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ABSTRACT

Polarized Light Scattering as a Probe for

Changes in Chromosome Structure

by
Daniel Benjamin Shapiro
Doctor in Philosophy in Biophysics

University of California at Berkeley

Professor John E. Hearst, Chair

Measurements and calculations of polarized light scattering are applied to chro-
mosomes. Calculations of the Mueller matrix, which completely describes how the
polarization state of light is altered upon scattering, are developed for helical struc-
tures related to that of chromosomes. Measurements of the Mueller matrix are
presented for octopus sperm heads, and dinoflagellates. Comparisons of theory and

experiment are made.

A working theory of polarized light scattering from helices is developed. The
use of the first Born approximation vs the coupled dipole approximétion are investi-
gated. A comparison of continuous, calculated in this work, and discrete models is
also discussed. By comparing light scattering measurements with theoretical predic-
tions the average orientation of DNA in an octopus sperm head i's determined. Cal-
culations are made for the Mueller matrix of DNA plectonemic helices at UV, visi-
ble and X-ray wavelengths. Finally evidence is presented that the chromosomes of

dinoflagellates are responsible for observed differential scattering of circularly-




polarized light. This differential scattering is found to vary in a manner that is pos-

sibly correlated to the cell cycle of the dinoflagellates.

It is concluded that by properly choosing the wavelength probe polarized light

scattering can provide a useful tool to study chromosome structure. .
»%J
Qe/ S /
A .

Prof. John E. Hearst

Chair, Thesis committee
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I. Introduction

The history of light scattering begins with the attempt to explain the color of
the sky. The physicist Alhazen is recorded as proposing that the blue sky is due to
reflected light in the eleventh century.1 In the sixteenth century Da Vinci used aero-

1

sols to reproduce the blueness of the sky. ° In 1802, J.B. Richter made recorded

observations on the propagation of light in a colloidal sol. 2 In 1852, G.G. Stokes
wrote? :

"When any number of independent polarized streams, of given

refrangibility, are mixed together, the naturc of the mixture

is completely determined by the values of four constants,

which are certain function; of the intensities of the streams

and of the azimuths and eccentricities of the ellipses by

which they are respectively characterized; so that any two

groups of polarized streams which furnish the same values

for each of these four constants are optically equivalent."

The four constants mentioned above are now known as the Stokes parameters which
completely describe the polarization properties of light. G. Govi and J. Tyndall also
made observations on the light scattering properties of aerosols in 1860 and 1869.!
They showed that the scattered light was polarized and Tyndall found that the
degree of polarization depends on the size of the particle. Lord Rayleigh developed
theory describing the light scattering from a small dielectric sphere based on electro-
dyna.rnics.l’4 This theory was sufficient to explain the color of the sky. The solution

of the scattering problem for a sphere of arbitrary size is attributed to G. Mie. !
1
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Rayleigh also derived an approximate theory for the light scattering from an arbi-
trary particle.4 This theory was further developed by P. Debeye in 1915.' The theory
applies to particles that are not strong scatterers. This theory has also become
known as the first Born approximation from its application in quantum mechanics. P.
Soleillet showed that the four Stokes parameters describing the intensity and polari-
zation state of light emerging from an optical element are a linear combinations of
the Stokes parameters describing the incident light.5 In 1942, F. Perrin published a
paper, building on earlier work by R.S. Krishnan and Soleillet, that described sixteen
coefficients characteristic of a scattering medium that fully describe how the inten-
sity and polarization state of light is altered upon scatt«;zring.6 He derived symmetry
relationships between the sixteen parameters that we will outline in the next chapter.
The work of Soleillet and Perrin was formulated as a matrix calculus by Hans
Mueller around 1943.”® The matrix containing Perrin’s sixteen coefficients is

known as the Mueller matrix.

In the late 1940s and 1950s researchers began to develop instruments to study
the angular dependence of scattered Iight.2 An instrument developed by B. Zimm
served as a prototype for many others.>® This instrument included two phetomulti-
plier tubes to detect the incident and scattered light. The detector could be moved to
examine the scattering at different angles. Zimm conducted experiments on polys-
tyrene spheres and compared his data with theoretical calculations based on thé work
of P. Debeye.9 The goal of his work was to demonstrate the ability of light scatter-
ing to determine the size and shape of macromolecules. A further advance in the
development of light scattering technology came with the work by B.A. Brice et al.

in 1950.1° They used a photomultiplier tube mounted on a movable arm to measure
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light scattering from 0° to 135°. By placing a monochromatic filters after their mer-
cury lamp light source they were able to measure wavelength dependence. They
also used linear polarizers aligned parallel or perpendicular to the scattering plane
before and after the sample in order to determine the ratio of linear polarization in
the scattered light (depolarization). These measurements, together with those of the
turbidity and dissymmetry (intensity at 45° vs that at 90° ), made it possible for
them to obtain values for the molecular weights of several polymers based on theory
developed by Debeye. In 1952 P. Homn and H. Benoit reported values for the length
and anisotropy in the polarizability of tobacco mosaic viruses.!! Their theoretical
predictions were based on those of Debeye. They measured the angle dependence of
scattered light with combinations of linear polarizers placed before and after (an
analyzer) the sample. They measured V,, V;, H,, and H,, where V and H refer to
vertically or horizontally placed polarizers and v and h to the corresponding
analyzers. These intensities (defined by R.S. Krishan in 193812 ) are still measured
today in the field of depolarized dynamic light scattcring.13 The study by Horn and
Benoit gave a good result for the length of the virus particle but the theory they
used did not produce an accurate value for the anisotropy in the polarizability. B.S.
Pritchard and G. Elliot developed an instrument, the "Recording Polar Nephelome-
ter," to measure the Mueller matrix as a function of angle in 1960.'* The Mueller
matrix completely determines how a scattering system will alter the intensity and
polarization state of light. The Recording Polar Nephelometer used sets of horizon-
tal, vertical, diagonal and circular polarizers as polarizers and analyzers to determine
the Mueller matrix. The instrument was used to study the optical properties of the

atmosphere. Some of the Mueller matrix elements are very small compared to the
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total intensity of scattered light. They should therefore be measured using some
kind of modulation technique. Z. Sekera modulated the polarization state of incident
light by rotating the polarizers in 1957.1° A better modulation technique was
developed in 1973 by A.J. Hunt and D.R. Huffman by coupling a photoelastic
modulator to a polar nephelometer.]6 Measurements on this instrument of the
Mueller matrix for Mie as well as Rayleigh size spheres agreed well with theoretical
predictions. The instrument used in the measurements of the present work is based

on the 1973 instrument and will be described in detail in chapter 4.

The application of polarized light scaitering to structural biology was first pro-
posed by P.J. Wyatt in 1968.!7 Wyatt proposed the use of differential scattering of
linearly polarized light (S,,) to differentiate between different species of bacteria.
Around the same time, interesting anomalies in circular dichroism spectra were
being investigated that would eventually lead to the application of differential
scattering of circularly polarized light as a probe in structural biology. D.W. Urry
and coworkers were the first to propose and then show that some anomalies
observed in circular dichroism spectra were partially due to differential scattering of

polarized light.'®1

In 1970, A.S. Schneider showed that anomalous CD spectra for
red blood cell membranes could be corrected with the elimination of scattering by
the 's,ample:s.20 Shortly thereafter, L.D. Barron and A.D. Buckingham calculated the
intensity of Rayleigh and Raman scuitering from optically active molecules.?! They
defined the circular intensity differential as the difference of the intensity of right vs
left circularly polarized light divided by the sum of these intensities. This quantity

is now known as circular intensity differential scattering (CIDS). These authors pro-

posed that CIDS could be used to study optically active molecules. Maestre er al.
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measured significant CD for bacteriophages at long Wavelengths where there is no
absorption for these particles.22 This CD was attributed to differential scattering of
circularly polarized light (CIDS). Shortly afterwards Dorman et al. showed that the
scattering effects could be eliminated by using a detector that collected transmitted
as well as scattered light.23 They proposed that CIDS could be used as a probe of
ordered macromolecular structure. The work of Dorman et al. was published in the
same year as that of Hunt et al. Purcell and Pennypacker developed theory now
known as the coupled dipole approximation, a light scattering theory that accounts
for internal dipolar interactions, in the field of astrophysics in 1973.2* Harris et al.
developed a generalized theory of polarized light scattering published in 1974 for an
ensemble of randomly oriented polymers of a general geometry allowing for some
internal dipolar interactions.?> In 1976, an article appeared in PNAS entitled "Appli-
cation of polarization effects in light scattering: A new biophysical tool."?® 1t was
therein proposed that the Hunt’s light scattering instrument be used to measure the
angular dependence of polarized light scattering from biological samples to investi-
gate scattering effects observed in CD spectra. It is this proposal that motivates the

current work.

Major contributions, upon which much of the current work is based, to the
theory of polarized light scattering were made by C. Bustamante and coworkers in
calculating CIDS from helices. These researchers recognized the potential of CIDS
to study chiral particles such as chromosomes. Bustamante et al. calculated CIDS
from 2 single helix oriented parallel or perpendicular to the incident light using the
first Born approximation.27 The helix was defined as a continuous dielectric with a

uniaxial polarizability tangent to the helix. In the first Born approximation, CIDS is
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zero when the polarizability is isotropic. By defining an anisotropic (in this case
uniaxial) polarizability tensor internal interactions (ignored by the first Born approxi-
mation) are compensated for resulting in a non-zero CIDS. It was shown that the
angular dependence of CIDS is much more sensitive to helical parameters (pitch,
radius, sense, and length) than is the total scattering intensity.28 The theory was later
developed to include a triaxial polarizability tens~~>> and the second Born approxi-
mation.° In addition, using a helix composed of point polarizable groups, the CIDS
in the orientation average using the first Born approximation was calculated.?! These
theories were applied to superhelical structures where it was shown that the overall

CIDS is a superposition of that from each helical level.>?

Another group that has made large contributions to polarized light scattering
theory is that lead by W.M. McClain. McClain et al. have concentrated on prob-
lems in obtaining the Mueller matrix elements in the orientation ava=.rage.25’33’34
They have used the Wigner matrix formalism to this end. McClain, Schauerte, and
Harris showed that certain elements are always zero in the orientation average when
the first Born approximation is applied.>> An analytical solution was obtained for the
Mueller matrix in the orientation average using the coupled dipole approximation by
Mclain and Ghoul in 1986.3* The first group to apply the coupled dipole approxima-
tion to calculate the Mueller matrix was that of Zeitz, Belmont and Niccolini.?’
Nicollini’s group modelled polarized light scattering from polynucleosome structures
placing one dipole at each nucleosome position. They used a numerical method to
calculate the orientation average. A comparison made by McClain’s group between
numerical and analytical approaches to obtaining an orientation average showed the

36

superiority of the analytical solution.”> More recent work has McClain et al. has
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focused on problems in the longwave limit> "8

and most recently a closed form
solution to the problem of polarized light scattering from long, thin cylinders has
been obtained.>® This later result should prove to be more widely applicable than the

infinite cylinder solution.**

A group including S.B. Singham and G.C. Salzman have also made important
contributions to the theory of polarized light scattering using the coupled dipole
approximation. They applied the coupled dipole approximation to a variety of struc-
tures for single particles41 and for an orientation average.42 They showed that a
helix modelled by spherical or prolate spheroidal subunits is equivalent as long as
the thickness of the subunits are the same and Maxwell-Garnett theory40 is used to
determine the polarizability of the dipole representing the subunit.*> In the same
publication this group did a preliminary investigation of the necessity of including
dipolar interactions. We will conduct a similar investigation in chapter three. Other
work by Singham and others includes an approximate solution to the computation-
ally cumbersome coupled dipole theory‘w"46 and applications to optically active par-

ticles.47

Early measurements of CIDS were conducted on CD or modified CD machines
similarly to those conducted by Maestre. CD present outside absorption bands is
interpreted as resulting from CIDS. Nicollini and Kendall measured CIDS from
chromatin in this way in 1977.% Work by Maestre et al. showed that the CD/CIDS
of chinese hamster ovary cells is cell cycle dependent.49 Another important example
of this type of measurement is that conducted by Livolant and Maestre on chromo-
somes of dinoﬂagellates.50 By comparing the apparent CIDS from single

dinoflagellates in a CD microscope to that of cholesteric phases of DNA these
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authors provided evidence that the chromosomes of dinoflagellates are similar in
structure to nematic cholesteric liquid crystals. Recently, a Russian group has used
a modified CD apparatus to measure CIDS in order to study the compaction of DNA
by spermine.51

A CD spectrometer can be useful in determining the presence of CIDS but does
not provide the abundance of information that the angular dependence of CIDS
could. In addition the other Mueller matrix elements cannot be measured in a CD
machine. As mentioned above, measurements of the angular dependence of polar-
ized light scattering began with the work of Wyatt measuring S12 on bacteria. In the
field of ocean optics several researchers concerned themselves with measurements of
the entire Mueller matrix.”>>> With few exceptions, the application of polarized
light scattering to structural biology has mostly been concerned with CIDS, or S4.
Maestre et al. reported a relatively large CIDS from helical sperm heads.>* Salzman
and coworkers have tried to develop the measurement of S;, for microbial
identification.> They report measurements of virus particles of the order of 0.01%
of S;;. This sensitivity is much greater than that obtainable by the methods of the
present work. To our knowledge Salzman’s application of CIDS has not been
.widely used. An arguably more promising application of polarized light scattering
to microbiology is that by Bronk and coworkers.”® They used S,4 to size bacterial
populations. Other measurements of the angular dependence of Mueller matrix ele-

ments include those made on chloroplast membranes®’

, sickling hemoglobin®® (S,
is proposed as a measure of polymer formation), and single immobilized
dinoﬁagellates.59 Measurements of immobilized particles including dinoflagellates

are described in this work in chapter seven. Nicollini and coworkers have recently
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made polarized light scattering measurements using a technique with significant

60,61 This does not use the feedback circuit

modifications from that of Hunt et al.
used in Hunt’s instrument. Measurements on spheres using Nicollini’s apparatus has
not to our knowledge been compared to Mie theory in a rigorous way as has the
instrument developed by Hunt and Huffman. Nicollini and coworkers have pub-
lished measurements of the angular dependence of several Mueller matrix elements
made on nucleosomes and polynucleosomes showing great sensitivity to higher order
structure.° In addition, they have shown differences in CIDS at 632 nm. measured
from A-DNA in buffers with different concentrations of ethidium bromide.5! They
conclude that CIDS measured in their instrument is sensitive to the writhe of the

DNA. Unfortunately no sample analysis was presented. We feel that the intriguing

results obtained by Nicollini ez al. deserve further investigation.

In order to fully exploit the information contained in measurements made of the
Mueller scattering matrix, models based on theoretical calculations must be com-
pared to experimental data. Considerable progress has been made in the study of
polarized light scattering by spherical particles. Bricaud and Morel used Mie
scattering theory applied to homogeneous spheres to model light scattering from
various marine microorgzmisms.62 Quinby-Hunt et al. showed that comparing the
Mie description of coated spheres with experimental data taken from marine
Chlorella yields information about the optical and geometrical properties of this
alga.53 Mie theory provides an exact solution to the problem of elastic scattering
from a sphere. Unfortunately, it cannot be applied to other, more complex
geometries, such as helices, where approximate methods must be used. Several

authors have used various methods to model light scattering from helices.2’-3243:63
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The utility of each of these methods will ultimately be determined by comparison
with experimental data. One of the few studies on light scattering from helical parti-
cles where theoretical predictions were compared to measurements was conducted by
Wells et al.%* This group showed that a relatively simple model could be used to
model the S;, Mueller matrix element measured from a collection of helical, screw-
like, octopus sperm heads. Their model consisted of a thin wire helix made up of
point-polarizable groups that do not interact (the first Born approximation). This
model proved to be reasonably successful but, it is possible that a model that
accounts for interaction between groups, the coupled-dipole approximation method,
may be more successful in modelling these helical structures. The evaluation of
various models and their application to octopus sperm heads is a major goal of the

present work.

10
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I1. Electromagnetic Theory

Light is a form of electromagnetic radiation. Electromagnetic radiation and its
interaction with matter are described by Maxwells’ equations. The macroscopic

form of these equations are:

V.8 =4np Vxﬁ=ﬂT+%%? @.1)
v.8-0 VxE+1 B,

where E and B are the electric and magnetic fields, p and 7 are the charge and
current densities. D and B are related to the electric and magnetic fields as follows:

B=E+4P H=E-4M, (2.2)
where B is the polarization and M is the magnetization of the material medium. For
many types of materials (those that are isotropic),

B=yE B=puH T=oE, (2.3)
where y is the electric susceptibility, p the permeability, and ¢ the conductivity nf
the medium. The dielectric constant describing the medium is related to the electric
susceptibility as follows:

£=1+4my. (2.4)
Thus,

B =¢E. (2.5)

When the medium is devoid of charges and currents, and the dielectric constant and

permeability are constant, Maxwells’ equations become

V. E=o0 Vx'B’—-—‘t—e—%E—o 26)
9.B=0 Vx §+i%§i- ,

Taking the curl of the curl of E we have,

11
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VxVxEs L 2B

ot
| At %?—)
=V(i7 .E)-VZE-F : —T— (2.7)
=-VE+ £ IE =0.
¢z ot

Thus we have the wave equation in terms of the electric field:

2 32
cs ot
A similar equation can be derived in terms of the magnetic field. A solution of

VZE - EE IE _ . 2.8)

these wave equations for a plane wave propagating in the ¢ direction is:

g = EO ei?.'l’— it and 'ﬁ = gO ei?.?- io)t, (2.9)
where ﬁo and §0 are amplitude vectors, and the magnitude of the propagation vector,

K.k= \/_u_i-:'—(::)— k is called the wave number. It is related to the wavelength by:

=X
k-—2x (2.10)

The velocity of the wave in the medium, v, is given by:

c o
= —_— = — 2.11
Y \Jue k (2.11)

Certain other restrictions are imposed on the solution of Equation 2.9 by
Maxwells’ equations. The condition that the divergence of the electric field be zero
gives:

v E*O KT — ot
= elkP-it P go + Eo _ §eik? - iot (2.12)

- gﬂ . i'l'()ei?.?— ot _ 0.

