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Abstract

Under-determined linear inverse problems arise in
applications in which signals must be estimated from
insufficient data. In these problems the number of poten-
tially active sources is greater than the number of observa-
tions. In many situations, it is desirable to find a minimal
source solution. This can be accomplished by minimizing
a cost function that accounts for both the compatibility of
the solution with the observations and for its “sparse-
ness.” Minimizing functions of this form can be a difficult
optimization problem. Genetic algorithms are a relatively
new and robust approach to the solution of difficult optimi-
zation problems, providing a global framework that is not
dependent on local continuity or on explicit starting val-
ues. In this paper, we describe the use of genetic algo-
rithms to find minimal source solutions, using as an
example a simulation inspired by the reconstruction of
neural currents in the human brain from magnetoencepha-
lographic (MEG) measurements.

1.0 Introduction

Underdetermined lincar inverse problems [1] arise in
applications in which signals must be estimated from
insufficient data. Examples occur in image enhancement,
tomographic reconstruction, filter and array design, spec-
tral estimation, and system modeling. A common charac-
teristic is that the observed signals are due to the
superposition of individual sources, and that the number of
potentially active sources is greater than the number of
observations. The form of the forward problem can be
expressed as y = Ax, where the dimension of the source
vector x is far greater than the rank of A. As a conse-
quence, there is no mathematically unique inverse—many
different source configurations can produce the same
observations. In this situation solution of the inverse
involves finding a source configuration that is not only
consistent with the observations, but that also optimizes
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some other criteria. For example, the minimum norm solu-
tion is the shortest length x that satisfies the equation.

In many cases, it is desirable to find a solution with the
minimum number of acti* e sources. In signal reconstruc-
tion applications, a minimal source solution may be moti-
vated by the a priori knowledge that the sources are sparse
and highly localized. In design applications a minimal
source solution may be motivated by the desire to mini-
mize hardware elements while siill meeting performance
specifications. One approach to finding a minimal source
solution is to minimize a cost function that accounts both
for the compatibility of the solution with the observations
and for its “sparseness.” This function may be derived
empirically or through a statistical analysis, e.g., muaxi-
mum a posteriori estimation. The resulting function is not
likely to be well behaved. In fact, it will generally be mul-
timodal and can often be discontinuous. The result is a dif-
ficult optimization problem.

Genetic algorithms [2,3] are a relatively rew and robust
approach to the solution of difficult uptimization prob-
lems. Genetic algorithms provide a globul frumework for
optimization that does not depend on {ocal continuity or
on explicit starting values. In this paper. we describe the
use of genetic algorithms iz find initiimal source colutions.
We illustrate the applicatior. of these algorithi . with a
simulation example inspire.' by !+ problem of ncuromag-
netic source reconstructio:

2.0 Algorithms

A genetic algorithm woiks wih a soputation of strings
defined over a finite alpanci By ¢ process of reproduc-
tion, crossover, and w.utation, the algeriinm evolves suc-
cessive populations in which ;te meryoers are more “fit.”
In minimal source recoisus: .« “»¢ ndividual popula-
tion members represen -« s« combinations of the
potential sources—different wubxsets of the columns of the
A matrix. A column subset is represented by a string of
the same length as the number of sources (length of x)
defined over a binary alphabet (0,1). Each element corre-
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sponds to a column (source). A one in a column’s position
indicates that the corresponding source is active, while a
zero indicates that it is not.

The fitness measure used by the genetic algorithm is a
function of both compatibility and sparseness. We have
used lcast squares fit error as the measure of compatibility
and the number of sources as a measure of sparseness. The
general form of the fitness measure to be maximized by
the genetic algorithm is

|
T AOEIELIAT

where e is the least squares fit error, normalized to the
range zero to one, s is the ratio of the number of active
sources to the rank of A, and £ is a weighting constant
between zero and one. The functions f, and f, are used to
shape the response. They are monotonic functions that
map the interval O—1 onto itself. Specific shaping functions
that we have employed include exponentials and p norms.

The genetic algorithm begins with a randomly gener-
ated initial population of strings and iteratively evolves
successive generations of “better” strings. We have
worked with a fixed population size ranging from two to
ten times the string length. The algorithm is run until the
population converges to steady state.

We have employed two genetic algorithm variants in
the evolution of one generation to the next. In the first
variant, described by Holland [2], each successive genera-
tion is produced by the following operations:

F

¢ Evaluate population fitness, order members from
high fitness to low fitness, and divide the population
into high, medium, and low fitness classes.

e Mate or crossover successive pairs in the high fit-
ness class to produce two offspring per pair and use
these offspring to replace the low fitness strings. The
high and medium fitness strings carry forward.

e Perform random mutations on the resulting popula-
tion.

In the second genetic algorithm variant, described by
Goldberg [3], each successive generation is produced by
the following operations:

¢ Evaluate population fitness.

¢ Reproduce an intermediate population by fitness-
weighted random selection from the old population.

¢ Randomly mate or crossover members of the inter-
mediate population and use their offspring to form a
new population.
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e Perforin random mutations on the resulting popula-
tion.

