szl

vl

91

|
Il

o

EFFEERERE o
£F

| =

|
I
I

81
%

9t
el

i
I
i

8

K72
. 5T

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their

Cevn%—ﬁ’so(oa%s-- [

Title: | Global Atmospheric And Ocean Modeling On The
Connection Machine

LA-UR- 93-4224

am "
BNER o
Y

osT!

Author(s): | Susan R. Atlas
Thinking Machines Corpo ation

Submitted to: | F.X. Le Dimet, ed., Proceedings of the NATO
AST Workshop in High Performance Computing
in the Geosciences

MASTER

employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
mendation, or favoring by the United States Government or any agency thereof. The views

an? opinions of authors expressed herein do not necessarily state or reflect those of the

manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
United States Government or any agency thereof.

Los Alamos

NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity empldyer, is operated by the University of California for the U.S. Department of Energy
under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution, or to allow otners to do so, for U.S. Government purposes. The Los Alamos National Laboratory

requests that the publisher identity this article as work performed under the auspices of the U.S. Department of Energy.
Form No. 836 R5
ST 2629 10/91

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED ga,tf

GLOBAL ATMOSPHERIC AND OCEAN MODELING ON THE
CONNECTION MACHINE

SUSAN R. ATLAS™
Thinking Machines Corporation
245 First St.

Cambridge, MA 02142 USA

ABSTRACT. This paper describes the high-level architecture of two parallel global climate models: an
atmospheric model based on the Geophysical Fluid Dynamics Laboratory (GFDL) SKYHI model, and an
ocean model descended from the Bryan-Cox-Semtner ocean general circulation model. These parallel
models are being developed as part of a long-term research collaboration between Los Alamos National
Laboratory (LANL) and the GFDL. The goal of this collaboration is to develop parallel global climate
models which are modular in structure, portable across a wide variety of machine architectures and
programming paradigms, and provide an appropriate starting point for a fully coupled model. Several
design considerations have emerged as central to achieving these goals. These include the expression of
the models in terms of mathematical primitives such as stencil operators, to facilitate performance
optimization on different computational platforms; the isolation of communication from computation to
allow flexible implementation of a single code under message-passing or data parallel programming
paradigms; and judicious memory management to achieve modularity without memory explosion costs.

1. Introduction

As an enterprise of inherently international scope, the long-term, high-resolution simulation of the
Earth's global climate presents unique opportunities for large-scale collaboration and research.
The prospect of imminent availability of raw processing power in the 100 GFlops range, combined
with rapid and continuing refinements in the models themselves, led to the initiation of the U. S.
Department of Energy CHAMMP (Computer Hardware, Advanced Mathematics, and Model
Physics) Climate Modeling Program in 1990 [1]. The mission of this program is to develop new
algorithms and numerical techniques to take advantage of the increasing computational power
provided by a new generation of (parallel) computer architectures, and thus to facilitate the
development of integrated models that incorporate the effects of such complex processes as
atmospheric photochemistry, land vegetation, and atmosphere/ocean/sea-ice interactions.

* The work described in this paper is the result of a collaboration between scientists at Los Alamos
National Laboratory (LANL), the Geophysical Fluid Dynamics Laboratory (GFDL/NOAA, Princeton
University), Thinking Machines Corporation (TMC), and Cray Research, Inc. (CRI), under the auspices
of the U. S. Department of Energy CHAMMP (Computer Hardware, Advanced Mathematics, and Model
Physics) Climate Modeling Program, directed by R. C. Malore (LANL). The coliaboration consists of J.
K. Dukowicz, P. W. Jones, S. Kortas, R. C. Malone, and R. D. Smith (LANL); C. H. Goldberg and R.
Hemler (GFDL); S.R. Atlas and K.-S. Cho (TMC); and C. L. Kerr (CRI).

