SANOCFE - 3572 G

A Review of Research and Methods for
Producing High—Consequence Software

E. Collins, L. Dalton, D. Peercy, G. Pollock, C. Sicking! £ VLAY W
Software Reliability Working Group \' '
Sandia National Laboratories pet 27 1524

OSTI

ABSTRACT

The development of software for use in high-consequence systems mandates rigorous
(formal) processes, methods, and techniques to improve the safety characteristics of those
systems. This paper provides a brief overview of current research and practices in high-
consequence software, including applied design methods. Some of the practices that are
discussed include: fault tree analysis, failure mode effects analysis, petri nets, both hardware
and software interlocks, n-version programming, Independent Vulnerability Analyses, and
watchdogs.

Techniques that offer improvement in the dependability of software in high-consequence
systems applications are identified and discussed. Limitations of these techniques are also
explored. Research in formal methods, the cleanroom process, and reliability models are
reviewed. In addition, current work by several leading researchers as well as approaches being
used by leading practitioners are examined.

INTRODUCTION

The development of software for high-consequence applications creates an urgent need for
increased surety (i.e. reliability, safety, security) techniques. This need is a direct outcome of
the technological advancements in the computer field and actually began with the introduction
of microelectronics. The advent of microelectronics enabled the realization of
(micro)processor technology which radically improved the functionality of electronic systems.
Coincident with improved functionality was the increased inherent complexity in both
(micro)processor hardware devices and their associated software.

While the quantitative reliability of hardware devices has been accounted for in accepted
integrated circuit reliability modeling, the associated software does not readily yield to
quantitative reliability methods—in fact, other than reliability growth models which have not
been proven to be accurate for all applications, no practical quantitative methods exist.
Because of this fact, dependence is placed upon testing to arrive at a qualitative level of

t We gratefully acknowledge the contributions of Charles Weinstock and Lui Sha of the
Software Engineering Institute, Carnegie Mellon University.

This work was supported by the United States Department of Energy under contract DE-AC04-

94 AT1.85000. .
MASTER
DISTRIBUTION OF THIS DOCUMENT' [S°08 Z.t IFED
iy ol

SN o Co AABY -~/

comfort with respect to the reliability of the software. Quite often, the top-level system
reliability represents only the hardware reliability in that the software is assumed not to fail.

Surety in the context of this document represents the full spectrum of concerns related to
the behavior of hardware and software-based systems that control ‘“high-consequence”
operations. “High-consequence” in this context is intended to be very broad in scope so as to
include national security, medical, financial/economic, and information/data applications as
they affect human life, and international stability in both peace and competitiveness.

The primary intent of this document is to present to software managers and practitioners a
current view of the most promising research, methods, and practices that increase software
reliability. It is hoped that the information presented herein will raise the level of awareness
with respect to the growing dependencies on very complex hardware and software systems and
the resulting risks of accepting such systems. It is further hoped that this increase in the level
of awareness will lead to fundamental improvements/changes in approaches to the
development of high-consequence systems. Achieving these improvements will involve
further development and institutionalization of, software “engineering” methods and practices.

In this document, a brief discussion of various issues motivating the work in this area is
presented before the main overview of research and applied methods for producing high-
consequence software. The following sections address the current state of the practice and the
current state of promising research. Further, reviews of core applications of cited techniques
from real-world situations conclude the discussions in each survey section. Conclusions drawn
from this sampling of current research and practices for software surety in high-consequence
system applications are stated in the final summary section.

PROBLEM STATEMENT

The flexibility of software-controlled computer systems offers significant advantages to
designers of systems. Software-controlled computer systems can be configured to distinguish a
large number of situations and provide output appropriate to each of them without additional
hardware. An analog hardware system cannot duplicate this flexible behavior without
additional hardware and the associated costs in money, physical volume, weight, and so forth.
Because of the need for this inherent flexibility, software-controlled systems are being
deployed in situations where they can cause loss of life, damage the environment, or destroy or
damage valuable resources or equipment.

Some examples of these safety-critical applications include control of medical equipment,
digital flight control systems for aircraft, automated controls for chemical processing plants,
automated transportation systems, and robotics. Software cannot directly cause loss of life but
it may control equipment that can cause loss of life if the software behaves in an unanticipated
fashion that causes or allows the system to enter an unsafe state.

Software can have unanticipated behavior due to faults present in the software or due to
interactions between a hardware fault and the software. Faults can be inadvertently injected
into software at any point in the development process; faults can be the result of poorly defined
requirements or a failure of the designers to anticipate all possible inputs or use environments.
Further, logic faults—an incorrect algorithm, inadequate precision, computational faults, or
typographical faults—can be introduced inadvertently during coding. And the tools used to
develop the software, such as editors, compilers, linkers, and loaders, may be additional
sources that can introduce faults independent of the source code.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

A&
i

To anticipate all possible failure modes (e.g., hardware, software, interface, environment)
of a computer system is very difficult, if not impossible. A computer system is a very flexible
and complex multi-state machine yielding more possible variations than can reasonably be
examined. On top of this complexity, the application software executing on the computer
attempts to define a subset of desired states for the machine and the sequences of those states.
This compounded complexity of a computer system makes it extremely difficult to fully
understand, analyze, and adequately test to ensure that the software cannot create a situation in
which an accident could result. Therefore, we must assume that faults exist in any software
system.

Unfortunately, history has proven software does fail, sometimes with disastrous results.
Many situations where software has been a contributing element to an accidental loss of life
have been documented [40]. The following brief list provides some examples:

1. A British Midland 737 passenger aircraft crashed killing 47 people when
the wrong engine was shut off in response to detection of smoke and
vibration,

2. A Harrier military aircraft ejection-seat parachute system accidentally
deployed without ejecting the seat and the pilot was killed,

3. Audi 500 automobiles have unexpectedly accelerated during gear
shifting—two deaths have been attributed to this fault,

4, An Iraqi Scud missile hit Dhahran barracks killing 28 people due to the
failure of the Patriot missile defense—a software flaw related to the drift
of a clock prevented real-time tracking of the incoming Scud,

5. A Japanese mechanic was killed by a malfunctioning Kawasaki robot.

Perhaps the most prominent and well-researched example of software-related accidents is
the Therac-25 [32]. The Therac-25 is a computer-controlled radiation therapy machine used to
treat cancer patients. Between June 1985 and January 1987, six known accidents involving
massive radiation overdoses by the Therac-25 occurred. Three people died due to
complications related to the radiation overdoses, one person died due to the cancer for which
she was receiving treatment, and two were seriously injured. These accidents have been
described as the worst series of radiation accidents in the 3S5-year history of medical
accelerators. The Therac-25 accidents are discussed in more detail to provide the reader with
an appreciation of how subtle and unanticipated latent interactions in software can result in
accidents.

The Therac-25 has two operational modes and a non-operational mode. The two
operational modes are electron beam therapy and x-ray therapy. In the electron beam mode,
the computer controls the current and an adjustable beam energy from 5 to 25 million electron
volts (MeV), while scanning magnets are used to spread the beam to a safe, therapeutic
concentration.

In the x-ray mode, only one energy level is available: 25 MeV. A beam flattener, an
attenuator, is placed in the path of the beam to reduce the energy level of the beam to produce a
reasonable dose treatment. The computer is responsible for positioning a turntable and
checking the position of the turntable so that a target, the flattening filter, and an x-ray ion
chamber, used to measure the energy level of the beam, interrupt the beam path. Without the
flattening filter in place, a huge output dose rate results.

The equipment also supports a non-operational mode, a field light position that allows the
operator to see where the beam will strike the patient prior to treatment. For the field light
position, the electron beam is not active, a stainless steel mirror is placed in the beam path, and
a light simulates the beam.

Two different software coding faults related to the control of these different modes of the
equipment were identified as the probable sources of three of the radiation overdose accidents.
Of the three accidents, two of them were attributed to problems in the data entry routines that
allowed the machine to continue before the full prescription had been entered and acted upon.
In setting up the machine for use, the operator entered a variety of parameters, including the
type of therapy. However, under certain timing conditions during the data entry, if the operator
selected electron beam mode and then later scrolled back up the screen to change to x-ray
mode, the high power beam was enabled without the flattening filter being positioned in front
of the beam. The result was a severe overdose of radiation being given to the patient.

The other accident was attributed to problems encountered later in the program logic, an
unanticipated race condition between the software routine that checked if the machine was set
properly for treatment and the operator’s command input. This fault allowed the machine to be
activated in an unsafe state: high energy beam on in the non-operational mode. This condition
was a “failure” of a software interlock due to a register “overflow” that allowed a 24-MeV
 beam to be turned on with the turntable in the field light position without the target in place
and without beam scanning. The result was a concentrated electron beam that was scattered
and deflected by the stainless steel mirror in the beam’s path, resulting in a severe radiation
overdose to the patient. , '

The investigation of these accidents led to identification of several contributing factors
such as management inadequacies, lack of procedures for follow-through on all reported
incidents, overconfidence in the software, and deletion of hardware interlocks present in
previous designs. In 1987, the manufacturer, Atomic Energy of Canada Limited, submitted a
corrective action plan to the US Food and Drug Administration that included multiple
independent hardware interlocks integrated into the equipment and twenty-three changes to the
software to address the safety issues with the equipment.

Leveson and Turner commented in their technical report that summarized their
investigation:

“Although these particular accidents occurred in software controlling medical

devices, the lessons to be learned apply to all types of systems where computers

are controlling dangerous devices. In our experience, the same types of mistakes

are being made in non-medical systems. We must learn from our mistakes so that

they are not repeated.” [32]
While only a few examples have been cited due to space limitations, these examples illustrate
the potential consequences that can occur, even when developers are trying to maintain high
quality and reliability. The lesson to learn from these accidents is that software can behave in
an unexpected fashion. Consequently, knowledge and methods for enhancing and assessing
software surety must evolve.

