independent variables. The derivatives will be returned

to the calling program in the result array.

Table 3.5. GRESS run-time library routines for the GENSUB option
II

•Nam_:_:_.......:?!!ili_:_ii i !!ii!_;ii:iii:_!:._:iii::::_::ii_::P_se..::i:/: _:::?:::::_::i_:.!ii;:i_:_.i:i :::ii:.::::_..>.i!_:!_ii:: ::::

_GGiil,ii: iiiii:i!_i,i::;iiSoN.derivatives t_/forward:or;!.reversemodeii,: :i,:.:i
CHAINREVi::_!:i:,::!;:i_'::ii:::i::So_dedvativesby reverse m_e ::..:: ::
GENPXX. ::. i':_:_::ii_.:::i::!:::Defiv._ an independent parameter:::i:ii,!:,:.ii,:..i ./ .ii:.:
GENAPXX '/_i,!:::::::!::!i',:::!iiDe_nes a single precision arrayof independent parameters
GENDPXX_.:: :!:::::i:ii:i:_i:!_,i::::]i:_i._fines a:doubleprecision array oil:independentparameters

•:G__'_:_ iii:_:::i::i ::,,i!ii_lares :adependent variable::(r_Po.,nse)":::::,::iii-::._iiiil• .i..!i_
' :: :::.::.i:i::' ' -i_i:!!!!::":--:::::iii!i!i:::i!_i::'::::ii!:i::i.:!i.:.:..:i:!_:::...' : .: : .! ',. ...:..:.i::...i:.:...i:.-::::.:-:i:ii:iii_i!!:i;:i!:_::-:.: ...: :::i. i :::.i..

[ q I

Several examples using GENSUB are provided in the appendices.
.)

3.3. Compiline and LinkinE the Enhanced C,ode
.)

The FORTRAN 77 compiler and link editor used with the code prior to enhancement are

also used to compile and link the enhanced code. The only difference is in the link step. The

object module for the enhanced code must be linked with the appropriate GRESS run-time

library. Examples of the link step are shown in the appendices. The commands for compiling

and linking are dependent on the operating system and will vary.

3.4. Controlling the Execution of the Enhanced Code

The enhanced code is executed essentially the same as it was before enhancement. Calls

to the GRESS run-time library control the type of application and specify additional data sets,

if any, to be created. Table 3.6 shows the default logical units used by GRESS at run-time to

output a generated adjoint matrix for processing with BSOLVE. The logical uni)a used are

application dependent. Conflicts between logical units used by GRESS and those required by

the application program must be resolved by the user.

For an ADGEN application, the created adjoint matrix may be extremely large (i.e., in the

hundreds of megabyte range). The size is dependent on the size of the user program and the

amount of CPU time required to execute the enhanced model.
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. Table 3.6. Logical units used when an adjoint matrix is output tO disk
[ I I

_ Data _t i_i_:_i:!ii_:i:i.i:iil.i:._ii_i::::::::::i:ii.:i.i_gi_i_iUnit Descrivtion

Parameter:dictionary- .ii:i:.:.42 ...... selectedparameters
Response dictionary.......::.::.:!:i:43:_: selectedresults...... .::. . -: :...

II

3.5. Output Information

The printed output from execution of the enhanced code is very application dependent. The

majority of the printed output is usually the same output that would be generated by the
reference model. Any additional output is dependent on utility routines that are called by the

user in controlling the application. For example, with GRESS applications, some users insert
subroutine calls to CHAIN utility routines to retrieve derivatives into arrays, and then add write

statements to report the results. The output is under complete control of the user. Users

should refer to the run-time library reference at the end of this chapter for descriptions of any

printed output from a specific run-time library routine. Error messages are reported by default
to logical unit 6.

3.6.Data Sets Created During an Adjoint App__lication

Data sets discussed in this section are those created and used during an ADGEN application.
CHAIN applications propagate derivatives in memory and do no_._tcreate any data sets unless
under the explicit control of the user.

3.6.1. Parameter dictionary. The parameter dictionary is used to store the symbol name,

row number, and parameter value for any parameter during an execution of the enhanced code

for an adjoint application. The data set is formatted to allow easy editing with any standard
editor. Parameters are automatically defined as any single or double precision real number that

is input via a FORTRAN read statement. Parameters may also be manually defined by the user

using run-time library routines(i.e., RLIBX_ RLINXX, RRAYXX, DLIBXX, DLINXX, or

DRRAYXX). The automatic declaration of parameters is the default; however, automatic
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declaration can be switched on or off with the DECLARXX utility. The parameter dictionary

should be output to disk only if the adjoint matrix is output by calling CLF_.ARXX.

3.6.2. Response dictionary. The response dictionary is used to store the symbol name,
vanab,,, declared to be a response during an executionrow number, and value for qny dependen_ " '_

of the enlaaneed code for an adjoir:_ application. The data set is formatted to allow easy editing
with any standard editor. Responses are manually defined by _he user using run-time library

routines POTRXX or POTDXX. The response dictionary should be output to disk only if the

adjoint matrix is output by calling CLE.ARXX.

3.6.3. Adjoint matrix. The derivative matrix is stored in three buffers: NPA_RS,
COLUMN, and DERIV. If the buffers become full, they are written to disk. NPAIRS contains
the number of non-zero derivatives in a column. COLUMN contains the row numbers for each

partial derivative stored in DERIV. There is a one-to-one correspondence between COLUMN
and DERIV. This st_cture was selected because it allows reading the matrix from top to

bottom for forward chaining or bottom to top for back solving. Sufficient memory must be
available for these three buffers if the user wishes to solve the matrix during the execution of

the enhanced code. The adjoint matrix should only be written to disk if the user is intending to

solve the adjoint matrix in another job step (e.g., using the BSOLVE utility).

3.7. Solving the Adjoin: MP...':__

Sample problems using the ADGEN option are provided in the appendices. Provided
in this section is a brief overview of the various ehoice_ available to the user. When the

ADGEN option is applied to a new code, the recommended procedure is to first identify a small

sample problem that executes _il the major mathematical paths through the model. Then,
calculate sensitivities for two or three model results with respect to ali data that are input via

FORTRAN read operations. GRESS will generate a report of significant sensitivities (i.e.,

usually those greater than 0.1). The adjoint matrix is solved by back substitution. The

BSOLVE utility is used if the adjoint matrix is output to disk. BSOLVE can be run on the

adjoint matrix with or without prior execution of the BR.EDUCE program. I£ the matrix is

solved in memory during execution of the enhanced code, then either BSOLXX or FBSOLXX

run-time library routines may be used.

3.7.1. BSOLVE pro_minn.BSOLVE calculates the derivatives of the dependent variables

in the response dictionary with respect to each term in the parameter dictionary by back

substitution. BSOLVE will request a cutoff value for determining which sensitivities and

derivatives to report. Derivatives and sensitivities will be reported for those parameters with

sensitivities greater than or equal to the cutoff value.
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3.7.2. BREDUCE pm gram. BREDUCE implements the back reduction algorithm and
can be used to reduce the size of the adjoint matrix on disk. BREDUCE can only be run one

time because it changes the internal structure of the adjoint matrix. BR.EDUCE is most useful
in applications that have more than one response. In a UNIX environment, BREDUCE will
create data sets DERIV1.DAT, COLUMN1.DAT, and N'PAIRS1.DAT. Theseshould be

renamed to DERIV.DAT, COLUMN.DAT, and NPAIRS.DAT, respectively, prior to running
BSOLVE.

3.7.3. BSOIXX, FBSOIXX run-time h'braryroutines. BSOLXX and FBSOLXX are

run-time implementations of the BSOLVE utility. If sufficient memory is available the adjoint

matrix can be solved during the execution of the enhanced code. The only output will be the

report of sensitivities. BSOLXX or FBSOLXX can only be called once during the execution of
the enhanced code.

3.8. Detailed Description of Precompiler Directives

Commands to the precompiler are used to control the creation of the enhanced code.

The following pages provide a description of each command. The format is one command per

page. Each page includes at least one example on how to use the routine.

Ali commands to the precompiler must begin with the asterisk (i.e., *) in column 1. An
asterisk was chosen because it is a legal comment to FORTRAN 77 compilers and does not

impede syntax checking using the FORTRAN compiler.
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PRECOMPILER DIRECTIVE

Name: *CHAIN

Purpose: To generate enhanced code for CHAIN option•

How to use it: Must begin in column one.

Example: Enhance program for CHAIN option.

*CI-IAIN

DIMENSION X(100)
COMMON/ALPHA/Y,Z
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PRECOMPILER DIRECqTVE

Q

Name: "COMMENTS ON/OFF

" Purpose: To cause SYMG to pass comments grom code being translated to the
enhanced code.

Notes: Only comments indicated with a lowercase or uppercase C in column one are

passed. Blank lines and comments indicated by an asterisk in column one are

not passed. Use COMMENTS ON if you want to selectively pass comments.
The default is COMMENTS OFF.

Example: Pass comments through to enhanced code.

*COMMENTS ON

DIMENSION X(100)
COMMON/ALPHA/Y,Z
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PRECOMPILER DIRECTIVE

Name: *DEBUG

Purpose: To cause SYMG to generate debug information.

Notes: The DEBUG directive will cause a list of subroutines and functions to be

printed with the output from SYMG. The DEBUG directive will cause the

precompiler to continue after some errors; therefore, with DEBUG it is
possible that the enhanced code is not usable.

Example: Get a list of modules processed.

*DEBUG

DIMENSION X(100)
COMMON/'ALPHA/Y,Z
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PRECOMPII2ER DIRECqTVE

Name: *DERIV

Purpose: To override the default name GRESS assigns to the derivative.

How to use it: Must begin in column one.

Example: To change the name of the derivative variable from the default (DX) tO 'DER'.

*DERIV DER

DIMENSION X(IO0)
COMMON/ALPHA/Y,Z

Comment: By default, GKESS will use the variable name DX to store the derivatives
from an assignment statement• Occasionally, the name DX conflicts with a

• variable in the user's program. The *DERIV directive makes it simple to
change the string that is used by GRESS to store the derivative. The only

• restriction is that the name assigned to the derivative must be a legal
FOkTRAN symbol not exceeAing six characters in length (i.e., a sequence of

one to six letters or digits, the first of which must be a letter).
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PRECOMPILER DIRECTIVE

Name: *ECHO ON/OFF

Purpose: To cause SYMG to echo the line of code being translated as a comment in the "

enhanced code. This can be very helpful in debugging.

How to use it: ECHO can be used to echo the entire code as comments in the enhanced

code, or to selectively echo part of the enhanced code. The default is ECHO

OFF. This may be useful if SYMG is not working correctly and the user wants
tC check a line to see if it was enhanced correctly.

Example: Echo one assignment statement in the enhanced code as a comment.

DIMENSION X(lO0)
COMMON/ALPHA/Y,Z

*ECHO ON

X(1)=Z*Y + S.0
*ECHO OFF

m
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PRECOMPILER DIRECTIVE

Name: *GENSUB

" Purpose: To generate enhanced code for GENSUB option.

Notes: The GENSUB option allows processing of program units as small as a do loop

or as large as an entire program (for derivative calculation only). GENSUB

will use either forward or reverse chaining depending on which is most

efficient for the given problem. The GENSUB option is ideal for enhancing

a single subroutine or function for derivative calculation.

How to use it: Must begin in column one.

Example: Enhance function FOOBAR for GENSUB derivative calculation.

*gensub

REAL FUNCTION FOOBAR(X,R)

DIMENSION X(100)

• COMMON/ALPHA/Y,Z
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PRECOMPILER DIRECITVE

Name: *ITABLE

Purpose: To override the default number of rows in the offset table.

How to use it: Must begin in column one.