Thus we have (using a similar derivation for the magnetic field),

E,.X=0 and B, .¥X=0. (2.13)

The result of Equation 2.13 requires that the electric and magnetic fields of a plane

12
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wave be perpendicular to the propagation direction; the waves are transverse. Appli-

cation of the Maxwell equations describing the curl of the electric field gives:

. 1 a(—B)o eik’r~imt)
ot

V«E eirc’.?- it
0 c
= elkT- 0t P Ep- Ep x Veikr - iot _ —i—imﬁo elk? - it (2.14)
= - B, x fKelk? - iot _ ii(n_B')O elkr-iot = o
c

Thus,

ﬁox?=-% 0 (2.15)

Since E and B are perpendicular to Tg, this result means that E and B are mutually

perpendicular.

The most general plane wave solution of Equation 2.8 is

E = (B8, + E8,) k7 -iot, (2.16)
where &; and &, are unit vectors with directions perpendicular to each other and to K
and E, and E, are complex allowing for a possible phase difference between them.
The polarization of a electromagnetic wave is conventionally defined by the direc-
tion of the electric field vector. If E; and E, have the same phase, then the light is
linearly polarized. Let, for example, K=k, E, =0, and &, = X. This describes a
plane wave polarized along the x direction and travelling in the z direction. If
E, = Ej and E, = iE,, the plane wave is circularly polarized; its electric field vector
traces out a circle. To see this one applies the convention that the real electric field

is the real part of Equation 2.16. This application yields:
E = Ejcos(KP — @t)3. — Egsin(KP — wt)é,. (2.17)
At a fixed position, the electric field vector traces out a circle. If the magnitude of

the components of the wave defined by Equation 2.17 are not equal then the wave is

13
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elliptically polarized. The ratio of the magnitudes of E; and E, define the ellipticity
of the wave. The angle between the direction of &; or &, and a reference direction
define the azimuth of the wave. At t=0, the real part of Equation 2.16 which
describes the wave, becomes the equation for a helix:

E(t=0) = E,cos(K)¢, + Esin(KD)é,. (2.18)
The handedness of this helix defines the handedness of the corresponding elliptical
wave. The ellipsometric parameters: the handedness, ellipticity, the irradiance (

E.E ), and azimuth fully describe the polarization state of an electromagnetic wave.

The Stokes parameters are a more convenient way to describe light and its
polarization than are the ellipsometric parameters. The Stokes parameters describe
the degree as well as the type of polarization of light; they can describe unpolarized
light whereas the ellipsometric parameters cannot. In addition, the Stokes parame-
ters correspond to intensities of light and are thus directly measurable. The Stokes
parameters (I, Q, U, V) can be operationally defined by a series of experiments in
which the light is passed through different analyzers before reaching the detector.

These experiments, described pre:viously40 are outlined below:
I. Total Intensity, 1
If there is no analyzer the irradiance is
E\Ef +EE; =1 (2.19)
II. Perpendicular vs Parallel Polarization, Q

In this experiment a polarizer oriented along &, and then along &, serves as an
analyzer. A polarizer will transmit the component of the electric field that is parallel
to its orientation. Therefore the irradiances measured at the detector for these two

orientations of the polarizer are E(E; and E,E,. The difference between these two

14
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measured intensities defines Q:

Q=EE | - E;E; (2.20)
III. Diagonal Polarization.
Two polarizers are oriented alternatively along the diagonal directions,
1V2(8, + &,) and 1/N2(&; — &,). With the first orientation, the amplitude of the
transmitted wave is 1/V2(E, + E;). The irradiance of this transmitted wave is 1/2
(E,E{ + E,E,; + E|E, + E,E|). For the second orientation of the polarizer the
amplitude  and  irradiance @ of the  transmitted wave  will be
1N2(E, - E,) and 1/2 (E,E; + E,E, — E,E; — E;E/). The difference between these
two measured intensities defines U:

U=EE; +E,E/ (2.21)
II. Circular Polarization.
For the final experiment left and right circular polarizers are used as analyzers. The

amplitudes of the transmitted waves using right and left circular polarizers are
-—\}.2:(5 i — iE,) and -:J—I_E(E, + iE,). The corresponding irradiances are
1/2 (E\E; + E,E, — iE,E; +iE,E[) and 1/2 (E\E| + E,E; + iE|E; —iE;E[). The

difference between these two intensities defines V:

V = i(E,E; - E;E)) (2.22)
The stokes parameters completely describe the state and degree of polarization

of light. The above discussion applies to monochromatic light, where E; and E, are
constant in time. If E; and E, vary slowly in time with respect to —2—5, the light is

called quasi-monochromatic and the electric field vector does not trace out a well

defined ellipse. This light is partially depolarized. If E,(t) and E,(t) are completely
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uncorrelated then the light is unpolarized. The stokes parameters can now be writ-

ten:

I = <E;E+EE,">, total intensity of light,
Q = <EE,-EE>, linear polarization , (2.23)
U = <EE,+E E,">, diagonal polarization ,
V = <i(EE, ~EE,")>, circular polarization,
where <> denotes a time average. It is convenient to form a 4 element vector using

the stokes parameters to describe the state and degree of light. This vector has the

form:

I
2 (2.24)
\Y

Some examples of Stokes vectors and the light they describe are:

r

1 1 1
O Unpolarized |§| Linearly Polarized along & | | Linearly Polarized along &,
0 0 L0
(2.25)
1 1)
9 Linearly Polarized along—\j%-(él +&) || Right Circularly Polarized
0 0

A plane wave propagates continuously unless disturbed by a change in the pro-
perties of the surrounding medium. The encountered medium may have a different
dielectric constant or it may contain particles characterized by different optical pro-
perties. When a change in the medium occurs, the propagation of the light can be
altered; the light is scattered. Light scattering is a process whereby light is reradi-
ated by a sample. Light is incident upon a sample (a particle, ensemble of particles,
or fluid medium). The light excites the sample by causing local oscillations of the

electric charges that compose the sample. These oscillating charges radiate. If the
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oscillations, and hence the emitted radiation, have the same frequency (energy) as
the incident light t! .n this process of reradiation is called elastic scattering. In order
to describe the scattered wave we must determine its electric field vector. We will
assume the following properties within the scattering particles:

B=¢ E+¥.E B=H, (2.26)
where €, is the dielectric constant of the surrounding medium and € is a tensor.
Assuming that the temporal component of the field (which we will suppress) is still

e™i®  the combination of the curl Maxwell equations gives:

2
VxVx —-9‘:—-3:0 2.27)

Writing E as -—B—E' -2 .E gives:
€m €m

VB+kB=-VxVx?.E (2.28)
2

where k% = Equation 2.28 is a wave equation with the source VxVxe.E

c?

This equation has the integral form 65

B=B%+[avG.VxVx¢e.E (2.29)
where G is the tensorial Green function, the integral is taken over the volume of the
particle(s), and BP refers to the initial electric displacement. We assume that the
scattering is detected at a distance far from the scatterer where B =¢E. Using the

appropriate Greens function Equation 2.29 becomes®

. iK? ]
B(?)=EU?) + T - ki) k2 ir-jdv ekTer,  E(7), (2.30)
where t, = % is the polarizability tensor per unit volume, and kk refers to the

outer product of the propagation vectors. The resultant field , ﬁm, is thus equal to

the incident wave E° plus the scattered wave. The scattered wave consists of a

17
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(Y

iKr
spherical wave, E-I:-, multiplied by a scattering amplitude. The scattering amplitude

results from the integration over the scattering particle(s) and incorporates (through
the polarizability tensor) the properties of the scatterer. The electric fi:ld that
appears within the integral over the volume of the particle refers to the internal elec-
tric field, that is the electric field within the scatterer. The scattered field can thus
be viewed as the radiation field resulting from the sum of field amplitudes over the
points (dipoles) within the particle. The term T—kk insures the transversality of

the scattered wave.

Note that Equation 2.30 does not constitute a solution to Maxwells’ equations.
The electric field appears on both sides of the equation. The electric field inside the
particle, the internal field, E(?) must be determined. The internal field is composed
of a component due to the incident wave plus a component due to the reradiation
from other points from within the particle. The simplest approach is to assign the
internal electric field to be equal to the incident electric field. This assignment is
known as the first Born approximation. The first Born approximation ignores the
component of the internal field that results from reradiation from one part of the par-
ticle to another; it ignores secondary radiation and interactions within the particle.
The first Born approximation is generally valid when the polarizability of the parti-
cle is relatively small. In this case the contribution to the internal field from internal
radiation is small so the incident field dominates. The scattered field at a distance r
from an incident plane wave using the first Born approximation is:

e}kr

BE(?) = kz—;— [o?). B emiE-EI?" gy, (2.31)

where EC is the incident electric field vector, K and K° are the propagation vectors
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of the scattered and incident fields, and the transversality condition has been

suppressed. We will continue to suppress the transversality condition from now on.

A more rigorous approach would include internal radiation. One such approach
is the coupled dipole approximation. The coupled dipole approximation models a
particle as a finite sum of point polarizable group or dipoles. The field from Equa-

tion 2.30 thus becomes:

RPN o
B(?) =E%P) + Sy, &R ;. Ej, (2.32)
j

r

where ® is the polarizability tensor with units of volume, N is the total number of
dipoles and j is the index for each dipole. Each dipole is excited by the internal
field and reradiates. The field at each dipole is equal to the incident field plus the
field resulting from internal dipolar radiation due to the other dipoles. The field at

the dipole i is given by: 40

) N
gi = gio elkri + E auﬁ]]_% + bl.)(ﬁ.)ﬁlﬁll)ﬁu’ (2.33)
j#
where
ikr;
a'U:"e_J'(kz"'_l?‘*"‘ll‘('),
g iy Ty
ik 3 3ik
b; = S (¥ - - =,

and r;; is the distance between the i" and j® dipoles. When internal radiation is
ignored then only the first term in Equation 2.33 need be included. This is
equivalent to the first Born approximation applied to a set of point polarizable
groups. To distinguish this application of the first Born approximation from that to
a continuous structure we will refer henceforth to the independent dipole and con-

tinuous Born Models. The scattered field of Equation 2.32 can be rewritten in a
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compact matrix form:

2. ~~ N e
EX?) = l‘r—- ekl - kk) 3 By B, eiEBFD), (2.34)
ab
where
N
f‘ab = tzaaab +(1- 8ab) Zl ﬁa'?acftcb’
ike,.

€
Tu= "5

(1 = gefiye) (Kragy? + (B0,c0,c — 1) (1 = ikry)],

ac
and 4, is the unit distance vector from the a to the dipole.

We refer to the formalism that accounts for interaction between dipoles as the
coupled-dipole model. If a particle is modelled by N dipoles, 3xN linear equations
must be solved simultaneously in order to determine the net electric field at each
dipole location. The solution of the simultaneous equations to find the electric field
at each dipole is the limiting problem with the coupled-dipole method. If the object
is modelled by a large number of dipoles (more than 200) or averaging over many
orientations of a given particle is desirable, a fast computer such as the CRAY is
required. On the other hand, the calculations required for the first Born approxima-
tion can be done on a desk-top computer. The first Born approximation, however,
does not include interactions between the dipoles. The importance of the interaction

effects is determined by the interaction matrices, If'ab.

A particle described by a set of point polarizable groups is characterized by the
polarizability tensor at each point. A particle modelled by a continuous polarizabil-
ity is characterized by a polarizability tensor that is a continuous function of posi-
tion. This is equivalent to a description using an infinite number of point polarizable
groups. The polarizability tensor is a 3x3 matrix that describes how the point polar-‘

izable groups respond to an external field. The polarizability tensor determines the
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strength and direction of the induced dipole moment, [t,.
By=0.E (2.35)
In the simplest case, the dipole moment will be parallel to the applied electric field.
In this case the polarizability tensor is always diagonal and can be replaced by a
scalar quantity. In general, a set of axes can always be found such that the polariza-
bility tensor is diagonal along these axes. These are the principal axes of the polari-
zabilty. If the unit vectors along the principal axes (t, i, p), are written in cartesian
coordinates then the polarizabilty tensor will have be of the form
Otylt + Otygfift + 0y PP (2.36)
in cartesian coordinates where O, Oy, and Oy, are the polarizability strengths along

each axis.

A dipole does not have dimensions in physical space. We have described a
model where a set of dipoles represents a real particle. It is useful to imagine the
particle as consisting of discrete subunits, each of which can be represented by a
point polarizable group. This formulation is valid as long as the subunit is
sufficiently small with respect to the wavelength. When the subunit becomes too big,
it will no longer radiate in a manner similar to that of a single dipole. It is neces-
sary to determine the polarizability tensor associated with each subunit. The most
general smooth particle is an ellipsoid. The major and minor axes of the ellipsoid
correspond to the principal axes of the polarizability. The strength of the polarizabil-
ity along each principal axis depends on the shape and nature of the material it
represents. If the material that makes up the subunit has an inherent isotropic polari-
zabilty then any anisotropy in the polarizability of the subunit will be due to its

shape. For an ellipsoidal subunit composed of optically isotropic material,
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& .
0 = 4T Py Ppp Put EPE 1 =1tt, nn, pp (237

3Lig

where pp, pyp and p, are the lengths of the semi-minor and semi-major axes of the
ellipsoid, and L; is a geometrical factor defined by:40

©Q

_ Pan Ppp Pu J- dg

L;
2 5+ 9)f@)

i =tt, nn, pp, (2.38)
with
f@=[Z @+p)?1"
i
g, is related to the effective dielectric constant of the subunit, €, and that of the

surrounding medium €, by the relation:

€—-¢€n
€,

g = (2.39)
One must calculate the effective dielectric constant of the prolate ellipsoidal subunit.

This quantity depends on the the bulk dielectric constant of the particle, €,,, that of

the surrounding medium, €,, and the geometry of the subunit. 14
(1-f) g, + fPBe
o B (2.40)
where
€m 1 .
= _m = tt, nn, pp, 241
3 z:x-:m+Lj(sv:-—em) ' . (24D

i
and f is a volumetric factor equal to n/6 for ellipsoids.

In practice, given €g, €,y5, and the dimensions of the subunit, one solves Equa-
tions 2.40 and 2.41 for the effective dielectric constant of the subunit, €. With this
value the polarizability components can be calculated for each subunit from Equa-
tion 2.37. Changing the ratio &,,,/€;, does not affect the calculated polarizabilities.

Thus o is a function of the size and shape of the subunits, and the bulk dielectric
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constant of the particle relative to the surrounding medium.

When the subunit is spherical, all the polarizability strengths are equal and a is

of the form:
0 0 0 o
8=0 o 0f=qcl. (2.42)
0 o o

If the subunit is a prolate spheroid with the major axis along the t direction, then
Pnn = Ppp —>0nn = Opp. If the material within the subunit is not optically isotropic

Equation 2.37 must be modified. For an optically anisotropic sphere,

€ —&n

§ .
———, ) =tt, nn, pp, (2.43)
Ej + ZEm

where g is the strength of the dielectric constant along a principal axis. Thus an

_ 3
Otj = 41tas

anisotropy in the polarizability tensor can arise due to a geometrically anisotropic

subunit or a subunit composed of inherently optically anisotropic material.

In order to describe how the scattering process alters the polarization state of
light it is useful to resolve the electric field into components that are paralle] and
perpendicular to the scattering plane. The scattering plane is defined by the incident
and scattered propagation vectors. For a wave travelling in the z direction,

E'=(E e +E ¢ )efike-ion), (2.44)
where élo and é,o are unit vectors parallel and perpendicular to the scattering plane, k

is the wave number and © is the frequency of the incident light.

o0 kxi° A0 _ {0 _ 20
& = —— & =k x§€_.. 2.45)
kxR ’ (
The relationship between the scattered and incident fields can be described by,
Ef| eikt-2 |8, S| ED
[E,‘}— ~ikr [34 SiJ|EY) (2-46)
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where r is the distance from the scatterer to the detector and Si (i =1,2,3,4) define

Els _ éls "
6.«

where &° = &0 and &° = k x &°. It is more convenient to describe the scattering in

the scattering amplitude matrix.

terms of intensities. The Mueller scattering matrix relates the Stokes vectors of the
incident and scattered light. This matrix is a property of the scattering medium and
describes how the intensity and polarization state of light will be altered as a func-

tion of angle upon scattering. It is written as follows:

F Si1 S12 S13 S| |1
QS| _ 1 |S21 Sy Sy Sy| |Q
US|~ k%2 |Su Swm Sas Su| |UY| (2.48)
Ve Sa1 S42 Sa3 Sy V!

The Mueller matrix elements can be expressed as sums of products of the scattering
amplitude matrix elements. The simple relationships between these quantities is
given elsewhere.*? Different elements of the Mueller scattering matrix are useful in
describing various attributes of the scatterers, including symmetry, structure, chiral-

ity, optical properties, and orientation, in particular:

S11 - measure of the total scattered intensity for unpolarized

incident light; gives general size information;

S12,S21 - measure of linear polarization parallel and perpendicular

to the scattering plane; also gives size information;

S14 - measures depolarization of circular-polarized light or
the differential scattering of right vs left

circularly polarized light; indicates chirality or
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orientation effects in the medium;

measure of linear polarization at 45° to the scattering
plane, differential scattering of diagonally polarized
light; indicates chirality or orientation effects in the

medium,;

measures transformation of circularly-polarized light to
linearly-polarized light that is parallel or perpendicular
to the scattering plane;indicates chirality or

orientation effects in the medium,;

S22, S44 - deviation of S22 from unity or S44 from S33 is indicative

S34 -

of non-spherical symmetry;

strongly dependent on size and complex refractive index
of the particle, is a measure of changing circularly-
polarized light to linearly-polarized light that is

45° to the scattering plane.