The challenge is: If software is to be used in a safety-critical application, how can the
considerable risk associated with the software be minimized?

1. The software must be developed in such a way that it is extremely unlikely!that
its behavior will lead to a catastrophic failure.

2. Convincing evidence that the software is extremely unlikely to cause
catastrophes in its operational environment, including the presence of hardware
failures, must be provided by the software developers to the assessment
authority.

This report briefly reviews current practices and research in software surety. Included are
applied methods used to design high-consequence systems, and techniques offering
improvements in the dependability of software in safety-critical applications. The state of the
practice in applied methods is addressed first, and then the current status of cutting-edge
research is investigated.

STATE OF THE PRACTICE IN 1994

This section reports on some current practices in use to develop high-consequence software
and does not attempt to define or suggest new approaches. In particular, software safety
standards, software processes, hazard identification and analysis, design techniques, and
implementation methods are briefly covered. Understanding of the practices used in these
areas provides a good basic framework for improving software surety. In conclusion, this
section provides a sampling of current software surety practices for high-consequence -
applications among actual industrial development groups.

Readers versed in the area of high-consequence software development are not likely to
encounter new material; however, readers unfamiliar with this area will find an overview of a
variety of important topics. Wherever possible, an attempt is made to direct interested readers
to more detailed literature for each topic.

Software Safety Standards

A standard is an approved, documented, and available set of criteria used to determine the
adequacy of an action or object. As computer systems have proliferated into life-critical
applications, the need for standards to ensure the adequacy of the safety properties of a system
reliant on software to control, monitor, or display information critical to safety has increased.
A survey of software safety standards currently in use or currently under development are
provided in a paper by P. V. Bhansali [2]. A table from that paper summarizes those standards
and is reproduced here as Table 1.

1Extremely unlikely in this context is a failure probability on the order of less than 10 fora
system with a one to 10-hour mission time.

Number
Int Def
Stan 00-55

Int Def
Stan 00-56

ISA-SP84
(Draft)

Mil-Std-882B
Noticel

P1228
(Draft)

RTCA/DO-178A

SC 65A/WG9
(Secretariat)
122 (Draft)

SEB 6-A

UL 1998 (Draft)

N/A

Title

The Procurement of Safety Critical Software in
Defense Equipment- Part 1: Requirements, Part
2: Guidance

Hazard Analysis and Safety Classification of the
Computer and Programmable Electronic Systems

Elements of Defense Equipment

Programmable Electronic Systems (PES) for Use
in Safety Application

System Safety Program Requirements

Standard for Software Safety Plans

Software Consideration in Airborne Systems and
Equipment Certification

Software for Computers in the Application of
Industrial Safety- Related Systems

System Safety Engineering in Software
Development

Standard for Safety-Related Software

Reviewer Guidance for Computer-Controlled
Medical Devices Undergoing 510(K) Review

Developer
UK Ministy of

Defense

UK Ministry of
Defense

Instrument
Society of
America

US Department
of Defense

IEEE Computer
Society

Radio Technical
Commission for
Aeronautics

International
Electro-technical
Commission

Electronics
Industries
Association

Underwriters
Laboratories

US Food and
Drug
Administration

Table 1
Software Safety-related Standards

These software safety standards have a common general approach but vary considerably in
their details. The following general steps are common to these standards:

1. Identify and classify system hazards,
2. Identify system functions allocated to software,

W

Identify hazards related to software,

4. Design software and reduce risks or eliminate hazards associated with software

and credible hardware failures,

Implement software,

6. Verify that risks are at an acceptable level and no new hazards have been
infroduced,

7. Maintain a configuration management and quality assurance process throughout

the product's life cycle.

W

Analysis techniques or methodologies needed to accomplish these steps are, in most cases,
not prescribed or suggested by the standard. These standards cover "whats" rather than
"hows." An exception is Int Def Stan 00-55 (see Table 1) that requires a rigorous mathematical
approach (formal methods) for specification and design of safety-critical software.

Software Process

The process used in defining and developing high-consequence software is very important.
Several models exist to monitor and/or assess system development. Three models an
organization might use are the Capability Maturity Model developed by Watts S. Humphrey,
In-Process reviews developed by Sandia National Laboratories, and National Security Agency
Security Criteria developed by the National Security Agency (NSA). Each of these are
discussed below.

Software Engineering Institute’s Capability Maturity Model (SEI/CMM): The Capability
Maturity Model (CMM) is a framework for characterizing the capability maturity level of an
organization’s software processes through eighteen key process areas organized into five levels
of increasing maturity. An organization uses the CMM to establish a baseline of their current
management and software engineering processes, and identify areas where improvement is
most needed.

The five maturity levels represented within this model include (from lowest to highest):
initial, repeatable, defined, managed, and optimizing [22]. These levels represent general
phases of evolutionary improvement of software organizations. The key process areas within
each level allow an organization to chart their growth in improving their software management
and engineering capabilities. By improving key process areas in accordance with an
organization’s business objectives, it is possible to establish a controlled and measured process
suitable as a foundation for continuing improvement of the organization's software process
maturity. It should be noted that an organization may establish a process improvement strategy
that involves key process areas from more than one level. In general, the improvement in the
key process areas will be most effective when lower-level key process areas have been
adequately addressed. A brief review of the capabilities characterizing the basic differences
between each level and illustrating the general progression of process improvement follows.

An organization at the Initial level experiences unpredictable schedules and costs, and poor
control over engineering operations. Successes at this level largely depend on individual effort
and heroics.

The Repeatable level requires adequate and appropriate use of several key process areas to
implement software processes that can be repeated reasonable well from project to project.
This level includes the key process areas of requirements management, project tracking and

oversight, project planning, software configuration management, and software quality
assurance. If the organization uses subcontractors to supply part of its software, then an
additional key process area, subcontract management, must also be addressed. Each of these
key process areas must be addressed if an organization wishes to be able to continually repeat
its software successes with any predictability. The organization’s project management must be
able to control commitments, costs, schedules, and changes, which will make it possible to
achieve success on similar applications.

To reach the Defined level, an organization must maintain a process orientation across
projects rather than a product orientation for each individual project as evidenced in the
Repeatable level. At the Defined level, the organization has developed written procedures to
document their software development process, allowing for orderly planning, management, and
process improvement. Further, the organization has enforced the use of these defined
procedures. At this level, organizations maintain software engineering process groups, use
analysis results from peer reviews across projects to derive process improvements, focus on
standards and procedures, and initiate appropriate training for their staff. The organization
does not depend solely on individual key performers and can transfer their proprietary
knowledge and experiences to new employees.

The fourth level, generally referred to as the Managed level, cannot be reached until the
organization's processes are sufficiently well defined and standardized to permit an
understanding of processes through measurement and statistical control. At this level, the
organization is able to measure and analyze various aspects of its defined software process. In
addition, the organization is concerned with product quality management, a key process area
that cannot be adequately addressed until the organization has a defined process in place from
which the product quality can be monitored.

Finally at the Optimizing level, analysis and statistical control of processes provide
feedback for continuous process improvement during each project so as to optimize the
effectiveness of process improvement to product quality. As software technology progresses,
the organization's processes will continually change and thus never reach full optimization.
Consequently, this level focuses on continual process improvement and defect prevention. An
overview of this model and key process areas related to each level is shown in Table 2.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors “expressed. herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

LEVEL CHARACTERISTIC KEY PROCESS AREA FOCUS

Optimizing | Management based on automated Process Change Management
feedback to achieve process Technology Change Management
improvement within a project’s life Defect Prevention
cycle, and thus optimize project
results.

Managed Management through measurement SW Quality Management
orientation where management is by | Quantitative Process Management
measurement of processes from
project results.

Defined Process orientation, where the process | Peer Reviews
group is characterized and initiates Intergroup Coordination
process improvement based on results | SW Product Engineering
across multiple organization projects. | Integrated SW Management
Product engineering processes are Training Program
documented. Organization Process Definition

Organization Process Focus

Repeatable | Project orientation where the Key SW Configuration Management
Process Areas at this level can be SW Quality Assurance
repeated from project to project with | SW Subcontract Management
some consistency. SW Project Tracking and Oversight

SW Project Planning
Requirements Management

Initial People orientation leading to project
dependencies on individuals, and
unpredictable and poorly controlled
management and engineering
activities.

Table 2

SEI Capability Maturity Model Process Areas By Level

In-Process Reviews

In-Process reviews play a major role in the current development of War Reserve (WR -
stockpile of weapons) software at Sandia. The Process Guidelines for Sandia WR Software
Development [3] calls for numerous reviews including Weapon System / Component
Reviews, Software Plans Review, Software Requirements Review, Software Design Review,
Critical Design Review, Code Inspection, and Software Test Plan Review.

The general review process is discussed in [43]. This general review process consists of
formal and informal reviews. In one use, the term “formal” applies to those reviews that are
contractually (or by organization policy) required to be held, and usually are of a management
focus performed at major milestone achievements. In another use, the term “formal” applies to

those reviews that are performed using rigorous process steps with well-defined entry criteria,
inputs, process steps, outputs, exit criteria, and participant responsibilities.

The term “informal” applies to a wide variety of reviews that are not “formal” in the sense
described above. There is not a consensus on precisely where the delineation is between the
designation of formal and informal. Reviews can be at the management or the technical level.
At the management level project status, schedule, resource allocation and technical overview
information is typically presented. At the technical level, reviews are typically performed by a
small team and are much more focussed and usually more detailed than the management
reviews.