Example: Increase the number of rows in the offset table to 20

*ITABLE 20

DIMENSION X(lO0)
COMMON/ALPHA/Y,Z

Comment: During execution of the enhanced program for a CHAIN or ADGEN

application a variable is tracked based on its address in virtual memory. For

each address used as a REAL variable, a location is assigned in an offset table

for storing the row number or gradient work space location that GRESS

assigns to that variable• The address is hashed into a segment and offset by B

dividing by 32768 (i.e., 215). The segment is the integer quotient. The offset

is the remainder. The segment becomes an index to a pointer vector, where

a location of a row in the offset table is stored. A SEGMENT-OFFSET pair

calculated in this way provides a unique key for any word address in virtual

memory. The first time a segment occurs, it is assigned a location in the offset

table and a pointer to that location is stored in the pointer vector. ITABLE

specifies the number of rows in the offset table• For large codes the default

value may be too small. A call to the GRF_.SSrun-time library routine
DIAGXX will tell how many rows are being used in the offset table at the

point where the call is made.
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PKECOMPILER DIRECTIVE

Name: *LOCROWS

Purpose: To set the maximum number of local rows to be held in memory when the
*OPTIMIZE directive is specified.

How to use it: Must begin in column one.

Note: SEE *OPTIMIZE

Example: Set the maximum number of local rows to 9000

*LOCROWS 900O

DIMENSION X(lO0)
COMMON/ALPHA/Y,Z
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PRECOMPILER DIRECTIVE

Name: *LOCTOT

e

Purpose: To set the maximum number of I00 word segments that are available to the

BSOLXX routine for solving the adjoint matrix in memory.

How to use it: Must begin in column one.

Note: See the BSOLXX run-time library routine. If BSOLXX fails because there

are too few segments, an error message will suggest that LOCTOT be

increased. The ideal size for LOCTOT is application dependent; however, for

most applications the number of rows in the adjoint matrix divided by S00 per

response should be sufficient.

Example: Increase LOCTOT to 200

*LOCTOT 200

DIMENSION X(100)
COMMON/ALPHA/Y,Z
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PRECOMPILER DIRECTIVE

,)

Name: *MAXPAR

Purpose: To set the maximum number of parameters to be held in memory for aB

ADGEN application.

How to use it: Must begin in column one.

Note: If the adjoint matrix is to be written to disk, the actual number of parameters
can exceed MAXPAR. However, if the adjoint matrix is to be solved in

memory (see BSOLXX or FBSOLXX), then the actual number of parameters
must be less than XPAR.

Example: Increase MAXPAR to 20000

*MAXPAR 20 000

DIMENSION X(lO0)
COMMON/ALPHA/Y,Z

29



PRECOMPILER DIRECTIVE

Name: *MAXRES

Purpose: To set the maximum number of responses to be held in memory for an
ADGEN application.

How to use it: Must begin in column one.

Note: If the adjoint matrix is to be written to disk, the actual number of responses
can exceed MAXRES. However, if the adjoint matrix is to be solved in

memory (see BSOLXX or FBSOLXX), then the actual number of responses
must be less than MAXRES.

Example: Increase MAXRES to 10

*_ 10

DIMENSION X(100)
COMMON/ALPHA/Y,Z

3O



PRECOMPILER DIRECUVE

q,

Name: *MAXROWS

Purpose: To change the default value for the maximum number of adjoint matrix rows

to be held in memory for an ADGEN application.

How to use it: Must begin in column one.

Note: If the adjoint matrix is to be written to disk, the actual number of rows can

exceed MAXROWS. However, if the adjoint matrix is to be solved in memory

(see BSOLXX or FBSOLXX), then the actual number of rows must be less
than MAXROWS. If the adjoint matrix is m be written m disk, MAXROWS

should be divisible by 2.56. If the adjoint matrix is to be written to disk, it

probably is not necessary to change the default value for MAXROWS.
MAXROWS is also used to estimate the amount of storage for the adjoint

matrix; therefore, it may be necessary for MAXROWS to be greater than the
number of rows in the adjoint matrix for some applications.

Example: Increase MAXROWS to 262,144

• *MAXROWS 262144

DIMENSION X(lO0)
COMMON/ALPHA/Y,Z
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PRECOMPILER DIRECTIVE

Name: *OPTIMIZE

Purpose: To cau.se floating point assignment statements that have only one variable on .

the fight to be forward chained during an ADGEN application•

How to use it: Must begin in column one.

Note: When considering multiple responses, forward chaining statements that have

only one variable on the fight reduces both the number of terms and the

number of calculations required to solve the adjoint matrix. In the following
FORTRAN sequence, the statement defining B has only one variable on the

fight, A.

B = A**2 + 3.0*A

Z =2.0*B

The partial derivative of B with respect to A is placed in a local buffer of size

LOCROWS (see *LOCROWS directive). When B appears on the right of the

statement the partial derivative of Z with respect to A is immediately

calculated and stored in the adjoint matrix. The partial derivative of B with

respect to A is never put in the adjoint matrix. Rather than two rows being

added to the adjoint matrix, only one row is added. The effectiveness of this

a!gorithm greatly depends on the code being enhanced for derivative

calculations and the number of responses selected.

Limitations: Can only be used with BSOLXX and FBSOLXX. Cannot be used if matrix
is to be written to disk.

Example:
*OPTIMIZE

*LOCROWS 9000

DIMENSION X(100)
COMMON/ALPHA,/Y,Z
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PRECOMPILER DIRE_

Name: *SYMG ON/OFF

Purpose: To selectively specify lines or sections of code to be enhanced, or not
enhanced.

How to use it: Can be used anywhere within a complete program module or to turn off the
enhancement of enti,:e subprograms. Enhancement cannot be turned off
within a subroutine and then turned back on within another subroutine• The

enhancement must be turned on to process the declaration section of a

subprogram if it is turned on anywhere within that subprogram.

Example: Prevent one line from being enhanced

DIMENSION X(IO0)
COMMON/ALPHA/Y,Z

*SYMG OFF

. X(I)=Z*Y + 5.0
*SYMG ON
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PRECOMPILER DIRECTIVE

j,

Name: *WSPSIZE

Purpose: To override the default work space size.

How to use it: Must begin in column one.

Example: Set the work space size equal to 2 million words:

*WSPSIZE 2 000 000

DIMENSION X(lO0)
COMMON/ALPHA/Y,Z

Comment: Both CHAIN and ADGEN options use a common block area that can vary in

size dependent on the application• The default work space size is usually set
at 8 million 4 byte words; however, the actual size is installation dcpcndent.

The WSPSIZE command is useful if for any reason you des/re a larger or

smaller work space.
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3.9. GRESS Run-T'nne La'braryRoutines

qt

Run-time library routines are used to control the application of the enhanced code. The
following pages provide a description of each run-time libraryfunction. The format is one run-

time library function per page. Each page includes at least one example on how to use the
routine.
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3.9.1. GRESS AI_EN h'braryroutines.
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ADGEN Library Routine

Name: BSOLXX (LUN1,LUN2,CUTOFF)

Function: To solve the adjoint matrix in virtual memory.

Comment: Solving the adjoint matrix in memory is limited by the amount of memory
available. If suflZicentmemory is available, BSOLXX should more efficient

than writing the adjoint matrix to disk.

Arguments:

(1) LUN1 - read CUTOFF from lunl. A zero value means use argument
three as the CUTOFF value.

(2) LUN2 - write sensitivity report to lun2.

(3) CUTOFF - magnitude of the smallest sensitivity to report. A value of zero
will result in ali sensitivities being reported.

Argument Type:

(1) INTEGER

• (2) INTEGER

(3)

Note: WSPSL'7_ must be greater than (100*I.,OCI'OT*MAXRF.S) + 100.

How to use it: A call to BSOLXX may be used in place of a call to CLEARXX at the end

of program execution. A sensitivity report will be written to LUN2.

Example:

(1) To report sensitivities that are greater than 1.0E-4 to logical unit 95

CALL BSOLXX(0,95,1.0E-4)
STOP

. END
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ADGEN Library Routine

Name: CLEARXX

Function: To clear the forward matrix buffers.

Arguments: NONE

How to use it: Generally, CALL CLEARXX should be inserted in the main program
immediately before the STOP statement• RXX must be the last

executed call before ending the run. If the program exits at some point ocher

than in the main program, it will be n_ary to insert CALL CLEARXX at

that point.

Example:

(1) Normal exit from a main program with a STOP statement

PROGRAM MAIN

CALL CLEARXX

STOP

END

(2) Possible exit from other location

IF(UNHAPPY) CALL CLEARXX

IF(UNHAPPY) STOP RETURN
END

,_ 1.,v



ADGEN Library Routine

Name: DECLARXX (CHAR)

Function: To turn thc declaration of parameters on or off.

Arguments: 'ON' or 'OFF'

Argument Type: CHARAC"I_R

How to use it: DECLARXX is used to limit the number of parameters added to the

parameter dictionary. The default is 'ON', meaning that any parameters read
in will automatically be added to the parameter dictionary. To limit the

number of parameters, use DE_ to turn off the automatic declaration

at the start of the program. To have specific parameters added to the

parameter dictionary, use DECX.ARXX to turn on the declaration of

parameters immediately before the read statement in the unenhaneed model.

Example:
a

(1) Using DECLARXX to cause only C to be declared a parameter.

CaLLS ('ADJOmY)
cane

CALL DECLARXX('ON')

READ000,m0)C
CALL DECLARXX('OFF')

I
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ADGEN Library Routine

Name: DIAGXX (LEVEL)

Function: To print diagnostic information.

Arguments:

(1) LEVEL

Argument type:
(1) LEVEL- INTEGER

LEVEL Action

0 Check for failure conditions. Stop if error detected•

1 Print diagnostic information. Stop if error detected.
2 Print additional diagnostic information. Stop if error detected.

3 Check ADGEN control parameters. Stop if error detected.

How to use it: Insert CALL DIAGXX at any point in the program where you wish to print

diagnostic information. LEVEL specifies the type of information as well as the
action taken if an error is found• The user should review the diagnostic

information provided by DIAGXX for obvious inconsistencies. For example,
if DIAGXX shows that the work space was set at 1,000,000 and 1,400,000

words were used, the appropriate action would be to increase the work space

and re-run the problem.

Example:

(1) Using DIAGXX to check status prior to calling BSOLXX. Code will

stop if an error is detected.

CALL DIAGXX(2)

CALL BSOLXX(-1,45,0.01)
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ADGEN Library Routine

Name: DLIBXX ( VARIABLE, NAME )

Function: To add a double precision variable to the parameter dictionary.

Arguments:

(1) VARIABLE to be included

(2) name or description of VARIABLE

Argument type:

(1) VARIABLE- DOUBLE PRECISION

(2)NAME-CHARACTER*N( N < 12)

How to use it: Insert CALL DLIBXX after the point in the code where a value is assigned
to VARIABLE•

Example:

• (1) To declare X to be a parameter in an ADGEN application•

DOUBLE PRECISION X

X = 2.0D+01 * Y + Z

CALL DLIBXX(X,' X ')
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ADGEN Library Routine

Name: DLINXX ( VARIABLE, NAME, COUNTER )

Function: To add a double precision variable to the parameter dictionary with a user-
defined counter.

Arguments"

(1) VARIABLE to be included

(2) name or description of VARIABLE

(3) user defined counter

Argument type:

(1) VARIABLE - DOUBLE PRECISION
(2)NmVm-CR XACrER*N( N < 12)
(3) COUNTER- INTEGER

How to use it: Insert CALL DLINXX after the point in the code where a value is assigned
to VARIABLE.

4

Example:

(1) To declare X to be a parameter in an ADGEN application with the

integer ICOUNT as a user-defined counter to help identify the result in

the sensitivity report.

DOUBLE PRECISION X

ICOUNT=ICOUNT+ 1

X = 2.0D+01 * Y + Z

CALL DLINXX(X,' X ',ICOUNT)
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ADGEN Library Routine

Name: DRAYXX ( ARRAY, N1, N2, N3, N4, NDIMS, NAME )

Function: To add the elements in a double precision array to the parameter dictionary.