In both cases the mating is accomplished with uniform
cresover. In this method, one offspring is generated by
tak.ng a random selection of its elements from one parent
with the remainder coming from the other parent. The sec-
ond offspring is simply the complementary set of parental
elements.

To illustrate the use of genetic algorithms in minimal
source reconstruction, we have applied the algorithms to a
simulated example derived from the problem of recon-
structing neural currents in the human brain from magne-
toencephalographic (MEG) measurements of the external
neuromagnetic field.

3.0 Application

In magnetoencephalography (MEG), the minute mag-
netic fields (~100 fT) generated by neural activity in the
brain are measured at the surface of the head [4,5]. These
fields are noninvasively measured using superconducting
quantum interference device (SQUID)-based gradiome-
ters. By deducing the sources of these neuromagnetic
fields—neuromagnetic source reconstruction, a functional
image of the brain can be produced that indicates its active
regions.

Neuromagnetic source reconstruction is an underdeter-
mined linear inverse problem. Nonzero current distribu-
tions can exist that produce no external fields. To address
this problem, a priori assumptions must be made about the
neural source configuration. A useful configuration model
is that of sparse localized sources. This model can be neu-
rologically justified for a large class of experiments, most
notably those dealing with evoked responses.

The most common reconstruction approach is a para-
metric onc in which the neural currents are modeled by a
small number of current dipoles [6]. The number, loca-
tions, orientations, and strengths of these dipoles must
then be estimated from the data. This approach has been
successful in simple situations in which neural activity is
localized in just a few regions. However it is inadequate
for analysis of more complex cases [7].

To handle more complex source distributions, a non-
parametric reconstruction approach is necessary. The
reconstruction problem can be discretized by dividing the
brain volume into voxels [8] and representing the neural
currents by point current sources (current dipoles) located
inside these voxels. The puts the forward problem into the
form y = Ax, where y represents the MEG measure-
ments and x represents the unknown neural source cur-
rents. In this application, the number of sources (voxels)
can be several orders of magnitude greater than the num-
ber of measurements. Appropriate application of anatomi-

il
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cal constraints, such as limiting the sources to cortex [9],
can help, but the result is still a highly underdetermined
situation.

Researchers have used minimum norm and weighted
minimum norm criteria in reconstructing source configu-
rations [8,10]. While this approach is clean and mathemat-
ically tractable, there is no neurological basis for this class
of solutions. Minimum norm type solutions tend to be dif-
fuse and are subject to systematic geometrical distortion
caused by the rapid fall off of the magnetic field with dis-
tance. Minimal source solutions represent a more desirable
class of reconstructions [8,11,12]. However this approach
has been hampered by the difficulty of computing the
inverse solutions without resorting to exhaustive scarch.

4.0 Example

To evaluate the potential of algorithms for ncuromag-
nctic source reconstruction, we constructed a simple
noiseless simulation example that represents the essence
of thc problem without imposing undue computational
burden. In this example the head is modeled as a sphere
with radially symmetric conductivity. In this case, the
radial component of the external field produced by a cur-
rent dipole (point source) can be expressed as

B = MeR :< L
=Y S
|R-LI'|R
where M is the dipole moment, L is the dipole location,
and R is the measurement location [ 13].

Figure | shows the geometry and source configuration
of our test example. We reconstruct the current flow thru a
two-dimensional slice (running through the center head)
from the ficlds observed along its one-dimensional inter-
section with the head surface. The reconstruction region
contains 215 voxels and the measurement sct consists of
35 measurements. The measurement locations are denoted
by asterisks. The strength of the source voxels are indi-
cated by their shading; white indicates a positive source
strength, black indicates a negative source strength, and
gray indicates no activity.

Figure 2 shows a minimum norm reconstruction. The
solution is diffusc and biased toward the outside of the
head. This bias is the result of the inverse squared drop off
of the magnetic field with distance. As a result, shallow
voxels arc unduly favored by the norm metric.

Figure 3 shows a weighted minimum norm reconstruc-
tion in which the columns of the A matrix have been
scaled to unity to compensate for the magnetic ficld drop
off. The result is less biased. but still quite diffuse. There
arc broad fcatures in the vicinity of the left and right bipo-
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lar source pairs. There are no distinguishable features in
the vicinity of the deeper central sources.

In Figurec 4 we show the result of a minimal source
reconstruction computed with a Holland-type algorithm.
In this case and in similar simulations the genetic algo-
rithms have been able to pull out underlying sparse solu-
tions.

Overall, genetic algorithms appear to be a promising
approach to minimal source reconstruction. However,
extensive work still remains to be done in understanding
the best algorithm variants to use, in how to set up the
myriad of “tweaking” parameters in these algorithms, and
in determining performance is the presence of noise and
modeling crror.
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FIGURE 1. Source configuration and
example geometry.
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FIGURE 3. Normalized minimum norm
reconstruction.
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FIGURE 2. Minimum norm reconstruction.
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FIGURE 4. Genetic algorithm minimum
source reconstruction.