Software inspection (Formal In-process Review) is an instance of a formal technical review
technique. The reference [7] contains training materials on software inspections. Data
presented in this course from published literature indicates that software inspections can detect
50-90% of all defects, lead to a development cost improvement of 10-25%, and reduce overall
staff hours for a product by 10-40%. The front-end cost of the product is higher because of the
extra time spent in inspections, but reduction in later stage rework (e.g., test rework) results in
a lower overall project cost. In addition, the overall long term corrective maintenance costs are
reduced. A recent addition to this course is inspection and test data from a large, high-
consequence Sandia project that essentially confirms most of the data in the published
literature. For high-consequence systems, these front-end inspections are even more important
because the costs of operational system failures are substantially higher.

Problems are not solved during software inspections. Any defects found are recorded and
the source of the defect resolved later. All defects are corrected before the software is qualified
for use. The software inspection checklists given in Table 3 [7] indicate some types of defects
that may be identified in each stage of inspection.

Type of Sample Checklist for Inspection
Inspection
Software -- Are requirement statements open to interpretation?
Requirements | -- Are all resources identified and do they conflict with requirements?
Specification -- Are all system initialization actions and values specified?
(SRS) -- Are shutdown or failure actions specified?
-- Are invalid data conditions handled?
-- Are the requirements testable?
-- Are all requirements numbered?
-- Are the requirements limited to “what” and not “how”?
Software -- Are all of the requirements in the SRS satisfied?
Design -- Are interfaces between design entities well defined?
Document -- Are all valid and invalid domains specified for data items?
(SDD) -- Are timing and behavior state considerations adequately addressed?
-- Are the design descriptions open to interpretation?
-- Does design specify structure of the software, how the data are
used, and how control is exercised?
Code -- Does the source code agree with the SDD?
-- Are module parameter lists consistent?
-- Are invalid inputs appropriately handled?
-- Are there any logic defects and is the logic easily understandable?
-- Are comments informative and accurate?
-- Does the code conform to coding standards?
-- Are modules functionally cohesive?
Software Test | -- Is each SRS requirement addressed by one or more test description?
Plan -- Is it clearly stated which features will and will not be tested?
-- Is there a pass fail criteria for each test?
-- Is the testing environment specified?
-- Do the test cases include negative tests?

Table 3
Sample Checklists for Inspections

National Security Agency Security Criteria

The National Security Agency (NSA) developed standards/guidebooks for Trusted
Computer System Security Evaluation Criteria, [9] and Trusted Network Interpretation, [39].
The first document, "Orange Book," for computer system security evaluation was also adopted
as a Department of Defense standard in December 1985. The National Institute of Standards
and Technology (NIST) and NSA have more recently been involved in a joint project to
develop a new Federal Criteria for Trusted Systems Technology. The eventual result will be
Federal Information Processing Standards. Although there may have been some evolution of
the NSA documents over the past few years, the essence of the information and its thrust
remains the same.

The concept promoted by these documents is similar to the Software Engineering Institute's
CMM. There are four hierarchical "security maturity” divisions that apply to processes used to
develop security features provided by the systems. Across these divisions/levels there are four
major security categories of interest: security policy; accountability; assurance; and
documentation. Within each security maturity division/level there are Security Key Process
Areas for each of the four categories of interest. The security maturity divisions are discussed
below in more detail.

The trusted computer system evaluation criteria classifies systems into four broad
hierarchical divisions of enhanced security protection. The criteria provide a basis for
evaluating effectiveness of security controls built into computer system products. The scope
of these criteria is to be applied to the set of components comprising a trusted system, and is
not necessarily meant to be applied to each system component individually. Hence, some
components of a system may be completely untrusted, while others may be individually
evaluated to a lower or higher evaluation class than the trusted product considered as a whole
system. The second standard cited above, the Trusted Network Interpretation, provides criteria
indicating how to interpret the computer system classes of security required when multiple
computer systems are connected through a communications medium.

The four broad classes of the trusted computer system evaluation criteria include: Division
D: Minimal Protection; Division C: Discretionary Protection; Division B: Mandatory
Protection; and, Division A: Verified Protection. A short description of each division follows.

Division D: Minimal Protection. Systems in this class do not satisfy the
requirements for a higher evaluation class.

Division C (levels C1, C2). Discretionary Protection. Systems in this

class provide for discretionary (need-to-know) protection and,
through the inclusion of audit capabilities, for accountability of
subjects and the actions they initiate.

Division B (levels B1, B2, B3): Mandatory Protection. Systems in this

class have the notion of a Trusted Computer Base that preserves
the integrity of sensitivity labels and uses them to enforce a set of
mandatory access control rules. Evidence must be provided to
demonstrate that the reference monitor concept has been
implemented.

Division A (level Al): Verified Protection. Systems in this class are

characterized by the use of formal security verification methods
to assure that the mandatory and discretionary security controls
employed in the system can effectively protect classified or other
sensitive information stored or processed by the system.
Extensive documentation is required to demonstrate that the
Trusted Computer Base meets the security requirements in all
aspects of design, development, and implementation.

Examples of "Key Process Areas" that cross these four broad classes include security
policy (discretionary access control, object reuse, labels, and mandatory access control);
accountability (identification and authentication, audit, and trusted path); assurance
(architecture, system integrity, security testing, design specification and verification, and covert
channel analysis); and, documentation (security features user's guide, trusted facility manual,
test documentation, and design documentation).

The processes used to develop and support software that is trusted become more formal as
the class of security "matures” from level D to level A. A "more mature" class of security is
required as the classification level of information and other resources protected by the
computer system and its software increases, and/or the authorization level decreases for
personnel or programs from which the computer system is to provide protection.

The concept of isolation and limitation of security-specific aspects to a relatively small
number of components is inherent through the use of a Trusted Computer Base (TCB) to
represent all the security-critical components of the system. Therefore, the first principal
technique of security function and feature isolation in a small software component is basic to
security-critical software applications. The required security level dictates which specific
development methods are required to ensure security features are adequate.

Systems at the upper level of Class B and Class A must have verification that the design
and its implementation are correct. Formal requirements, language specifications, and finite-
state machines are useful techniques for the upper classes. Some of the analysis methods that
are currently used to provide security assurance include security fault tree analysis; security
failure modes and effects analysis; vulnerability analysis; cryptographic analysis; and covert
channel analysis The testing techniques required also vary from basic security flaw hypothesis
testing and obvious penetration testing for Class C systems to use of an independent security
test team with extensive (over three months) "hands on" formal verification and validation for
Class A systems.

Generally, the techniques used for systems that require a lower (C1, C2) and medium (B1)
class of security constitute the current best practices. The techniques described elsewhere in
this section can generally be adapted for use to provide assurance of security features. The
‘techniques for systems that require a higher (B2, B3, Al) class of security include the all the
best practices and some of the more promising research methods, such as formal specifications
and finite state machines applied to the computational security kernel of the TCB.

Hazard Identification and Analysis

While utilizing an appropriate software process is important, any practitioner involved in
producing high-consequence software must also pay attention to methods and techniques for
hazard identification and analysis. In addition, the practitioner must identify which types of
safety analysis are pertinent to a particular system. Four basic types of safety analyses may be
performed on a system. The four analyses types are called Preliminary Hazard Analysis,
System Hazard Analysis, Subsystem Hazard Analysis, and Operating and Support Hazard
Analysis [30]. There are many techniques available to perform these types of safety analyses;
several are identified below after briefly explaining the different purposes of the cited basic
types. ‘

The purpose of the Preliminary Hazard Analysis (PHA) is to identify and prioritize system
hazards and to determine safety design criteria and requirements [30]. The system

specifications are then written to explicitly address the concerns identified and the design,
implementation, and testing are performed with these hazards in mind. As with error detection,
identifying safety-related concerns early in the development cycle is desirable to minimize the
costs of addressing these concerns. Many times, simple design changes can greatly increase
the safety of the system. .

The PHA team should include an expert in the domain of the application. In addition,
designers of previous systems should be a part of the team if the system is a replacement for an
old system. This helps to identify new failure modes introduced through design changes.
These experts may participate in brainstorming sessions to identify potential hazards, or more
formal group consensus techniques such as the Delphi Technique can be employed [41]. The
Sandia WR Software Guidelines specify that this function be performed as part of the Software
Adversary Analysis. Sandia engineering procedures also specify that a nuclear safety focused
Safety Design/Program Review be held for WR projects [3].

The purpose of the System Hazard Analysis is to evaluate the safety of interfaces between
subsystems. The goal of a Subsystem Hazard Analysis is to determine how a subsystem could
contribute to a system hazard. Software hazard analysis is a type of subsystem hazard analysis.
The output of the software hazard analysis is a set of safety constraints to which the software
must adhere [30].

Operating and Support Hazard Analysis identifies and evaluates hazards related to
personnel interactions with the system. The output of this analysis is identification of the
possible hazards including: identification of potentially hazardous requirements; identification
of changes in functional or design requirements; identification of requirements for safety
equipment; identification of requirements for interactions with hazardous materials; and
identification of requirements for safety training (see table 1).

Safety analysis techniques used to conduct these four types of analyses include design
reviews, walk-throughs, checklists, hazard and operability studies (HAZOP), fault tree analysis
(FTA), and failure modes and effects analysis (FMEA). FTA and FMEA are widely discussed
in the software safety literature [13, 17, 29, 30, 41, and others]. Both of these techniques are
used at Sandia. The choice of methods usually is dependent on a person’s preference between
inductive and deductive problem solving.

The following subsubsections address a variety of hazard identification analysis techniques
including fault tree analysis; failure mode effects analysis; Petri nets; and independent
vulnerability analysis, before concluding with a brief comparision of the cited methods.