Arguments:

(1) ARRAY with up to four dimensions

(2-5) N1-N4 dimensions 1 to 4 of ARRAY

(6) NDIMS - actual number of dimensions
(7) name or description of ARRAY

Argument type:

(1) ARRAY- DOUBLE PRECISION
(2-5) N1-N7 - INTEGER

(6) NDIMS - INTEGER

(7) NAME- CHARACrER*N ( N < 12 )

How to use it: Insert CALL DRAYXX after the point in the code where values have been

- assigned to ALL elements to be included in the parameter dictionary.
However, the call must be made prior to any element of ARRAY being used

. to assign a value to any other variable in the FORTRAN program. The values
for N1-N4 must be set to at least 1, even if that dimension does not exist. For

example, if an array has only two ,limensions, arguments N3 and N4 must be

assigned the value of 1.

Example:

(1) To declare the elements in array X to be a parameters in an ADGEN
application.

DOUBLE PRECISION X(10,5)

CALL DRAYXX( X, 10, 5, 1, 1, 2, 'X')

43



ADGEN Library Routine

Name: FBSOLXX (LUN1,LUN2,CUTOFF)

Function: To solve the ADGEN matrix in virtual memory.

Comment: This routine does not use memory as efficiently as BSOLXX; therefore, it

should only be used for small models. However, if the model is small enough,
FBSOLXX should execute faster than BSOLXX.

Arguments:

(1) LUN1 - read CUTOFF from lunl. A zero value means use argument
three as the CUTOFF value.

(2) LUN2 - write sensitivity report to lun2.

(3) CUTOFF - magnitude of the smallest sensitivity to report. A value of zero

will result in ali sensitivities being reported.

Argument Type:

(1) INTEGER

(2) INTEGER

(3)REAL

Note: WSPSI7_. must be greater than (MAXROWS*MAXRES) + 100.

How to use it: A call to FBSOLXX may be used in plac_ of a call to CLEARXX at the end

of program execution. A sensitivity report will be written to LUN2.

Example:

(1) To report sensitivities that are greater than 1.0E-4 to logical unit 95

CALL FBSOLXX(0,95,1.0E-4)
STOP

END

44



ADGEN Library Routine

Name: POTRXX (VARIABLE, NAME)
POTDXX(VARIABLE,NAME)

Function: To add a variable to the response dictionary during an ADGEN application•

Arguments:

(1) (VARIABLE) program variable to be declared

(2) (NAME) or description of VARIABLE

Argument Type:

(1) X - REAL or DOUBLE PRECISION

(2) 'CHAR'- CHARAUFER*n (n < 24 )

How to use it: Insert CALL POTRXX immediately following the line defining the variable.
CLEARXX must be called at the end of the run. Use POTDXX if X is

DOUBLE PRECISION. POTDXX is used exactly the same way as
POTRXX.

Comment: If the adjoint matrix is output to disk, the response dictionary is written to
• logical unit 43. If the adjoint matrix is solved in memory, the response

dictionary is kept in memory and used to write the report of sensitivities. An

error occurs if part of the response dictionary is written to disk and the adjoint

matrix is not. If the user discovers that the response dictionary was written to
disk when it should not have been, the user should increase the maximum

number of responses using the *MAXVAR directive.

Example:

(1) Declare D(5) to be a response of interest.

D(J) = B(J)**2

IF(J.EQ.5)CALL POTRXX(D(J),' D of5 ')
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ADGEN Library Routine

Name: RLIBXX ( VARIABLE, NAME )

Function: To add a single precision variable ,to the parameter dictionary.

Arguments:

(1) VARIABLE to be included

(2) name or description of VARIABLE

Argument type:

(1) VARIABLE- REAL
(2) NAME- CHARACTER*N ( N < 12 )

How to use it: Insert CALL RLIBXX after the point in the code where a value is assigned
to VARIABLE.

Example:

(1) To declare X to be a parameter in an ADGEN application.

REALX

X = 2.0D+01 * Y + Z

CALL RLIBXX(X,' X ')
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ADGEN Library Routine

Name: RLINXX ( V,M_ABLE, NAME, COUNTER )

Function: To add a single precision variable to the parameter dictionary with a user
defined counter.

Arguments:

(I) VARIABLE to be included

(2) name or description of VARIABLE

(3) user defined counter

Argument type:

(1) VARIABLE- REAL
(2)NAME-CHARACTER*N( N < 12)
(3) COUNTER- INTEGER

How to use it: Insert CALL RLINXX after the point in the code where a value is assigned
to VARIABLE.

Example:
m

(1) To declare X to be a parameter in an ADGEN application with the
integer ICOUNT as a user defined counter to help identify the result in

the semitivity report.

REALX

ICOUNT--ICOUNT+ 1

X = 2.0D+01 * Y + Z

CALL RLgCXX(X,' X ',ICOUNT)

.m
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ADGEN Library Routine

o

Name: RRAYXX ( ARRAY, N1, N2, N3, N4, NDIMS, NAME )

Function: To add the elements in a single precision array to the parameter dictionary.

Arguments:

(1) ARRAY with up to four dimensions
(2-5) N1-N4 dimensions 1 to 4 of ARRAY

(6) N'DIMS - actual number of dimensions

(7) name or description of ARRAY

Argument type:

0) ARRAY- REAL
(2-5) N1-NY - INTEGER

(6) N'DIMS- INTEGER

(7) NAME- CHAR.ACTER*N ( N < 12 )

How to use it: Insert CALL RRAYXX after the point in the code where values have been

assigned to ALL elements to be included in the parameter dictionary.
However, the call must be made prior to any element of ARRAY being used

to assign a value to any other variable in the FORTRAN program. The values
for N2-N4 must be set to at least 1, even if that dimemion does not exit. For

example, if an array has only two dimensions, arguments N3 and N4 must be
assigned the value of 1.

Example:

(1) To declare the elements in array X to be a parameters in an ADGEN

application.

REALX(10,5,5)

CALL RRAYXX( X, 10, 5, 5, I, 3, 'X')
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ADGEN Library Routine
Q

Name: SETRXX (CHAR)

Function: To specify that the purpose of the run is to generate an adjoint matrix.

Argument: 'ADJOINT'

Argument Type: CHARACrER*7

How to use it: CALL SETRXX must be the first executed line in the code. If CALL

S_ is NOT made, no derivatives will be stored in the adjoint matrix
buffer.

Example:

(1) Enhanced code ready for an ADGEN application.

- DATA X/4.01

CALL S_('ADJOINT)
m •

(1) Unenhanced code preparing for adjoint matrix generation.

DATA X/4.0/

CALL SETRXX('ADJOINT')
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3.9.2. GR_.S CHAIN h'braryroutines.
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CHAIN Library Routine

Q

Name: AUTOXX (LUN, NUMP)

li

Function: To set the maximum number of parameters to be declared•

Arguments:

(1) LUN = -1 is required

(2) NUMP - maximum number of parameters to be declared

Argument Types: INTEGER

How to use it: CALL AUTOXX must be made before calling any other library routines•

Example 1. Speeify;.ng a maximum of five parameters in an enhanced code. (The call to

AUTOXX must be the first executable statement in the enhanced code.)

- DATA X/4.0/

CALL AUTOXX(-1,5)

Example 2. Specifying a maximum of twenty parameters in an unenhanced code

DATA X/4.0/

CALL AUTOXX(-I,20)



CHAIN Library Routine

Name: BUSTXX

Function: To report the status of the gradient work space during a CHAIN application.

Arguments: NONE

How tO use it: CALL BUSTXX can appear anywhere within the executable part of the

program. CALL BUSTXX can be called more than once. The output from
BUSTXX will be written to logical unit six by default. The default logical unit

can be changed with the FILEXX routine. The gradient work space is the

buffer used to propagate derivatives.

Example:
DIMENSION Y(IO),X(IO)

CALL BUSTXX
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CHAIN Library Routine

"t

Name: DEFAXX (ARRAY, NELEM, NTYPE)

• Function: To declare elements in an array as parameters for a CHAIN application. No

gradients are computed until at least one parameter is defined. Each call adds
a new array to the list of parameters. Each element in the array counts as one

parameter•

Arguments:

(1) ARRAY - array to be declared a parameter
(2) NELEM - number of elements in array to be declared

(3) NTYPE - argument type (1 = single precision, 2 = double precision)

Argument Type:
(1) REAL or DOUBLE PRECISION

(2) INTEGER

(3) INTEGER

• How to use it: Insert CALL DEFAXX after the array has been initialized or defined•

Subroutines SETRXX and AUTOXX must be called prior to CALL

. DEFAXX. For multi-dimensional arrays, the number of elements specified
must take into consideration how FORTRAN treats dimensioned variables.

DEFAXX will define the array elements as parameters, sequentially, in order

of their location in memory.

Example:
(1) Declare the elements in array Y as parameters for a CHAIN application.

DIMENSION Y(10),X(10)

READ(LUN,100) Y
NUMP=10

NTYPE-1

CALL DEFAXX(Y(1),NUMP, NTYPE)
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CHAIN Library Routine

Name: DEFDXX (VAR, NAME)

Function: To declare a double precision parameter for a CHAIN application. No "

gradients are computed until at least one parameter is defined. Each call
adds a new parameter•

Arguments:

(1) VAR - double precision variable to be declared a parameter

(2) name or description of VAR

Argument type:

(1) VAR- DOUBLE PRECISION
(2) NAME- CHARACTER*N ( N < 12 )

How tO use it: Insert CALL DEFDXX after the variable has been initialized or defined•

Subroutine AUTOXX must be called prior to CALL DEFDXX.

Example:

(1) Declare Y to be a parameter for a CHAIN application.

DOUBLE PRECISION Y

READ(LUN,IO0) Y

CALL DEFDXX(Y,' Y ')
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CHAIN Library Routine

Name: DE XX (VAR, NAME)

4

Function: To declare a single precision parameter for a CHAIN application. No

gradients are computed matil at least one parameter is defined. Each call
adds a new parameter•

Arguments:
(1) VAR - single precision variable to be declared a parameter

(2) name or description of VAR

Argument type:
(1) VAR- SINGLE PRECISION

(2) NAME- CHARA_R*N ( N < 12 )

How to use it: Insert CALL DEFIXX after the variable has been initialized or defined.

Subroutine AUTOXX must be called prior to CALL DEFIXX.

Example:

,, (1) Declare Y to be a parameter for a CHAIN application.

t. •

READ(LUN,100) Y

CALL DEFIXXCY,' Y ')

(2) Declare D(5) to be a parameter•

D(J) = B(J)**2

IF(J.EQ.5) CALL DEFIXX(D(J),' D(5) ')
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CHAIN Library Routine

Name: DIAGXX (LEVEL)

Function: To print diagnostic information

Arguments:

(1) LEVEL

Argument type:

(1) LEVEL- INTEGER

LEVEL Action

0 Check for failure conditions. Stop if error detected.

1 Print diagnostic information. Stop ff error detected.

2 Print additional diagnostic information. Stop if error detected.

3 Check ADGEN control parameters. Stop ff error detected.

How to use it: Insert CALL DIAGXX at any point in the program where you wish to print ,,
diagnostic information. LEVEL specifies the type of information as well as the

action taken if an error is found. The user should review the diagnostic
information provided by DIAGXX for obvious inconsistencies. For example,

if DIAGXX shows that the work space was set at 1,000,000 and 1,400,000

words were used, the appropriate action would be to increase the work space
and re-run the problem.

Example:

(1) Using DIAGXX to check status prior to calling PRNTXX. Code will
stop if an error is detected.

CALL DIAGXX(2)
CALLPRNTXXO')
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CHAIN Library Routine

Name: FK,EXX (LUN)

• Function: To alter the logical unit number for ali printed output generated by run-time

library routines. The default logical unit number for printed output from the
run-time library routines is 6.

Arguments: LUN - Logical unit number for printed output

Argument Type: INTEGER

How to use it: If the user chooses to have ali or part of the calculated gradients from a

CHAIN application written to a file other than unit 6, simply call FILEXX

with an integer argument specifying the desired unit number. The assignment

stays active until the end of the run, or until FILEXX is called again.

Example:

. (1) To print ali gradient results in a CHAIN application to logical unit 90.