For the past several years, the Climate Modeling Group at Los Alamos National Laboratory
(LANL) has been engaged in a research collaboration with the Geophysical Fluid Dynamics
Laboratory of the National Oceanic and Atmospheric Administration (GFDL/NOAA), under the
auspices of CHAMMP, to develop massively parallel versions of two of the GFDL's ocean and
atmospheric modeling codes. The initial target for the parallel versions of these codes has been the
Connection Machine installed at LANL's Advanced Computing Laboratory (ACL)~ initially a 64k
CM-200, which was recently upgraded to a 1024 node CM-5. Since the CM-5 can be programmed
to run in either message passing or data parallel mode {2], it has been possible to address the issue
of portability concurrently with the design of the parallel models themselves. The eventual goal is
to produce full-scale models which can run on virtually any platform, ranging from a serial,
standalone workstation, to a multitasked Cray YMP/8, to a loosely-coupled cluster of workstations
running PVM, to a massively parallel machine such as the CM-5 running High Performance
Fortran (HPF)—- all without significant sacrifice of performance on any individual platform.
This is particularly important for implementations running on the largest parallel machines, such as
the CM-5, since these will he used to perform very long, high-resolution experiments, probing the
limits of ¢'imate predictability on centuries-long timescales.

Another driving force in this work, particularly with regard to the atmospheric model, has been
the development of modular codes, to facilitate the interchange of individual components such as
radiation packages or dynamics solvers within the models. In this way, different implementations
(grid vs. spectral; alternate physical parametrizations) can be compared in a controlled fashion, or
provided to researchers as standalone modules.

The focus of this paper will be the high-level architecture of the ocean and atmosphere models
and their implementation on the CM-5. We begin with a history and brief description of the
atmospheric and ocean models in Section 2, followed by an overview of the CM-5 architecture in
Section 3. The design of the parallel models is described in Section 4, with examples to illustrate
the accomodation of various communication, memory management, and programming paradigms.
We conclude with a discussion of future directions in Section 5.

2. Two Models
2.1 SKYHI

SKYHI is a general circulation model of the atmosphere, developed at GFDL [3]-[6]. It is a global
hydrostatic model with 40 levels extending to 80 kilometers, utilizing a rectangular
latitude/longitude grid in the horizontal, and a sigma coordinate system in the vertical. Fourier
filtering is used to eliminate high-frequency features near the poles. The model integrates the
primitive equations for the prognostic variables, including wind velocity, temperature, water vapor
mixing ratio, and (optional) user-selected tracers. Radiative heating, an input to the primitive
equations, is re-calculated every fixed number of timesteps, as specified by the user. Following
each time step, diagnostic variables are caiculated and optionally written out to storage.

The process of converting SKYHI to parallel form began in 1990, with the development of an
array-symax version of the original 40,000 line Fortran 77 code. This new version of SKYHI
consisted of 20,000 lines of Fortran 90 which could be run on GFDL's Cray YMP/8 following the
application of a pre-processor [7] that converted the Fortran 90 back into Fortran 77 for the Cray
compiler. At that point, the code was still structured in terms of array “"chunks”, in which
prognostic variables were integrated in successive grid slices, each three latitudes wide. This was

necessary because of the limited amount of main memory on the Cray. In November, 1992, work
began at LANL and GFDL to further evolve SKYHI into a true parallel model. An “in-core"
model was developed, full conversion to array syntax was completed, and HPF-style layout
directives were added to specify domain decomposition across processors. The new, parallel
version of SKYHI is presently undergoing performance optimizaticn and verification on the CM-5
at LANL and on the YMP/8 at GFDL. The first numerical experiments using SKYHI on the CM-5
will begin in early 1994.

2.2 PARALLEL OCEAN PROGRAM (POP)

POP is a global ocean model presently running in production on the CM-5 at LANL. It was
originally developed as a CM-2 port [8] of the Semtner-Chervin ocean model [9,10]. The Semtner-
Chervin model is a descendant of the Bryan-Cox model [11], variants of which form the basis for
many ocean modeling programs in use today, including the MOM model from GFDL. As detailed
in reference [8], the port of the Semtner-Chervin model to the CM-2 required a significant re-
write, since, as in SKYHI, the data structures used in the Cray implementation were ill-suited to the
efficient use of a massively parallel architecture. The authors of the port (Smith et al.) also found
that the performance of POP on the CM-2 was severely limited by the barotropic solver
implementation in the original code. They subsequently developed a reformulation of the solver in
terms of surface-pressure (rather than the streamfunction) which not only parallelized better on the
CM-2 but also made it possible to include an arbitrary number of islands in the model without
excessive computational cost [12,13]. For further details, see [8].