Fault Tree Analysis (FTA)

FTA was developed by Bell Telephone Laboratories in the early 1960’s and has been used
in many applications including missiles, spacecraft, and nuclear power systems [42]. FTA
relies on deductive reasoning. The basic approach is to postulate that the system has failed in a
way determined to be safety-critical, then try to find out how the failure could be caused. The
set of top events in a FTA is the output of the PHA that identifies possible system hazards.
Each top event is analyzed to identify all possible causes of the top event. Logic symbols are
used to express the relationships necessary for the undesirable event to occur. Any
intermediate events are then further analyzed to determine their causes until all events are
expressed in terms of primary events. Primary events are events that cannot be caused by other

faults. Defining primary events is part of the analysis. For example, a single bit hardware fault
may be considered a primary event.

Software Fault Tree Analysis (SFTA) is a variation of this technique that is adapted
specifically to software [1]. The events in this analysis are potential scenarios in which the
software could lead to or contribute to a top event. Each top event is analyzed to show that the
scenario contradicts the program logic. If it does not contradict the software logic, then a
potential safety concern has been identified.

In an experimental application of SFTA, a two-day analysis of over 1,250 lines of Intel
8080 assembly language code discovered a failure scenario that could have resulted in the
destruction of a spacecraft. Conventional testing performed by an independent group did not
detect this problem [42]. This demonstrates an effective use of the method during the
implementation phase of the project.

Failure Mode Effects Analysis (FMEA)

FMEA is an inductive approach to analyzing software for safety concerns. This approach
postulates faults in the system and then attempts to predict the effect on the system. Like FTA,
this approach has been adapted for use on software systems. In this approach, a fault is
assumed in a software module. Faulty logic or inputs to the module might be the cause of this
fault. This fault is then propagated to the system outputs to determine the effects on the
system.

FMEA analysis is performed using a matrix with software failure modes along the vertical
axis and output modes along the horizontal axis. The horizontal axis may also include other
columns such as probability of detection and corrective action for the failure [17, 41]. The
analysis proceeds by considering the failure modes for each component in the system and
predicting the outputs resulting from the failure. Critical failures can then be determined and
steps can be taken to protect against the hazardous output.

Hughes Aircraft employs hardware and software FMEAs supplemented with analysis
techniques which assess operation under normal conditions and simulation of dynamic timing
and failure occurrence conditions to verify their embedded, real-time, control systems that are
used in automotive and space applications [17].

Petri Nets

Adapted from the analysis of reachability properties of communication systems by Nancy
Leveson and Janice Stolzy, Petri nets can be used to analyze the safety properties of a system
[28]. A Petri net models a system as a set of places (states) and a set of transitions. Hardware,
software, and human components within a system can be modeled using the common
mathematical language. Timing information can also be incorporated into the analysis. The
dynamic aspects of a Petri Net are demonstrated by execution of the model; movement of
tokens between places occur as conditions for transition are satisfied.

In safety analyses, fault and failure states are added to the model and the model is executed
to determine if any unsafe states are reachable from the initial state. This analysis allows
identification of the prior states necessary to reach an unsafe state. Once these states are
known, the design can be modified to prevent or mitigate the effects of reaching an unsafe
state.

Leveson states in her paper, "Unfortunately, Petri nets can be difficult to analyze. For
general Petri nets, the reachability problem although decidable, has been shown to be
exponential time- and space hard". As the complexity of the system being analyzed increases,
the Petri net model's complexity increases exponentially.

An example of industrial use of Petri nets is documented later in the section exploring
current approaches used by leading practitioners (Samples of Current Practices in Industry).

Independent Verification and Analysis

Software is generally subjected to an Independent Verification and Validation (IV&V)
process to ascertain if the code produced meets its requirements. This IV&V process usually
consists of formal analyses of requirements and code (verification) and functional tests that
demonstrate implementation of the requirements (validation). The WR Software Development
Guidelines [3] require Independent Vulnerability Analyses (IVAN) for software developed by
Sandia for WR usage. An IVAN attempts to determine if the software performs functions that
are not intended (such as subversions) and also attempts to find vulnerabilities that could affect
safety or security. Development and production versions of the code are subjected to static and
dynamic analyses to uncover any additional functionality. An IVAN provides additional
assurance that the code produced for a WR application does not have intentional or accidental
defects that degrade security or safety. However, an IVAN does not ensure correct functioning
and safety of the software.

Summary of Analyses

FTA and FMEA share several common weaknesses—they are limited in the types of errors
that are detected. For example, algorithm problems, typographical errors in the code, and
incorrect variable usage are not detected. Another problem is that the effectiveness of the
technique is highly dependent on the abilities and intuition of the person or team performing
the analysis. The weaknesses listed here demonstrate the need for a layered approach to safety.
Code inspections or module and system testing are more likely to detect algorithm problems,
typographical errors, and incorrect variable usage, while FTA and FMEA are more effective in
finding basic system safety concerns.

The FTA and FMEA analyses are applicable throughout the design process. As with most
techniques, the earlier they are applied in the development process, the more effective they are
in finding and correcting potential problems. FTA’s applied to the code may detect problems,
but the cost of fixing the problem at that stage could outweigh the perceived safety gain.

Petri nets are a different approach to analyzing the safety aspects of a system. Petri nets
allow timing information to be incorporated into an analysis; timing information is difficult to
incorporate into FMEA and FTA. Because of the exponential increase in complexity of
modeling a system using Petri nets, they are more applicable to the earlier stages of
development such as requirements analysis. They can also be applied effectively to simplified
systems. _

The primary focus of an IVAN is not on safety, but rather, on detecting hidden or
unintended functionality of the software. The specifics of an IVAN vary according to the
preceived threats and the implementation of the system.

Data presented in the paper entitled Traditional Software Development’s Effect on Safety
shows that safety analysis helps to reduce defects in software products and system failures due

to software in specific functions [19]. This paper presents a study in which a control group -
developed software to control lights at an intersection using “normal” software development
methods. Normal in this case is defined as: waterfall model, English specifications, structured
design, coding in C, 100% statement and branch coverage, boundary-value analysis and
testing, and a limited form of Fagan inspections. The developers in the experimental group
used the same basic approach to develop the software except they added preliminary hazard
analysis and high-level design hazard analysis steps to the process. There were seven control
group teams and five experimental group teams. The results of the errors in the software
detected through testing are given in Table 4 [19].

Fault Description Control Groups Experimental Groups
Total Errors Total Errors
(# of groups making (# of groups making
errors)* errors)*
Improperly initializes traffic lights 7(7) 33
Fails to ensure light changes are valid 737 (7) 162 (3)
Fails to ensure minimum delay times 213 (7) 22 (2)
Leaves all elements off for some lights 32 (3) 11 (2)
Leaves two or more light elements on 13 (3) 2 (1)
Fails to delay between element changes 3(2) 4(3)
Fails to monitor hazardous conditions 7(7) 2(2)
Fails to keep lights in synchronization 2(2) 0 (0)
Changes wrong elements 1(1) 0 (0)
Loses track of traffic-light states 23 (5) 14 (1)

* First number is total errors; number in parentheses is number of groups that contributed to
the total errors.
Table 4
Defect Data for Traffic Control Light Software.

The table shows an improvement in the experimental group and provides grounds for belief
that given equal processes, deliberate analysis of safety-related scenarios can be beneficial.

Design Techniques

In addition to utilizing appropriate software safety standards, choosing and applying a
rigorous software process method, and incorporating hazard identification and analysis
approaches as part of a system assessment, the practitioner must also focus on the design
techniques that are used. There are a wide variety of design techniques and approaches to
designing safer software. Reviewing literature on this subject shows that there are about as
many approaches used as there are applications. Each individual application requires analysis
to determine effective (both in cost and performance) solutions.

Furthermore, numerous engineering techniques are proposed for the total system design
including all hardware components (software is only one component of many that affect the
safety of the final system). In the paper “Risk Assessment and Management of Safety-Critical,

Digital Industrial Controls—Present Practices and Future Challenges”, it is suggested that high
level controls be implemented in a heirarchical fashion with the simplest and most reliable
ones having the highest priority [10]. The hierarchy is as follows:

Physical barriers (e.g. mechanical stops);

Static mechanical devices (e.g. burst disks);

Moving mechanical devices (e.g. relief and check valves);

Simple electromechanical system (e.g. limit and pressure switches);

Simple analog or discrete digital electronic system (e.g. overspeed circuits);
Simple software based device (e.g. programmable logic controller); and
Redundancy (e.g. Triple modular redundancy, standby sparing).

Nk

Dunn continues, stating: “With high level controls in place, the probability
that unwanted effector motion will occur is now the joint probability of a
control system component failing and producing inadvertent motion, and the
probability of the high level control failing to stop it. Risk of the worst case
scenario occuring is clearly reduced.”

Accordingly in this subsection, discussion focuses on a few approaches that may be used in
the development of software based systems that complement a top-level system design as just
described in [10], including: hardware and software interlocks, self-checks, n-version
programming and recovery blocks, watchdog timers, watchdog monitors, and safety kernels.

Hardware Interlocks

As shown in the Therac-25 accidents discussed earlier, sometimes overconfidence in
software can lead to problems. The Therac-25 machine replaced hardware interlocks with
software and created a single point of failure in the software. Hardware interlocks are often
more trusted than software interlocks because their failure modes are more predictable and
better characterized than those of software. This is a highly effective and highly recommended
approach when practical.

An example of hardware interlocks used in Therac-20 (predecessor of Therac-25) is a
number of switch contacts that provide independent confirmation of machine positioning.
Switch contacts are often placed in the power supply of the equipment to enforce proper
positioning before power can be applied.

Software Interlocks

Software interlocks help ensure that operations occur in the correct sequence or that an
event does not occur without prespecified conditions being met. Event sequencing is an
example of a software interlock.