LUN-90

CALL FILEXXCLtm)
t
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CHAIN Library Routine

Name: GETGXX (X, Z)

Function: To retrieve an individual derivative using symbol name•

Arguments:

(1) X - any program variable

(2) Z- an mray

Argument Type:

(1) REAL or DOUBLE PRECISION

(2) gEAL

How to use it: GETGXX returns the derivatives of X with respect to the N declared

parameters. Z must be dimensioned by at least N to hold the derivative of X

with respect to each declared parameter•

Example:

(I) Retrieve the derivative of A with respect to all declared parameters.
Store the derivatives in array B.

DIMENSION B(8)

CALL AUTOXX(-1,8)

CALL GETGXX(A,B)
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CHAIN Library Routine

Name: GETNXX (X, N, Z)

• Function: To retrieve an individual derivative.

Arguments:

(1) X - any program variable

(2) N - parameter number
(3) Z - storage location

Argument Type:

(1) REAL or DOUBLE PRECISION

(2) INTEGER
(3) REAL

How to use it: GETNXX returns the derivative of X with respect to the 1_ declared

parameter. Parameters have an "ordinal" number corresponding to the
sequence in which they are declared. It is necessary to provide a REAL

• variable as the third argument for storing the retrieved derivative.

. Example:

(I) RetrievethederivativeofA withrespecttothefirst,second,andfourth

declaredparameters.Storethederivativesinthefirstthreelocationsin

arrayZZ.

CALL A, ,ZZ())
CALL OETNXX(A,2,ZZ(2))

CALL GETNXX(A,4,ZZ(3))
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CHAIN Library Routine

Name: NINDXX (N)

F_mction: To return the current number of declared parameters.

Arguments: N - number of declared narameters

Argument Type: INTEGER

How to use it: At any point during program execution, the number of parameters presently

declared is returned as an integer argument.

Example:

(1) To check the number of declared parameters in a CHAIN application.

CALL NINDXX (N)

IF(N.GT.3) THEN
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CHAIN Library Routine

Name: PRNTDXX (X)

• Function: To print the gradients and sensitivities of a double precision variable with

respect to the declared parameters.

Arguments: Any double precision program variable

Argument Type: DOUBLE PRECISION

How to use it: At any point during program execution, the gradient of a double precision
variable may be printed by a call to PRNTDXX.

Example:

(1) To print gradients for a double-precision variable during a CHAIN
application•

. REAL Y, Z
DOUBLE PRECISION A,X

CALL DEFIXX(Y,' Y ')

CALL DEFDXX(A,' A ')

X=2.0*Y+Z

CALL PRNTDXX(X)
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CHAIN Library Routine

Name: PRNTXX (X) °

Function: To print the gradients and semitivities of a single precision variable with "
respect to the declared parameters.

Arguments: Any program variable

Argument Type: REAL

How to use it: At any point during program execution, the gradient of a dependent variable

may be printed by a call to PRNTXX.

Example:

(1) To print gradients at two places in a CHAIN application•

READ(LUN, IO0)Y

CALL DEFIXXO0

X = 2.0*Y + Z

CALL eRrcrxx(x)

Z = X*B

CALL PRN'I3CX(Z)
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3.9.3. GRF-_,S GENSUB h'bra_ routines.

63



GENSUB Library Routine

Name: ALLOCGG(MEM,ZMEM)

Function: To pre-allocate memory for a GENSUB application.

Arguments:

(1) MEM - amount of memory in bytes to be allocated

(2) ZMEM - amount of memory to be allocated and preset to zero.

, Argument type:

(1) INTEGER

(2) INTEGER

Comment: SEE CHAINGG, CHAINFOR, or CHAINREV

How to use it: Insert CALL ALLOCGG prior to the section of code enhanced for the

GENSUB option• It is recommended that the first time a section of code is

run, that ALLOCGG not be used. However, if the same code is used again,
the values from MEM and ZMEM as returned from one of the chain routines

q,

(CHAIN_, CHAINFOR, or _ can be used. For large sections

of code, pre-allocating memory should may result in faster execution.

Example:

(1) Declare array Y to be parameters for a GENSUB application with
500,000 bytes of pre-allocated memory and an additional 4000 words of

pre-allocated memory preset to zero.

*gemub

SUBROUTINE ALPHACY,R)

DOUBLE PRECISION Y(50)

CALLALLOCC,G(500000,4000)
NELEM = 50

CALL GENDPXXCY, NELEM )
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GENSUB Library Routine

Name: CHAINFOR(DERIVATIVE, MEM,ZMEM)

" Function: To calculate the derivatives for a GENSUB application by applying the chain

rule in forward mode (CHAIN mode).

Arguments:
(1) DERIVATIVE - array to contain derivatives

(2) MEM - amount of memory used in bytes

(3) ZMEM - amount of memory pre-set to zero used in words

Argument type:
(1) A two-dimensional REAL array

(2) INTEGER
(3) INTEGER

How to use it: Insert CALL CHAIN'FOR at the end of the section of enhanced code through

which derivatives have been propagated. The derivatives of the responses

- declared using GENRESXX with respect to parameters declared using
GENPXX, GENAPXX, or GENDPXX for the subsection of code enhanced
for GENSUB will be calculated and returned in the array DERIVATIVE.

DERIVATIVE must be a two-dimensional array with the first dimension being

the number of dependent variables (responses) and the second dimension

being the number of independent variables (parameters).

Example:

(1) Use CHAINFOR to calculate derivatives of Z with respect to the
elements in array Y.

*gensub
SUBROUTINE ALPHA(Y,R,Z)

REAL Y(2),DERIV(I,2)

CALLO APXXfY,2)

CAm.G XX(Z)
" CALL CHAINFOR(DERIV,MEM,IMEM)
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GENSUB Library Routine

.J

Name: CHAINGG(DERIVATIVE,MEM,ZMEM)

Function: To calculate the derivatives for a GENSUB application.

Arguments:
(1) DERIVATIVE - array to contain derivatives

(2) MEM - amount of memory used in bytes

(3) ZMEM - amount of memory pre-set to zero used in words

Argument type:

(1) A two-dimensional REAL array

(2) INTEGER
(3) INTEGER

Comment: CHAINGG will apply the chain rule in either forward or reverse (adjoint)

mode depending on whether there are more responses or more parameters.

How tO use it: Insert CALL CHAINGG at the end of the section of enhanced code through

which derivatives have been propagated. The derivatives of the responses

declared using GENRESXX with respect to parameters declared using
GENPXX, GENAPXX, or GENDPXX for the subsection of code enhanced
for GENSUB will be calculated and returned in the array DERIVATIVE.

DERIVATIVE must be a two-dimensional array with the first dimension being

the number of dependent variables (responses) and the second dimension

being the number of independent variables (parameters).

Example: Use CHAINGG to calculate derivatives of Z with respect to the elements in
array Y.

*gensub
SUBROUTINE ALPHACY,R,Z)

REAL Y(2), DERIV(1,2)

CALL GENAPXX(Y,2)

CALL GENRESXX(Z)

CALL CHAINGG(DERIV,MEM,IMEM
4
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GENSUB Library Routine

e.

Name: CHAINREV(DERIVATIVE,MEM,ZMEM)

" Function: To calculate the derivatives for a GENSUB application by applying the chain

rule in reverse mode (adjoint mode).

Arguments:

(1) DERIVATIVE - array to contain derivatives

(2) MEM - amount of memory used in bytes
(3) ZMEM - amount of memory pre-set to zero used in words

Argument type:

(1) A two-dimensional REAL array

(2) INTEGER
(3)IrmOER

How to use it: Insert CALL CHAINREV at the end of the section of enhanced code through

which derivatives have been propagated. The derivatives of the responses

. declared using GENRE_XX with respect to parameters declared using
GENPXX, GENAPXX, or GENDPXX for the subsection of code enhanced

for GENSUB will be calculated and returned in the array DERIVATIVE.

DERIVATIVE must be a two-dimensional array with the first dimension being

the number of dependent variables (responses) and the second dimension

being the number of independent variables (parameters).

Example:
(1) Use CHAINREV to calculate derivatives of Z with respect to the

elements in array Y.

*gensub

SUBROUTINE ALPHA(Y,R,Z)

REAL Y(2), DERIV(1,2)

CAULG APXX(Y,2)

" CALL GENRESXX(Z)

CALL CHAINREV(DERIV,MEM,IMEM)
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GENSUB Library Routine

Name: GENAPXX(ARRAY, NELEM)

Function: To declare NELEM of a single precision ARRAY to be parameters for a -

GENSUB application.

Arguments:

(1) ARRAY - array to be declared a parameter

(2) NELEM - number of elements in array to be declared

Argument type:

(2) NELEM - INTEGER

How to use it: Insert CALL GENAPXX after the array has been initialized or defined.

Parameters for a GENSUB application must be independent of the section of

enhanced code through which derivatives are to be propagated. That means
that the call to GENAPXX must occur upon entering the subprogram or

section of code that has been enhanced. Also, parameters that appear on the ,.

left of assignment statements will automatically be. redefined as variables;

therefore, the assignment statement that defines the parameter must not be

part of the enhanced code.

Example:

(1) Declare array Y to be parameters for a GENSUB application.

*gensub

SUBROUTINE ALPHACY,R )

REAL Y(5O)
NELEM - 50

CALL GENAPXX(Y,NELEM)
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GENSUB Library Routine
b

Name: GENDPXX(ARRAY, NELEM)

Function: To declare NELEM of a double precision ARRAY to be parameters for a

GENSUB application.

Arguments:
(1) ARRAY - array to be declared a parameter

(2) NELEM - number of elements in array to be declared

Argument type:
(1) ARRAY- DOUBLE PRECISION

(2) NELEM - INTEGER

How to use it: Insert CALL GENDPXX after the array has been initialized or defined•

Parameters for a GENSUB application must be independent of the section of

enhanced code through which derivatives are to be propagated. That means
. that the call to GENDPXX must occur upon entering the subprogram or

section of code that has been enhanced. Also, parameters that appear on the

. left of assignment statements will automatically be redef'med as variables;
therefore, the assignment statement that del'rees the parameter must not be

part of the enhanced code.

Example:

(1) Declare array Y to be parameters for a GENSUB application•

*gensub
SUBROUTINE ALPHA(Y,R)

DOUBLE PRECISION Y(50)
NELEM - 50

CALL GENDPXX(Y,NELEM)

69



GENSUB Library Routine

Name: GENPXX(VAR)

Function: To declare VAR to be a parameter for a GENSUB application•

Arguments:

(1) VAR - variable to be declared a parameter

Argument type:

(1) REAL or DOUBLE PRECISION

How to use it: Insert CALL GENI'XX after the variable has been initialized or defined.

Parameters for a GENSUB application must be independent of the section of

enhanced code through which derivatives are to be propagated. That means

that the call to GENPXX (or GENAPXX) must occur upon entering the

subprogram or section of code that has been enhanced. Also, parameters that

appear on the left of assignment statements will automatically be redefined as
variables; therefore, the assignment statement that defines the parameter must

not be part of the enhanced code.

Example:

(1) Declare Y to be a parameter for a GENSUB application.

*gensub
SUBROUTINE ALPHA(Y,R)

CALL GENPXX(Y)
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GENSUB Library Routine

.

Name: GENRESXX(VAR)

• Function: To declare VAR to be a response for a GENSUB application.

Arguments:
(1) VAR - variable to be declared a response

Argument type:

(1) REAL or DOUBLE PRECISION

How to use it: Insert CALL GENRF.SXX immediately after the variable has been defined.

Responses for a GENSUB application must be dependent on the section of
enhanced code through which derivatives have been propagated• The
derivatives of R with respect to parameters that have been declared for the
subsection of code enhanced for GENSUB will be calculated by calling one of

the run-time library routines CHAINGG, CHAINFOR, or CHAINI_V.

• Example:

(1) Declare R to be a response for a GENSUB application•

*gensub
SUBROUTINE ALPI-IA(Y,R)

CALL GENRESXX(R)
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4. PROGRAMMER INFORMATION

This chapter provides information directed towards the person responsible for installing

and maintaining the system. Changes may be required to allow implementation at a specified

site. A brief description of the subroutines and functions in the GRESS run-time libraryand the

SYMG precompiler is provided.

