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Abstract some other criteria. For example, the minimum norm solu-
tion is the shortest length x that satisfies the equation.

Under-determined linear inverse problems arise in In many cases, it is desirable to find a solution with the
applications in which signals must be estimated from minimum number of acti' e sources. In signal reconstruc-
insufficient data. In these problems the number of poten-
tially active sources is greater than the number of observa- tion applications, a minimal source solution may be moti-
tions. In many situations, it is desirable to find a minimal vated by the a priori knowledge that the sources are sparse
source solution. This can be accomplished by minimizing and highly localized. In design applications a minimal
a cost function that accounts for both the compatibility of source solution may be motivated by the desire to mini-
the solution with the observations and for its "sparse-
ness." Minimizing functions of this form can be a difficult mize hardware elements while still meeting performance
optimization problem. Genetic algorithms are a relatively specifications. One approach to finding a minimal source
new and robust approach to the solution of difficult optimi- solution is to minimize a cost function that accounts both
zation problems, providing a global framework that is not for the compatibility of the solution with the observations
dependent on local continuity or on explicit starting val- and for its "sparseness." This function may be derived
ues. In this paper, we describe the use of genetic algo- empirically or through a statistical analysis, e.g., maxi-
rithms to find minimal source solutions, using as an
example a simulation inspired by the reconstruction of mum a posteriori estimation. The resulting function is not
neural currents in the human brain from magnetoencepha- likely to be well behaved. In fact, it wil_generally be mul-
lographic (MEG) measurements, timodal and can often be discontinuous. The result is a dif-

ficult optimization problem.
1.0 Introduction Genetic algorithms [2,3] are a relatively few and robust

Underdetermined linear inverse problems [1] arise in approach to the solution of difficuh _,ptim:zation pr_,b-
applications in which signals must be estimated from lems. Genetic algorithms provide a global fra_t_ework for
insufficient data. Examples occur in image enhancement, optimization that does not depend on local continuity or

on explicit starting values. In thi:_raper, we describe thetomographic reconstruction, filter and array design, spec-
tral estimation, and system modeling. A common charac- use of genetic algorithm_ tz find mi_imal ,source ,,otutions.
teristic is that the observed signals are due to the We illustrate the applicatior, of t/_,e a_goritht_, with a
superposition of individual sources, and that the number of simulation example inspirer _hy tl. problem of ncuromag-
potentially active sources is greater than the number of netic source reconstructi,o::
observations. The form of the forward problem can be

2.0 Algorithmsexpressed as y = Ax, where the dimension of the source

vector x is far greater than the rank of A. As a conse- A genetic algorithm ,.,_.,(i,,k_,:_:i_ha _,¢,ptt_a2ioilof strings
quence, there is no mathematically unique inverse_many defined over a finite a'.p'_,a_ei t_y _ process of reproduc-
different source configurations can produce the same tion, crossover, and _,,J_atic)n, fhe e_gc_r_thmevolves suc-
observations. In this situation solution of the inverse cessive populations in _,,b!_:_;h,- me_',rt_¢xsare more "fit."
involves finding a source configuration that is not only In minimal source rec_,._,_ ._,,,' %_ adiv;dual popula-

consistent with the observations, but that also optimizes tion members represen_ _,! _:_.,, _.ombinations of the
potential sources---different _,u_-qetsof the columns of the
A matrix. A column subset is represented by a string of

LosAlamosNationalLaboratoryis operatedbythe Universityof Call- the same length as the number of sources (length of x)
forniafor the United StatesDepartmentof Energyunder contractW-
7405-ENG-36. defined over a binary alphabet (0,1). Each element corre-



w

. P. Lewis & J. Mosher Genetic Algorithms for Minimal Sou rce Reconstructions

sponds to a column (source). A one in a colunm's position • Perform random mutations on the resulting popula-
indicates that the corresponding source is active, while a tion.

zero indicates that it is not. In both cases the mating is accomplished with uniform
The fitness measure used by the genetic algorithm is a cre_,sover. In this method, one offspring is generated by

function of both compatibility and sparseness. We have

used least squares fit error as the measure of compatibility tak,ng a random selection of its elements from one parentwith the remainder coming from the other parent. The sec-
and the number of sources as a measure of sparseness. The ond offspring is simply the complementary set of parental
general form of the fitness measure to be maximized by elements.