Optical symmetry is a function of composition as well as shape. Thus, it is possible

to have an optically active or linearly birefringent sphere that does not have spheri-

cal symmetry with respect to the incident light. As the particle deviates from

spherical symmetry, the complexity of the scattering matrix and its angular depen-

dence incrcase. The Mueller matrix associated with a particular suspension of parti-

cles can be used to describe those particles. The simplest scattering matrix applies

for particles much smaller than the wavelength of light or weakly-scattering particles
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composed of isotropic material (i.e. the scattering is described by the Rayleigh or
Rayleigh-Debye approximation). The off-diagonal elements with the exception of

S12 and S21 of this matrix are zero:

Su S g o
S12 82 0 0
0 0 Sy O (2.49)
0 0 o Su

Perrin showed that, for an ensemble of randomly oriented particles (regardless of
size), the elements in the off-diagonal blocks , S;3, S;4, S53, and S,4 and their tran-
sposes, are zero unless the particles contain some degree of chirality.6 An ensemble
of non-chiral particles will have no S, (for example) unless there is some degree of
partial orientation. The Mueller matrix of an ensemble of randomly oriented non-

chiral particles will have the form:

SnSu2 o o
Si282 0 0
0 0 S5 Sy

0 ~S34 Sa
The off-diagonal block elements are sensitive to the chiral properties of a sample

(2.49)

and have thus been named helical domain elements.>® They are thus well suited to

the study of helical structures such as chromosomes.
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III. Light Scattering from Helices

A. Introduction

In this chapter we evaluate the similarities, advantages, and disadvantages of a
formalism based on the first Born approximation applied to a continuous helix vs
formalisms that use a helix made of point polarizable groups when interactions
between groups are either included or ignored. The comparisons are made for single
helices at various orientations with respect to the incident light. The method involv-
ing the first Born approximation for the continuous helix is based on previous work
by Bustamante et al.2” These authors calculated the matrix elements Sy; and S, for
single, continuous, thin helices either parallel or perpendicular to the incident light
and for a collection of thin helices composed of point polarizable groups. Non-zero
S,4 resulted from using anisotropic polarizabilities. In the present work, all sixteen
Mueller matrix elements are calculated, using the first Born approximation, for a sin-
gle, continuous, thin helix at any orientation to the incident light. The results are
compared to the those using the coupled dipole approximation method based on cal-

culations by Singham et al 143

Using the coupled-dipole approximation, Singham et al. showed that modelling
a single helix can be accomplished using spherical or prolate (anisotropic) subunits
with equivalent results.*> These authors also showed that, under certain conditions,
interactions between dipoles can be ignored and a simpler theory, the first Born
approximation could be used. In the present work, the conditions under which the
interaction between dipoles can be ignored are further explored. In addition, the use
of a continuous helix as a model, rather than one composed of individual dipoles,
allows us to evaluate the number of dipoles necessary to accurately describe a helix.
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We will begin with a generalized derivation of the Mueller scattering matrix in
terms of the incident and scattered fields. The scattered electric field will then be
calculated for a continuous helix using the First Born approximation. This model
will be referred to henceforth as the continuous-Born model. We will compare the
continuous-Born model to models that describe the helix by point-polarizable groups.
When interactions between subunits are included the model is called the coupled-
dipole model and when these interactions are ignored we will refer to the model as

the independent-dipole model.

B. First Born Approximation on a Continuous Helix

For a continuous helix, we have from Equation 2.31:

2 ’
E(?)= -‘Er— e[ (P HE e IE-ET gy, 3.1)

where the integral is taken over the volume of the particle. The helix, shown in Fig-

ure 3.1, is described by

T’ =acos(0) & + asin(0) § + —g—% 2, (3.2)
where a is the radius and P is the pitch. The polarizability tensor is defined in terms
of components with unit vectors tangent (t), parallel(p), and perpendicular(n) to the
helix:

o= o, T+ oy, TR + o, PP, (3.3)

where,

P2 a _P_
t (M)sxn(O)R+(M)cos(6)9+(2nM)2

P . P
7 (mM)sm(e)f&-'(znM

T = cos(0) & + sin(0) §

i

a
) cos(8) § + ( M ) 2 3.4)
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with,

, L
M= (a? + -:—nz-)z. (3.5)

The integral in Equation (3.1) to be performed is then,

2nl
(j) t . B0 l®-K07" g9 (3.6)

where the volume integral has been converted to an integral over the parameter 6,
which, thru Equation (3.2), defines the position along the helix. For a randomly

oriented helix, we must rotate 8 and 7’ :
PoP@) =R@? and 8> 8@ =Rk, 3.7

where B (B) is the Euler rotation matrix defined by the Euler angles represented by

©. Let this be written:

a4 a; @
R@) =|b, b, byl (3.8)
€ € C

The exponential term,(K-K°)P’ can be written as

[(aa,cos(B) + aa,sin(6) + -%%a:;)(kx -k +

[(abjcos(8) + ab,sin(0) + g—%b;;)(ky - kf)] + 3.9
[(acycos(8) + ac,sin(8), + %)(k,‘ - k,o)].

The integrand then becomes,

(@) . E° £(0) (3.10)

where

£(0) = ei(pcos(8) + asin(®) + 16),

p = a(a (k, = k) + by(k, - k) + ¢k, ~ k),
o = a(ay(k, - k) + bk, — kD) + c5(k, — kD)), (3.11)
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and T = %(@(k, = k) + by(k, - k9 + cy(k, ~ k9)).
Let’s define :

tan(A) = -g- and L2=p?+ o2 (3.12)

Then the integrand becomes,

@) . E° g(6) (3.13)
where

g(e) = ei(LCOS(A - 0) + 10) (3. 14)

We can expand the exponential term as a sum of Bessel functions. Using

o -in(@ - -7—‘-)
eros® = 3 J(A)e 2 (3.15)
n = —oo
we can write the integral as,
o ~in(A - n ) 2nl
Y e % [ @) E0eln+8 gp, (3.16)
n = —oo 0

where J, is the nth order Bessel function.

The integral of Equation (3.16) is straight-forward and has been carried out
using Mathematica. The Mathematica code, Int, available from Dr. Arlon Hunt at
Lawrence Berkeley Laboratory, carries out this integral. The evaluated integral can
be used to calculate the Jones matrix elements (Equation 2.46). A direction is
chosen for the incoming and scattered fields with components with respect to the
scattering plane. This leads to the solution of Equation (2.46). The Jones Matrix

elements lead directly to the Mueller matrix elements.

A fortran code was written to calculate the Mueller matrix elements using the

formalism developed above. This code, Ghel is available from Dr. Arlon Hunt at
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Lawrence Berkeley Laboratory. The input parameters are the euler angles defining
the orientation of the helix, the length, pitch, the polarizabilities (0,0, = 0tgp), and
radius of the helix and the wavelength of the light. The output is the Mueller matrix
elements as function of angle. The results for S;; and S,4 agreed with those pub-
lished previously for a helix oriented perpendicular to the incident light.zg’29 The
asymmetry in these elements for ¢ #n/2 observed by Bustamante et al. (the
phenomenon known as anomalous scattering) was also seen to occur in the other
matrix elements. Anomalous scattering occurs when the wavelength of light is
within an absorption band of the scatterer. The phenomenon is observed in x-ray
crystallography as an asymmetry in the diffraction pattern above and below the

equator about the forward direction.®’

. With the scattering geometry described in
Figure 3.2, light scattered off of the equator (the y-z plane) is described by an angle
¢#/2. When ¢ is a constant # an integer multiple of ®/2, then the scattered light
traces out a cone as a function of y (see Figure 3.2). The Mueller matrix elements
are asymmetrical about the direction defined by y = 0 when measured on this cone.
This is illustrated in Figure 3.3 For the rest of the calculations presented in this

work, the azimuthal angle is set to n/2 for all the results shown, so that the Mueller

matrix elements are calculated vs scattering angle.

C. Comparison of the Continuous Model and the Discrete Model

The calculation based on the continuous helix using the first Born approxima-
tion, can be used to evaluate the number of dipoles needed to accurately describe a
given helix in the discrete case. Different results from this approach, referred to

henceforth as the continuous-Born model, and those from a model using non-
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interacting dipoles, the independent-dipole model, are due to an insufficient number
of dipoles used in describing the helix. Figure 3.4 shows that as the number of
dipoles on the helix increases, there is eventual convergence between the
continuous-Born model, and the independent-dipole model. We have found that the
continuous-Born and the independent-dipole models always converge when a
sufficient number of dipoles are used in the discrete case. (The agreement in Figure
3.4 between the independent-dipole model and the coupled dipole model shows that
for this case, interaction between dipoles need not be included). In order to use a
comparison between these two models to evaluate the number of dipoles necessary
to model the helix, several factors have to be considered. The ends of the continuous
helix must coincide with the ends of the first and last subunit of the discrete helix.
The subunits must be evenly placed along the helix although small spaces between
the subunits does not produce a large effect. When modelling a helix with multiple
turns, the subunits on each turn should be in phase with those on the next turn. The
normalized [by S;;] matrix elements calculated from both models using the Bomn
approximation are unaffected by a change in the absolute magnitude of the polariza-
bility. Therefore, these two models need only use polarizability components that
have the same ratio o,/0,, as that used in the coupled-dipole approximation. Sing-
ham et al. have established that the number of subunits be such that their width be
one tenth and their length be one fifth the incident wavelength or smaller.*> We find
these conditions to be applicable in most, but not all, cases. For helices large com-

pared to the wavelength, stricter conditions apply.

The differences between the results from the continuous-Born and the

independent-dipole models may incorrectly be interpreted as differences between an
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infinitely thin and a thicker helix. In the independent and coupled-dipole models,
the helix is modelled by placing prolate spheroidal subunits end to end along the
helical lattice. The thickness of the helix is given by the width of the subunit. Using
longer subunits results in modelling a thinner helix. In order to fit more subunits on
a given lattice, smaller subunits must be used. Therefore, a helix made of subunits
with a particular aspect ratio (d/w) is thinner when more subunits are used. This
implies that the continuous helix, which could be interpreted to be composed of an
infinite number of subunits, is infinitely thin. In fact, the thickness of the helix, for
all the models, is related to the components of the polarizability perpendicular to the
helix as shown in equations 27-31. The assignment of a polarizability perpendicular
to the helix results in modelling a helix of a particular thickness. An infinitely thin
helix is one that has a polarizability that is defined only tangent to the helix. The fal-
sity in the contention that differences in the predictions made from the independent-
dipole and continuous-Born models is due to differences in the thickness of the helix
modelled is illustrated in Figure 3.4. The two models show reasonable agreement
for a helix that is 50 nm thick (1/20 the wavelength of light), and excellent agree-
ment for a helix 25 nm thick. If the continuous helix truly represents an infinitely
thin helix, it is surprising that it is equivalent to helices of such large thicknesses
compared to the wavelength of light. Figure 3.5 shows the results of calculations
using the three approaches for a much thinner helix than the one used for Figure 3.4.
The helix used in Figure 3.5 is composed of subunits that are about 200 times longer
than they are wide, whereas in Figure 3.4, the subunits used are 4 times longer than
they are wide. The length of the sub units used for both figures are the same. It

might be expected that, since the helix in Figure 3.5 is so thin, that there would
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always be agreement between the continuous-Born and the independent-dipole
models. In Figure 3.5b the subunits used are 1 nm thick (1/1000 the wavelength of
light) yet the difference between the two Born models is comparable to that in Fig-
ure 3.4b where the helix is fifty times thicker. We therefore conclude that
differences between the two Born models are due to an insufficient number of
dipoles used to model the helix and not due to a difference in the thickness of the

helix.

- Among the three models, the continuous-Born model may be best suited to
describe the light scattering from helices that are larger than the wavelength of light,
given current computer technology. Figure 3.6 shows scattering intensities from cal-
culated for a helix that that has a radius and pitch that is 5 times the wavelength of
light. The subunits used are about 1/10 the wavelength in length and 1/2000 the
wavelength in width. When the helix is oriented at 45° to the incident light, calcula-
tions using the continuous-Born and discrete models differ significantly (Figure
3.6a). These differences are not seen when the incident light is perpendicular to the
helix (Figure 3.6b). If the number of dipoles used for Figure 3.6 (360) is increased,
the results of the discrete model calculations converge very slowly to those of
continuous-Born model. The results shown in Figures 3.4 and 3.5, where the
geometrical parameters of the helix are about equal to the wavelength of light, are
consistent with these conditions set forth by Singham e al. that the subunits be less
than or equal to 1/10 in width and 1/5 in length the wavelength of light. Figure 3.6a
demonstrates, however, that these conditions do not always apply to larger helices.

D. The Necessity of Including Interactions
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As stated at the end of section III, the importance of including dipolar interac-
tions is determined by the interaction matrix f'ab. Dipolar interactions need not be
considered when T‘ab calculated with the inclusion of these interactions is not
significantly different from T'ab calculated when these interactions are ignored. It
would be very difficult to calculate an analytical expression for the interaction
matrices of a system composed of numerous dipoles. To investigate the importance
of including dipolar interactions we have calculated the interaction matrices for a
system composed of two dipoles. We use the result of the analytical expression
obtained in this calculation to establish practical guidelines for the importance of
including dipolar interactions when calculating the Mueller matrix for helices. The
two dipoles, having polarizabilities whose strengths along the principle axes are
given by (p1,p2,p3) and (ql,92,q3) respectively, are placed on the z axis a distance d
apart. The directions of the principal axes of the polarizabilities are chosen to be
parallel to the coordinate system axes. For this system, there are four 3 x 3 interac-
tion matrices, ?11, ?12, ?21, and 1f‘zz. Let the interaction matrices that are calculated
when dipolar interactions are ignored be denoted as f}aob and those that allow for

dipolar interactions be denoted alb. Then the inclusion of dipolar interactions is

unnecessary when 3, = alb. We find that subtracting these two matrices gives terms
of the form:
K
, 3.17
=) (3.17)
where
= pi—3 (1 +F(Kd) ); 8
K—Pj:l‘g( + F(iKd) ); (3.18)

j = 1-3; 8 is a multiplicative factor approximately equal to d*, p; or q;; and F(iKd) is
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a polynomial in terms of iKd. The condition for ignoring interaction becomes x <<
1. Since Kd must be small (that is a subunit must be smaller than the wavelength)
we find that dipolar interactions can be ignored when

ijax

d3
where p/™ is the largest component of the polarizabilities.

<1, (3.19)

The condition derived above (Equation 3.19) serves to quantify the contribu-
tions of dipolar interactions. Computations of o (pj™) using the formalism
described in section V show that for longer subunits the denominator in the ratio of
Equation 3.19, d°, increases faster than the numerator. Thus Equation 3.19 can
always be satisfied as long as sufficiently long subunits are used. Therefore, the
inclusion of dipolar interactions is unnecessary when sufficiently long subunits are
used to model a single stranded helix. The ratio in Equation 3.19 is a function of
Eavg/€m» and the shape of the subunits used. For each value of €,,/€y,, a minimum
aspect ratio (length/width) of the spheroidal subunits can be defined where interac-
tion can be ignored. Singham er al. found that when &,,,/€, is 0.4 or less that the
subunits must be at least 4 times longer than their width in order to ignore interac-

tions. Singham’s results translate into the condition

Oty
71-3— < 0.002, (3.20)

when applied to Equation 3.19. Using this criterion and the ratio in Equation 3.19,
we found approximate values of the minimum aspect ratio of the subunits needed to
ignore dipolar interactions. The results are shown in Table 3.1 This table provides
guidelines for deciding whether dipolar interactions are necessary when conducting

light scattering calculations on helices.
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Conditions for Ignoring Dipolar Interactions
Eavg/€m Minimum Aspect Ratio

1.1 2:1

1.2 3:1

1.4 4:1

1.6 5:1

1.8 6:1

Table 3.1 The minimum aspect ratios are shown for the subunits used to model a
helix when dipolar interactions could be ignored as a function of relative dielectric

constant.

Figure 3.7 illustrates that dipolar interactions can be ignored for a given aspect
ratio of the subunits used to describe the helix when a smaller relative dielectric
constant is used. When &,,,/e;; = 1.4 and subunits with an aspect ratio of 2:1 are
used, dipolar interactions must be included to accurately calculate the Mueller matrix
elements (Figure 3.7a). In these plots, a sufficient number of dipoles were used so
that the calculations from the two Born models agree reasonably well. Even when
the number of subunits is doubled, there are still significant differences between the
coupled-dipole formalism and the Born models when the relative dielectric constant
is 1.4 (Figure 3.7a §4/S;; plot). When a lower relative dielectric constant is used
for a similar helix, dipolar interactions become less important (Figure 3.7b). E. Dis-

cussion
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The entire Mueller matrix has been calculated for a continuous helix using the
first Born approximation. Results are shown for S;4, Sy}, S.4, and S;, but the results
for the other twelve elements are calculated in our fortran code. The analytical solu-
tion can be applied to a single helix at any orientation with respect to the incident
light. Differences in the results from calculations using this continuous-Born model
and the independent-dipole model reflect an insufficient number of discrete subunits
used to represent the helix. A comparison between these models can therefore be
used to determine how many dipoles are needed to describe different helices. For
large helices compared to the wavelength of light, many dipoles are needed to accu-
rately calculate the Mueller matrix elements. The limit of the number of dipoles
using current supercomputers is 2000 when dipolar interactions are included. There-
fore, when the pitch and radius of the helix are larger than the wavelength of light,
the continuous-Born model may yield the best results. In general, the continuous-
Born model is least computer intensive. The coupled-dipole model, by including
dipolar interactions, is the most rigorous solution. When computational power is not

a consideration, the coupled-dipole approximation will always yield the best results.

The importance of including dipolar interactions when calculating the Mueller
matrix elements of a single stranded helix is dependent on the relative dielectric con-
stant of the helix and the aspect ratio of the subunit used to model the helix. For
larger relative dielectric constants, larger aspect ratios are necessary to ignore
interactions. This results in being limited to modelling thinner helices in order to
guarantee that the dimensions of the subunits of the helix be sufficiently small rela-
tive to the wavelength of light. For small relative dielectric constants, where the

aspect ratio can be 2:1 without the need to include dipolar interactions, one can ade-
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quately model a helix 1/10 the wavelength of light in thickness without having to
include dipolar interactions. Table 1 gives a practical guide to the minimum aspect
ratio, and hence maximum thickness, of a helix that can be modelled without includ-

ing interactions.