Many of the programming features which promote modularity and portability, such as isolating
communication within stencil routines (see Section 4.3) were first developed in POP. The model
now runs on a variety of architectures, including a workstation cluster running PVM, Cray vector
computers, and several massively parallel supercomputers, including the CM-5. As part of the
LANL/GFDL collaboration, the capabilities of the model are presently being expanded to include
the complete range of diagnostics and user interface available in MOM.

3. CM-5 Architecture

The CM-5 system [2] consists of a set of 16 to 16,384 processing nodes (PNs) with associated
memory. Each PN contains a SPARC microprocessor, 32 to 128 MB of memory, four vector
execution/memory interface units, and a network interface. Peak processing power is 32 MFlops
per vector unit, for a peak of 128 MFlops/PN. The processing nodes are coordinated by a control
processor (CP), essentially a SPARC microprocessor. The CM-5 can be divided (by the system
administrator) into groups of processors called partitions. Each partition is under the control of its
own CP, which runs an extended form of Unix known as CMOST. The CP is responsible for
coordinating and timesharing the processes in its partition. The PNs and CPs are connected to
two scalable networks, the Data Network and the Control Network, both of which are based on a
hyper-trez topology. The Data Network supports point-to-point communication between
processors, for example SENDs and RECEIVEs in MIMD-style message passing. The structure of
the Data Network avoids bandwidth contention between partitions, and the design guarantees a
minimum network bandwidth of 5 MB/sec per node, regardless of destination. The Control
Network supports communication patterns that involve all processors in a single operation; for

example, broadcasts, synchronization, and error signaling. The Control Network also provides
hardware support for cooperative arithmetic operations such as parallel prefix and reduction.

Parallel /O to the CM-5 is provided by the Scalable Disk Array (SDA), a high performance,
scalable, RAID 3 disk storage system. Like the PNs, the SDA disk storage nodes are connected to
the CM-5 Data Network through a network interface. Each SDA module consists of three disk
storage nodes, and provides 25 Gbytes of storage and 33 MB/s real application bandwidth.
Storage capacity and bandwidth scale linearly with the number of modules. Data can be
transferred to and from the SDA in parallel using standard Fortran READs and WRITEs, and SDA
files are both UNIX compatible and NFS mountable.

4. Code Design

4.1 'GENERIC' PARALLEL COMPUTATION

At the simplest level, a parallel computer can be viewed as a collection of processing nodes, or
PN's, with associated memory, coupled by a high-performance network. For purposes of high-
level code design, the actual PN architecture and network topology are largely irrelevant. The
fundamental question which determines the structure of a given applications program is the domain
decomposition: the distribution of the data across the processors which are to operate upon it.
Once this crucial decision has been made, it is possible to implement any given algorithm, across a
wide variety of machines, using a single high-level program.

There is a fundamental reality of parallel computing which makes this statement true. This is the
fact that all parallel machines in existence today, including the CM-5, are communcation- rather
than computation-limited. Thus, there is no case in which it is desirable to structure the
decomposition of a problem to avoid computation by shuffling data within the machine.

Once the domain decomposition is fixed, it is the responsibility of the programmer to ensure that
the results of the computation that each PN has performed on its data are available to any other
processors that might require it during the next round of computation. The way in which this is
done is architecture-dependent, and is determined by the degree of control that the user wishes to
retain over communication. This choice, in turn, is guided by the structure of the memory hierarchy
on the machine, and the flexibility of the programming languages and compilers which manage that
memory within an application.

As a concrete example, consider a distributed-memory parallel computer such as the CM-S.
There are two programming styles that can be used to program the CM-5: data parallel and
message passing. In data parallel programming, Fortran 90 array syntax [14] is used to expose the
inherent parallelism of a data set. For example, in both SKYHI and POP, it forces the programmer
to deal with the full latitude/longitude/depth grid as a single data structure, rather than as
individual longitude/depth slabs (as in the original Cray Fortran 77 versions). However, Fortran 90
syntax says nothing about the manner in which data is to be laid out across processors on an actual
machine. On the CM-5, this domain decomposition is accomplished through the addition of HPF-
style directives [15], which give the user considerable control over the precise arrangement of data
on each PN. For example, consider an array of the form A(i,j,k), where (i,j) 1abels a point on the
latitude/longitude grid, and k is the vertical coordinate. This is a common construct in SKYHI.
Using CM Fortran LAYOUT directives (DISTRIBUTE directives in HPF) one can specify that the
(i.j) axes be spread across all the processors on the machine, and that the k axis be located entirely
in-processor. This is written as:

real, array(imax,jmax,.kmax) :: A | F90 array syntax
cmf$ layout A(:news, :news, :serial) ! domain decomposition