4.1. SYMG- Precompiler

SYMG is the precompiler for GRESS. The SYMG source code is written entirely in

FORTRAN 77. SYMG is compiled and linked using a FORTRAN 77 compiler and link- editor.
Shown in Table 4.1 is the name and function of each SYMG routine. The function descriptions

are brief and are intended only as an overview.

42_ GRESS Run-Tune l.a'brat3,

The GRESS Run-Time Library has three parts, SGLIB, CUB, and GENLIB. SGLIB
is written in FORTRAN 77. CUB and GENLIB are written in C. SGLIB and CUB combine

to form the run-time library required for ADGEN and CHAIN applications. GENLIB is the

run-time library required for GENSUB applications. SGLIB is compiled using a FORTRAN 77

compiler. GENI2B and CLIB are compiled with a C compiler. Tables 4.2, 4.3, and 4.4 provide

the name and function of library routines in SGLJB, CUB, and GENLIB.

4.3. Implementation Problen_

Because of the nature of derivative propagation through FORTRAN programs, GRESS

enhanced codes can require an excessive amount of computer resources. The size of the

enhanced code as determined by arraysizes can be controlled with directives to the precompiler.

However, for some computer systems, the default array sizes generated by GRESS are too big.

The first step should be to have the system manager increase the amount of memory available
to the maximum allowable for the system.
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Table 4.1. SYMG subroutines and functions
li

" Nam=: :::__:i_::: ! : ::_i_:::_:_ ....

AARG • _. ........i_=ncramqu_ _::[o_=nlmnc_!FORTRAN .....
" AD_I add lm'o_s_M0a_ _ <<::...... : .... : : i_iii_:i:_

AR_ _ _ctmck:ar__ li_ of:u,_.r (or m_) function

:B_I::I::.>:.-: : .-.setN__-.m:._i_.!!n:TARGETstring -. "

CHAKAC._:I_.::_:.....:-._:,:..:::_: :l_:)R_ '>:._..!.dmracterstatement

COPY ::-ili:ii_._i:.i::::,::.::_i!:_::::i!:_._:_.in_t!.loOmput buffer

D_::I_:.:. .........::::i:i::iii:::_t_i:_r_ii_!:./n term:orstatement

D_:::::.::::.". " _ _:_ _...bolic_ .-.-
DOSTAT ...... ===================================::::::.>:,_:._:
ECHCm'" .ec_:_a=:._!i_as_at ....:....... -......
ERROR " :generam:.G_Oerrorraessage ........ " "•.- ..,.

FINISH • . ::_:mmPl_::_n::_!i_:enhan,c_ :e°d¢::_:i::_:::::: _i:i::-!:::,i::... :::::::i::.....
':I_CTBL . :. _:.::_:__i_!_meat.::_!_fereno=:i ::::::::::::::::::::::.(ii::!::

::::Om_s_':',:,i:'!::i:::_._:_i_ii::i:::_:.___!_i_:_:_!i!_::_i!_ii_i_:_i:/::_.:::::::`:::::>:.:_::i::,/:..":_:!i::i:i_',:_::,:::_!!:i_!;:...

G_LA_ _:............:::::::::::::::::::::::::_i_ m_t :_::,_:::._::::_:- " :-

mCLUDS .... :.:,procms.-_::__ .... :

_i_:::..........::.:i_I:._erpret :__..!_ra_as.: ... " --->:-.:::::
.: ...,.:.::-:...., :.i_!_iifind:.s_ii_O]!__i:in_tement ...

LABGL:_'.... : .::::_fi0d:_e_ilal_ !:,!!i.i?_i:i_i:::_:_,,," ->

)vmi:.... ..,keep_,_ :?[:me_:_f_e_=dmm.m_

MOVEC ::co[_ ::N._rs :.frommurce:to TARGET
M_,..TS'_ multiplyt_o:m'In_s:symbolica_:.::
MYINT generate deriVatives_.from:statementtable..
NAARG place characteasictoenlmm_d FORTRAN
NBGEN generate.numberin entranced FORTRAN
NEXTC "Get"next ctiaracter(do not incrementpointer)

• . .

I
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Table 4.1. (continued)

Name : Fum=_
..

.NEX'I_ .-"read"next input Uncinto read-ahead buffet
_..:NONEXS: ..... "processnon.e=eculabl¢statements
.:_::_:i::::i_::...:.-checkfornumeric.literal

OUTL124 : :.output line Of:FORTRAN
i.:b_::. : : [_,ace:intcg_r_into output.bufr=r

'.:i:pop:_:.:::_:::?i:!ii:_iii:.::.:.....i..:_.._i.:?.rmove:topofmck_-::_:;:.:......

===========================i.:::.,:iii_,:_::_,__ad=.. ....::..:.......
:I'USH.!_iii::::::ii!:::_::i!_:......:-_.::?_ush"operationomo:STACK.._::.
:PUT::::.:ii:i:_:i::ii_:i... .:::_::::::?_!!i1_:::inteFrlinmop,eode:buffer.C,..BUF)

P_:_:-:I_::i:..i:::i_i:-:PUtil0sdop-codefornumbcrintoI_UF
Pu'r'RElV:_:!I_:..... i:::.::_:..:.:_!_put::..!_,d _ for symbolinmLBUF

.-:RF..AD_:I.....- -.generatecallstoprocc_.-ro'rayreads

-:KECORD.:::_:."-::..i.:::::ii:::record.operandreference.. _::_:.i:i:i::ii:.:::.-

:R.F_DCHR : :i::::.:_ii_::ii!im_:¢_c_ "•string:i_i::cbufi:W:buf]k . "

i_ROC::::::_: ...::_!:_i::i:i!:_¢buf_iiem_::buff_r_:i_tC:::n_W:cbuf.::_!:i:::._ .
_iR_!_i!iii_i!i_._?_;_.!_iii_i_iiii!i_i_entry.mi_ck._i_t_ii_n_ :: ::.:_iii!iii_:.:::.i_i_i::::::::::_::.:.iii::ii_!::i:_ :: :

::!_ii_:_i:_::::ii:_iii::_ii:::ii::.._i:_::i_:_i::_t,t::_'_::__0f.i_g::_!::i_.t:_,_" ::.:ii:.......i:::.i;i:::-..:.:..

•:::i_OL_:i:::._i_i:i_iiii_i!i_i_._._._m_!_put_b"_i_i_i_i_ii_i!iii_.:._:..:..:::i'.::::i_:i:_:ili,_i!:_:i:,:_,_'_:::i::i:i:ii_,i_,!ii!::i::. .i::::,,_::i!:i_-::

!
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On most systems the size of the enhanced code can be controlled by modify_r.g parameter

statements in the include file, _mg.dec. The include fdc, symg.dec, contains pa_-amcters that

have the biggest impact on the size of the ¢_mc.cd code..

• C DEFAULT ARRAY SIZES GENERATED in enhanced code

PAR.z0c[ETER (13VORKSZ = 8 000 000)! IWSPSIZE

PAIL_d_IE'I'ER (ITAB= 7) !lTABLE!

PARAMETER (MAXR= 2"*19 ) !MAXROWS!

PARAMETER (LROWS= 1000) !LOCROWS!

PARAMETER (LTOT= 1500) !LOCTO_

PARAMt:-rP.R 0dAXRXS=50) !MAXRES!
PARAMETER (MAX_ .I.000) !MAXPAR!

PARAMETER _=320 000) .'LSTTOT

LSTOT, _, and LTOT are used for ADGEN applications when the adjoint matrix

is to be solved in memory. If the adjoint matrix is to be output to disk, LSTOT and LTOT can

be set equal to 2, and h_ can be set equal to 512. To solve small adjoint matrices in

memory for one response, set NLKKR.XS equal to 1, LTOT equal to 50, and MA_ equal to

• a value greater than the estimated number of rows in the adjoint matrix. If the *Cit/kiN or

• gensub directive is specified, LSTOT, _, and LTOT have no impact on the size to the
enhanced -.,ode.

IWORKSZ and ITAB can impact the size of the code for either C'_ or ADGEN

options. For small problems, IWORJCSZ can be set as low as 10,000 and IT.',B as low as 2.

However, IWORKSZ and ITAB can also be controlled by precompil¢, directives _wSPSIZE and

• ITABLE, respectively.
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Table 4.2. SGLIB subroutines and functions

Nmne Fum:_n

ACOSXX t_WatNe¢_ACOS
AI.IBXX createentryinADGEN 0aramete_
ALOCOO_ derivativeofAI.OG
ASINXX derivativeofASIN
ATANXX derivativeof ATAN
AUTOXX setEmitoa numberofl_m_ers forCHAIN
BSOLXX _ sdjo_ tamm
BUSTXX rep¢_ mms of grsd_mtworkspace
CHAINXX pcopasmederivatives_ by chainrule
CLEARNX output any buffers beforeairing program
CLOSSS ckJsestack segment and pushsegment number

returngradientslot to heap
DACOSXX derivativeof DACOS
D NXX derivativeof DASIN
DATANXX deovativeof DATAN
DBUFXX o_putADGEN matrixbuffer
DE_ toggle ADGEN automaticdeclarationon or off
DEFAXX declarearrayas parameters
DEFDXX declaredoublepreciskmvatial_aspm-ameter
DEFIXX cleclm_single _ X ,_ _r . .
DEXPXX derivativeof DEXP
DIAGXX checkstatusand generate ffagnos_ output
DLIBXX addD m parameter_,_/ - .
DL_ declaredoubleprecisionw_/m-._rs
DLOG_ ....- derivativeof DI.DO
DOP.3[XX killderivatives.forX.and declare it-asindependent : .
DRXPXX derivativeafdouble raisedira.real :" " -
DSQRTXX derivativeof DSQRT
ERRSXX _._:aea_teerrormesmge or warningme_sage
EXPX_-_ aerivativeofEXP
FBSOLXX solveadjointmatrixusingfixed.dimensions
FILEXX ._fine.m_.v output unitforCHAIN option
FRDUXX reMucesizeofadjoint matrixgenerated_-
FUNIXX flag:return from_integerfun_on -i._-. ....
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Table 4.2. (continued)
I

. Nmnc -

-_:-'..... :_i::_;_i::f_.::_ierm._:right.ofequal:._iign::::.i._

NBSOLXX ..:::sm,_:_:!_:witb- reducticm ..• , -.::::;,

l_,]_DXXi....... . "::_:._!iuumberOf_.:!_ters-"

NROWXX ::.._!_-i-re__it_i_latest-r0wnumber" _.... -

OP_' ........:..OlZm::_uti_lot._:.,md.retumlila:location..._-:_-::...."

• P_ ..__ntsf_;_:i_ variable
RDXPXX detivatiVe._rml:_to:do_._l¢

i .
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Table 4.3. CUB routines and their function
I

•..locb_iiiii_!_i:i!:i_:...i.i.,'>i',:ii!i!:!ii,i::>:_i_,i_i!+/:'!n_t_::_iori_r_t i.:,i,-_::i,i"'...i.i.:::I:_

_i :!,,iii' returnsrownuml)e_for_:argum_t i?,: ,_:::i!_:

• :i_rt_ _:::i!::_ii!iiii:i_i_:::i:_::i:i:ii:: :: itu_ d_ivmiv_-forREALvariabl_

_ :_:i!?!:!i::ii_!:_- "i::i:i!!!i:ii.::: ,:.irlit'_._,esderivatives for.double _.cisi_ variable :......

Table 4.4. GENLIB routines avd their function
I

N,ffi /_i/i_!_.......iiii/_/%_::_:::_ /:::, :i /_/!>,/:!ii/ _i_
•i::ii__._ _.__.>i__:_,:_::/_,.i._i_i!,i_!i_,_t___._ :_I,_:__ _...I_/._::_.-_" I_,I_.Ii!ili_ __I

Beni:tog:::::' ::'_:: " d(_-m_:indcp(md(mt,,varia_i(_n_t_,_ ...... ,: .:_.::_: "'rB : "'m :

.i:::i_!:::iiii!i::i_: :::::-;:::_:_ii_:i!_i:.:_::_.i>:_::!_:_:._:.:.i_..:_:_uR:_fint¢_(__)._iii!:_.:._:_:/:_:_:i_:.._:.': ii:-!ili_iiii!i!_• :"ii:-ii:_i::ii!ili,::..