Event sequencing can be achieved using a software “passed parameter”. Before initiating
an event in the sequence, the passed parameter is checked for a specified value, and then the
parameter is updated after the event has taken place. One example is to update the parameter
on entry and exit from routines to ensure correct routine sequencing in critical code. When
using this technique, it is important that mathematical operations be used to update the passed
parameter and not just a simple assignment statement (see Figure 1). This prevents inadvertent

entry into the middle of a protected sequence from continuing on erroneously into the next

critical function.

Correct Parameter Use

Incorrect Parameter Use

routine_a(parameter)

{
if (parameter != value_a) error();
perform critical function

/* now set parameter for routine_b */

parameter = parameter - number_a;

routine_a(parameter)

{
if (parameter != value_a) error();
perform critical function

/* now set parameter for routine b */

parameter = value _b;

} }

Figure 1
Passed Parameter Used to Validate Software Execution Sequence

A similar approach to preventing a critical operation from occurring is to keep a parameter
that is used as a “key” in the operation. If writing a value to a port turns on a critical piece of
hardware, then the key value is always “ANDed” with the value written to the port so that
critical bits will not be set if an inadvertent jump to the section of code outputting the data to
the port. Jumping to the unsafe code in Figure 2 would result in a hazardous situation where
Jjumping to the safer code could prevent the situation assuming the key has not been set to
allow activation of the output. Another approach is to use an operation such as “exclusive or”
to modify a pattern stored in memory to create the critical value needed. This way, the critical
value is never directly stored in memory and it must be computed in order to be used.

Normal Code Safer Code

output_value = critical number & key;
output(output_value);

output_value = critical_number;
output(output_value);

Figure 2
Use of Key to Prevent Inadvertent Execution of Critical Code

- Self~-Checks

Sometimes sanity checks can be inserted into the software to detect faulty conditions.
Some common examples include making sure that pointers to input and output buffers are
within predefined limits to prevent overwriting critical data by overflowing input buffers and to
prevent inadvertently outputting critical data to ports.

Other sanity checks on structures provide an efficient way to offer protection against errant
pointers. This can be done by assigning a structure an id value that is checked before using the
structure (see Figure 3). Many language compilers would detect if “double x” were called
with a pointer not of type “Safe_one”, but the method listed here could easily be implemented
in assembly language which is often used in safety-critical embedded applications.
Maintaining a checksum on critical data structures is another widespread technique used to
detect corrupted data or errant structure pointers.

Structure Declaration . Structure Use

structure Safe one double x(Safe one * Safe)
{ . {

int id=SAFE ID; if (Safe->id != SAFE_ID) error();

real x; , Safe->y = Safe->x * 2;

real y; : }
} .

Figufe 3

Use of Structure Id to Prevent Use of Errant Pointers

The software interlocks presented here provide effective protection against several classes
of defects including buffer overflows, faulty pointers, and some hardware faults. These
techniques are easily added to existing software to improve its safety and can be implemented
in new designs with a minimum of overhead.

In general, software self-checks should be used carefully. [30] presents a study that shows
several weaknesses with using software self-checks. In this study, twenty-four graduate
students were tasked to instrument eight different programs. Only nine of the twenty-four
students found any defects. Altogether, a total of twelve defects were found, and of those
twelve defects, only six were newly discovered-the other six were previously known to exist.
And unfortunately while adding the self-checking code, twenty-four additional defects were
introduced into the programs.

N-Version Programming and Recovery Blocks

N-Version programming is used to describe the practice of independently developing
versions of software that feed their outputs to a voting unit. Assuming fault tolerance is the
goal, the voting unit will take the result that is in the majority. If fault detection is sufficient,
the voting unit may shutdown the system in a fail-safe manner.

N-Version programming can be applied to multiple fault classes including design faults,
compiler faults, language complexity faults, and implementation faults (see Table 5) [20].

Problem Solution

Design Faults N-Version programming using different designs
for each version.
Compiler Faults N-Version programming using different

compilers for each version but possibly the
same source code.

Language Complexity Faults N-Version programming using different
languages for each version.
Implementation Faults N-Version programming using different
programmers.
Table 5

N-Version Programming Uses

Recovery blocks are similar to N-Version programming with the exception that steps are
taken to resolve the differences in a voter output rather than accepting the majority answer.
There is more information available on N-Version programming and recovery blocks in [1].

There is a much-publicized study that challenges the independence assumption when
developing multiple versions of code [25]. In hardware, multiple versions of a design can be
characterized and designed to eliminate common failure modes. In software, common failure
modes are often present in independently developed programs. This effect on the actual value
of this technique should be closely considered before relying on this technique to achieve high
levels of safety. Perhaps the more costly approach that requires separate development teams is
inefficient, but using multiple compilers on the same source code might provide a cost-
effective method of achieving some level of redundancy.

Watchdog Timers

Watchdog timers are a common approach to detecting timing problems and computer
malfunctions. Some microprocessors designed for high reliability uses include watchdog
timers as part of the processor architecture. A very generic application of a watchdog timer is
to include resetting of the timer inside of a control loop. If the hardware hangs or falls out of
the control loop, then the watchdog timer expires and interrupts the system operation. Usually
this leads to system reset or a safe shutdown of the system.

The timer can also be a state of health indicator to a hardware interlock. The hardware
interlock would be tied to a timer and if the software failed to reset the timer, then the hardware
would assume a software problem and deploy the interlock automatically.

Watchdog Monitor

Watchdog monitor approaches have been suggested in the literature for developing high-
consequence systems if software is included in the system. The watchdog monitor employs
separate hardware that tracks the inputs and outputs of the system to detect hazardous faults
and then take recovery action once a fault is detected. Monitors can be used to check for the
presence of and range values of I/O, timing limits, and other safety requirements.

The key to developing a good watchdog system is to specify adequate protection without
making the watchdog as complicated as the original system. Common mode failure problems
with the system being monitored must also be avoided. [27] provides a method of designing a
watchdog system by using Linked State Machines (LSMs) to create formal specifications of a
hardware watchdog. A later subsection of this report contains a discussion of the author’s
research. ‘

The development of this or other watchdog monitors for high-consequence systems would
require significant development and analysis, and the tradeoffs between the added safety and
cost must be analyzed. Analyzing these tradeoffs is also complicated by the difficulty in
providing numerical estimates of the reliability and safety of software-based systems.

Safety Kernels

This approach deals with isolating the safety critical portions of the software so that a more
thorough evaluation and qualification of the critical code can be performed. The challenge here
is proving that other portions of the code do not have side effects that can corrupt the safety
critical portion of the code. “Firewalls” are needed between the critical and non-critical
portions of the system [14].

A firewall can be constructed in several ways. Two approaches are logical and/or physical
separations of code. For example, a logical separation of code within memory will allow the
system to eliminate or minimize potential interactions between critical and non-critical portions
of the code, such as a stack overflow. A physical separation can provide another level of
protection. This type of separation can be achieved by placing critical sections of code on
physically separate boards requiring specific sequences of interactions to communicate
between the sections. For a further example of the use of this method, the paper by Dr. Knight
discussed in the research overview section of this report identifies an approach for using a
safety kernel to enforce safety rules.

Implementation

A multitude of implementation choices confront the practitioner. Accordingly, these
various choices cannot be adequately addressed in this general overview; however, a few
points on the choice of languages and configuration management and quality assurance should
be identified and emphasized regarding implementation. Those points are briefly addressed
next.

Choice of Languages: Practitioners often do not consider the compiler or other tools used
in building the software as a potential source of defects; however, that potential source does
exist. Consequently, in very high-consequence systems, it is important to verify that the binary
code loaded into the system actually implements the higher-level language design that has been
qualified for use. At first glance, this appears to be an overwhelming task. How can this task
be simplified?

One approach to simplifying the verification of the binary code is to code the critical
portions of the software in assembly language. Using this approach simplifies the verification
because the assembly of the codeis a direct mapping of the source code to machine language.
Assemblers from different vendors will produce identical machine code for a given program as
long as macros are not used. On the other hand, this approach greatly increases the complexity

of the resulting code and thus, must be considered as a tradeoff. Only those portions deemed
sufficiently critical for such an approach should be coded in assembly.

This approach is useful for select critical sections because verifying code written in a
higher level language is significantly more complicated. In that situation, the machine code
generated by various compilers is no longer unique in most cases. However, some languages,
such as Ada, are supported by a compiler certification program that is intended to minimize the
functional differences due to different compilers.

Configuration Management and Quality Assurance: Any safety critical project should
have good configuration management and quality assurance processes in place. Configuration
management is important for ensuring that the code actually installed is the code that has been
qualified. Processes for approving changes to code need to be in place and enforced.

Quality assurance provides a somewhat independent check to ensure adequacy of the
processes used and the products produced. Verification and validation analysis techniques
specific to high-consequence risk reduction can be applied by quality assurance personnel to
supplement normal engineering techniques. Both configuration management and quality
assurance need to be uitilized when producing high-consequence software.

Samples of Current Practices in Industry

Several leading industrial practitioners were interviewed to identify the approaches being
used in their software development efforts. A brief description of practices by John Waclo at
Westinghouse Nuclear, Stephen Cha at The Aerospace Corp, and Joseph Profetta at Union
Switch & Signal follow to give an overview of current practices in industry.

John Waclo—Westinghouse Nuclear: Westinghouse Electric has been in the nuclear reactor
control business for a long time, long enough for a process to evolve to the point where they
have extreme confidence in their ability to produce safety critical systems. The product under
consideration is a reactor shutdown system. It must work when called upon, but yet there must
be no false shutdowns because they are very expensive. It is essentially a process monitoring
system, checking trends and key measures and tripping when values are exceeded, or trends are
going in the wrong direction.