When this array is used in calculations involving other arrays of the same size and LAYOUT (such
arrays are said to be "conformable"), operations involving variables that correspond to the same
grid point but different vertical index values (common in the radiation package, for example) will
involve no communication between processors. Note that there is no need for the programmer to
have any a priori knowledge about the size of the machine on which the code is eventually to run;
the actual data distribution occurs at run time, and information on the location of each grid point is
stored in the geometry associated with the array. During compilation, the LAYOUT information is
used to insert low-level communication routines into the object code wherever the compiler detects
the possibility of off-processor data motion. Depending on the fine-grainedness of the control
exercised by the programmer, there may be instances where the compiler inserts communication
calls "just to be safe”, but in fact, information is reaily only being moved within the memory of the
processor itself. One way of avoiding this vanecessary "communication” is to assert full control
over the data distribution, and insert inter-processor communication calls from within the high-
level program itself. This can can be done using a message-passing programming model. Another
way is to use detailed memory management, a form of local array equivalencing in CM Fortran,
In general, data parallel codes tend to be faster to write, easier to maintain, and more
straightforward to understand than message-passing code (the correspondence between code and
equations is more transparent), but to achieve performance comparable to a tailored message-
passing code, careful attention must be paid to memory management and the minimization of
unnecessary communication.

4.2 PROGRAMMING MODELS

As mentioned in the Introduction, an important part of this work was the design of a high-level
structure for the two models which could provide a unified framework to support a range of
programming styles. Since the CM-S supports both message passing and data parallel
programming paradigms, the availability of such a framework incidentally provides the interesting
opportunity to make a direct comparison between two different implementations of the same code
on the same machine (this work is in progress for POP). While such a comparison will
undoubtedly provide useful information, it is important to emphasize that the main reason for
undertaking the development of a unified framework is to allow a single version of each model to
be run on a wide variety of platforms, under a range of compilers.

An important early decision in the development of this framework was the adoption of Fortran 90
as the "maintenance language" for both models. This language has recently become an
international standard, intended as the eventual replacement for Fortran 77. Until Fortran 90
compilers become widely available on serial workstations and vector supercomputers, however, a
pre-compiler can be used to transform Fortran 90 syntax into Fortran 77.

Another design decision was the adoption of HPF syntax to describe the distribution of data
across processing nodes. Since HPF is not yet a standard, a mechanism for supporting vendor-
specific versions of these directives had to be developed. We have utilized the simple expedient of
a "definitions file" #included in each subroutine; this file contains vendor-specific #ifdefs which are

turned on or off for appropriate pre-processing under cpp (C pre-processor) in an architecture-
specific makefile. Here is the generic form of the CM-5 layout example from Section 4.1:

Elle define.h:

#ifdet distributed_memory
#define space_ | blank space requires special handling
#define hpf_distribute cmf$ space_ layout
#define block_ :news
#define star_ :serial
#endif

SKYHI subroutine:

subroutine example
#include "define.h"

real, array(imax.jmax,kmax) :: A ! F90 array syntax
#ifdef distributed_memory

hpf_distribute A(block_, block_ ,star_) ! HPF domain decomposition
#endif

return

end

The actual "muiti-purpose programming structure” [16] for POP and SKYHI was developed by R.
C. Malone and C. L. Kerr at GFDL during the summer of 1991 [16,17). It utilizes self-similar
domain decomposition, coupled with encapsulated communication. A summary of the approach is
as follows. (Note: for simplicity, we shall ignore the vertical coordinate in this discussion; as
described in Section 4.1, in atmospheric and ocean modeling codes this coordinate is naturally
"serial", i.e. in-processor. The domain decomposition problem is thus reduced to a consideration of
the distribution of data with respect to latitude/longitude coordinates). Consider a grid NX x NY in
extent. Define a finer level of granularity, a subgrid of the large: grid, dimensioned nx X ny, and
let nx = NX / xparts; ny = NY / yparts. Let the code be structured so that all mathematical
operations involving communication (in POP and SKYHI these are either stencil operations
corresponding to differential operators, or global sums to compute diagnostics) are encapsulated
into subroutines that are dimensioned at tiie size of the subgrid. Use makefiles to ensure that the
appropriate (depending on the programming model) versions of each communication-based
subroutine are linked in to the rest of the program (including a manual domain-decomposition
subroutine invoked at the start of the program in the case of message-passing). Then, as detailed
in [17], it is possible, with this high-level structure, to support both data parallel and message-
passing implementations on distributed memory machines, as well as "worksharing" 18] on
distributed or shared memory architectures. The implementation is determined by the
combination of communications routines and the values selected for xparts and yparts. For
example, consider the case of a distributed-memory parallel machine such as the CM-5. When
xparts=yparts=1, the "subgrid" extends over the entire global domain; the code is an ordinary data