'inurgg:.'.i::;?,: -::::.::::i.............<::::sin_W(msionunformattod-!nmd::".:_:._!'i!:::._"
inudgg .. > . :- doubl_ prccisionunformatted read

. __: ...... : - allocatesm_moo/ " -:
•:nmallei:.. " • ."........-.... 'iillOcat_.momoty..W(_tto.zrzo" :-:: ..

_ III
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APPENDIX A - LIMITATIONS

" The limitations discussed in this section are in addition to limitations discussed elsewhere

in the text. Every attempt was made to include the majority of FORTRAN 77 as specified in
_- theANSI X3.9-1978FORTRAN standard.Extensionstothestandardmay ormay notwork.

When theuserisfacedwitha FORTRAN statement,orsequenceofstatements,thatisno...._t

acceptabletoGRE_S, itisup totheprogrammertodecideon thecourseofaction.Ifthe

sequenceisimportant,thenre-programmingwithlogicallyequivalent,butGRE_S-acceptable
FORTRAN may be required.

A.1. Function Limitations

Function limitations fall into three categories: (1) Any ANSI X3.9-1978 FORTRAN 77
function that may lead to a discontinuity; (2) Complex functions; (3) Continuous ANSI X3.9-
1978 FORTRAN 77 functions that GRESS does not presently process. Fortunately, the lists are
short. Shown in Table A.1., are those standard functions that are not supported by GRESS

because they could lead to a discontinuity.

Table A.1. ANSI X3.9-1978 FORTRAN 77 functions not Supported by GRESS
due to possible discontinuity

P

_:::i_':!!_:iiii!::i::iiiili::iii!:_:_:ii!i:i:_!i_!ii :::i:i._iiiih_t!_"dle:!__rlofi_ :_:: : i

i :.D_:::_!_i_i_:i:_i:_:_i!_ii_:!_il i::::::ii::_ii!i!_!:_::::::i!!iii.i:::i::ili:::_ar_i_ole_ __ of:DO'LE PRECISION

::DD_ !ii_:_i_:::i:_!!!ii_!i:_:_:_:ii::ilii_:_:::_i: :i!_:_::!::iii_::::i:il::i_ifive differcn_iofD0_LE PRECISION

Table _':: lists the ANSI X3.9-1978 complex functions. GRESS does not support

complex functions.
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Table A.2. ANSI X3.9-1978 COMPLEX functions not supported by GRESS

,. : . . .. .

Nine "::._.:_ii:..::":_i:":_i!_::i::_"_." " _i_"i::_'" _:_Definition .......

_0_" >.: : ::__!::=:': . :imaginary.part Of COMP__ber ! i: i: !: I:_ ::
CABS i:::i:>':: :i:> absolute Value:of COMPLEX n_ber !_:ii!:!i::: :!!!i_:!!!i:;:::::i!_:i:::i:::i_:::i:_:

:CLOG _:!i::ii_::_i:=!_::ii!:ii?': :natural:logarithm of coMPLEX:humOr? i !ili:::::::::i::::_

>CONJG i::::::::i:::::i::;il;;:: conjugateof COMP_!n_ber::: :::!:;i::-!: :::::!!:i........:i:
CSIN ............ . :.:!:>?'i.::. .:::i::: . - " sine of COMPLEX number -.,i:.i.:i::,_,_::.:::-:...:.._:..:.:,::...:,:.:<.

_:_:cSQRT:::.:::_i:,.!i!_!i..._.i:.:.!_:._i:.i/:.::.:.•..... • :.:.squareroot of COMPLHXnum_r i.lii: -,:.. :.!;i_:.i_:::....:
. . ... -...:..: .. :- :.:.: ..., ..,..

I

Shown in Table A.3 are those standard functions that are not supported by GRF_S at
the present time but may be supported by future releases of GRESS.

Table A.3. ANSI X3.9-1978 FORTRAN 77 functions that may
be supported in future releases of GRESS

......._ .... ......:..... _: _ ::_:::iii ._ i :::::iil
ilNam e _._!:.!i_._:i_i:_.:_ ii.. :_i.: Definition _i:!.. i+:_.: _:_.._:_.:_>>_::_ .....•.....-

• i+I:I_I:_-_,ii,. _i_ >•::•:i_!iii:i:_::_iii!ii-:_

A.2. Lan_aage Restrictions

The last REAL or DOUBLE PRECISION assignment executed in a REAL or
DOUBLE PRECISION function must assign the val_,e to that function. The user must check
that ali REAL and DOUBLE precision functions in the code to be enhanced do not violate this
restriction.

The main program must be the first routine in the program to be enhanced. If the
program is broken into several files, each file may be enhanced separately. However, the main
program must be the first routine in the file in which it is contained. The last FORTRAN
statement in any file enhanced must be an END statement.

GRESS supports the use of include statements in the unenhanced program if they have
the following syntax:
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include 'filename'

The include statement cannot be the last line in the file to be enhanced.

GRESS does not support the use of intermediate scratch flies. Circumstances where
-, calculated variables are written to external data storage and then later read and used can cause

results to be incorrect. At the point where terms are read in, derivatives are initialized to zero.

If the dependency of a response to a parameter is propagated through a variable that is written
to scratch and later read in, the derivative will most likely be wrong. We are working on

methods to handle this problem; however, at present we are handling it on a case-by-case basis.
Usually we are re-writing the program, prior to processing with GRESS, to remove the use of

external storage.
GRE_S does not support REAL or DOUBLE PRECISION arrays with more than four

dimensions that are initialized with read statements. Arrays with up to seven dimensions are

supported in ali other situations. If an array with five or more dimensions is input via a read
statement either the logic will have to be re-written to remove the array from the read statement,
or the *SYMG OFF directive should be used to prevent processing of the statement.
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APPENDIX B - CHAIN SAMPLE PROBLEM

The CHAIN option calculates the sensitivities of a variable with respect to a user-
selected subset of the input data by repeated application of the chain rule. The CHAIN option

" reports sensitivities as the model is executing and is the recommended option when the user is
only concerned with a very small number of input parameters. The flow chart shown in Fig. 2.1
illustrates the processing steps for a GRESS application. A FORTRAN 77 program is input to
the GRF__S precompiler (SYMG). SYMG creates a new FORTRAN program that when
compiled and linked with the GRESS run-time library is capable of calculating derivatives for
each floating point assignment statement along with the normally calculated result.

The user inserts application dependent subroutine calls to control the execution. For the
CHAIN option the user must identify parameters and results of interest. The derivatives of
selected results may be retrieved using the "get"routines (GETGXX, G TNXX), or derivatives
and sensitivities may be reported using the PRNTXX routine. A simple FORTRAN program
is presented as an example. The processing steps and output information necessary to perform
a complete CHAIN application are shown. There are three steps in performing a CHAIN
application: 1) precompile with SYMG; 2) compile and link with GRESS run-time library; and
3) execute the enhanced code. The following program, named _.FOR (or test.f on unix
systems) is used for demonstration.

C GRE_S/ADGEN test program
" READ(5,*)B,C,D

X=B+D
• Y = D**2 + B**2

R = 7.0*X + D**2
S = Y**2
END

Assume that the FORTRAN variables B, C, and D are to be treated as independent variables
or parameters. We would like FORTRAN to report the sensitivity of variables R and S to the
chosen parameters. That is, we would like the first derivatives and sensitivities of variables R
and S with respect to B, C, and D to be calculated and reported.

To prepare the code for an CHAIN application, the *CHAIN directive must be inserted
into the code prior to enhancement. A call to subroutine AUTOXX must be inserted as the first
executable statement (i.e.,after declarations such as common, dimension, equivalence, etc.) to set
the upper limit on the number of parameters that will be selected. Subroutine calls should be
inserted to identify parameters (DEFIXX) and to report sensitivities (P XX) A description
of how to use these routines and others is included Chapter 3. To further control the
application the user may choose to insert additional directives to the precompiler.

ts
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*WSPSIZE 1 000 000
*CHAIN
*DHRIV DXDY *

CALL AUTOXX(-I,3)
C GRF..SS/ADGEN test program

READ(5,*)B,C,D
CALLDm XX0S,'B
CALLDC,' C
CAI_ DHFIXX(D,' D ')
X=B+D
Y = D**2 + B**2
R = 7.0*X + D**2

tAU. PmCrxx(R)
S = Y**2

CALL PRm'_X(S)
END

"lhc *WSPSIZE direc_ controlsthe amount of memory allocatedin words used for

propagatingderivatives.The defaultvalueisprobablysufficientformostapplications;howcv'-r.
*WSPSIZE isincludedin thisexampleto aidthe userin understandinghow itisused.
WSPSIZE inthisexampleissetat1,000,000words.The *DERIV directivechangesthevariable

usedtostorethedenv:_.aveforanassignmentstatementfromthedefau't,DX, tothespecified

userspecifiedstring,DXDY.
Once thecodeispreparedforprex.ompilationthesourcecodemustbe associatedwith

logicaluni_50.On VAXIVMS systemsthisisdonewithanassignstatement.On UNIX systems
theassociationcanbemade bycopyingthesourcecodetofort_0orlinking(i.e.,In)thesource
code to fort.50. SYMG writes the enhanced source code to logical unit 7.

The following commands will make logical unit assignments and execute SYMG to
enhance _.FOR on a VAX/VMS computer.

$ASSIGN TEST.FOR for050 b

$ASSIGN TEST_SG.FOR fot_07 I,J
$RUN SYMG

The following commands can be used to execute symg on a UNIX system to enhance the sample
program named test.f.

>cp test.f fort.50
>symg
>mv fort.7 test_sg.f

t,
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The data set created during precompilation is the enhanced source program. The FORTRAN
77 compiler and link editor used with the code prior to enhancement are also used to compile
and link the enhanced code. The object module for the enhanced code must be linked with the
GRESS run-time library. The following commands can be used to compile and link

• TEST_SG.FOR on a VAXNMS computer with the GRESS run-time library (EXLIB.OLB).

$FOR T_T SGi,,.

SLINK TEST_SG,EXLIB/LIB

The following command can be used to compile and link w _sg.f on a UNIX system with the
GRESS run-time library (sgl_.o and crib.o).

>f77 -o test..sg test..sg.f sglib.o crib.o

For this example three numbers (2.0, 3.0, 5.0) were entered into a f'denamed fort.5 with
a 3E15.5 format. To execute the enhanced version of TEST.FOR (i.e., TEST_SG) on a
VAXNMS computer and report the derivatives and sensitivities of R and S with respect to A,
B, and C

$ASSIGN/USER_MODE fort.5 for005
SRUN TEST SGm

To execute test_sg on a UNIX system simply enter test..sg at the UNIX prompt.
B

>test..sg

The output from the PRNTXX is a report of derivatives and sensitivities written to
logical unit 6. The sensitivity report for the test program includes the parameter name but not
the response name.

GRADIEN'I_ FOR VARIABLE 9428
7.000000E+00 0.000000E+00 1.700000E+01

SENSITIVITIES FOR VARIABLE 9428
1.891892E-01 0.000000E+00 1.148649E+00

GRADIENTS FOR VARIABLE 9432
2.320000E+02 0.000000E+00 5.800000E+02

SENSITIVITIES FOR VARIABLE 9432
5.517241E-01 0._E+00 3.448276E+00

The GRADIENT is the first derivative. Gradients and sensitivities are reported when PRNTXX
. is called. It is the responsibility of the user to keep track of the order in which PRNTXX is

calked. Many users prefer to use the GETGXX or GETNXX routines to retrieve derivatives so
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that they can generate their own report, tailored to meet their needs. PRNTXX is useful for
a quick look at the derivative and sensitivity values or for debugging.