Dipolar interactions become more important when modelling thicker structures.
A helix that is of a thickness of the order of the wavelength of the light must be
modelled with several strands. Attempts made in this investigation to define triaxial
polarizabilities to compensate for dipolar interactions between strands in the same
way that biaxial polarizabilities compensate for interactions along a single strand did
not work. Unfortunately, the number of subunits needed per strand to accurately
describe the helix probably does not decrease as more strands are introduced. Thus,
the application of the coupled-dipole approximation to thicker helices requires a lot

of computer power.

It is known that for any ensemble of randomly-oriented particles, S, Sj3 Sy3

and their transposes are zero in the first Bomn approximation.33

S;4 appeared to
agree well in all our comparisons between first Born approximation models and the
coupled-dipole formalism made for thin helices. This implies that S3; will be zero in
the orientational average for these single stranded helices even when dipolar interac-
tions are included. Dipolar interactions contribute to the light scattering from thicker
helices for a given relative dielectric constant. S,;4, may therefore be largely depen-
dent on the thickness of a particle. This is consistent with the sucess of using S34 to

size bacteria populaaxtions,56

In summary. we find that as the number of subunits increases the results of cal-

culations using the independent-dipole model approach those using the continuous-

39



D. B. Shapiro October 7, 1993

Born model. The continuous Born model could thus be used to evaluate the number
of dipoles needed to accurately describe a helix. When dipolar interactions are
found unnecessary, a comparison between the continuous-Born model and the
coupled-dipole approximation could be used to determine the necessary number of
dipoles. Equations 3.19 and Equation 3.20 describe the importance of including
dipolar interactions. Table 3.1 can be used to establish when dipolar interactions
can be ignored for materials with different dielectric constants and thicknesses.
These results provide useful information that can be used towards a working theory

of polarized light scattering from helices.
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IV. The Nephelometer

In this chapter we will describe the instrument used to measure the Mueller
matrix elements, the angular scanning, polarization-modulation nephelometer. This
instrument was developed in 1973.16 A sketch of the apparatus is shown in Figure
4.1. An argon-ion laser operates at wavelengths of 457, 488, and 514 nm. The laser
produces a beam that is reflected by two mirrors and then traverses a polarizer fol-
lowed by the photoelastic modulator (PEM). The beam is then incident upon the
sample. Scattered light is detected by a photomultiplier tube mounted on a movable
arm. Various analyzers housed in the arm allow all of the Mueller matrix elements

to be measured.

The two mirrors are concave-spherical and can be rotated in three dimensions
so that the height of the horizontal beam can be adjusted. A diaphragm is placed
before the housing of the scattering cell to reduce the beam size. The Stokes vectors
for the light after passing though the polarizer oriented at 0° and 45° with respect to

the scattering plane are:

1 1
(1) and ‘1’ 4.1)
0 0

giving horizontally and diagonally polarized light.

The heart of the instrument is the photoelastic modulator. It consists of
piezoelectric quartz crystal fused to a piece of amorphous quartz. The piezoelectric
crystal is driven by an electric field at a characteristic frequency (50 KHz). The
amorphous quartz is stressed at this frequency. The photoelastic modulator thus acts

like a retarder whose strain is modulated at 50 Khz. In one set up, (Set Up 1) hor-
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izontally polarized light traverses the modulator oriented at 45° to the scattering

plane. This yields:

1 1 0 o O
cos(d,) 0 cos(d,) o -sin(d,)
o |[lo o 1 o0
sin(§)| |0 sin(d,) O cos(d,)

4.2)

OO v v

where we have normalized the Stokes vectors by their total intensity, and &, is the
strain of the retarder. Here,

8 = Agin(@pt), (4.3)
where A, is the amplitude of the strain, dependent on the thickness of the quartz, the
stress of the quartz, and the wavelength of light and wj, is the frequency of modula-
tion. The light emerging from the photoelastic modulator can be described by (writ-
ing only the first terms in a Bessel series expansion):

1
Jo(Ag) + 2 JZ(As);os(sz‘) + (4.4)

2 Ji(Aysin(og) + -

A horizontal and vertical polarizer are used as analyzers to eliminate the J, term.
The measured intensities,with these analyzers, are:

14+Jo(A) + 2 Jo(Acos(2wpt) + - - - and  1-Jo(A,) + 2 Ja(Ag)cos(2wmpt) + - (4.5)
The signal from the photomultiplier tube is sent to a lockin amplifier set at 2w, A

feedback circuit acts to keep the DC current constant. The lock-in signals are then:

2 Jy(A)cos(2w,t) q 2 Jy(Ag)cos(2m,t)
an
1+ Jo(Ay) 1 - Jo(A)
The amplitude of the strain, A, is adjusted so that the two signals from cross polar-

(4.6)

izers are equal; Jo(A)—0 . When no analyzer is used, and A is so adjusted, a

scattering measurement gives:
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S11 + 2 812 Ja(Acos(2wt) + 2 84 Ji(Asin(aopt) + - - - 4.7)
Using the feedback circuit and setting the lock-in amplifier at @, gives the signal
2 814 Ji(Ay) 2 53 Jo(Ay)

. Setting the lock-in at 2w, gives . Measuring the DC

Sy Sy
signal from the PMT gives S;;. The other elements are obtained in combination with
the above with the use of several analyzers. For example, using a diagonal polar-

2 (SM + 834) JI(A,)
Sy + Sy '

izer, and setting the lock-in amplifier to wy, gives the signal

In order to obtain a measurement of Sy, a deconvolution must be carried out with
S|4 and S;;. When horizontally polarized light is incident on the modulator oriented

at 45°, one can measure S“. Su' S“, 822' S“, 832. 83‘, 842' and S“.

The elements in the third column of the Mueller matrix can be measured by
sending diagonally polarized light through a horizontal photoelastic modulator. The
intensity of scattered light, when no analyzer is used, can be written

S11 + 2 843 Jo(Acos(2at) + 2 814 Ji(Ag)sin(@pt) + - - - 4.8)
Thus, in this set up (Set up 2), the elements in the third column of the Mueller
matrix are measured in the same way as those in the second column when the

modulator is at 45°.

Three normalization constants are required: one for DC measurements, one for
measurements at @, and one at 2w, The DC normalization, used for S, is obtained
by measuring the DC signal from the light scattered by carbon disulfide at a scatter-
ing angle of 90° for a given voltage across the photomultiplier tube. Carbon
disulfide is a liquid that, due to its high density and asymmetric geometry scatters
quite efficiently. Its availability makes it a good standard. The normalization for

the 2, elements is taken by using a horizontal or vertical polarizer as an analyzer.
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The gain and sensitivity are set and the value of the signal on the lock-in set at 2w,
recorded. This value is the value of S|, of a perfect linear polarizer, that is it is
100% of S;;. The w, elements are normalized in a similar way except the lock-in
is set at @, and the analyzer used is a circular polarizer (a 1/4 wave plate followed

by a vertical polarizer).

Several treatments of problems arising in polarized light scattering and related
measurements have been given."“‘e’a'70 If the angle of the photoelastic modulator or
the initial polarizer is not set carefully, measurements of mixed elements will result.
We have found that internal reflections within the PEM element cause unwanted
mixing of the measured Mueller matrix elements. These reflections can be avoided
by rotating the PEM about 15° about the vertical direction. Other artifacts arise due
to a strain induced by the front window of the scattering cell. This can be compen-
sated for by placing a strain plate such as a microscope slide after the modulator.

With proper alignment most of these artifacts can be minimized.

Proper alignment of the nephelometer begins with the examination of the polar-
ization state of the light. The polarization state of the light exiting the initial polar-
izer can be checked using cross polarizers as analyzers. The polarization state of the
modulated light is checked at @, and 2@,. The angle of the modulator head can be
adjusted to minimize unwanted polarizations. When horizontally polarized light is
passed through the modulator at 45° (Set Up 1), the desired polarization state is

of the form (1, Acos(2mpt), 0, Bsin(2mpt)). Thus when the lock-in amplifier is set
at 20, there should be no signal when a diagonal polarizer, or a circular polarizer
are used as an aralyzer. When the lock-in amplifier is set at w,, there should be no

signal when a ve:tical or diagonal polarizer is used as an analyzer. There should
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never be any signal from the lock-in amplifier when no analyzer is used. Unfor-
tunately, due to residual strain in the PMT, discussed prcviously,69 unwanted polari-
zations are always present to some degree. In our instrument we have made the fol-

lowing measurements on the lock-in amplifier for Set Up I:

analyzer | lock-in setting | reading
e | 2o, 556
diagonal 2wy 0.01
circular 2wy 0.02
none 20, 0.02
vertical o, 0.001
diagonal o, 0.003
circular o, 0.54
none , 0.0002

The results tabulated above give a minimum amount of Mueller matrix element mix-

ing that can occur during measurement. When the lock-in amplifier is set at 2w,

the normalization constant is 0.96. There will be a mixing of %gé— of third column

elements when measuring second column elements. Thus when measuring S;; (no
analyzer present), about 1% of S13 will be mixed in. This is not a large artifact
since S,3 is much smaller than S;,. The mixing when the lock-in amplifier is set at
0, is not as great as when it is set at 2c0,. Thus when Sy, is measured, only about
0.2% of S|, is mixed in. It may be more desirable to measure small Mueller matrix
elements, such as those in the helical domain, with the lock-in set at ®, rather than

2w, Using Set Up 2, the small element, S;3, is measured at 20,. If this set up is
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modified so that circularly polarized rather than diagonally polarized light is used

then S5 can be measured at Wy,

The instrument’s alignment is tested by taking measurements on standard sam-
ples such as latex spheres. These measurements can be compared to theoretical
predictions from Mie theory. It is desirable to make measurements on both Rayleigh
and larger size spheres. The measured S;4 on 0.497u spheres should be zero. In
our measurements, reported in the next chapter, the S, from these spheres was less
than 0.3%. Thus our measurements of S;4 have an uncertainty of 0.3%. Comparis-
ons of measurements using our instrument made on spheres and calculations based

on Mie theory are reported elsewhere.”>"!
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V. Determination of the Direction of DNA in the Octopus Sperm Head

A. Introduction

Polarized light scattering has been in use as a biophysical tool for many
years.”’26 In particular, the Mueller scattering matrix element, S;4, (also known as
circular intensity differential scattering, CIDS) promised to be useful to study helical
structures.>> Yet the lack of good data combined with the complexity of the theory
of polarized light scattering from helices has limited its application to specific ques-
tions in structural biology. Very few attempts have been made to compare th oreti-
cal predictions with measured results of polarized light scattering from helical struc-
tures. Mie calculations, which offer an exact solution for spherical particles, show
good agreement with experimental data taken on samples of spherical marine
algae.53 Unfortunately, there is no exact solution that describes polarized light

scattering from helical structures.

A reasonably successful study involving both measurements and theoretical
predictions of polarized light scattering from helices was carried by Wells et al %4
This group compared a relatively simple theory based on the first Born approxima-
tion to measurements of S;, on octopus sperm heads, of the species Eledone cir-
rhosa. The large S;, of this sample was originally discovered by Maestre et al>*
Despite the success of the Wells group to model S;4, we will show that the Born
approximation does not predict some of the other Mueller scattering matrix elements
for the sperm head as well. For example, S;4 is predicted to be identically zero
when the Born approximation is used, even though a significant S;, is measured. >
Furthermore, the first Born approximation can not be used characterize the polariza-

bility of the material being modelled. All normalized Mueller matrix elements,
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calculated in the first Born approximation, depend only on the degree of anisotropy
of the polarizability, not on its absolute strength. Thus it is difficult to ascertain the
polarizability strength of a material when using calculations based on the first Born
approximation. When the polarizability is isotropic, calculations involving the first
Born approximation predict a null S;4. Helical structures are modelled using aniso-
tropic polarizabilities whenever the first Born approximation is used in order to
obtain non-zero values of S,; which are theoretically predicted and experimentally
measured for these structures.2® The anisotropy applied in this way does not neces-
sarily represent an inherent anisotropy in the polarizability of the material being
modeled. Finally, the first Born approximation cannot be applied to thick structures.
Due to the limitations of the first Born approximation we have used the coupled-
dipole approximation to model polarized light scattering data from the sperm heads.
This application allows us to determine the direction of an inherent anisotropy in the

polarizability in the sperm head and hence determine the direction of the DNA.

In this chapter we apply a formulation of the coupled-dipole approximation in
the orientation average 34 t0 model measurements made on the helical octopus head.
An inherent anisotropy in the polarizability allows for an investigation of the nature
of DNA packing. The model is limited by the computational power necessary to
model a structure composed of many subunits. The sperm head is approximated by
a single turn of a helical fiber composed of spherical subunits. The thickness of the
fiber in the model is significantly thinner than a corresponding chromatin fiber in the
sperm head. Despite the limitations of the model, reasonable agreement with experi-
mental measurements is obtained. The results indicate that the 2 nm DNA double

helices are packed with the their axes perpendicular to the thick, chromatin fiber of
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the octopus sperm head.

B. Experimental Measurements

The scanning polarization-modulation nephelometer used for these measure-
ments was similar to that developed by one of the authors,16 and is described in
chapter 4. At each angle, S;; was divided by the total intensity matrix element, Sy;.
Henceforth, Sij (bold type face) will refer to the normalized matrix element. Base-
lines for S, were measured using 0.49 um latex spheres. The deviation of S;, from
zero for these spheres provides a measure of the uncertainty in S,,, which indicates

that measurements of S;4 are accurate to within 0.3%.

Samples of octopus sperm, Eledone cirhossa were obtained in dried form from
Prof. J.A. Subirana, Dept. of Chemical Engineering, Polytechnique University at
Catalonia, Barcelona Spain. A small portion of the sample was placed in normal
saline buffer and adjusted to pH 7.0. An image of the helical sperm head obtained
from scanning electron microscopy is shown in Figure 5.1. The sample was soni-
cated for about twenty hours. Sonication caused the sperm tails to separate from the
helical heads and break into small pieces. Figure 5.2 shows a transmission electron
micrograph of the sperm head. This figure suggests that the sperm head is com-
posed of a thick electron dense helical fiber surrounded by a thin membrane. We
hypothesize that the sperm head fiber is a DNA-protein complex that dominates light
scattering from the sperm head. The dimensions of the sperm head are: pitch =
675-700 nm, radius = 250-300 nm, and length approximately 43 pm. 64 The radius
quoted above is an outer radius. The electron micrograph in shown in Figure 5.2
indicates that the radius of the helical sperm head fiber is about 200 nm and is about
100 nm thick.
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Measurements of several matrix elements are shown in Figure 5.3. S is plot-
ted on a log scale. The scattering angle is multiplied by sin(8) in order to normalize
by the scattering volume. The measurement shown for S;4, taken at 457 nm., is
very similar to that previously measured on a different instrument for a different
preparation of the sample at 488 nm by Wells et al%* Both measurements are
characterized by a large positive peak at around 30°. The previous measurements
of S;4 show a stronger peak at 90° than the measurement in Figure 5.3 as well as a
negative peak at 135°. These slight discrepancies between these the measurements
are probably due to a larger contamination in our sample by Rayleigh scattering
from sperm tail fragments. Wells et al. removed sperm tail fragments from their
sample by centrifugation.é'4 We were not successful in doing this. Since the sperm
heads are strong forward scatterers, small tail fragments in our sample would have a
larger relative contribution to the total light scattering away from the forward direc-

tion. The S, of the non-helical sperm heads is zero, but they diminish the measured

S,4 by contributing to S;;. The normalized S,; would become , where

14
Si1,*S1,
Sy, and Sy, refer to the S;; due to the heads and tail fragment respectively. Thus

the sperm tails would tend to reduce the measured, normalized S,, particularly away
from the forward direction. Reflections in our scattering cell discussed previously 64
may also explain the difference in our results in the back-scattering region. In gen-

eral there is good agreement between our results and those of Wells et al.

C. Born Approximation in the Orientation Average

Before using the coupled-dipole approximation to model the light scattering
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data obtained from octopus sperm heads, we calculate the Mueller matrix elements
in the orientation average for a helix using the first Born approximation. It is found
that S,4 is zero. Since this does not agree with experiment, we will turn to the cou-
pled dipole approximation to model polarized light scattering from octopus sperm.

For thinner or smaller particles, the Born approximation may apply.

Many authors have addressed the problem of predicting the scattering matrix

elements for helices averaged over orientation.>! 442

In particular, Bustamante’s
group used the first Born approximation to calculate the orientation average of S14
and S,; for wire helices with point polarizable groups.31 In what follows, this calcu-
lation was extended to include all 16 Mueller matrix elements. Our derivation fol-

lows that of Bustamante et al. closely. In addition, the case of a continuous helix,

rather than one defined by point polarizable groups, is discussed.