Westinghouse Electric has been building such systems since the late 1970s. In the late
1970s, the systems were all made up out of discrete, analog logic. In the 1980s it was decided
to implement a digital concept in a research effort with the Nuclear Regulatory Commission.
The first digital product was a Primary Protection System installed at the Sizewell-B (UK)
reactor. It went operational in 1989 and was a plug-compatible digital upgrade of the analog
system. There are roughly 100,000 source lines of code in these systems, written in the PLM-
86 programming language. Their next major effort is developing a totally digital nuclear plant
at the Temelin reactor, a Soviet-designed reactor that was never brought on-line. They are
retrofitting sensors, instrumentation, and control.

Westinghouse Electric counts on their development process to ensure the safety-critical
properties of their software. They do a tremendous amount of reuse. In the Temelin system,
50% of the code is totally reused from other efforts, 32% is modified, and 18% is new. This is
opportunistic reuse, but they are now heading towards planned reuse for common functions.
They make heavy use of independent software verification and testing. Formalized regression
testing is done by others not involved with the development. They do not do formal
verification yet. Temelin accomplishes this by:

Using different designers;

Using Ada instead of PLM;

Using CASE tools for the new development; and
Using Formal Methods for the new development.

el s

Stephen Cha—Aerospace Corp.: AeSOP is an interactive failure mode analysis tool
recently developed at the Aerospace Corporation. When safety critical software is developed,
software safety requirements, representing a subset of system safety requirements that have
been refined and allocated to software, must be developed. Software safety requirements often
dictate recovery activities software must initiate should hazardous events occur in order to
restore the system state to a known safe state.

The Petri net formalism has proven to be effective in analyzing system behaviors. Large
and complex industrial systems are being analyzed using Petri nets. In 1987, Leveson and
Stolzy demonstrated how the Petri net formalism can be used to perform safety analysis.
Starting from a state assumed to be hazardous, immediate predecessor states are generated.
Each of these states is examined to see whether it is a "critical state." A critical state is one in
which the system had multiple paths (e.g., events) where subsequent states include not only a
hazardous state but also a safe one. Their analysis technique attempts to find the conditions that
led to the occurrence of a hazardous system state.

Current practice is to do Petri-net-based safety analysis manually. This can result in low
productivity, and worse, erroneous analysis. AeSOP (Aerospace Safety Oriented Petri Nets) is
designed to correct that problem by providing an automated tool supporting safety analysis. It
runs on the X windows system and offers a graphical interface.

AeSOP is based on PNUT, a public domain petri net tool. It was ported to the X window
system and modified to use the Merlin-Farber model of timing semantics.

This model is well suited to analysis of safety critical software. In the Merlin-Farber model
used by Leveson and Stolzy, a transition is assigned a minimum and maximum firing time.
Firing rules are such that a transition must be continually enabled for at least the minimum
firing time before it may fire. No transition may remain enabled, without firing, for more than
the maximum firing time.

AeSOP provides both a graphical forward reachability graph analyzer and a backward
reachability graph analyzer. In the forward analyzer, AeSOP specifies both the earliest and
latest time at which the system could enter that state. Forward reachability provides the
following features: hierarchical decomposition, graphical state marking, and unpredictable
event analysis.

In backward analysis, the user specifies the hazardous system state and the analysis
proceeds backwards until either the initial state is reached (in which case the system is not
safe), or a deadlock results at an intermediate state prior to reaching the initial state (in which
case the system is safe from the specified hazard.)

AeSOP allows interactive failure-mode analysis in a user friendly environment. However
the model and the hazard specification must be accurate to correctly perform safety analysis.
AeSOP appears to be an effective discovery tool. Errors found in the reachability graph may
provide suggestions on how the model or design may be altered to achieve a safe system. The
Petri-net formalism effectively forces the user to study the detailed and often subtle system
behaviors.

Joseph Profetta—Union Switch & Signal: Union Switch & Signal is in the business of
building railroad signaling systems. Because of the operating environment, railroad signaling
is an extremely tough safety critical system to develop. Germany will certify nuclear safety
shutdown systems, but apparently will not certify railroad signaling systems because of the
harsh environment in which they operate.

Historically the companies involved in this area have used immutable laws of nature (e.g.,
gravity) to assure safety. However, for economic and flexibility reasons the industry is making
cautious steps towards software. They've put in a big effort to ensure that the software-based
system is as safe as the hardware-based system. The three principles they follow are:

Do not move a switch while a train is on it;
Do not allow trains to collide; and
Err towards restriction.

They are helped by the fact that there is a generally safe state "stop the train."

US&S’s current software based product is called MicroLok. The reliability techniques used
are self-checking and diversity. Since signaling systems are basically sets of Boolean
conditions, they are able to make use of De Morgan's Law to achieve diversity. Results are
computed from transformed expressions and then voted. Practice indicates this technique
works pretty well, as evidenced by the fact they have had over 12 million hours of operation
without an unsafe incident.

MicroLok only gives a qualitative feel for the safety of the systems. Since US&S’s
customers, the railroads, did not care for quantification, this was satisfactory. However, the
industry is moving towards quantitative safety requirements. In particular, US&S has a major
contract to provide signaling systems for the Los Angeles Green Line, and they have a
quantitative requirement of 107 years’ mean time between hazardous event. The technique
they are using involves building a high-fidelity model of the system, starting with a VLSI
Hardware Description Language (VHDL) description of the CPU being used. A higher level .
model represents the device model of RAM and ROM. Then they drop the actual code into
this model and run a virtual machine with real code. This virtual machine is instrumented and
set up for fault injection experiments. They run exhaustive inputs and outputs and match at all
levels, including timing and state. Once they have thoroughly tested at one level, they move up
a level and do it again. This is extremely time consuming, taking over six months of
continuous testing. Commercial tools are generally used for this including VHDL and CASE
tools from Mentor Graphics.

US&S is now looking at ways to keep the system safe without having to do validations.
They are moving towards Ada and are using object-oriented techniques. They expect this to
help in maintenance, robustness, and portability as they move to more powerful processors.
They use the IEEE Life-Cycle process definition [24], but tailor it to their specific needs.
Following a rigorous process definition helps them end up with a safety critical systems.

STATE OF THE RESEARCH IN 1994

This section of the report reviews several research areas—formal methods, the cleanroom
process, and software reliability models—that apply to developing high-consequence software.
The methods discussed are not widely adopted at this time, but do show promise as possible

ways to improve upon the current state of the practice. The approach repeated in this section is
to give an overview of the method and refer the interested reader to more detailed literature
wherever possible. The section ends by giving a more detailed discussion of several papers to
provide a sampling of current research. Works in progress by Knlght Leveson, Knudsen, Dill,
Rushby, and McDermid are discussed.

Formal Methods

Formal methods are characterized by the use of mathematical techniques to prove
correctness. Formal specifications of requirements allow an analysis of the completeness (to
some extent) and the consistency of the requirements. Basically this involves applying discrete
math such as predicate calculus and set theory to form specifications that can be analyzed for
completeness and consistency. State diagrams and Petri nets are often used to express the
behavior of the system. These techniques are currently much more accepted in the European
software development community than in the United States. An exception to this is the
growing use of the cleanroom technology in the United States [16]. The cleanroom approach is
discussed in detail later in this report.

The strength of formal methods is its use in attacking the problems associated with English
language specifications. Most defects are inserted at the front end of the life cycle. However,
most defects are found near the end of the life cycle. This suggests many of the problems are
associated with the specification process. Without well-specified system and software
requirements it is especially difficult to analyze the impact of changes to customer
requirements—an analysis that is frequently needed throughout the development life cycle.

There are two important roles in the implementation of a safety-critical system:
applications (systems) engineers who understand the functions required of the system as well
as the attendant hazards and risks, and software engineers who understand the structuring,
implementation, and analysis of software. The communication of system requirements by
application engineers, and the derivation of software requirements by software engineers,
requires careful coordination and a common understanding of the various levels of
specification. This communication is typically hindered by the lack of precision and
completeness in the specifications.

More precise specifications are needed. This requires something more suitable to the
computer science applications than natural language. Formal (or semi-formal) languages are
an appropriate choice. Data flow diagrams, Petri nets, Z (pronounced Zed), and Vienna
Development Method (VDM) are all examples of such languages. The use of these languages
is an attempt to remove the ambiguity and incompleteness inherent in natural language
specifications. In the literature, these languages are instances of “formal methods”. Formal
methods are used to provide a mathematical approach to expressing system and software
requirements and proving that the actual implementation satisfies the requirements.

It is important to realize that even if formal methods are used to specify requirements and
verify that the design and implementation accurately reflect the requirements, there may still be
no assurance of system safety. The correctness of the implementation may not specifically
address the safety concerns for the system—that the system does not do what it is not supposed
to do. Such “does not do” safety requirements must also be analyzed so as to be correctly
specified. Safety-specific techniques such as hazard identification and analysis must be
employed to help ensure that the requirements are adequate to meet the system safety needs.

[15] provides a survey of projects which have used formal methods. This study included 12
projects including five commercial projects, three exploratory projects, and four regulatory
projects. A summary of the projects is included in the shaded boxes in figure 4. These
summaries are directly taken from Volume 1 of the report generated by the study.

A major conclusion of this report was that formal methods are still immature, but are
beginning to be used seriously and successfully by industry to design and develop computer
systems. The report concluded that the primary uses of formal methods are “re-engineering
existing systems; stabilizing system requirements through precise descriptions and analyses;
communication between and among various levels of system stakeholders (e.g., system
engineers, software engineers, quality assurance personnel, managers at all levels); and as
evidence of "best practice” (in a regulatory and standards context).

One of the barriers to wide acceptance of formal methods is the lack of effective tools to
help in the process. Many of the companies presented in the Gerhart study had to perform the
proofs manually. Some companies are beginning to offer tools in this area. Formal Systems
Ltd. of England is developing a toolset called FDR (Failures Divergence Refinement) with a
goal of supporting formal verification of systems using various state machine descriptions,
process algebras, and programming languages. Other formal development support tools may
be available. A complete survey of such tools are not included here, but [6] provides a
valuable starting point for persons interested in formal methodology.