parallel program, and the corresponding communications-based subroutines are expressed in terms
of Fortran 90 constructs such as CSHIFTs. The actual communication is handled implicitly by the
CM-5 run-time system. When xparts and yparts are > 1, the subgrids are local to the processing
nodes, and the communications-based subroutines employ MIMD-style SENDs and RECEIVEs.
In this latter case, the availability of Fortran 90-to-Fortran 77 preprocessors makes it possible to
support message-passing architectures other than the CM-5 (eg., the Intel Paragon) for which
node-level Fortran 90 compilers are not yet available.

4.3 MATHEMATICAL PRIMITIVES

In optimizing the data parallel version of POP on the CM-5, immediately following its migration
from the CM-200 (late 1992), it was determined that stencil operations on the CM-5 were
occupying a fairly large percentage of the total execution time. The two main stencils involved
were a nine point stencil in the barotropic solver, and a five point stencil in the baroclinic solver.
At very large subgrid ratios (~ 2048) [19], these operators were responsible for over 33% of the
run time; at a moderate 'subgrid size of 128 (a size more typical of anticipated production runs of
POP at LANL), this figure was roughly 72%. A detailed analysis of these results [20] showed that
by optimizing communication at the level of the run-time-system (RTS), performance could be
improved significantly. This was accomplished by adding generalized support within the RTS to
cache geometry information, making it possible for the CM-5 to perform the arithmetic component
of the stencil operations with a minimal amount of communications overhead.

In addition, since POP had been written in such a way as to isolate the communications
component of the code (i.e. the stencils), it seemed natural to try to optimize their performance
directly, at the assembly-language level. A summary of results obtained using these hand-coded
stencils (written by E. D. Dahl of Thinking Machines Corporation) illustrates the improvement that
was obtained, particularly at small subgrids (Table 1):

Table 1. Five point stencil performance on the CM-5.
"Stencil 1" denotes stencils coded using data parallel Fortran/RTS without
geometry caching. "Stencil 2" denotes hand-coded assembly language stencils.
All stencil times in seconds, double precision calculations, 20 vertical levels.

Grid Partition size (PNs) Subgrid ratio Stencil1 Stencil 2
256 x 128 1024 8 3172 0.605
128 x 64 128 16 3.165 0.681
256 x 128 512 16 3.220 0.700
256 x 128 256 32 3.2718 0.776
512 x 256 1024 32 3.367 0.801
256 x 128 128 64 3.453 0.993
512 x 256 512 64 3.485 1.014
512 x 256 256 128 4.085 1.231
1024 x 512 1024 128 3.962 1.237
512 x 256 128 256 5.425 1.731
1024 x 512 512 256 5.250 1.827

Note that asymptotically, timings are determined entirely by the subgrid ratio; i.e., two different
grids run on two different machines will execute in roughly the same time if the subgrids for the
two problems are the same. At small subgrid sizes, the stencil time is dominated by the start-up

time (latency) for off-node communication; as the subgrid increases, the startup time is amortized
over the time required to actually move the data. (N.B. The version of the RTS which caches
geometry information yields similar results).

In addition to illustrating the isolation of communication from computation (Section 4.1) in a
parallel climate code, the use of stencils in POP serves to demonstrate the value of defining high-
level mathematical primitives in scientific applications [21]. In this context, "high-level primitives"
refer to mathematical operatcrs with associated physical significance— something beyond the level
of a simple Ax + B operation, for example. Programming in terms of such primitives makes sense
not only because it produces clearer code, but also because it provides a natural bridge between
applications scientists and software engineers. Language and compiler development for parallel
machines presents significant challenges, and identification of the "natural” primitives arising in
real scientific applications provides valuable feedback which can influence the future directions of
compiler design.