The rotational average of any function is given by

2Zn n 2n

L) [ [ | FoeBeto) sin®B) do, d, dy,  (S.1)
000

8n?

where o, B, and y, are the Euler angles defining the following counter-clockwise

<F(0te,Be,Ye)> = (

rotations: a rotation around the z-axis, around the new y-axis, and around the new
z-axis. Since the Mueller matrix elements are expressed in terms of products of
scattering amplitude matrix elements, we compute the averages for these quantities.
Each product will be a combination of factors involving scalar products of the polar-

izability vectors and the distance vector between point polarizable groups, T

ij In

2 0
addition, the term e * ~ ¥ will be present. This term is difficult to integrate over
since it involves terms in the laboratory and the reference particle frames. To sim-

plify this problem, the laboratory and particle frames are defined carefully. In the
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laboratory frame, defined by unit vectors, &, b, and & , X and K° are defined in the b-
¢ plane with their difference vector along c¢. The particle frame, defined by

A
0

1,

A ?1
, and k , has the distance unit vector , 4; = -;i’— along the k direction. With these
ij

definitions, the exponent in the integral only involves the polar angle, B, . To
further simplify the calculation, the polarizability vector of the ith particle is defined
in the i-k plane while that of the jth particle has three components. After averaging,
this introduces no loss of generality. Thus,

7 0 : A 7o N : a

kK = cos({) b + sin({) & and k° = cos(£) b — sin(€) &, (5.2)
where { is twice the scattering angle. With these definitions, the unit vectors paral-
lel and perpendicular to the scattering plane, defined in in Equations 2.45 and 2.47,

are

&8 =—sin({) b + cos({) &, &) =sin(§) b+ cos() &, and &0 = &S =4. (5.3)
Evaluating Equation 2.46, the scattering amplitude matrix elements are written:

S, =TY¢ ®-).% w,w; & . &sup0
i
S, =Tye ®-F) 1y 65 2 (5.4)
i
S,=TYe ® O Ty 20 2
i
S, =Ty €T 8 4.2
i
where w?wi is the outer product of the polarizability vector of the ith particle and I'
is a proportionality constant that divides out upon normalization. The expressions for

the jth particle are exactly the same with j replacing i. The quantities to be averaged

are products of the scattering amplitude matrix elements suéh as SziS3j*. The polari-

zation vectors, W; and W; , are written:
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Wi=sii+liﬁ,andwj=sjmi+sjn3+ljf(. (5.5)
The parameters 1, 1, s;, s; , m, and n can be written in terms of scalar and vector

products of &, €, and R;; .

li = Wi . ﬁij’ lj = Wj . ﬁij’
§; = IW, X ﬁijl’ Sj = 'Wl X ﬁu' (5.6)

(W; x Wy) . Gy (W; x O . (W x 0y)
s TR R

SiSj SiSj

MATHEMATICA was used to generate the entire Mueller matrix for the first
Born approximation for the orientation average. The Mueller matrix elements are
sums of products of the scattering amplitude matrix elements. These relationships
between these quantities are given elsewhere.** For example

Sa4 = Im(S,S1* + 5453%), (5.7)
where Im denotes the imaginary part. The products of scattering amplitude matrix
elements, necessary to calculate all the Mueller matrix elements, are given in Appen-
dix I for a helix in the orientation average. The Mueller matrix elements are simple
combinations of these products. The results for un-normalized S14 and S24 are

presented below:

2.2

§; 2

S;

SI4=ZE(8j2/qliljn7t28isj+2j1mnn i
T

)
- 2jjqmnn?s?s?) (sin(g) + sin)?) (5.8)

S.=Y Y Bjlal] lerl’.2 5 8+ 2 jy m n 2 si2sj2
i
- 2j/qamnn?s?s?) (sin) - sin(G)*)

where j; and j, are first and second order Bessel functions with argument q = 4
n/ A sin(§) r; . The result for S14 is identical to that published earlier.! Examina-
tion of the scattering amplitude products given in Appendix I reveals that the follow-

ing are all real : Slsl*: 8282*9 S3S3*, S4S4*, SISZ*’ S3S4*, SZSI*’ and S4S3*, the
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following are all imaginary : S,S;*, 8;S4*, S;84*, §,53*,838*. Thus, the following
elements were found to be identically zero : S34, S13, S23, S43, S31, and S32. This
is consistent with calculations made previously by McClain et al.3® These expres-
sions are general results for a given structure defined by point polarizable particles
with a distance unit vector, 0;;, and polarizability vectors W; and W;. A helix can be
defined like that in Figure 3.1 with point polarizable groups along the wire at points
defined by ©;and 6; The double sums can be converted to integrals over
d6,; and d6;, which can be evaluated numerically. Since the Mueller matrix elements
under this formalism are only functions of 6; — 6, the double integral can be con-
verted to a single one by making the following change of variable
6, — 6, — u and 6; + 6; > v. The required numerical integrals over one variable can
be carried out on any small computer. Modelling a continuous helix is advantageous
because one need not worry about the number of point polarizable groups necessary

to describe the helix and helices with large dimensions can be accommodated.

D. The Coupled-Dipole Approximation

We have modeled the angular dependence of several scattering matrix elements
from octopus sperm using the coupled-dipole approximation. Equation 2.33
represents the scattered electric field using the coupled-dipole approximation. In the
coupled-dipole approximation, the electric field at each subunit is equal to the
incident field plus the electric field due to radiation from all the other subunits. If a
particle is modelled by N dipoles, 3N linear equations must be solved simultane-
ously in order to determine the net electric field at each dipole location. The solution
of the simultaneous equations to find the electric field at each dipole is a limiting
problem with the coupled-dipole method. Since this requires the inversion of a large
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matrix, a large computer must be employed to carry out calculations involving parti-
cles composed of many subunits. Although this limitation does not apply to calcula-
tions using the first Born approximation, the coupled-dipole approximation is a more
rigorous theory that can be applied to thicker particles and allows for a realistic

study of the polarizability.

The present work uses a formulation of the coupled-dipole approximation in the
orientation averape based on one described previously.”‘36 The sperm head was

modelled by subunits placed along a helix defined by:

T’ =acos(d,) & + asin(0,) § + fz%h- 2, (5.9)
where a is the radius, P is the pitch and 6, runs from O to 2zl with | indicating the
number of helix turns. The polarizability tensor is defined in terms of a local coor-
dinate system to the helix:

B = oy tt + Oy AR + 0y PP, (5.10)
where fi, p, and t are locally defined mutually orthogonal unit vectors. These unit
vectors are usually defined in terms of the tangent, normal and binormal of the

helix.")‘s'43

In this work, since we want to investigate the direction of the polarizabil-
ity tensor, these unit vectors were defined so that they can be rotated with respect to
the tangent, normal and binormal directions. The unit vectors fi, , and t are defined
as

fi = cos(§,) sin(§A’ + sin(§,) sin(§,)p’ + cos(Ct’

t = cos(§;) cos(§f’ + sin(&;) cos(§p’ ~ sin(§ )t (5.11)

p = —sin({)A’ + cos({y)p’
where the angles {; and {, define the rotation of the local coordinate system defined

by,
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t= "(“:X) sin(6y) & + (——-) cos(e,,) 9 + (———-) 2

p=(5

) sin(6,) & - ( ) cos(0,) 9 + (-—-) 2 (5.12)
fi’ = cos(0}) x + sm(eh) 9
with,

, 1
M=(a2+-—?—-)
an?

The model for the octopus sperm head was a single turn of a helical fiber com-
posed of about 40 spherical subunits about 35 nm thick. Because the fortran code
used in this work requires an enormous amount of memory, the number of subunits
incorporated into our model was severely limited. Earlier work indicated that, for
accurate results, the thickness of a subunit should not exceed one tenth the
wavelength of light.43 The use of only a single turn of a helix is adequate to model
the normalized matrix elements because our results indicate that these do not change
much as a function of the number of turns. Only S,, is strongly dependent on the
number of turns of a helix. This is true as long as each subunit on each successive

turn is placed in phase with those below it; for example, if a subunit is placed at

0, = -181 then one must also be placed at 6, = -9—:— If the subunits on a multiple

turn helix are not placed in this manner, all the normalized Mueller matrix elements
are dependent on the number of turns of the helix (Although this dependence disap-
pears for a large number of turns or subunits). The independence of S,; to the
number of turns is demonstrated in Figure 5.4 for a single helix oriented parallel to
the incoming light. S;4 is the same for one and two turns of this helix. S,; is shown
normalized by its magnitude at 0°. Figure 5.4 shows that S;; depends on the

number of turns. The changes in S,; demonstrate that as the number of turns
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increases the helix becomes more forward scattering. We have also observed the
independence of all the Mueller matrix elements normalized by S;; for helices
modelled as a continuous dielectric using the first Born approximation. The us= of a
single turn to model the octopus sperm is justified because the normalized matrix

elements are not greatly affected by the number of turns of the helix..

E. Results

The 8,, calculated using spherical subunits with isotropic polarizability did not
result in 8,4 with a magnitude equal to the measured values. The largest calculated
S, found assuming an isotropic polarizabilty was less than 1.5% with
o, = 5,233 nm® . In general the calculated S;4 should be larger than the measured
one since other scatterers in the sample will reduce the measured S, by contributing
to S;;. We therefore found it necessary to assume that modelled helical fiber was
composed of material with an inherently anisotropic polarizability. This inherent

anisotropy could correspond to ordered packing of the DNA in the sperm head.

S44 was most sensitive to the absolute strength of the polarizability. The abso-
lute magnitude of the polarizabilty was originally set at a value computed by the
theory outlined in chapter 2 (Equations 2.37-2.43) with the dielectric constant of the
material set at 2.0 and that of the medium at 1.8, The magnitude of the polarizabil-
ity was then refined by comparisons of the magnitude of calculated S;; with the
measured magnitudes. When calculations were attempted with a polarizability that
was too large, poor agreement of S, and S,4 with measured values resulted. When
the polarizability is too large, the coupled dipole approximation breaks down

because the interaction between subunits becomes too large.
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Mueller matrix elements were calculated for a wavelength in the medium
(index of refraction = 1.3) of 352 nm. The following parameters in the model were
varied in an attempt to replicate the measured Mueller matrix elements
(S14s S12, Sa4): pitch, radius, degree of anisotropy of the polarizability and the direc-
tion of the principle axes of the polarizability with respect to the helix. The best fit
(Figure 5.5a) was obtained using a pitch = 650 nm, radius = 190 nm, and polariza-
bility strengths o, = 6,433 nm’, Opp = Opy = 2,617 nm3, The direction of the prin-
ciple axis of polarizability for o, was 9° from the tangent to the helical fiber. The

. ., Oy —nn
anisotropy ratio ————— was 42%.
Oy + Opn

The largest strength of the polarizability is close to tangent to the helix. Figures
5.5b and 5.5c show the calculated matrix elements when that strength is placed
along the normal or binormal. Comperison with the experimental results shown in
Figure 5.3 points out the superiority of orienting the large polarizability close to the

tangent of the helical fiber.

Lack of agreement between the measurcd and calculated results may be par-
tially due to the presence of Rayleigh scatterers in the sample, such as sperm tail
fragments. To investigate this possibility, the calculations were repeated with a
correction for the presence of Rayleigh scatterers. Rayleigh scatterers are character-
ized by the following Mueller matrix elements:

S14=S33=0, S;; = Y1 + cos¥®)), S, = Y(cos(®) — 1), (5.13)
where 7y corresponds to the amount of Rayleigh scatterers present. The corrected
values of the Mueller matrix elements are calculated by adding the calculated matrix

element for the helical sperm head fiber to that of the Rayleigh scatterer:
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Sy=8;;.+S;;, (5.14)

where S;, and §;; are the matrix elements from the original calculation for the heli-

cal fiber and the Rayleigh scatterers. Thus for S,

Si2 5 Sia. + Sqa,
Sn, Si+8py,

(5.15)

The amount of scattering due to Rayleigh scatterers was determined by comparison
with experiment. The results of this correction for an amount of Rayleigh scatterers
such that they scatter as much as the helical sperm fibers at 90° is shown in Figure

5.6a. Figure 5.6b shows S;; calculated for one turn of the helix.

E. Discussion

We have modelled the polarized light scattering from octopus sperm using the
coupled-dipole approximation. Modelling several Mueller matrix elements simultane-
ously aids in limiting the combination of parameters that describe the helix. By
changing one parameter the calculated S;; may become more like the measured
value, but S;; may become less like the measurement. 1his same argument applies
to the Rayleigh correction used for Figure 5.6. When the relative contribution to the
scattered light from the Rayleigh scatterers is too large, the calculated S, becomes

less like the measured data.

Comparison of S,; in Figure 5.6b with the measurements shown in Figure 5.3
reveals that the measured S;; is much more forward scattering than is the calculated
result. The thickness of the helical fiber used in the model, being significantly
smaller than the apparent thickness of the real DNA-protein fiber, may have been
responsible for the diminished forward scattering in the calculation. This can also be

attributed to the calculation being made for only one tumm of the helix. As
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mentioned above, the Mueller matrix elements, normalized by the total intensity ele-
ment S;;, do not depend heavily on the number of helix turns but S,; becomes more
forward scattering when it is calculated for a helix having more turns. This should
hold true as long as the length of the particle does not become too many times
greater than the wavelength; at this point the shape of S,; should not change. The
data shows that the sperm heads are very forward scattering. The S;; would have
appeared even more forward scattering without the Rayleigh scatterers present.
Therefore the Rayleigh scatterers in the sample may have diminished the normalized

S.4 and S34 even more than what is shown in Figure 5.6.

We have chosen to model S;,, S;4, and S;4 because these elements are not
difficult to measure and are representative of three classes of elements: the dipole
elements (S;,), the helicity elements (S,4), and the retardation elements (S;,).3*72
S;, is sensitive to general size parameters of a particle and is always observed for
any type of particle(s). S, is sensitive to the chiral nature of a particle; it is zero for
an ensemble of randomly-oriented particles unless the particles are chiral. Ss4 is

sensitive to size and refractive index; it is zero for small or thin particles.

Calculations using the polarizability theory outlined in Equations 2.37-2.43
applied to spherical subunits that make up the helix did not result in S,4 as large as
the measured values. It was necessary to incorporate spherical subunits with aniso-
tropic dipoles into our model in order to best fit the data. The magnitude of S,, is
very sensitive to the degree of anisotropy in the polarizability. The magnitude S, is
most sensitive to the magnitude of the polarizability. The number of nodes in S;,4
was very sensitive to the radius used in the model. This observation is consistent

with an earlier one made using the first Born approximation.28 The direction of the
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polarizability affected the shape of all the Mueller matrix elements. The best results
were obtained when the strongest polarizability was near tangent to the helix.
Although the direction 9° from the tangent is based on somewhat subjective com-
parisons of calculations with measurements, Figure 5.5 shows that the the greatest
polarizability lies closer to the tangent than to the normal or binormal directions.
Since the polarizability of DNA is strongest in the plane of the base-pairs 3 (per-
pendicular to the 2 nm double helix) this result indicates that the DNA double hel-

ices in the sperm head lie perpendicular to the helical, thick sperm head fiber.

The most in-depth study of the ultra-structure of the sperm of Eledone cirrhosa

was conducted by Maxwell.™*

This author concluded that the rigid helical structure
of the sperm head is due its chromatin. That the shape of sperm head is due to the
chromatin has also been suggested by other researchers for mammals, birds, insects,
and annelids.”” Maxwell found that DNA begins to form 10 nm fibers during sper-
rniogr.anesis.74 Maxwell also reported that the 10 nm fibers condensed further as sper-
miogenesis progressed but he did not propose an arrangement of the DNA within its

final condensed forrn.74

The DNA being perpendicular to the sperm head fiber is consistent with several

76-80 The 10 nm fiber referred to

models of higher order DNA organization in sperm.
by Maxwell may be similar to the intermediate fiber proposed for the DNA-
protamine complex formed in mammalian sperrn.76 In mammalian sperm, it is
believed that a primary condensation of DNA occurs when 2 nm strands of DNA lie

7677 The final level of

parallel to each other; one in the major groove of another.
organization of DNA in mammalian sperm may be similar to that in somatic

cells.”””’® The DNA intermediate fiber forms loops that are attached to a nuclear
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matrix; the fibers ending up perpendicular to the axis of the larger fiber formed by
the looped fibers and the nuclear matrix. The final fiber is about 840 nm thick in

somatic cells, whereas the loops are about 60% smaller in sperm cells.”®

In sperm
cells the DNA would be perpendicular to the chromatin fiber. An alternative model
for stallion sperm DNA proposes that the DNA forms a structure similar to that of a

cholesteric crystal.79’80

In this model the DNA strands are parallel to each other
within a cross section of a thick fiber. The average direction of the DNA rotates
from one cross section to the next giving a characteristic pitch to the thick fiber.
The DNA is perpendicular to the axis of the thick fiber in this cholesteric crystal
model. Finally a model has recently been proposed by Hud, Balhorn and others
(personal communication) for mammalian sperm that involves the formation of a
thick fiber by a toroidal organization of DNA. The DNA winds around the perime-
ter of the thick fiber in a plane perpendicular to the fiber axis. Thus the DNA is
perpendicular to the thick fiber in several models of DNA higher organization in

spérm cells.

In summary, we have determined that the average direction of the 2 nm DNA
strands are perpendicular to the thick, chromatin fiber in the octopus sperm head by
comparing polarized light scattering measurements to theoretical calculations. Thus
the technique of polarized light scattering can be used to obtain information in struc-
tural biology that cannot be otherwise obtained using microscopy techniques. With
the extension of measurements to smaller wavelengths, where smaller structures can

be studied, polarized light could become a more valuable biophysical tool.
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VI. The Mueller scattering matrix of DNA Plectonemic Helices

A. Introduction

A plectonemic DNA helix is an interwound closed DNA molecule. The
interwinding is known as supercoiling and is measured by writhe. A change in
DNA linking number can be expressed as a change in writhe or twist (the rotation of
a single DNA double helix around itself). Because supercoiling is involved in many

biological processes,gl'83

a lot of attention has been focused on the study of super-
coiled DNA in the form of a plectonemic helix. Many studies have been done in
which energy considerations lead to models that predict the distribution of linking
number in twist and writhe, the helix radius, as well as dynamic properties of the
plectonemic helix.2425 The confirmation of these models have relied on electron and
other forms of microscopy, dynamic light scattering and topological methods.36-87

Polarized light scattering may provide a new non-intrusive method of studying DNA

plectonemic helices providing information other techniques could not.