Formal methods are not a panacea for safety-critical software. However, given the proper
education and training in formal methods, software engineers could realize large improvements
in developing dependable, and hopefully safer, software by applying the mathematics of formal
methods in some form to help prove the correctness of the logic.

for presentmg the Gypsy sp
code,

onmderatxons) MGS ‘went through a

1;; process [NCSCSS] and achleved a

Figure 4

Applications of Formal Methods Among Various Projects [15]

' ___vexplore demgn ideas. The
tur pnsnsts o200 KLOC and

Flgure 4 (contmﬁed)

Figure 4 (continued)

The Cleanroom Process

The cleanroom process has been described as the first practical attempt to place software
development under statistical quality control and to deliver software with a known and certified
reliability [12]. The cleanroom process focusses on defect prevention during the development
life cycle rather than defect detection during unit level and functional testing of the software.
Defect prevention is accomplished with formal software engineering methods and rigorous
correctness verification for creating a correct software design. Testing in the cleanroom
process is statistically based rather than selective or functionality based and is focused on the
total product rather than the parts to allow an accurate measure of the expected field reliability.

In the cleanroom process, software specifications are required to be documented in a formal
mathematical notation rather than natural language. The intent is to force stability and
completeness of the software specifications as early in the design process as possible. The
specification content is broadened to identify the software requirements for each incremental
software release and establish the reliability targets for the product.

A rigorous and formal design method based on structured programming theory [33] is
recommended. A limited set of primitives are used to capture design logic, define software
structure, and organize the software's data. These primitives are used to refine the software
requirements and in construction of a software design that can be assessed and verified at each
design step.

Correctness, the equivalence between a requirement and the design, is documented through
the use of design primitives. Designs are then verified with correctness proofs by the designers
and independent inspectors using the functional technique for correctness verification [36].

A statistical approach [11] to functional testing is used in the cleanroom process. This
functional testing is driven by probability distributions of input and output domains that are
defined against the requirements and track usage in the software's operating environment. This
testing is performed not at the unit level, but at the product level. This testing supports
statistical inference for reliability prediction and satisfies the critical validation role for
traditional functional testing. A comparison between the software's mean time to failure
(MTTF) recorded and the target MTTF can be used to identify what and how much corrective
action is needed. Dyer states, "While zero defect software in an absolute sense is unattainable,
software with an extremely high probability of not experiencing failures is attainable."

Software Reliability Models

Software reliability can be defined as the probability of failure-free operation of a computer
program for a specified time in a specified environment [38]. To estimate or predict software
reliability, a model that accurately characterizes the behavior of a software program over time
is required. A literature survey shows that hundreds of papers devoted to the subject of
software reliability models have been published in the last decade with over 40 different
software reliability models proposed. Overviews of some of the numerous software reliability
models are available in the following papers: [18], [34], [36].

Goel classifies the various software reliability models according to the nature of the failure
process studied. Software reliability models are grouped into four main classifications: time
between failure models, failure count models, fault seeding models, and input-domain-based
models. All models mentioned in this subsection are referenced and discussed in greater detail
in the overview papers.

Time between failure models are based on an assumption that the times between successive
failures, say the (i-1) failure and the ith failure, follows a distribution whose parameters depend
on the number of faults remaining in the program during this interval. A fitted model is
developed with estimates of model parameters derived from observed times between failure
during execution of a computer program. This fitted model is then used to assess the reliability
of that computer program. Another approach is to treat the failure times as realizations of a
stochastic process and use an appropriate time-series model to describe the underlying failure
process. Examples of models in this classification are: Jelinski and Moranda De-

Eutrophication Model, Schick and Wolverton Model, Goel and Okumoto Imperfect Debugging
Model, and Littlewood-Verall Bayesian Model.

Fault count models are based on the number of faults or failures in specified time intervals
rather than the times between failures. The failure counts are assumed to follow a known
stochastic process with a time dependent discrete or continuous failure rate. Parameters of the
model can be estimated from the observed failure counts or failure times. Estimates of the
software reliability then can be obtained from the relevant equations from the model. The
Goel-Okumoto Nonhomogeneous Poisson Process Model, the Goel Generalized
Nonhomogeneous Poisson Process Model, the Musa Execution Time Model, the Shooman
Exponential Model, the Generalized Poisson Model, the IBM Binomial and Poisson Models,
and the Musa-Okumoto Logarlthmlc Poisson Execution Time Model are examples of fault
count models.

In fault-seeding models, known faults are planted (seeded) in a computer program. The
computer program is then tested. After testing, the numbers of exposed seeded and indigenous
faults are counted. Using combinatorics and maximum likelihood estimation, the number of
indigenous faults in the program and the reliability of the computer program can be estimated.
The most popular and basic fault seeding model is the Mills' Hypergeometric Model.

The approach using input-domain-based models is to generate a set of test cases from an
input distribution, operational profiles. Difficulty in estimating the input distribution results in
partitioning the input domain into a set of equivalence classes. An equivalence class is usually
associated with a program path. A reliability measure is calculated from the number of failures
observed during symbolic or physical execution of the sampled test cases. Examples of input
domain models are the Nelson Model and the Ramamoorthy and Bastani Model.

Essentially all of the software reliability models discussed are reliability growth models.
These models are based on a test, find, and fix approach. A computer program is tested until it
fails. The failure is investigated and the fault is corrected. The program then undergoes further
testing to uncover the next failure. This process repeats until sufficient data is available to
predict the reliability of the final "corrected" program based on the observed failure data from
the previous versions.

These models have several general underlying assumptions that, if violated, can allow the
models to produce reliability estimates that are too optlmlstlc—a bad trait for a reliability model.
These assumptions are:

1. As faults are removed from a program, the program exhibits a true reliability growth,
fewer failures occur in a specific time interval. This assumption ignores the possibility
of new faults being introduced during the fault removal process.

2. All failures are detectable. Some faults may manifest themselves as subtle changes in
data that may not be detected immediately. Also, experience shows that some faults
may be extremely difficult to find by testing [34]. These faults may manifest
themselves as program failures very infrequently. How long will you have to test to
find the last fault? The answer to this question is usually to test much longer than you
can afford from a cost and time standpoint.

3. The test cases used to generate data to estimate software reliability are representative of
the operational usage. If the end user of the software chooses to use the software

functions in different computing environments, proportions or patterns than the test
cases used to develop the reliability estimate, a lower reliability may result. Musa
stresses the importance of operational profiles that reflect the actual user profiles for
generation of test cases [38].

4. The time between program failures are independent. If test cases are chosen at random,

one could argue that the time between failures should be independent. However,
current practice is to use operational profiles and test high probability user paths. Also,
detection of a critical fault during testing tends to focus testing on specific modules of
the program. Designers and testers generally refer to these program modules as "design
holes" or "bug clusters."

Software reliability growth models are used to predict, from actual failure data collected
during testing, the achieved product reliability and the testing effort necessary to achieve a
target reliability. The accuracy of these models, as measured by actual versus predicted counts
of failure, has varied from one project to the other [4]. The application of software reliabilitgy
models to situations that require extremely high-reliability, failure probabilities as low as 107,
is not practical. The test time to demonstrate a low failure probability requires decades of
testing. In a paper addressing this topic [5], Butler and Finelli concluded, "At even the most
optimistic improvement rates, it is obvious that reliability growth models are impractical for
ultra reliable software."

Samples of Current Research

Research in software surety can focus on many different areas. Which of these areas offer
the most promising advancements? To provide some insight into the answer of that question,
current efforts by a few leading researchers are discussed next. Those efforts include work in
progress by Knight, Leveson, Knudsen, Dill, Rushby, and McDermid. Specific references are
cited when available.

Dr. John Knight-University of Virginia. Two reports describing current research efforts
under investigation by Knight, [26] and [44] are reviewed next.

Safety-Critical computer applications - the role of sofiware engineering: A precise
definition of what software safety means is essential before any attempt can be made to achieve
it. Informal, intuitive notions of software safety must be rejected if for no other reason than to
define the legal responsibility of the software engineer.

In isolation, software is never unsafe. But in practice, software is never used in isolation.
Software is merely one of the many components of a system. For the most part, none of the
components of the system are unsafe in isolation. Furthermore, nothing about these
components (including software) changes when they suddenly become part of a system. It is
the system that defines the hazard. There is no such thing as a software hazard. However, as a
result of the system design, functional and non-functional requirements are imposed on all of
the system’s components including the software. For safety-critical systems, these
requirements will include various dependability requirements for the software just as for the
other components. Thus, the definition of software safety is focused on the software’s
requirements specification which is derived from formal considerations of system safety.

The paper goes on to define software safety as follows:

Software is safe if it can be shown to comply with its recovery functionality
specifications and either comply with its safety-critical functionality or detect
execution-time errors in the implementation of the safety-critical functionality and
comply with its failure interface specifications instead.

‘Recovery functionality specification is the additional - functionality imposed on the
component by the possibility of one or more system components failing. Safety-critical
functionality specifications define the functionality that must be provided during normal
operation in order to avoid hazards. Failure interface specifications define the functionality
that must be provided with a certain probability in the event that the component is unable to
comply with its safety-critical functionality specifications.

To clarify the assignment of responsibility, the authors define software safety failure as:

A software safety failure occurs when the software violates its safety
specification—that is, it fails to comply with either its recovery functionality
specifications or fails to comply with its safety critical functionality and fails to
present its failure interface.