44 MEMORY MANAGEMENT

As indicated in the Introduction, it is difficult to separate issues of memory management from
communication when dealing with parallel machines. The relative magnitudes of memory access
times within the memory hierarchy of a given machine lead to architecture-dependent compiler
tradeoffs, typically within the context of communication-related constructs. These hidden tradeoffs
are inevitable, and they represent the next major challenge in proceeding with the development of
efficient, unified, parallel versions of the two global climate models described in this paper. In
Section 4.2 it was shown that encapsulated communication provided a solution for dealing with the
very different communication protocols of the data-parallel and message-passing programming
paradigms. It also made it possible to focus on performance issues within a small, carefully-
circumscribed domain. However, it now seems clear that the unifying framework of Section 4.1
will need to be extended to address the more complex issues associated with efficient memory
management across a range of computational platforms.

As a simple example, consider the following tradeoff between the new "serial optimizations” in
Version 2.0 of the (data parallel) CM Fortran compiler, and the memory explosion which can
occur when the additional arrays required to implement these optimizations are introduced. In the
new version of the compiler, array section assignments along serial dimensions are recognized as
being in-processor, and generate local memory references instead of RTS communication calls.
This makes it possible to write code that allows the compiler to vectorize along both parallel
(subgrid) and serial axes at the same time, leading to significant performance enhancements. The
tradeoff is memory, as illustrated in the following hypothetical fragment from an atmospheric
model radiation package:

Version 1 (20 L

real, array(imax, jmax) :: A,B ! latitude/longitude grid
cmf$ layout A(:news, :news), B(:news, :news)
do k=2,kmax ! unrolled DO loop over serial axis

call physics_1(Ak-1)
call physics_2(B,k)
B= B+A

enddo
Version 2 (3D arrays. serial vectorization):

real, array(imax, jmax, kmax) :: C, D

cmf$ layout C(:news, :news, :serial), D(:news, :news, :serial)
call physics_1_new(C)

call physics_2_new(D)

D(:,:,2:kmax)= D(:,:,2:kmax)+ C(;, :, 1:kmax-1)

Version 2 is able to take full advantage of the serial optimizations in the compiler (reflected in the
usc of array syntax for the third (serial) coordinate), but the resulting performance enhancement
comes at the cost of factor of 2 x kmax in storage. Constructs of this form are very common in
SKYHLI, and if the full range of serial optimizations is implemented, the result is an explosion in
memory usage. This limits the resolution of the models which can be run, affecting both the
quality of the numerical experiments which can be performed, as well as the performance, since,
on the CM-5, the larger the subgrid, the better the performance of the vector units.

In the early years of parallel programming, much of the discussion relating to different machine
architectures tended to center on questions of syntax and the standardization of message-passing
protocols. While these issues have not entirely been laid to rest, resolving dilemmas such as the
one presented in the previous paragraph will require significant effort in another arena, managing
the complex layers of memory, and modes of access to these layers, in the ncw generation of
machines. Concepts such as worksharing, array aliasing, and detailed layouts represent serious
attemnpts by compiler designers to grapple with these issues. For example, a recent extension of
data parallel programming, the global/local model, allows programmers to take advantage of the
data parallel programing style when it suits them, with the additional freedom to drop down to a
local (MIMD) level in the middle of their global program. This global/local cycle can be repeated
as many times as desired. While it is possible to think of this programming style in terms of an
interplay between single and multiple threads of control, it can also be viewed as an extension of
the programmer's freedom to manage memory at a fine-grained level. Research is presently
underway to investigate the application of new approaches such as these to the memory
explosion/optimization tradeoff in SKYHI.

§. Conclusion

It is hoped that the examples and discussion presented in this paper have served o illustrate some
of the interesting and complex questions associated with the design of large-scale atmospheric and
ocean models for parallel architectures such as the CM-5. At the heart of these questions lies the
fundamental issue of communication, whether at the message-passing/run-time level, or the more
subtle level implicit in the access to the memory hierarchy of a given machine. Future work will
involve trying to find a unified way to manage memory effectively across a range of computer
architectures. This will require negotiating the idiosyncracies of hardware and compiler design at a
much deeper level than was required for the development of the stencil interface described here.
While computational design issues such as these are by no means unique to the field of global
climate modeling, the numerical, scientific, and practical challenges presented by the development

of global climate models has proved a particularly exciting and productive crucible for our
exploration of new conceptual frameworks in parallel program design.