Polarized light scattering has become a useful tool in many scientific discip-
lines. 1433659 polarized light scattering yields more structural information than total
scattering intensity measurements.?® In particular, it has been proposed that polarized
light scattering be used to study macromolecular structure. This al;plication has been
somewhat successful in certain cases using visible light. However, more structural
information is obtainable when the wavelength of light used is of the same order as
the molecule being probed. With the possibility of using synchrotron radiation, it is
likely that polarized light scattering can be extended to the X-UV, x-ray region and

provide new insights into macromolecular structure.
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The polarization effects of scattering are fully described by the elements of the
4x4 Mueller scattering matrix. The Mueller matrix has been calculated for a variety
of structures using electromagnetic theory. For the study of macromolecules a lot
of attention has been paid to the S;, matrix element (also known as circular intensity
differential scattering) because of its sensitivity to the chiral parameters describing a
particle. Diaspro and Nicollini calculated S, from chromatin by assigning a triaxial
polarizability to points along a helical contour.%9 Each point was assumed to
correspond to an ellipsoidal nucleosome. The internal field caused by interactions
between nucleosomes was accounted for. Patterson et al. calculated S,4 for a model
superhelix.32 Their model consisted of a coiled coil. S;4 was calculated by Patterson
et al. using the first Born approximation where the induced internal field is ignored.
Bustamante e al. examined the feasibility of measuring S;4 from an ensemble of
randomly oriented helices in the soft x-ray region using the first Born approxima-
tion.38 In this work we calculate the Mueller matrix elements for a model of a DNA
plectonemic helix using the coupled dipole approximation in the orientation average.
The coupled dipole approximation accounts for internal interactions and retardation.
We find that there would be more scattering from the DNA plectonemic helices used
in our calculation in the soft x-ray region than in the UV and visible. Several

matrix elements show sensitivity to the writhe of the DNA plectonemic helix.

B. The Polarizability

The polarizability tensor is defined by the directions of the principle axes and

the strengths along these axes:

B = Oy, At + G PP + Oy . (6.1)
and
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o; =0y +iay”, j=tt, nn, pp. (6.2)
where t, n, p are directions of the principle axes. The real and imaginary parts of

the polarizability can be obtained directly from absorption measurements using the

following relations:®>*°
C; T Ex)dx
S =A) 2— P|=2——, .
o' = AV) 2— £§2—v2 (6.3)
-CiE(V)
%”=Awy—§L— (6.4)

where v is the frequency of light, P means the principle part, x is a variable of
integration, & is the measured extinction, C; = 6909c/8n2N0, with ¢ representing the

speed of light and N is Avogadro’s number, and A(v) is given by

(2 +2)?

2 9,

A =
w==

(6.5)
where ng is the index of refraction of the solvent.

A base pair was represented by a single point polarizable group. The polariza-
bility was calculated parallel and perpendicular to the base pair using the average
absorption of each nucleotide. The absorption above 200 nm was completely in the
base-pair plane. An isotropic absorption was assigned at 120nm to represent contin-
uum transitions in the vacuum UV. These assignments are identical to those used
previously.91 In the x-ray region, The polarizability was assigned to each point using

absorption data from benzene.”

C. The Model Plectonemic Helix

A three dimensional contour was defined by John E. Hearst to approximate a
DNA plectonemic helix. A code written in MATHEMATICA is given in the

Appendix II that generates this contour. The plectonemic helix is composed of twe
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interwound simple helices attached by a loop on each end. The simple helices are

180° out of phase.

Each base pair is represented by ellipsoidal polarizable groups. The principle
axes of the polarizability of the ellipsoids are aligned along the tangent, normal, and
binormal of the curve representing the plectonemic helix. Figure 6.1 shows the two
and four turn helices used in this work. Each had 462 base-pairs. The dimensions
of the two turn helix are 70 nm long, and helix radius 2.5 nm. Helix radius refers to
the the radius of the helical region of the plectonemic model. The four turn helix is
62.6 nm long with a helix radius of 2.2 nm. Each dipole is about 3.42 + 0.02 R

apart.

D. Results

In order to determine the structural information that may be obtainable from
polarized light scattering measurements we have made calculations of Mueller
matrix elements as a function of wavelength, writhe (or pitch), and the strength,
directions and anisotropy of the polarizability. We do not report all the matrix ele-
ments here although our fortran code generates all of them. We have chosen to
report the elements, S;;, Sy5, Sy3, S34, and S;4 because these represent the different
categories of matrix elements. All the matrix elements are reported normalized by
the total intensity element S;, except for S;; itself. We have made calculations of
DNA in water. We have attempted to calculate the Mueller matrix elements at
wavelengths where measurements can be made; where there is a sufficient transmis-
sion through water. We would like to have calculated the Mueller matrix elements at
the carbon edge (about 4.3 nm) but this wavelength is too small compared to the
width of the DNA base-pair so the coupled-dipole approximation breaks down for
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our model. Therefore we have used the polarizability of the base pair at the carbon

edge for calculations of the Mueller matrix elements at 20nm.

Figure 6.2 shows calculated Mueller matrix elements at different wavelengths,

633, 260, and 20 nm. The strengths of the polarizabilities in 1&3 were as follows:

Wavelength Oy Olan oy

633 nm | 12.8 44 44

260 nm 15.2+0.88i | 48.8+36.81 | 48.8+36.8i

20 nm 0.72+0.4i 0.72+0.4i 0.72+0.4i

where i = V=1. S, (plotted on a log scale in Figure 6.2) shows that our model plec-
tonemic helices scatter most at 20 nm. The other matrix elements in Figure 6.2 are
plotted as a relative intensity; they are normalized by S;,. The normalized
S;3 and S;4 elements are zero when the wavelength is 633 nm on the scales used in

Figure 6.2. S;4 and S, are largest at 20 nm.

As part of a preliminary investigation of the information obtainable from polar-
ized light scattering we have compared Mueller matrix elements calculated for a two
and four turn plectonemic helix (Figure 6.3). The structure of the total intensity ele-
ment S;; is not very sensitive to a change in the writhe of the helices (Figure 6.3).
S,4 shows the most change with respect to the number and position of nodes, max-

ima, and minima for the calculation conducted at 20nm.

The excitations at the carbon edge involve the core carbon electrons. The pola-
izability is thus mainly isotropic. However, there are resonant excitations to the 7
and ¢ molecular orbitals.”> These resonances result in an anisotropy in the polariza-

bility parallel (n) or perpendicular () to the DNA 2 nm strand. We have investi-
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gated the sensitivity of the Mueller matrix of our model plectonemic helices to an
anisotropy in the polarizability at 20 nm. Several matrix elements are shown in Fig-

ure 6.4 where the following polarizability strengths in 12;3 were used:

Curve Oy Olnp Ctpp
— | 0.840.48i | 0.64+0.32i | 0.64+0.32i

............ 0.64+0.32i | 0.8+0.48i 0.8+0.48i

S;; and Sy, did not show much sensitivity to anisotropy in the polarizability. Of

those shown in Figure 6.4, S,, is least sensitive to polarizability anisotropy.

E. Discussion

With recent advances in optical elements and a little ingenuity all of the
Mueller matrix elements should be measurable in the soft x-ray region using syn-
chrotron radiation. The elements S, S;,, and S;3 could be measured using two
detectors that move along two perpendicular scattering planes. Light emitted from a
syncfxrotron is highly polarized in the plane of the accelerator ring. In order to
measure S;, the two scattering planes should be parallel and perpendicular to the
plane of the accelerator. Relative to the scattering plane that is perpendicular to the
ring, the incident light is vertically polarized, and relative to the scattering plane that
is parallel to the ring, the incident light is horizontally polarized. The intensities of
the scattered light detected at the two perpendicular planes would be proportional to
S;1 + Syz and Sy — S;,. Thus Sy, is the difference of these measured intensities and
S;; would be their sum. S;3; can be measured in the same way with the two mutu-
ally perpendicular scattering planes being rotated 45°. A chopper that alternately

blocks light to one of the two detectors would allow for a modulation of the
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difference signal between the two detectors. New developments in the use of mul-

94,95 could be used to measure the other elements in the second and

tilayer devices
third columns of the Mueller matrix. Thus, for example, if vertical polarizers were
installed in front of the detectors that move in the planes parallel and perpendicular
to the ring, the detected intensities would be S;; + S;5+ Sy; +S;, and
S11 = Sy2 -~ S5y = S,5. The difference between these measured intensities and the
subtraction of the previously measured element gives S,,. Using diagonal polarizers
and a combination of polarizers and 1/4 wave plates allows the measurement of the
third and fourth row elements. In order to measure the elements in the fourth
column, the incident light must be varied from right to left circularly polarized. One
method of doing this would be to use right and left elliptically polarized light from
above and below the ring plane. This would allow for measurement of the the
fourth row Mueller matrix elements in the same way that they are measured conven-
tionally, 640

A more accurate determination of structure using polarized light scattering is
obtained by comparing measurements with calculations for several Mueller matrix
elements than a single one. For example different structures may produce the simi-
lar S5, but have entirely different S;,. The most commonly measured element, S,;,
is least sensitive to structure. Thus, if light scattering is to be used to uncover new

information regarding the structure of plectonemic helices, the investigation should

involve several Mueller matrix elements.

The model used here to approximate DNA plectonemic helices differs in many
respects to those obtainable experimentally. Whereas the DNA molecules in water

would undergo various internal motions, our model is rigid. A sample prepared in
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the lab would not be 100% homogeneous with respect to its linking number. A
better model would account for internal motions and inhomogeneity of the sample.
We have investigated scattering at the carbon edge by using polarizabilities calcu-
lated from benzene absorption data at 4.3 nm (at the C-edge) for calculations con-
ducted at 20 nm. The calculations could be performed at 4.3 nm if more than one
point polarizable group is used to represent a single base-pair. The addition of point
polarizable groups, however, increases the time and memory requirements of the
computer. We have found this calculation to be too intensive for the computer facili-
ties available to us. Nevertheless, it is not too intense for existing supercomputers

and will probably be more easily accomplished in the future.

Despite the model’s limitations several useful observations can be made. The
wavelength dependence of the total intensity element, S;;, shows that more scatter-
ing would be produced at the carbon edge than in the UV and visible. If the calcu-
lation were done at 4.3 nm instead of at 20 nm, more scattering would be expected
since the intensity of scattering increases as the wavelength decreases. The larger
S;3 in the x-ray region makes it a good candidate for measurement, especially since
it has an interesting angular dependence. A non-zero S;; results from either aniso-
tropic polarizabilities or interaction along a chiral structure. The interaction between
point polarizable groups must have been responsible for the S;; in the x-ray region

when the polarizabilities were isotropic (Figure 6.2).

The Mueller matrix elements calculated for model plectonemic helices were
sensitive to writhe in the visible, ultra-violet, and x-ray regions. The sensitivity of to
writhe at 633 nm is consistent with experiments conducted by Nicollini et al. on

supercoiled DNA.®! The sensitivity to polarizability anisotropy in the carbon edge
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could aid in structural determination by doing near edge polarized light scattering

spectroscopy.
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VII Polarized Light Scattering from Dinoflagellates

A. Introduction

In this chapter the measurement of a Mueller matrix element, S;4, is used to
study the chromosomes of dinoflagellates. The S, of a single immobilized
dinoflagellate is compared to that from single inorganic particles. The S;4 from
several species of dinoflagellates are compared with damaged and preserved chromo-
somes. Finally, the S, from live dinoflagellates is investigated as a function of cell

cycle.

As a result of symmetry considerations, the S;4 signal of most collections of
randomly oriented particles is zero.%® However, S;4 signals can be non-zero for
media containing optically-active material such as a collection of randomly-oriented
helices.>! The symmetry relationships that result in zero S,, for particles that are in
suspension do not necessarily hold for single particles. Although particles with
spherical symmetry have a zero S;4, other single particles such as an obliquely
oriented cylinder can produce a non-zero S4 40 A helical structure is capable of
producing highly circularly-polarized light from incident unpolarized light. For light
incident along the longitudinal axis whose wavelength matches the pitch of the
helix, one sense of circularly-polarized light is transmitted and the other is

d.30'96’97

reflecte Thus one expects a helix to be capable of producing very large S;4

signals.

Large, angle-dependent S;4 signals have been measured from single suspended
cells of the dinoflagellate, Prorocentrum micans.>® It was suggested that these sig-

nals are due to the helical nature of the dinoflagellate chromosomes. The exact
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structure of the chromosomes of P. micans has yet to be agreed upon, but almost all
proposed models involve some kind of helical structure.” One strongly confirmed
model is Bouligand’s liquid crystal model.'%1%2 1 the cholesteric crystal model,
the DNA fibers are parallel to each other in each horizontal plane. The average
direction of the fibers rotates as you move vertically along the chromosome. A cross
section, as would be seen in a thin section in electron microscopy, reveals an arched
pattern. The chro.nosome has a helical pitch of about 250 nm and produces a
significant circular dichroism.>® We examine whether the observed S14 produced in
light scattering from P. micans is due to a helical structure or whether a similar sig-
nal can be induced by a single, non-helical, irregularly-shaped particle. In order to
carry out this investigation scattering measurements were taken from single
dinoflagellate cells and from single inorganic particles suspended in a transparent
gel. The S, is compared for different species of dinoflagellates at different
wavelengths. Measurements are also taken from single dinoflagellates with damaged
chromosomes. In addition, measvrements are taken from live dinoflagellates in

suspension at different times of the day.

B. Materials and Methods

The scanning polarization-modulation nephelometer used for these measure-
ments was described in Chapter 4. The S4(8) was normalized by the total intensity
element, S;;(8) . Henceforth, S;4 will refer to the normalized matrix element. Any
contribution that the gel makes to S;, decreases the observed S,,. In the calculation
of the average S4, this contribution was eliminatea v multiplying the measured S,

signal by the ratio of the intensities of total scattered light to the scattering of the
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particle alone. This yields a S,4 signal normalized only by the total intensity of scat-

tered light due to the particle.

Fixed samples of C. cohnii (CCOHNII(D)) and G. polyedra (GP60E) were gen-
erously provided by Bigelow Laboratory for single cell measurements. A strain of
the dinoflagellate P. micans (LB1993) was grown in an enriched Erdschreiber’s
medium in Erlenmeyer flasks. The culture medium was made as follows: 1 liter sea
water + 100m! distilled water + 50ml soil extract + 10ml Na,HPO, (2g/1). Sea
water from Bodega Bay, CA was filtered through Whatmans filter paper and auto-
claved for 35 minutes. A soil extract was prepared by dissolving 50g of soil in
250cc of sea water and autoclaved for 120 minutes. After filtering using a Buechner
funnel, the extract is autoclaved three times for 10 minutes and kept at 4° Celsius.
A vitamin solution consisted of 0.06 mg biotin, 0.1 mg B;,, and 5 mg thiamin in
100ml distilled water. A metal solution was prepared by dissolving 0.750g Na,
EDTA in 1 liter of distilled water and adding the following: 0.097g
FeCl;—-6H,0, 0.041g MnCl,—4H,0, 0.002g CoCl,—6H,0, 0.005g ZnCl,, 0.004g Na,MO,.
An innoculant of 10ml of medium was added to 100ml of fresh medium: 2ml vita-
min solution, 0.6ml metal solution, and 97.4ml culture medium. The dinoflagellates
were kept at about 20° Celsius receiving light from cool fluorescent bulbs for 12
hours a day. Fresh air was circulated from a refrigerated room. The dinoflagellates
were routinely observed in a light microscope and kept in logarithmic growth.
These dinoflagellates are shaped like apple seeds and are approximately 50 pm in
diameter. Their nucleii are about 15 pm in diameter and contain about 100-200

chromosomes.

The cells were fixed before being suspended in the gels. Cells were fixed in a
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mixture of 1 part 6% glutaraldehyde solution to 1 part 0.4 molar phosphate buffer
(ph 7.1) and to 1 part 7% NaCl solution. This primary fixation was continued for 2
hours at 0° Celsius. They were then washed three times and overnight in the clean-
ing solution: 1 part buffer to 1 part 4% NaCl solution. Post fixation was carried out
with a 1% OsO, solution, 0.1M phosphate buffer, and 2.5% NaCl. After being
rinsed for 3 x 20 minutes in the cleaning fluid the cells were dehydrated in 30%,
50%, 80% alcohol. Some of these cells were further dehydrated in 100% ethanol and
suspended in epon resin for observation using a Zeiss 109 electron microscope.

Thin sections were stained with lead citrate and uranyl acetate.

Two types of alumina particles were used: Linde A alumina particles normally
used as a polishing powder, and Linde sapphire bouls ground to approximately -400
mesh. The particles were examined using an ISI-DS130 dual stage scanning electron
microscope operated at 15 kV. The particles were coated with a 30 nm layer of pla-
tinum. A scanning electron micrograph of the particles is shown in Figure 7.1. The
particle distributions, based on the electron micrographs, are presented in Figure 7.2.

Particles were suspended in distilled water before suspension in the gels.

The immobilization technique has been described previously.59 Cells and inor-
ganic particles were stirred into silica alcogels just prior to gelation. An alcogel that
forms in about two hours is composed of 16ml of TEOS (tetracthylorthosilicate) and
27.5ml ethanol prepared in one flask and 27.5 ml ethanol, 28ml distilled water,
0.5ml ammonium fluoride and 0.09 ml ammonium hydroxide prepared in a separate
flask and then mixed. The gels were bathed in solutions of ethanol and water with
increasing glycerol concentrations. The first bath had 27% water, 56% ethanol, and

17% glycerol. Four intermediate baths were used. The gel remained in the bath
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until it equilibrated as evidenced by the clarity of the solution upon stirring. The
final bath was 92% glycerol, 4% water, and 4% ethanol. The index of refraction of
this liquid bath (1.48) was adjusted to nearly match that of the silica in the gel,
thereby minimizing the gel scattering so that the scattering is dominated by immobil-

ized particles.

The substituted gels were placed in a large scattering cell containing the final
bath solution. Various parts of the gel were studied with the aid of a moveable x-y-z
stage. To further reduce the scattering from the gel, the beam diameter and aperture
size were minimized. A particle was centered in the laser beam using a Zeiss stereo
microscope and the total intensity maximized at 90°. Angular measurements were
taken from about 5° to 165° and the data was recorded on a Hewlet-Packard data
acquisition system and interface. The background scattering from the gel was meas-
ured by moving the stage so that the particle being studied was just out of the beam.
Only a small fraction of the inorganic particles scattered sufficient light to dominate
the scattering from the gel and the particle. Therefore scattering could be measured

from the larger particles only.

Some measurements were taken on live dinoflagellates in suspension. Live cultures
of Prorocentrum micans were poured into a cylindrical scattering cell. The detector
was set at 90° and S, was measured as a function of time. Lighting conditions were
matched to those used in the culture facility. The laser was incident on the sample

only for the minimal time required to conduct a measurement.