the genetic algorithm is To illustrate the use of genetic algorithms in minimal
1 source reconstruction, we have applied the algorithms to a

F=
kfe (e) + ( I - k)f_. (s) simulated example derived from the problem of recon-

structing neural currents in the human brain from magne-
where e is the least squares fit error, normalized to the toencephalographic (MEG) measurements of the external
range zero to one, s is the ratio of the number of active neuromagnetic field.
sources to the rank of A, and k is a weighting constant

between zero and one. The functions fe and f._ are used to 3.0 Application
shape the response. They are monotonic functions that
map the inlerval 0-1 onto itself. Specific shaping functions In magnetoencephalography (MEG), the minute mag-

netic fields (-100 IT) generated by neural activity in thethat we have employed include exponentials and p norms.
The genetic algorithm begins with a randomly gener- brain are measured at the surface of the head [4,5]. These

ated initial population of strings and iteratively evolves fields are noninvasively measured using superconducting
successive generations of "better" strings. We have quantum interference device (SQUID)-based gradiome-
worked with a fixed population size ranging from two to ters. By deducing the sources of these neuromagnetic
ten times the string length. The algorithm is run until the fields--neuromagnetic source reconstruction, a functional
population converges to steady state, image of the brain can be produced that indicates its active

We have employed two genetic algorithm variants in regions.
the evolution of one generation to the next. In the first Neuromagnetic source reconstruction is an underdeter-

mined linear inverse problem. Nonzero current distribu-variant, described by Holland [2], each successive genera-
tion is produced by the following operations: tions can exist that produce no external fields. To address

this problem, a priori assumptions must be made about the
• Evaluate population fitness, order members from neural source configuration. A useful configuration model

high fitness to low fitness, and divide the population is that of sparse localized sources. This model can be neu-
into high, medium, and low fitness classes, rologically justified for a large class of experiments, most

• Mate or crossover successive pairs in the high fit- notably those dealing with evoked responses.
The most common reconstruction approach is a para-ness class to produce two offspring per pair and use

these offspring to replace the low fitness strings. The metric one in which the neural currents are modeled by a
high and medium fitness strings carry forward, small number of current dipoles [6]. The number, loca-

tions, orientations, and strengths of these dipoles must
• Perform random mutations on the resulting popula- then be estimated from the data. This approach has been

tion. successful in simple situations in which neural activity is

In the second genetic algorithm variant, described by localized in just a few regions. However it is inadequate

Goldberg [3], each successive generation is produced by for analysis of more complex cases [7].
the following operations: To handle more complex source distributions, a non-

parametric reconstruction approach is necessary. The
• Evaluate population fitness, reconstruction problem can be discretized by dividing the

• Reproduce an intermediate population by fitness- brain volume into voxels [8] and representing the neural
weighted random selection from the old population, currents by point current sources (current dipoles) located

inside these voxels. The puts the forward problem into the
• Randomly mate or crossover members of the inter- form y= Ax, where y represents the MEG measure-

mediate population and use their offspring to form a ments and x represents the unknown neural source cur-
new population, rents. In this application, the number of sources (voxels)

can be several orders of magnitude greater than the num-

ber of measurements, Appropriate application of anatomi-
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cal constraints, such as limiting the sources to cortex [91, lar source pairs. There are no distinguishable features in

can help, but the result is still a highly underdetermined the vicinity of the deeper central sources.
situation, In Figure 4 we show the result of a minimal source

Researchers have used minimum norm and weighted reconstruction computed with a Holland-type algorithm.
minimum norm criteria in reconstructing source configu- In this case and in similar simulations the genetic algo-
rations [8,10]. While this approach is clean and mathemat- rithms have been able to pull out underlying sparse solu-

ically tractable, there is no neurological basis Ibr this class lions.
of solutions. Minimum norm type solutions tend to be dif- Overall, genetic algorithms appear to be a promising
fuse and are subject to systematic geometrical distortion approach to minimal source reconstruction. However,
caused by the rapid fall off of the magnetic tield with dis- extensive work still remains to be done in understanding
lance. Minimal source solutions represent a more desirable the best algorithm variants to use, in how to set up the
class of reconstructions [8, I I, 12]. However this approach myriad of "tweaking" parameters in these algorithms, and

has been Ilampered by the difficulty of computing the in determining performance is the presence of noise and
inverse solutions without resorting to exhaustive search, modeling error.