Acknowledgements

I would like to thank Bob Malone and Stephen Boyd for careful readings of this manuscript, and
for helpful comments. [would also like to thank the members of the GFDL/LANL collaboration
for providing a stimulating and enjoyable atmosphere in which to pursue this work.

References

(1] Building an Advanced Climate Model, Program Plan for the CHAMMP Climate Modeling
Program, U. S. Department of Energy, Washington, DC 20585 (October, 1990).

(2] Connection Machine CM-5 Technical Summary, Thinking Machines Corporation, Cambridge,
MA (November 1992).

(3] J. L. Holloway, Jr., and S. Manabe, Simulation of climate by a global general circulation
model: 1. Hydrologic cycle and heat balance, Mon. Wea. Rev. 99, 335 (1971).

[4] Y. Kurihara and J. L.. Holloway, Jr.. Numerical Integration of a nine-level global primitive
equations model formulated by the box method, Mon. Wea. Rev. 95, 509 (1967).

(5] S. B. Fels, J. D. Mahiman, M. D. Schwarzkopf, and R. W. Sinclair, Stratospheric sensitivity
to perturbations in ozone and carbon dioxide: radiative and dynamical response, J. Atmos. Sci.
37, 2265 (1980).

[6) SKYHI, in: Redesign of Research Model Code Sol 52-SAAA-3-00052, U. S. Department of
Commerce/NOAA, Washington D.C. (January, 1993).

[71 C. H. Goldberg and C. L. Kermr, Development of the Geophysical Fluid Dynamics
Laboratory's Climate Models for Scalable High Performance Computer Systems, Proposal to
the Compter Hardware, Advanced Mathematics, and Model Physics Project (January, 1993).

(8] R. D. Smith, J. K. Dukowicz, and R. C. Malone, Parallel ocean general circulation
modeling, Physica D 60, 38 (1992).

[9] A. Semtner Jr., Finite-difference forumulation of a world ocean model, in: Advanced Physical
Oceanographic Numerical Modeling, ed. J. J. O'Brien, (Riedel, Dordrecht, 1986) p. 187.

[10] R. M. Chervin and A. J. Semtner Jr., An ocean modeling system for supercomputer
architectures of the 1990s, in: Proc. of the NATO Advanced Research Workshop on Climate-
Ocean Interaction, ed. M. Schlesinger (Kluwer, Dordrecht, 1988) p. 87.

(11] K. Bryan, A numerical method for the study of the circulation of the world ocean, J.
Comput. Phys. 4, 347 (1969).

[12] J. K. Dukowicz, R. D. Smith, and R. C. Malone, A reformulation and implementation of the
Bryan-Cox-Semtner ocean model on the Connection Machine, J. Atmos. Ocean. Tech. 10, 195
(1993).

[13] J. K. Dukowicz and R. D. Smith, Implicit free-surface method for the Bryan-Cox-Semtner
ocean model, J. Geophys. Res., accepted.

[14] M. Metcalf and J. Reid, Fortran 90 Explained, (Oxford University Press, New York, 1992).

[15] High Performance Fortran Language Specification, Version 1.0, Scientific Programming 2,
no. 1 (June, 1993),

[16] R. C. Malone, personal communication (July 1991).

(171 J. Schwarzmeier and C. Kerr, Issues associated with domain decomposition for climate
models, unpublished (April 1993).

(18] "Worksharing" refers to an F77-based programming style in which domain decomposition is
effected through array scoping attributes ("private", "shared").

[19] The subgrid ratio of a data parallel array executing on a partition of the CM-S5 is defined as
the product of the extents of all NEWS-type axes (axes which are not in-processor, but which are
spread across the machine), divided by the number of vector units in the partition (recall that there
are four vector units per PN).

[20] S. R. Atlas, Performance analysis of the LANL OCEAN code, unpublished (January 1993).

(21] B. M. Boghosian, Computational Physics on the Connection Machine, Computers in Physics
4, 14 (1990).