C. Results

P. micans vs inorganic particles
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S;; and S;4 were measured from ten single, different alumina particles and
three P. micans cells. The results for one dinoflagellate and several alumina particles
are shown in Figure 7.3. The S, signal of each particle is displayed immediately to
the right of the corresponding S;; plot. The lower, smooth curve shown in the S,
graphs represents the background scattering from the gel. All measurements were
highly reproducible.

The S,4 signals from the dinoflagellates were significantly larger than those
from the scattering from the inorganic particles. The S;4 peaks in the scattering from
the dinoflagellates attain 50% whereas those from a single inorganic particle do not
exceed 30%. In the past S, peaks as high as 60% were measured for single

dinoﬂagellatc:zs.59

Only the largest inorganic particles produced S;, signals over 20%. The inor-
ganic particles had a wide size range, from ‘about 1 to 50 um. Although it was
difficult to determine the size of the scattering particles during the measurement,
larger particles have larger S,; signals. Therefore the S;; is an indicator of the rela-
tive size of the particles. The plots of S;; and S,4 in Figure 7.3 suggest that smaller

particles produce smaller S;4 signals.

The above argument is made more quantitative with aid of Figure 7.4. Plotted
on the vertical axis of this graph is the average of the three highest S;4 peaks for
each particle. Each point represents one particle. The intensities of these peaks were
corrected for the contribution of the gel to the S;; signal. The average S,; signal
(also corrected for the scattering of the gel) corresponding to the three peaks used in
calculating the S,4 average is plotted on the horizontal axis for each particle. For

particles that are large compared to the wavelength of incident light, as these
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inorganic particles are, the intensity of scattered light is approximately proportional
to the cross-sectional area of the particle. If the radius of the largest particle shown
in Figure 7.4 is 50 pum (the largest size observed in the electron micrograph), then
the radii corresponding to the other values of S;; for the inorganic particles in Fig-

ure 4 are approximately 15,18,19,21, and 45 um.

Figure 7.4 shows that smaller alumina particles produce smaller S, signals. For
smaller inorganic particles, the S,, signal appears to be proportional to the size of
the particle. S;, for larger particles approaches 30% asymptotically. Particles with
more spherical shapes would be expected to give smaller S,, signals. This is prob-
ably the case for particles falling far below the curve. The S, signal due to the five
smallest particles measured is below 15% ; far below the S,, signal produced by the

dinoflagellates.

Comparison of different species

S,4 was measured and compared for single immobilized dinoflagellates of the
species P. micans, C. cohnii, and G. polyedra. Measurements were conducted for
several individual cells of each species at various orientations. As a result of poor
fixation, one batch of C. cohnii and G. Polyedra had damaged chromosomes as evi-
denced by electron microscopy. Transmission micrographs of chromosomes from the
samples used in this study are shown in Figure 7.5. Plots of the angular distribution

of S;; and S, are shown in Figure 7.6.

In order to compare the relative scattering from the different species, the
integral of the absolute value of each S,;,(0) measurement was calculated. The aver-

age of these integrals, in arbitrary units, for each species is shown in Table 7.1. Also
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shown is the average number of S, peaks for each plot that were greater than or
equal to 50%. P. micans had the largest average absolute S,;,. C. cohnii produced
larger 8,4 than G. polyedra and those with well-preserved chromosomes produced
larger signals than those with damaged chromosomes. Only the P. micans and C.

cohnii with intact chromosomes were capable of producing signals larger than 50%.

Summary of Results
of Scattering from Single Dinoflagellates
Dinoflagellate Average SUM of S1 4 Average # peaks>0.5
P. micans 26. 0.25
C. cohnii (Intact) 20. 2.5
C. cohnii (Damaged) 17. 0.
G. polyedra (Intact) 15. 0.
G. polyedra ("Damaged") 16. 0.

Table 7.1. Comparison of S, from different species of dinoflagellates. The sum of
the absolute value of each angular scan of S, (such as those shown in Figure 7.6)
was calculated. The average of 3 to 5 sums was taken for each species and is
represented in the second column. The third column shows the average number of

S,4 peaks greater than or equal to 50% .

The wavelength dependence of S, for a single P. micans was investigated. S,
was measured at wavelengths 457, 488 and 514nm. The absolute sum was calculated
for each scan at the three wavelengths. The results are shown in Table 7.2. The larg-

est S;4 was measured at 514 nm.
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Wavelength Dependence of a single P. micans
Wavelength Sum of S1 4

457 13.5

488 194

514 233

Table 7.2. The wavelength-dependence of S, of a single P. micans. The absolute

sum is compared for each wavelength.

Suspension Measurements of live P. micans

The time dependence of the S;, signal was measured at 90° as described above.
The data from two such measurements taken at noon and midnight of a single day
are shown in Figure 7.7a. The time dependence of the signal is probably due to scat-
tered light from a single dinoflagellate traversing the laser beam. At such times the
light scattering from this single dinoflagellate dominates the total light scattered into
the detector. Light scattering from single immobilized dinoflagellates demonstrates
that when the traversing dinoflagellate is of a particular orientation it could produce
a large S;4 signal at 90°. S;4 at 90° from a suspension of 0.497 micron spheres is

also shown (Figure 7.7a). Here, the signal is significantly smaller.

If the observed peaks are caused by scattering from single dinoflagellates
traversing the bearn, then varying the beam size should affect the size of the peaks.
For a wider beam, the contribution of the surrounding media to the total light scat-
tered into the detector would be larger and the measured S;, from the dinoflagellate
would be smaller. In the case of a narrow beam, the light scattered into the detector

would be dominated more by the scattering from the dinofiagellate and the measured
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S,4 would be larger. To test these predictions, measurements were taken with vari-
ous beam sizes with the use of lenses. The results are shown in Figure 7.7b. The
measurements reveal that the variation of the measured S;, with beam size is as

predicted.

The measured S, produced by live dinoflagellates at 90° is a function of the
time of day. Measurements were taken every two hours for consecutive days. The
results were quantified by calculating the variance (the square of the standard devia-
tion) over the measured time and multiplying by a constant. The variance of the sig-
nal is plotted against time of day in Figure 7.8. The signal is diurnal with a peak
near midnight. These measurements have been repeated several times with similar

results.

D. Discussion

The data clearly show that the S,, signal generated by irregularly-shaped
alumina particles is significantly smaller than the S,, signal produced by the
dinoflagellates. At present, P. micans produces the largest S;, signals yet observed
from a single particle. The inorganic particles have large, flat, smooth surfaces that
together with their intrinsic birefringence might explain their S, signals. The fact
that the dinoflagellates do not have such surfaces yet can generate larger S, signals
reinforces the view that helical structures, which have been shown to produce large
S.4 signals in other systems, are responsible for the dinoflagellate S, signals. This
hypothesis is strengthened by observations pertaining to the dinofiagellate chromo-
some infrastructure. The pitch of the P. micans chromosome is about 250 nm. The

wavelength of the light used to measure the dinoflagellate S;, signal was about 310
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nm in the gel from the 457 nm band of the argon-ion laser. Since diffraction from
periodic structures is generally strongest when the periodicity matches the
wavelength, it is not surprising to observe such strong effects on circular polarization

in the light scattering from a dinoflagellate.

Our data show that small-irregularly shaped particles (those with dimensions of
approximately 15 um ) produce small S,4 signals. The chromosomes of P. micans
are about 1x5 um. Thus it is possible that the chromosomes of P. micans produce
S,4 signals over several times those produced by structures of significantly larger

size.

Measurements on different species of single immobilized dinoflagellates show
that all three species studied, P. micans, G. polyedra, and C. cohnii, are all capable
of producing large S,, signals. The largest signals may have been caused by
helically-structured chromosomes. As mentioned in the introduction, helical struc-
tures are theoretically capable of large differential scattering of circularly-polarized
light. The data shows that those dinoflagellates with known helically-structured chro-
mosomes (P. micans and C. cohnii) yield larger S, than the G. polyedra. The P.
micans produce larger S;, than the C. cohnii and they also have about ten-fold as
much DNA. Finally, C. cohnii with intact chromosomes produced larger S;, than

those with damaged chromosomes.

The suspension measurements reveal that P. micans produce a high-frequency
S,4 signal. This signal is diurnal with a peak around midnight. The increase in the
signal may be due to an altered chromosome structure resulting from DNA syn-
thesis. Bhaud and Soyer showed that P. micans grown on a 12:12 light:dark cycle

undergo DNA synthesis between 10PM and 2AM.103 Preliminary flow cytometry
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measurements show a correlation between the presence of S-phase cells and an
increased variance in S;4. A structural change in the chromosomes that would result
in a helical pitch that is closer to the wavelength of light is expected to cause a

lal'ger S]4 .
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VIII Concluding Remarks

We have examined various applications of polarized light scattering to the
study of chromosome structure. The Mueller scattering matrix contains several ele-
ments which constitute the helical domain. These elements are well suited to the
study of chromosome structure due to their sensitivity to chiral parameters that are
related to the chromosomes. In Chapter 3 we examined and developed light scatter-
ing theory from helices that could be used to describe the Mueller matrix measured
from chromosomes. In Chapter 5 we used polarized light scattering measurements
and theory to obtain new insight into DNA packing in the sperm head of the octopus
head Eledone cirrhosa. This study of the sperm head was sucessful because the
chiral parameters of the sperm DNA fiber are of the same order of magnitude as
those of the light that was used for the study. Thus the wavelength of light used to
study a DNA structure must be chosen so that it is close to the dimensions of the
chiral parameter being studied. This notion is reinforced by the results of the exami-
nation of polarized light scattering from DNA plectonemic helices in Chapter 6.
The most fruitful polarized light scattering measurements on DNA plectonemic hel-

ices would be in the X-ray water window.

Dinoflagellate chromosomes have a superhelical pitch of the order of a few
hundred nm. We have thus been able to study them using visible light. Our efforts
lead to the detection of a S14 signal that seemed to vary with the cell cycle of the
dinoflagellates. A problem associated with studying live cells is that not only the
chromosomes scatter light. Thus the measured S,, that is normalized by the total
scattered light intensity element S;; is diminished. Such a problem should not be as

serious in the water window if macromolecules are studied in solution in the absence
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of other particles.

Polarized light scattering has been hailed as a useful biophysical tool for over
twenty years but its contribution to furthering knowledge in structural biology has
been limited. Perhaps the availability of synchrotron radiation in the UV, soft X-ray
region will allow for more extended applications of polarized light scattering in

structural biology.
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Appendix

The following are products of scattering amplitude matrix elements calculated
for helices composed of point polarizable groups calculated using the first Born
approximation. The Mueller matrix elements are sums of these products as given in
reference 40.

sls1* = 12 fac8e & + 3 fac3a n® ~ 6 fac3c n?
+9 fac3e n* + facda n? - 2 facdc n? + 3 facde n2
+ 4 facSc n? - 12 facSe n° + 4 fac6e n? — 12 fac6e n?
+ 4 facTc n® — 12 facTe n® + 16 fac9c 7% — 48 fac9e n?
$252* = 2 fac8a cos(B)* - 8 fac8c cos(B)* + 16 fac8e cos(B)*
+ 12 fac3e 7 cos(B)* + 4 facde n cos(B)* + 4 facSc = cos(B)*
- 16 facSe  cos(B)* -~ 4 fac6e ™ cos(B)* ~ 16 fac6e m cos(B)*
+ 4 facTc & cos(B)* — 16 facTe = cos(B)* + 16 fac9c m cos(B)* — 64 fac9e m cos(B)*
~ 8 fac8c 1t cos(B)? sin(B)? + 32 fac8e 7 cos(B)? sin(B)? ~ 8 fac3c n* cos(P)? sin(B)?
+ 24 fac3e 12 cos(B)? sin(B)? — 8 facdc n? cos(B)? sin(B)? + 8 facde n* cos(B)® sin(P)>
— 4 fac5a 2 cos(B)? sin(B)? + 12 facSc 12 cos(B)? sin(B)? — 32 facSe n? cos(B)? sin(B)?
— 4 fac6a n? cos(B)? sin(B)? + 12 facée 2 cos(P)? sin(B)? — 32 facbe n? cos(P)? sin(B)?
— 4 facTa 72 cos(B)? sin(B)? + 12 fac7c n2 cos(B)? sin(B)? — 32 fac7e n? cos(B)? sin(B)?
+ 32 fac9c 12 cos(P)? sin(P)? — 128 fac9e w2 cos(B)? sin(B)? + 12 fac8e n sin(B)*
~ 6 fac3c 72 sin(B)* + 9 fac3e n? sin(B)* + 1 facda n? sin(B)* ~ 2 facdc n? sin(B)*
+ 3 facde 2 sin(B)* + 4 facSc n? sin(B)* ~ 12 facSe n? sin(B)* + 4 fac6c n? sin(B)*
- 12 fac6e 2 sin(B)* + 4 fac7c n? sin(B)? - 12 fac7e n® sin(B)* + 16 fac9c n? sin(B)*
+ 3 fac3a 2 sin(B)* — 48 fac9e n? sin(B)*
s3s3* = 4 fac8c 7 cos(B)? — 16 fac8e m cos(B)? + 4 fac3c n? cos(B)? — 12 fac3e n? cos(B)?
- 4 facde n2 cos(B)? - 4 facSc n? cos(P)? + 16 facSe n? cos(B)? — 4 fac6e n? cos(B)?
+ 16 facée n2 cos(B)? - 4 fac7c n2 cos(B)? + 16 fac7e n cos(B)? + 4 fac9a n? cos(B)?
- 20 fac9c n? cos(B)? + 64 fac9e n? cos(B)? + 4 fac8e n sin(B)? + 1 fac3a n? sin(B)?
- 2 fac3c n2 sin(B)? + 3 fac3e n? sin(B)? - 1 facda n? sin(B)? + 2 facdc n? sin(B)?
+ 1 facde n? sin(B)? - 4 facSe n? sin(B)? - 4 fac6e n? sin(B)? ~ 4 fac7e n? sin(B)*
+ 8 fac9c n? sin(B)? ~ 16 fac9e n? sin(B)?
s4s4* = 4 fac8c 7 cos(B)? — 16 fac8e & cos(B)? + 4 fac3c n2 cos(B)? ~ 12 fac3e n? cos(B)?
~ 4 facde 2 cos(B)? - 4 fac5c n? cos(B)? + 16 facSe n? cos(B)? — 4 fac6e 12 cos(B)?
+ 16 fac6e n? cos(B)? - 4 facTc 72 cos(B)? + 16 facTe n? cos(B)? + 4 fac9a n? cos(B)?

~ 20 fac9c 1% cos(B)? + 64 fac9e n? cos(B)? + 4 fac8e m sin(B)? + 1 fac3a =2 sin(B)?
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~ 2 fac3c n? sin(B)? + 3 fac3e n? sin(B)? - 1 facda n? sin(B)? + 2 facdc =2 sin(B)?
+ 1 facde n? sin(B)? — 4 facSe n? sin(B)? — 4 fac6e n? sin(B)? ~ 4 facTe n2 sin(B)?
+ 8 facc 72 sin(B)? ~ 16 fac9e n? sin(B)>

$2s3* = i{8 facld =2 sin(B)® + 2 fac2b =2 sin(B)’ - 2 fac2d n? sin(B)’)

s1s4* = i[ — 8 facld n? sin(B) — 2 fac2b n? sin(B) + 2 fac2d 2 sin(B)]

s2s4* = i[ ~ 8 facld n? sin(B)® ~ 2 fac2b n? sin(B)? + 2 fac2d n? sin(B)’]

s1s3* = i[8 facld n? sin(B) + 2 fac2b =? sin(B) ~ 2 fac2d n? sin(B)]

s1s2* = 4 fac8¢ n cos(B)? — 16 fac8e 7 cos(B)? + 4 fac3c n? cos(B)? — 12 fac3e n? cos(B)?
+ 4 facde n? cos(P)? ~ 4 facde n? cos(B)? + 16 facSe 12 cos(B)? + 16 fac6e n2 cos(B)?
+ 4 fac7a =2 cos(B)? — 12 fac7c n? cos(B)? + 16 facTe n2 cos(B)? — 16 fac9c n? cos(P)?
+ 64 fac9e n” cos(B)? - 4 fac8e = sin(B)? ~ 1 fac3a n2 sin(B)? + 2 fac3c n? sin(B)?
- 3 fac3e n? sin(B)? — 3 facda n® sin(P)* + 6 facdc n? sin(B)? ~ 1 facde n? sin(B)?
~ 4 facSc #2 sin(B)? + 4 fac5e n? sin(B)? — 4 fac6e n? sin(B)? + 4 fac6e 12 sin(P)’
— 4 fac7c n? sin(B)? + 4 fac7e n? sin(B)? + 16 fac9e 72 sin(P)?

s3s4* = 4 fac8c 7t cos(B)? ~ 16 fac8e 7 cos(B)? + 4 fac3c n? cos(B)? ~ 12 fac3e n2 cos(P)?
- 4 facde 2 cos(B)? — 4 facSc 2 cos(B)? + 16 facSe n? cos(B)? - 4 fac6e 2 cos(B)?
+ 16 facée 2 cos(B)? — 4 fac7c n® cos(B)? + 16 facTe n? cos(P)? + 4 fac9a a2 cos(B)?
~ 20 fac9c n? cos(B)? + 64 fac9e 2 cos(B)? - 4 fac8e m sin(B)? — 1 fac3a n? sin(P)?
+ 2 fac3c n? sin(B)? - 3 fac3e =2 sin(B)? + 1 facda n? sin(B)? ~ 2 facdc n? sin(B)?
~ 1 facde n? sin(B)? + 4 facSe n? sin(B)? + 4 fac6e n? sin(B)? + 4 fac7e n2 sin(B)?
- 8 fac9c 12 sin(B)? + 16 fac9e n? sin(h)?