4.0 Example References

To evaluate the potential of algorithms for neuromag- I I I G. Strang. Linear Algebra and its Applications. Third
Edition, Itarcourt BraceJovanovich, San Diego, CA, 1988.

netic source reconstruction, we constructed a simple 121 J. Holland. Genetic algorithms. Scient!ficAmerican, July
noiseless simulation example that represents the essence 1992,pp. 6(_72.
of the problem without imposing undue computational 131 D. Goldberg. GeneticAlgorithms in Search, Optimization &
burden. In this example the head is modeled as a sphere Machine Learning, Addison-Wesley,Reading MA, USA,
with radially symmetric conductivity. In this case, the 1989.
radial component ot" the external lield produced by a cur- 141 P. Lewisand J. George. Magnetoencephalography. IEEEPotentials, 9(4):9-13, 1990.
rent dipole (point source) can be expressed as 151 M, Htimalainenet ai. Magnetoencephalography_theory,

._., instrumentation, and applications to noninvasive studies of
M • R × L the working human brain. Reviews of Modern Physics,

Br = 3 65(2):413_497, !993.- L R [611J. Mosher, P.Lewis, and R. Leahy. Multiple dipole

where ,_ is the dipole moment, /, is the dipole location, modelingand localization from spatio-temporal MEG data.IEEE Trans. Biomedical Engineering, 39(6):541-557,
and R is the measurement location II 31. 1992.

Figure 1 shows the geometry and source conliguration I71 J. Mosher, M. Spencer, R. Leahy, and P.Lewis. Error
of our test example. We reconstruct the current 1low thru a bounds for EEG and MEGdipole source localization.
two-dimensional slice (running through the center head) Electroencephalography and clinical Neurophysiology,
from the tields observed along its one-dimensional inter- 86:303-321, 1993.181 B. Jells, R. Leahy, and M. Singh. An evaluation of methods
section with the head surface. The reconstruction region lbr neuromagnetic image reconstruction. IEEE Trans.
contains 215 voxels and the measurement set consists of Biomedical Engineering, 34(9):713-723, 1987.
35 measurements. The measurement locations are denoted 191 J. George, P. Lewis, D. Rankan, L. Kaplan, and C. Wood.

by asterisks. The strength of the source voxels are indi- Anatomicalconstraints for neuromagnetic source models.In Proc. SPIE Medical hnaging V: hnage Physics, 1443:37-
cated by their shading; white indicates a positive source 51, 1991.
strength, black indicates a negative source strength, and Ii01 A. loannides, J. Bolton, and C. Clarke. Continuous
gray indicates no activity, probabilislic solutions to the biomagnetic inverse problem.

Figure 2 shows a minimum norm reconstruction. The Inverse Problems, 6:523-542, 1990.
solution is diffuse and biased toward the outside ol"the l lll B. Jeffs. Maximally Sparse Constrained Optimizationfi_r

head. This bias is the result of the inverse squared drop off" Signal Processing Applications. Ph.D. dissertation,Universityof Southern California, SIP! Report #138, 1989.
of the magnetic lield with distance. As a result, shallow 1121!. Gorodnitsky, B. Rao, and J. George. Source localization
voxels are unduly favored by the norm metric, in magnetoencephalography using an iterative weighted

Figure 3 shows a weighted minimum norm reconstruc- minimum norm algorithm, in Proc. 26thAsilomar Conf.
tion in which the columns of the A matrix have been Signals, ,S_,stems& Computers, Vol. Ipp-167-171, Pacilic

Grove, CA, Nov. 1992.
scaled to unity to compensate for the magnetic lield drop II 31J. Sarvas. Basicmathematical and electromagnetic concepts
off. The result is less biased, but still quite diffuse. There of the biomagnetic inverse problem. Phys. Med. Biol,
are broad features in the vicinity of the left and right bipo- 32(! ):11-22, 1987.
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FIGURE 1. Source configuration and FIGURE 3. Normalized minimum norm
example geometry, reconstruction.
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FIGURE 2. Minimum norm reconstruction. FIGURE 4. Genetic algorithm minimum
source reconstruction.
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