This example shows how to do a simple program using the CHAIN option. Library
routines and precompiler directives can be used to adapt the enhanced code for a more advanced
application. The interested user should review the sections on GRESS library routines and
directives to the precompiler for helpful suggestions.
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APPHNDIX C - ADGEN SAMPI_ PROBLEM

" ADGEN was developed as a GRESS option that provides the capability of automated
implementation of the adjoint sensitivity methods into existing FORTRAN 77 models. The flow

•, chart showa in Fig. 2.1 illustrates the processing steps for a GRESS application. A FORTRAN
77 program is input to the GRESS precompiler (SYMG). SYMG creates a new FORTRAN
program that when compiled and linked with the GRESS run-time library is capable of
calculating derivatives for each floating point assignment statement along with the normally
calculated result. For an ADGEN application, these derivatives are either stored in memory or
written to a computer disk in a structure that can easily be solved by back substitution. GRESS
run-time library routines (i.e., BSOLXX or FBSOLXX) or utility programs (BSOLVE and
BREDUCE) are then used to solve the matrix for user selected results of interest. A report of
sensitivities and derivatives for selected results with respect to ali or part of the input data is
generated. Input data is identified either automatically as any data that is entered via a
FORTRAN read stateme.nt or manually by the user through the insertion of subroutine calls to
the GRESS run-time library.

A simple FORTRAN program is presented as an example. The processing steps, data
sets created, output information, and utility programs necessary to perform a complete
application are shown. There are four steps in performing an ADGEN application: 1)
precompile with SYMG; 2) compile and link with G.RESS run-time library; 3) execute the
enhanced code; and 4) solve the matrix. The following program, named TEST.FOR (or test.f
on unix systems) is used for demonstration.

C GRESS/ADGEN test program
READ(5,*)B,C,D
X=B+D
Y = D**2 + B**2
R = 7.0*X + D**2
S = Y**2
END

Note specifically that FORTRAN variables B, C, and D are input via a READ statement which
means they will automatically be treated as independent parameters. Let's assume that we would
like FORTRAN variables R and S to be chosen as results of interest. That is, we would like the

first derivatives and sensitivities of variables R and S with respect to B, C, and D to be calculated

and reported.
To prepare the code for an ADGEN application, subroutine calls must be included to

identify the purpose of the run (SETRXX), to select results of interest (POTRXX), and to
either solve the matrix (BSOLXX or FBSOLXX), or to clear the matrix buffers (CLEARXX).

- A description of how to use these routines and others is included Chapter 3.
To further control the application the user may choose to insert directives to the

. precompiler. For a small code such as TEST.FOR, the directives are unnecessary; however,
some have been included in this example to aid the user in understanding how they are used.
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•COMMENTS ON
•DERIV DXDY

Sm'RXX('AD_OIN_
C GRESS/ADGEN test program

READ(5,*)B,C,D
X=B+D
Y = D**2 + B**2
R = 7.0*X + D**2

POTRXX(R,'R3
S = Y**2

CALLPOTRXS,' S3
CALL BSOLXX(-1,45,0.001)
END

The first two lines are directivesto the precompiler.The *COMbiENTS ON directive causes
the precompiler to passanycommentsbeginningwith a 'C' or 'c' in column one to the enhanced
code. The default is to not include comments in the enhancedcode. The *DERIV directive
changes the variable used to store the derivative for an assignment statement from the default,
DX, to the specified user specified string, DXDY.

Once the code is prepared for precompilation the source code must be associated with
logical unit 50. On V_S systems this is done with an assign statement. On UNIX systems
the association can be made by copying the source code to forL50 or linking (i.e., In) the source
code to fort.50. SYMG writes the enhanced source code to logical unit 7.

The following commands will make logical unit assignments and execute SYMG to
enhance TEST.FOR on a VAX/VMS computer.

$ASSIGN T_T.FOR for050
$ASSIGN TEST SG.FOR for007
SRUN SYMG

The following commands can be used to execute symg on a UNIX system to enhance the sample
program named test.f.

>cp test.f fort.S0
>symg
>my fort.7 test_sg.f

The data set created during precompilation is the enhanced source program. The FORTRAN
77 compiler and link editor used with the code prior to enhancement arc also used to compile
and link the enhanced code. The object module for the enhanced code must be linked with the

GRESS run-time library. The following commands can be used to compile and link
TEST SG.FOR on a VAXJVMS computer with the GRESS run-time library (SLIB.OLB).D
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$FOR TEST SGm

SLINK TEST SG,SLIB/LIB
,=

The following command can be used to compile and link test_.sg.f on a UNIX system with the
-. GRESS run-time library (sglib.o and clib.o).

> f77 -o test..sg test_sg.f sglib.o clib.o

For this example three numbers (2.0, 3.0, 5.0) were entered into a file named fort.5 with
a 3E15.5 format. To execute the enhanced version of TEST.FOR (i.e., TEST_SG) on a
VAX/VMS computer and report the derivatives and sensitivities of R and S with respect to B,
C, and D

$ASSIGNAJSER_MODE fort.5 for005
$RUN TEST SG

To execute testsg on a UNIX system simply enter test..sg at the UNIX prompt.

>test..sg

" As an alternative to solving the adjoint matrix with BSOLXX (or FBSOLXX) the user
can choose to output the adjoint matrix to disk and solve it with the BSOLVE program. To

, output the adjoint matrix to disk, replace the call to BSOLXX in the sample program with a call
to CLEARXX. CLEARXX has no arguments. When the enhanced program is executed, an
adjoint matrix will be created.

The two utility programs used to solve the adjoint matrix are BREDUCE and BSOLVE.
BREDUCE implements the back reduction algorithm discussed in Reference 1 to create a
"reduced" form of the adjoint matrix. The BREDUCE step can only be executed one time and
is only needed when working with large models. Since TEST.FOR is a small program we will
skip the BREDUCE step and proceed directly to BSOLVE. To solve the matrix enter the
following.

$RUN BSOLVE

On UNIX systems simply enter bsolve.

>bsolve

The BSOLVE program will request a value for the smallest sensitivity to report (i.e., CUTOFF).
. In practice sensitivities that are less than 0.01 are of little interest. Entering a value of 0.0 for

. CUTOFF will result in ali sensitivities being reported.
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The output from the BSOLVE program is a report of derivatives and sensitivities written
to logical unit 45. The sensitivity report for the test program includes both response and
parameter names.

Row number for response = 6 Number of parameters = 3

RESPONSE 1 R = 7.40(KI00D+01

ROW NAME DERIVATIVE SENSrlTClTY
1 B 7.00000E+00 1.89189E-01
2 C 0.00000E+00 0._E+00
3 D 1.70000E+01 1.14865E+00

Row number for response -- 7 Number of parameters = 3

RESPONSE 2 S = 8.410000D+02

ROW NAME DERIVATIVE SENSITIVITY
1 B 2.32000E+02 5.51724E-01
2 C 0.00000E+00 0.00000E+00
3 D 5.80000E+02 3.44828E+00

This example shows how to do a simple program using the ADGEN option. Library
routines and precompfler directives can be used to tailor the enhanced code for a more
advanced application. The interested user should review the sections on GRE_S library routines
and directives to the precompfler for helpful suggestions.

92



APPENDIX D - THE GENSUB OPTION

GENSUB is used to process a subset of a program (i.e., a do ioop, subroutine, function,
a sequence of subroutines, or a whole program) for calculating derivatives of dependent variables

- (responses) with respect to independent variables (parameters). GENSUB allows the processing
of program units as small as a do loop or as large as an entire program for derivative calculation.
GENSUB will use either forward or reverse chaining depending on which is most efficient for
the given problem.

If derivatives are to be calculated with the GENSUB option, independent variables must
be declared at the beginning of the section of code being processed with one of the parameter
declaration routines GENPXX, GENAPX_ or GENDPXX. Parameters must have been

assigned values befor_ the section of code through which derivatives are to be propagated is
executed. For example, if GENSUB is used to calculate the derivatives of the results from a
subroutine with respect to the REAL variables provided as arguments into the subroutine, those
arguments will have to be identified as parameters on entry to the subroutine.

Run-time routine GENRESXX is used to identify responses. Responses can be any
floating point variable calculated in the subroutine or section of code through which the
derivatives are propagated.

The user must supply a two-dimensional, single-precision array for storing tbe derivatives.
The array should be dimension N by M, where N is the number of dependent variables, and M
is the number of independent variables declared in the sub-section of the program. At the end

" of the sub-section (e.g., function or subroutine) being processed with the GENSUB option, the
user should insert a call to subroutine CHAINGG with the result a:'ray as an argument.
CHAINGG will apply the chain rule in either forward or reverse mode to solve for the
derivatives of the dependent variables with respect to the independent variables. The derivatives
will be returned to the calling program in the array provided by the user.

By default the GENSUB option uses dynamic allocation. CHAINGG returns the amount
of memory used processing the derivatives in the second and third arguments. The third
argument is the amount of memory required in four byte words that was automatically set to
zero. The second argument is the amount of memory in bytes that was not automatically set to
zero.

The ALLOCGG routine can be used to pre-allocate memory for the section of code
being processed with GENSUB. Depending on the code being processed, the operating system,
and the computer resources available, pre-allocating memory may be more efficient. The first
time a section of code is processed, the chain routines provide information about memory usage.
This information can be used in subsequent executions to specify or estimate the amount of
memory to request using ALLOCGG. Since the amount of memory used to process a section
of code can vary, the user must be careful when using ALLOCGG. However, on some
operating systems even over estimating the amount of memory to allocate with ALLOCGG is
more efficient than not pre-allocating memory.

Urx3n return from CHAINGG the memory allocated for storing and propagating
derivatives is released.w
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GENSUB can be used to process ali or part of a program; however, the first step in a
GENSUB application is to separate the section of code to be proc.a_ed from the rest of the
program. The first example shows the calculation of derivatives for the output from subroutine
SUB1 (i.e., B) with respect to the input (i.e., X(1), X(2), X(3), and X(4)). To prepare the
subroutine SU'BI for precompilation, use the *GENSUB directive. Subroutine calls to declare
parameters and responses can be inserted before or after enhancement. Also, call to CHAINGG
can be inserted before or after enhancement. In the example, derivatives of responses with
respect to parameters are output with a print statement. Note that the array RESULT was
dimensioned one-by three to hold the derivatives of one result with respect to three declared
parameters.

*gemub
SUBROUTINE SUBI(AA, BB,CC)
DIMENSION X(4),RE, SULT(1,3)
EQUIVALENCE(FX, RX)

C

C Declare AA, BB, and CC to be parameters
C

caugcnpm,)
taugcnpxx(BB)
,:aUg,nnp=(DD)

C
CC=3.

FX=AA/BB + CC*DD
RANN - 1.0

A- RANN * IX

B = ATAN(ABS(A/(A+3.1)))-S]]_(SQRT(A/DD))

C = ALOG(ABS(B)) + EXP(B/(B+2.5))
B = A*B/C + ALOGI0(ABS((C+A)/B)) + COS(ABS(C)/C**2)
B = A**2/ABS(B)**I.02* B

canchaingg(resul)

print*,' memory allocated (imem) =',imem
print*,' memory allocated pre-set to zero (izero) =',izero
print*,(result( 1,ij),ij -- 1,3)
RETURN
END

Subroutine SUB1 is ready tO be enhanced with the GRESS precompiler. The following
commands will make logical unit assignments and execute SYMG to enhance SUB1.FOR on a
VAX/VMS computer.
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SASSIGN SUB1.FOR for05O
$ASSIGN SUB1 SG.FOR for007
$RUN SYMG

" The following commands can be used to execute symg on a UNIX system to enhance the sample
program named subl.f.

>cp sub l.f fort.50
>symg
>my fort.7 subl..sg.f

The data set created during precompilation is the enhanced subroutine, SUBI_SG.FOR (or
subl_sg. 0. The following main program (MAIN.FOR or main.f) will be used to call subroutine
SUB1.

PROGRAM MAIN
C

AA - 1.0
BB - 2.0
DD - 4.O

CALL SUBI(AA, BB,DD)
END

• The FORTRAN 77 compiler and link editor used with the code prior to enhancement are also
used to compile and link the enhanced code. The object module for the enhanced code must
be linked with the GRESS GENSUB library. The following commands can be used to compile
and link SUBI_SG.FOR on a VAXNMS computer with the GRESS GENSUB library
(genlib.obj).