5251* = 4 fac8c & cos(B)? — 16 fac8e 7 cos(B)? + 4 fac3c n? cos(B)? ~ 12 fac3e n2 cos(B)?
+ 4 facdc n? cos(B)? — 4 facde n? cos(B) + 4 facSa 72 cos(P)? — 12 facSc n? cos(B)?
+ 16 facSe n® cos(B)? + 4 fac6a n* cos(B)? — 12 fac6e n? cos(B)? + 16 fac6e n2 cos(B)?
¢ 16 fac7e 2 cos(B)? — 16 fac9c n? cos(B)? + 64 fac9e n2 cos(B)? ~ 4 fac8e 7 sin(P)?
~ 1 fac3a n? sin(B)? + 2 fac3c =2 sin(B)? - 3 fac3e n? sin(B)? ~ 3 facda n? sin(B)’
+ 6 facdc n® sin(B)? — 1 facde =2 sin(B)? — 4 fac5c n? sin(B)? + 4 facSe 72 sin(P)>
~ 4 fac6e n? sin(B)? + 4 fac6e n? sin(B)? ~ 4 fac7c n? sin(B)? + 4 facTe 2 sin(B)?
+ 16 fac9e n? sin(B)?

§453* = 4 fac8c  cos(B)® - 16 fac8e m cos(B)? + 4 fac3c n? cos(B)? - 12 fac3e n2 cos(B)?
~ 4 facde n? cos(B)? ~ 4 facSc n? cos(B)? + 16 facSe n2 cos(B)? — 4 fac6e n2 cos(B)?
+ 16 facbe n? cos(B)? ~ 4 facTc n? cos(B)? + 16 facTe 12 cos(B)? + 4 fac9a n? cos(B)?

~ 20 fac9c n? cos(B)? + 64 facSe n? cos(B)? — 4 fac8e n sin(B)® - 1 fac3a n? sin(B)?
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+ 2 fac3c n2 sin(B)? — 3 fac3e n? sin(B)? + 1 facda n? sin(B)? — 2 facde n? sin(B)?
~ 1 facde n? sin(B)? + 4 facSe =2 sin(B)? + 4 fac6e n? sin(B)? + 4 facTe n? sin(B)?
~ 8 facc n2 sin(B)? + 16 fac9e a2 sin(P)>

$3s1* = i[ — 8 facld %2 sin(B) ~ 2 fac2b n? sin(B) + 2 fac2d n? sin(B)]
where

fac2a = m n si’sj? Jo(q), fac2b = m n si%s;j? J,(g),

J
fac2c = m n si%s;j? ﬂ,

1(q)
fac2d = m n si’s;? -25—'

]
2(2 ) facta=1i1j n si § @)
q

fac2e = m n si%sj?

e e h@)
faclb = li lj nsi sj J)(q@), faclc=1liljnsisj -—;—-,
PG Q)
facld = li lj n si §j ~, facle = li lj n si s -3:'—.
fac9a = li lj m si sj Jy(q), fac9b = li lj m si sj J,(q),
Ji@

I(q)
facde =1 f m si § ==, facod = i lj m si §j ——

I(q)
fac9e =1i Ij m si sj %, fac3a = m? si? sj? Jo(q),
q

Ji@
fac3b = m? si? sj? J(q). fac3c = m? si? sj? —IE—
I(Qq) IxQ)
fac3d = m? si? sj? —zq—, fac3e = m? si? sj? —2?—,
q

facda = n? si* 52 Jy(q), facdb = n?si® s Ji(q),
5@ 3@
facdc = n? si? sj? —1-;— facad = n? si? 52 = a ,

=n*si Sj'—q—"

si sj

12(q)
facde = n? si? sf? 2? . facSa = IiZ n? si? Jo(q),

11(q)
facSb = 1i2 n 52 J,(q), facSc = Ii® n? sf? ‘qq

JZ(q) 2.2 .2 -'2(Q)

facSd = 1i2 n? sj2 facSe = Ii* n? s ——,
q

fac6a = i m? sj? Jy(q), fac6b = 1i* m? sj? Jy(q),

J J
fac6e = 1i2 m? sj? —l(q—). facéd = 1iZ m? sj? _2(_q_)_

1@
facée = 1i m? sj? 2? . fac7a = I si? Ig(q),
q

3@

fac7b = 1j2 si? Jy(q), fac7c = Ij? si?
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JoAq@)
o

1@
fac7d = Ij? si? = d , facTe = 1j? si®

iac8a = 1i2 1j2 Jy(q), fac8b = 1i2 I J,(q),

AN I
fac8e = 1i2 Ij? -‘-;—-, fac8d = 1i2 12 2_:1

J
facge = 1i? Ij? 2(3 ) ;
q
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Appendix II.

The contour is defined in terms of the parameter u. n is the number of turns
for a single, simple helix. The following equations define the contour of the two
turn plectonemic helix. The four turn helix is defined with n=4 and d=0.8. The
Display command creates an image file, "3dg", that can be plotted. This Mathema-
tica code is readily to other computer languages.
n=2
d=1.6
14
(n*d + 1)/2
(n*d)/2
del = 4
DNAaxel[u_] := {a*Sin[(n*Pi*(u + 1 - 1/(2*n)))/a], Sin[n*Pi*u], f3[u]}

a3
a:
b:

f3[u_] = 8*a3*Sum[Cos[((2*j - 1)*Pi*(u - d/2))/(1 + A)J/(Pi*(2¥j - 1))°2,
{j, 1, del}]

DNAaxe2[u_] := {-Cos[n*Pi*u], Sin[n*Pi*u], f3[u]}
DNAaxe3[u_] := {-(a*Sin[(n*Pi*(u + 1/(2*n)))/a]), Sin[n*Pi*u], f3[u]}

DNAaxe4[u_] := {-(a*Sin[(n*Pi*(u + 1/(2*n)))/a]), b*Sin[(n*Pi*u)/b}], f3[u]}

DNAaxe5[u_] := {-(a*Sin[(n*Pi*(u + 1/(2*n)))/a]), Sin[n*Pi*(u - d)], f3[u]}
DNAaxe6[u_] := {Cos[n*Pi*(u - d)], Sin[n*Pi*(u - d)], f3[u]}

DNAaxe7[u_] := {a*Sin[(n*Pi*(u - 1 - d + 1/(2*n)))/a), Sin[n*Pi*(u - d)],
f3[u]}

DNAaxe8[u ] := {a*Sin[(n*Pi*(u - 1 - d + 1/(2*n)))/a],
b*Sin[(n*Pi*(u - 1 - d))/b], f3[u]}
xh = {1,0,0}
yh = {0,1,0}
zh = {0,0,1}
flu_] :=
Which[u<(-1+(1/(2n))),DNAaxe1[u].xh,
u<(-(1/(2n))),DNAaxe2[u].xh,
u<0,DNAaxe3[u].xh,
u<d,DNAaxe4[u].xh,
u<(d+(1/(2n))),DNAaxe5[u].xh,
u<(1+d-(1/(2n))),DNAaxe6[u].xh,
u<(1+d),DNAaxe7[u].xh,
u<=(1+2d),DNAaxe8[u].xh,True,0]
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glu_] :=
Which[u<(-1+(1/(2n))),DNAaxe1[u].yh,
u<(-(1/(2n))),DNAaxe2[u].yh,
u<0,DNAaxe3[u].yh,
u<d,DNAaxe4[u].yh,
u<(d+(1/(2n))),DNAaxeS[u].yh,
u<(1+d-(1/(2n))),DNAaxe6[u].yh,
u<(1+d),DNAaxe7[u].yh,
u<=(14+2d),DNAaxe8[u].yh,True,0]

hfu ] :=
Which[u<(-1+(1/(2n))),DNAaxe1{u].zh,
u<(-(1/(2n))),DNAaxe2[u].zh,
u<0,DNAaxe3[u].zh,
u<d,DNAaxe4[u].zh,
u<(d+(1/(2n))),DNAaxeS[u].zh,
u<(14+d-(1/(2n))),DNAaxe6[u].zh,
u<(1+d),DNAaxe7[u].zh,
u<=(1+2d),DNAaxe8[u].zh,True,0]

Display["./3dg", ParametricPlot3D[{f[u],g[u].h[u]}, {u,-1,(142d)} 11

Quit
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Pitch

Figure 3.1 The continuous helix. The helix is characterized by a radius, a, and
pitch, P. The components of the polarizability parallel( p ), perpendicular ( 4 ) , and
tangent ( t ) to the helix are shown.
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Figure 3.2 The coordinate systems of the incidence frame and observation frames.
The incidence frame is set along an arbitrary laboratory-fixed frame x,y,z. The
incident light described by by the propagation vector X, is shown along the z axis.
The scattered light, described by the propagation vector X, is defined by the angles
v and ¢. ¢ is the angle between the x-axis and K v is is the angle between the z-axis
and the projection of K onto the z-y plane. When ¢ = n/2, (as shown) the scattering
is observed in the y-z plane as a function of the scattering angle = y.
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Figure 3.3 Scattering predicted for a single helix with length = 20, radius = pitch =
1, and light incident perpendicular to the helix with wavelength = 2 for a generalized
polarizability when ¢ # w2 . The predicted intensities are plotted over 360°. ¢ = |
radian.
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Figure 3.4 Mueller matrix elements for a single stranded helix with varying number
of subunits. =—— Continuous-Born , A\ Independent-Dipole, ------- Coupled-
Dipole. The helix is oriented at 45 © with respect to the scattering plane in the x-z
plane. Helix pitch, radius and length = 500 nm and A = 1000 nm. Dielectric con-
stant &, = 1.4, e = 1. The spheroidal subunits are four times longer in the tangential
direction than they are in the parallel, and perpendicular direction (Aspect ratio = 4).
For the continuous helix o = 1.348 x 10° nm> and a, = 0, = 1.026 x 10° nm’ in a, b, and
c. (a) 7 subunits are used for the calculations involving point polarizable groups.
The subunits are 100 nm thick SO that
0 = 1.348 x 10° nm® and oty = Oy = 1.026 x 10° nm*.  (b) 15 subunits, 50 nm thick,
0t = 1.684 x 10* nm® and o, = 0, = 1.283 x 10° nm®.  (¢) 31 subunits, 25 nm thick,
0t = 2.105 x 10° nm® and o, = o, = 1.604 x 10° nm*.
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Figure 3.5 Mueller matrix elements for a thin helix with varying number of subun-
its. Continuous-Born , 2" Independent-Dipole, ------- Coupled-Dipole. The
helix is oriented at 45 ° with respect to the scattering plane in the x-z plane. Helix
pitch, radius and length = 500 nm and A = 1000 nm. Dielectric constant &, = 1.4,
g=1. Aspect ratio of the subunits = 198.8. For the continuous helix
O = 5.665 x 10' nm® and o, = 0, = 3.969 x 10' nm® in a, b, and c. (a) 8 subunits are
used for the calculations involving point polarizable groups. The subunits are 2 nm
thick so that a, = 5.665 x 10' nm® and o, = o, = 3.969 x 10' nm*. (b) 16 subunits, 1 nm
thick, o =7.081 nm’ and oy, = 0, =4.962 nm’>.  (c) 31 subunits, 0.5 nm thick,
0 = 0.8852 nm’ and Oty = 0, = 0.6202 nm’.
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Figure 3.6 Mueller matrix elements for a large helix at different orientations.
Coupled-Dipole. Helix pitch,

radius and length = 500 nm and A = 100 nm. Dielectric constant g,, = 1.36, e= 1.
198.8. 320 subunits are used for the calculations

involving point polarizable groups. The subunits are 0.05 nm thick so that

o, = 5.301 x 1072 nm? and o, = o, = 4.016 x 107 nm’. These same values for o are used
pp

for the continuous helix. (a) The helix is oriented at 45 ° with respect to the scatter-

Continuous-Born ,

Aspect ratio of the subunits

Independent-Dipole,

Scattering Angle

ing plane in the x-z plane. (b) The helix is oriented along the z-axis.
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Figure 3.7 Mueller matrix elements of a helix for different values of & e
Continuous-Born , 4% Independent-Dipole, ------- Coupled-Dipole. Helix pitch,
radius and length = 500 nm and A = 1000 nm. The helix is oriented at 45 ° with
respect to the scattering plane in the x-z plane. Aspect ratio of the subunits = 2. (a)
Dielectric constant ¢,,, = 1.4 in a medium with e = 1. 15 subunits are used for the
calculations involving point polarizable groups. The subunits are 100 nm thick,
O = 6.274 x 10* nm? and @y, = 0, = 5.315 x 10* nm®>.  These same values for « are used
for the continuous helix. Two additional curves are shown in the plot of S,,, where
31 subunits 50 nm wide are used with
04 = 7. 842x 10° nm? and oty = oy, = 6.644 x 10° nm?, <>' Independent-Dipole, -¥{3}--
Coupled-Dipole. (b) Dielectric constant €avg = 1.1, €= 1. 15 subunits, 100 nm thick,
oy = 1.587 x 10* nm® and 0y = 04, = 1.518 x 10° nm®>.  These same values for o are used
for the continuous helix.
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Figure 4.1 The scanning polarization-modulation nephelometer. The Argon-ion
laser produces a beam that is reflected by two mirrors and then traverses a polarizer
followed by the photoelastic modulator. The beam is then incident upon the sample.
Scattered light is detected by a photomultiplier tube mounted on a movable arm.
Various analyzers housed in the arm allow all of the Mueller matrix elements to be
measured.
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Figure 5.1 A scanning electron micrograph of the sperm head of the octopus
Eledone cirrhosa. Bar is 1 um.
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Figure 5.2 A transmission electron micrograph of the sperm head of the octopus
Eledone cirrhosa. Magnification 320,000. A dense fiber is seen within the
screw-like octopus head.
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Figure 5.3 Measurements of the Mueller matrix elements from Eledone cirrhosa.
S,; is shown normalized by the intensity of scattering from carbon disulfide at a
scattering angle of 90°. The other matrix elements are normalized by §,,.
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Figure 5.4 Calculated Mueller matrix elements for a single turn of a helix oriented
parallel to the incoming light. The helix has a pitch and radius of 250 nm. for a
wavelength of 500 nm. The calculation for a single turn of the helix is shown by
the continuous curve and the dotted curve represents the calculation for two turns of
the helix. a) S,,. The S;, is shown normalized by its value at the scattering angle 0°.
The scattering of the two turn helix is much more forward scattering than the single
turn helix as evidenced by its value at 90° b) S,,. The matrix element normalized
by S;, is independent of the number of helix turns.
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Figure 5.5 Normalized Matrix elements calculated for the model helix in the orien-

tation average. a) The largest strength of the polarizability is close to tangent to the

helix; ¢ =% and §, = 2% = 6,433 nm’, oy = 2,617 nm’, and g, = 2,617 nm®. b) The

largest strength of the polarizability is along the binormal to the helix ) ;
n 3in

{y=—and §{ = —. = 6,433 nm’, o = 2,617 nm?, and o, = 2,617 nm®. c) The largest
4 20 % g

strength of the polarizability is along the normal to the helix (#') ; {, =0 and {, = —321
Opp = 6,433 nm’, & = 2,617 nm”, and o, = 2,617 nm’,
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Figure 5.6 The Rayleigh correction. a) The Mueller matrix elements calculated for
Figure 5.6a are corrected for the presence of Rayleigh scatterers according to Equa-
tions 21 and 22 with y=10. b) The S,, for the model helix using the same parame-
ters used to calculate the results shown in Figure 5.5a. This is the Si, used for the

Rayleigh correction.
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Figure 6.1 The two (left) and four (right) turn helix.
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Figure 6.2 Mueller matrix elements calculated for the two turn helix as a function
of wavelength. ............ :633 nm, _____ : 260 nm, ---- : 20 nm. The polarizability
strengths used are given in the text. An index of refraction of 1.33 was used at the

UV and visible wavelengths and a value of 1.0 was used at 20nm. S, is plotted on
a log scale. The other matrix elements are normalized by §,,.
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Figure 6.3 The writhe dependence of the Mueller matrix elements. The matrix ele-
ments, normalized by S,;, are plotted vs scattering angle for the two (—__) and
four (............) turn helices. The polarizability strengths at each wavelength are the

same as those used for Figure 6.2.
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Figure 6.4 Anisotopic polarizabilities. The Mueller matrix elements are plotted vs
scattering angle for anisotropic polarizabilities that are perpendicular ( ) and
parallel (............ ) to the base pair. The wavelength used is 20 nm and the polariza-
bility strengths are given in the text.
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Size distribution of - 400 mesh particies

Size distribution of Linde A alumina particies cles
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Figure 7.2 Size distributions for alumina particles. Particles were sized using the
electron micrographs. The mean radius was calculated by taking the square root of
the products of the lengths of the longest perpendicular axes for each particle. The
frequency of each particle size, that is the number of particles within their size range
divided by the total number of particles, is plotted on the vertical axis. The curves
were drawn in by hand.
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Figgre 7.3 'Sy, and S, plots for one Prorocentrum micans (lower) and three alumina
particles (upper). Each §,, plot is shown adjacent to the S, plot for that particle.
Note that the S, signals for each particle are plotted on different scales. The back-
ground scattering from the gel is also shown (smooth curves) on the S, plots.
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Figure 7.4 The average corrected S,, for the three highest peaks plotted vs the
corresponding average S;, values for each particle.
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Figure 7.5 a. The P. micans chromosome. An electron micrograph of a thin section
prepared from a Prorocentrum micans. Magnification = 60,000x. Note the arched
pattern consistent with the cholesteric crystal model. b. Electron micrographs from
C. cohnii and G. polyedra. Micrographs are shown for both proper and improper
fixation. The magnification of the damaged C. cohnii chromosomes is 100,000x. All
othe: magnifications are 60,000x.
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Light Scattering from Single Immobilized Dinoflagellates
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Figure 7.6 Light scattering from single immobilized dinoflagellates.
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T a) Measurements of time-variant S14/S11 at 90 degrees
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Figure 7.7 S, at 90° measured as a function of time. a. Measurements from suspen-
sions of live P. micans taken at noon and midnight are contrasted with measure-
ments from 0.497um spheres. b. S;; measurements from P. micans with normal and

altered beam widths are compared.
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Figure 7.8 The variance multiplied by 10° of S,s vs. time measurements is plotted
against the time of day. O hours corresponds to midnight of the day when the experi-

ment began.
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