$FOR SUB1 SG
SFOR MAIN

SLINK MAIN,SUB1..SG,GENSUB

The follo,,Sng command can be used to compile and link testsg.f on a UNIX system with the
GRESS GENSUB library (genlib.o).

>f77 -o subl..sg main.f subl..sg.f genlib.o

The RUN command is used to execute the enhanced version of SUB1 on a VAXNMS system.

$RUN SUB1 SGD

On unix systems, simply enter the program name at the system prompt.
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>sublsg

With the GENSUB option the output is determined by the user. In this example the amount
of memory used during the execution of SUB1 and the derivatives of B with respect to the
declared parameters are output with print statements.

memory allocated (imem) = 288
memory allocated pre-set to zero (izero) = 64
12.13453484 -6.067267418 71.32409668

On subsequent executions of the program, the user may choose to use the values printed out for
imem and izero to pre-allocate the memory required for subroutine subl_sg. Memory can be
pre-allocated using the AI2X)CGG h_oraryroutine. The following example shows how
ALLOCGG could be used with subroutine SUB1 SG. The call to ALLGCGG can be insertedm

before or after enhancement.

SUBROUTINE SUBI(A_BB,DD)
DIMENSION X(4),RESULT(1,3)
EOUrVALENCE(F RX)

C Pre-allocate memory
tauanoc2Ss,64)

C

C Declare AA, BB, and CC to be parameters
C

can gen_AA)
can gen_u(BB)

genl_DD)
C

CC-_3.

FX=AA/BB + CC*DD
RANN = 1.0

A = RANN* DC:

B = ATAN(ABS(A/(A+3.1))) - SIN(SQRT(A/DD))
C = AI_G(ABS(B)) + EXP(B/(B+IS))
B - A*B/C + ALOG10(ABS((C+A)/B)) + COS(ABS(C)/C**2)
B = A**2/ABS(B)**I.02 * B

callchaingg(u])
print*,' memory allocated (imem) =',imem
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print*,' memory allocated pre-set to zero (izero) =',izero

. print*, (result (1,ij),ij= 1,3)
RETURN
END

When using ALLOCGG the user must be careful to ensure that enough memory is pre-
allocated. For small subroutines on most systems ALLOCGG is not necessary. For large
segments of code the user may see significant savings in execution time and memory utilization;
however, the impact of ALLOCGG is machine and problem dependent. I would recommend
using ALLOCGG whenever you know the amount of memory required. Don't use ALLOCGG
the first time you run a new routine or problem.

GENSUB can also be used to process an entire program. In most cases CHAIN or
ADGEN would be more efficient; however, if a code is iterative and you can solve for
derivatives between iterations, GENSUB with its dynamic allocation may have some benefits.
The following program is set up for a GENSUB application.

*gemub
*comments on
C GRESS/GENSUB SAMPLE PROBLEM 2

PROGRAM JMA

DIMENSION X(4),F(4,4,4),RS(1000)
PRINT*,'** GRESS SAMPLE PROBLEM B.I.1 **'
PRINT*,'* *'

,,, PRINT*,'* PLEASE ENTER *'
PR/NT*,'* 1.3 3.0 4.0 4.5 *'

READ(5,*)(X(I),I=L4)
PRINT*,'X(I),I---1,4)',X

C

C Define X to be an array of parameters
C

call gena_x,4)
LOOP1 = 4
LSUMO = 100
D=0.0
DO 1 I - 1,LSUMO

CALL SUB I(I,A,B,X)
CALL SUB2(I,F,X, LOOP1)
FS - 0.0

DO 2 J = 1,LOOP1
DO 2 K = 1,LOOP1
DO 2 L = 1,LOOP1

. FS = FS + F(LK,J)
. 2 CONTINUE
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BFS- B + FS

RS(I) = BFS
D=D+BFS

C
C DECLARE POTENTIAL RESPONSES
C
1 CONTINUE

WRITE(6,9) D
9 FORMAT(lH ,'D',IPE16.8)
8 FORMAT(lH ,'A,BT(1H ,I3,1P,4E16.8))
C D is deeaattd a rmi_me

callsearmm>)
C Tlm CHAINREV routine implements chain rule
C Jn reverse mode with dmivat/ves returned in DX.
C

cancha_'v(dr_mi_cano0
C

C IMALI/X3 is memory allocated
C ICALLOC is memory allocated and prese_ to zero

print*,' malloc =',imalloc,' calloc =',icalloc
write(6,*)(dx(j),j = 1,4)
STOP
END

SUBROUTINE SUBI(I_B,X)
DIMENSION X(4)
FX= X0)OC(2)+ X(S)'X(4)
RANN - 0.0

CALL OmXAN(RANN)
A-- RANN* FX

B = ATAN(ABS(A/(A+3.1))) - SIN(SORT(A/X(4)))
C = ALOG(ABS(B)) + EXPCB/(B+2.5))
B = A*B/C+ ALOG10(ABS((C+A)/B))+ COS(ABS(C)/C**2)
B = A**2/ABS(B)**I.02 * B
RETURN
END

subroutine SUB2(I,F,X,LOOP1)
DIMENSION X(4),F(4,4,4)
DO 1 II = 1,LOOP1
DO 1 ff = 1,LOOP1
DO 1 K = 1,LOOP1
RANN --0.0

CALL OETRAN(RANN)

FXR - X(3)**2/COS(RANN**2) - SQRT(RANN*X(4)*X(2)) )



FXR = FXR*X(4) + MAX(X(1),X(2),X(3),X(4))
FXR - FXR- MIN(X(1),X(2),X(3),X(4))

" FXR -- _ * FLOAT(MIN0(K,J,II))/FLOAT(MAX0(K,J,II))
= FXg*X(1)*X(1)*aANN*gAm

F(K,J,II) = X(1)** RANN/EXP (RANN) + FXR*EXP (2.001 *RANN)
1 CON-TINUE

RETURN
END

The output from this sample problem includes the derivatives of D with respect to the elements
in array X, as well as the amount of memory required.

total malloc = 2548816 total calloc = 1237
1067380. -19961.63 401086.7 149175.0

Though not shown, it would be possible to solve for derivatives between iterations in the
previous example, thus reducing overall memory requirements. The X array and D are the only
variables that need be retained between iterations.
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APPENDIX E -IMPLEMENTATION NOTF_S

" My experiences in implementing GRF__S on the various computers and operating systems
is provided in this section. Though computer scientists are working very hard at defining
standards for languages such as C and FORTRAN, the interfacing between those languages is
far from standardized. Most of the differences between the various implementations of GRESS
are related to the interfacing between C and FORTRAN. Provided is information on how to
compile and link the GRESS precompiler and run-time libraries.

F_I. VAX/VMS

GRESS was developed in the VAX/VMS environment. Most of the major program
options have been tested by application to programs used in the nuclear industry and elsewhere.
The following instructions will create SYMG.EXE.

$FOR SYMG
SLINSYMG

The GRESS Run-Time Library can easily be created as an object library.

$FOR SGLIB
- $ccCUB

SLIB/CRF_TE SLIB SGLIB,CI2B

An enhanced program named TEST_SG.FOR should be compiled and then linked with the
object library.

SFOR TEST SG
$D'.EHNE LNKSLIBRARY SYS$LIBRARY:VAXCRTLOLB"

SI.INKTEST_SG,SLIB/LIB

The executable image, TEST..SG.EXE, is now ready for execution.
The GRESS GENSUB option requires only GENLIB.C. To compile GENLIB.C enter

the following.

$CC GENLIB.C

If TEST_SG.FOR is precompiled with the *GENSUB directive, ther. the following commands
will compile and link TF_T..SG.FOR and create an executable program, TEST_SG.EXE.

"Define lnk$library only needs to be done once during a session.
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h_m

$FOR TEST SGm

$DEFINE I2qKSLJ33RARY SYS$LIBRARY:VAXCRTL.OLB
SLINKTEST SG,GENLm

The VAX/VMS G_FLOAT option dogs not work under ali circumstances with GRESS.
ADGEN and CHAIN will work unless the value of a derivative falls outside the range E-38 to
E+38, approximately. The run-time libraries must be compiled with the G_float option. Since
GRESS propagates derivatives in single precision and GFLOAT allows double precision
exponents in the range E-300 to E+300 it is possible for a derivative to be too big or too small
for GRESS. In most circumstances this does not occur.

E.Z IBM/AIX

GRESS was implemented on an IBM/6000 RISC Work Station. Most major program
options have been tested. The following instructions were used to create a precompiler named
symg, and to compile the run-time libraries.

$xlf-o symg symg.f
$xlf-c sglib.f
$cc -c clib.c

$cc -c genlib.c

For a CHAIN or ADGEN application, an enhanced program named tgst_sg.f would be compiled
and linked with sglib.o and clib.o to create an executable file named sg.

$xlf -o sg tgst..sg.f sglib.o clib.o

For a GENSUB application, test. sg would be compiled and linked with genlib.o to create an
executable file named sg.

$xlf -o sg test_sg.f genlib.o

E3. VAX/ULTmX

GRESS was implemented on a VAX with ULTRIX operating system. ULTRIX is a
UNIX operating system. This version has undergone very limited testing. Most major program
options were tested on small sample problems. The following instructions were used to create
a pre,compiler named symg, and to compile the run-time libraries.

$f77 -o symg symg.f
$f77 -c sglib.f
$cc -c clib.c

$cc -c genlib.c
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For a CHA_ or ADGEN application, an enhanced program named testsg.f would be compiled
and linked with sglib.o and clil:,.o to create an executable file named sg.

sr

$f77 -o sg test..sg.f sglib.o clib.o
.l

For a GENSUB application, te,,tsg would be compiled and linked with genlib.o to create an
executable file named sg.

$t'/7 -o sg testsg.f genlib.o

Due to system limKatiom the amount of memory required by the enhanced code was
severely restricted. Following the instructions in Chapter 4, parameters IWORKSZ, LSTOT,
LTOT, MAXR, and ITAB were substantially reduced. A significant reduction in those
parameters creates a version of GKF_.SSthat is suitable for small problems (as measured in
execution time and memory requirements). CHAIN option should work for larger problems;
however, _A3GEN _ severely limited.

E.4. SU_I

GRESS wasimplementedon a SUN SPARC Station 1+. This version has undergone
very limited testing. Most major program optionswere tested on small sampleproblems. The

. following instruc'ions were us_.clto create a precompiler named symg, and to compile the run-
time libraries.

$f77 -o syrng s2ang.f
$f77 -e sglib.f
$f77 -c flib.f
See -e elib.t_

Src -c genlib.c

For a CHAIN or ADGEN application, an enhanc,'-d program named test_.sg.f would be compiled
and linked with sglib.o and clib.o to create an executable file named sg.

$f77 -o sg test..sg.f sglib.o clib.o

For a GENSUB application, test_sg would be compiled _,nd linked with genlib.o to create an
executable file named sg.

$f77 -o sg t_-"tsg.f flib.o genlib.o

Due to system limitations the amount of memory req dred by the enhanced code was

,. severely restricted. Following the instructions in Chapter 4, parameters IWORKSZ, LSTOT,
LTOT, MAXR, and ITAB were substantially reduced. A significant reduction in those
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parameters creates a version of GRE_S that is suitable for small problems (as measured in
execution time and memory requirements). CHAIN option should work for larger problems;
however, ADGEN is severely limited.

E.5. HEWLEVF-PACKARD Q.

GRESS was implemented on a HP 9000 Work Station. This version has undergone very
limited testing. Most major program options were tested on small sample problems. The
following instructions were used to create a precompiler named symg, and to compile the run-
time libraries.

$f77 -o symg symg.f
$f77 -c sglib.f
$cc -c clib.c

$cc -c genlib.c

For a CHAIN or ADGEN application, an enhanced program named test..sg.f would be compiled
and linked with sglib.o and clib.o to create an executable file named sg.

$f77 -o sg test_sg.f sglib.o clib.o

For a GENSUB application, testsg would be compiled and linked with genlib.o to create an
executable file named sg.

$f77 -o sg test..sg.f flib.o genlib.o

On the HP, SYMG writes the enhanced code m logical unit 70.
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