Given these definitions it becomes possible to talk about safe software. The achievement
of safe software requires that safety specifications be prepared, that the software be carefully
implemented, and that the compliance of the software with its safety specifications be verified.
The software is defined to be safe to the extent that this verification is successful. A system, of
which the software is a part, might not be safe because the safety specifications might be
defective in a manner that is unknown to the software engineer.

A safety kernel architecture: A recent report [44] by Kevin Wika and John Knight details
the design of a safety kernel architecture., For years the security community has had the notion
of a security kernel. The safety kernel enforces safety policies independent of application
programs and permits verification of properties of a small kernel rather that large amounts of
application software.

The kernel mediates all exchanges between the software and devices under control. It has
the following five benefits to a safety critical system: 1) it can ensure enforcement of safety
policies, 2) the fact that the kernel is relatively small facilitates both implementation and
verification, 3) the application software doé¢s not have to worry about safety policy directly, 4)
the kernel is in a position to monitor device activities for consistency, and 5) the kernel makes
reuse more attractive.

The first problem that has to’ be addressed in the de51gn of a safety kernel is to determine
exactly how it will interact with a large amount of “untrusted” software. The architecture
chosen, shown below in Figure 5, has the kernel operating on top of an existing operating
system. Thus the kernel must be able to deal with operating system failures. A plausible
design for the safety kernel would be to have it run as a user-level server process. This would
isolate it from application software failures, and permlt it to monitor the application devices
independently.

It appears that an operating system failure would leave a kernel designed as above
vulnerable. However, most failures beneath the kernel can be dealt with using techniques such

as coding to detect data corruption, liveness checks and time-out mechanisms to ensure timely
direction of devices, and independent sensors for closed loop control of devices.

The one architectural feature added is the safety kernel monitor which operates on a
minimal separate hardware unit and possesses the minimum functionality required to restore
the system to a safe state if it does not receive a timely “heartbeat” from the safety kernel.

Application Software Application Software Application Control
Software
Graphics Library System Software Safety Kernel | | ,
': System Software
X Y Safety
Graphics Haydware omputer Hardware Computer Hardware Kemel
Monitor

NV
Re\mote/Safety D O

Kernel Elements

Figure §
Safety Kernel Architecture

There are three attributes of a safety policy that determine which safety requirements
should be implemented in the kernel. These attributes are enforceability, generality
characteristics, and functionality. A safety policy that can be enforced by the safety kernel
without interaction with the application is referred to as kernel-enforced. An example of a
policy which can be kernel enforced is that two devices must not be on at the same time. The
opposite of kernel enforced is application enforced. An application enforced policy can be
supported by the kernel, but it cannot be wholly enforced by the kernel. As an example
consider the policy: “The result of an application-specific algorithm must never yield a result
greater than X.”

A safety policy is neither inherently kernel enforced nor application enforced. It depends
on the characteristics of the policy. The determination of which policies will be kernel
enforced is based on maximizing the benefits of a kernel architecture. For example, enforcing
a particular policy might provide support for software safety, but result in undue loss of
generality and increased complextity of verification. The paper gives some heuristics for
making this determination.

The functionality of a safety policy depends on the kinds of things that have to be done to
make a system safe. There is no formal notion of safety that has the same degree of rigor as
that found in the statement of security. Thus, a mathematical attack is precluded. To permit
analysis the functionality is divided into four areas: control of peripheral devices, application
software activity, device failure detection, and response to failure.

When controlling peripheral devices one needs to check safe, interlocks, parameter values,
etc. to make sure that the device remains in a safe state. A policy affecting application
software activity might be to require that a parameter check be done before an output value is
sent to a device. Failure detection falls to a component of the kernel that has the exclusive task
of periodically sensing the state of devices and comparing the state to the expected state. The
response to a failure might be “if the state doesn’t match, deactivate the X-Ray unit.”

As may be apparent from the above discussion, although a safety kernel is a general
architecture, it will have to be instantiated for any particular application. The issues with
configuration of the kernel are how to facilitate verification of an instance of the kernel and
how to best promote its reuse by a range of applications.

The feasibility of the above research is being evaluated in the context of a Magnetic Stereo-
taxi system being developed at the University of Virginia. This is a device for performing
neurosurgery.

Nancy Leveson—University of Washington: Leveson, Heimdahl, Hildreth and Reese [31]
have developed and validated an approach to writing requirements specifications for process-
control systems as well as a specification language which supports the approach. The approach
is based on Harel’s State Charts [21] with significant modification for usability. The method,
called Requirements State Machine Language (RSML), was validated by formally specifying
an industrial aircraft collision avoidance system (TCAS II).

The technique described is important for a number of reasons. The first reason is that it has
been successfully used to write formal requirements for a real, complex, process-control
system. Few examples exit of the application of formal methods to complex, real-world,
system requirements specification. The second ‘is that, although formal, the specification
language is readable and reviewable by application experts who are neither computer scientists
nor mathematicians. / o _‘

The technique involves building a black-box state model of the system (not just the
software or even just the computer) describing the behavior of the components and their
interface. No additional information is included in the model. The black-box model separates
the specification of requirements from design, simplifying the model and making the
requirements model easier to construct, review , and formally analyze. This includes the
ability to verify consistency of the control model with the system goals and constraints, the
generation of standard engineering and system safety analyses such as fault trees, and the
application of formal correctness and robustness criteria to the specification model.

Figure 6 shows an example of a state diagram. It is taken from [31]. There are two states,

A

L

<+ B

S \C
\D

Figure 6
Simple State Diagram

R and S. The default state is S (as indicated by an arrow that has no source). There is a
transition from S to R. In this example, the two states R and S are grouped into a superstate. A
transition that ends at a superstates border (e.g. A) leads to the (required) default state within
the superstate. There may also be transitions to specific states within the superstate (e.g. B).
Transitions out of the superstate may originate from the border or from an inner state (e.g. C
and D respectively).

Each state machine in RSML may be divided into three parts: The input variables, the
output variables and the state machine (figure 7).

The triggering event for state transitions must also be defined. An early attempt to write
these conditions used pure predicate calculus. External reviewers did not find it natural or
reviewable, and indeed when another, simpler to review, notation was developed, logical
errors in the predicate calculus specification were uncovered. Instead of logical phrases, a
tabular representation of disjunctive, normal form, called AND/OR tables were used.

The far left column of the table in figure 8 lists the logical phrases. Each of the other
columns is a conjunction of those phrases and contains the logical values of the expressions. If
one of the columns is true, then the table evaluates to true. A column evaluates to true if all of
its elements are true. The above table is equivalent to:

((Expression-1 A Expréssion-2)v(Expression- 1 AExpression-3)).

|A1titude Alert |

Input: '
Altitude: Integer - _

Mode: {on, off}

Output v
@d Alarm: {True, Falsy
Figure 7
State Machine

EXPRESSION-1

EXPRESSION-2

oz >

EXPRESSION-3

* Figure 8
~ AND/OR Table

The don’t cares (“.”) in the table help to make omissions become more apparent to the
application experts. Typically they also add an English language description of the guarding
conditions on each transition. '

The above is just a summary of some of the aspects of RSML. The paper provides
complete details [31]. This appears to be an important method for formally specifying
requirements for safety-critical systems, at least in the arena of process-control.

Knudsen—University of New Mexico: Knudsen proposes a method of using Linked State
Machines (LSM) to specify and design a watchdog system for a Weapon Control Unit (WCU)
[27]. The watchdog is realized as an application specific integrated circuit (ASIC). The WCU
without the watchdog system is shown in Figure 9 [8], the WCU system including the
watchdog ASIC is shown in Figure 10 [8]. As shown in the diagram, the watchdog ASIC
contains two functional blocks, a Watchdog and a Supervisor/Control Unit.

The watchdog unit monitors external WCU signals and provides active feedback of the
system status to the Supervisor/Control Unit. The external signals were chosen based on two
criteria: 1) was the signal safety critical, and 2) was the signal instrumental in indicating the
state of the WCU. Eight signals were chosen for monitoring. Seven were deemed to be safety
critical, and one was included to provide WCU state information.

The goal of the watchdog design was to achieve higher safety levels without greatly
reducing the reliability of the system. To achieve this, accurate specification of the watchdog
must be available, and the description must be consistent with the operation of the WCU. The
approach taken in this paper was to develop the watchdog specification using LSMs. LSMs
were chosen for three reasons: 1) the watchdog specification operation depended on event
orderings that lended themselves to state machine representation, 2) the ASIC could be
designed using state machines, and 3) equivalence-based analysis of LSM is a more tractable
problem than state reachability analysis [8].

WCU ~
Clock —* Signals Weapon
I . WCU 1 Environment
nterrogation __
Data
Figure 9
WCU System Without Watchdog
Weapon System
Interrogation Data > <3 _ Weapon
(Delivery Options) WCU Critical Control | E
n
v
i
Clock WCU | Supervisor/ r
Signals Control Unit o
Status ' n
= Monitor ;n
WatCthg S ignals n
- t
Figure 10

WCU System With Watchdog

An LSM consists of a collection of coupled state machines, an observer, and an initial state
set. The coupled state machines are specified using a restricted form of petri nets. LSM
behavior is governed by petri net transition rules where states are altered by transition firings.

The LSM is used to model a system and some part of its environment. The dependencies of
the system on its environment are characterized by the LSM’s initial state set.

Using this LSM notation, a formal description of the watchdog function was developed. In
addition to developing the watchdog LSM, a LSM for the WCU control signals was developed
to describe the operation of the system to be monitored. After creating these LSMs,
equivalence class analysis is performed on the LSMs to verify that error signals will be sent to
the Supervisor/Control unit only if the WCU exhibits “out of specification” behavior.

After validating the watchdog LSM design, the LSM can serve as a basis for design of the
watchdog ASIC.

The design of the Superv1sor/Control Unit was not covered in either [8] or [28]. The intent
of the Supervisor/Control Unit is to interpret the status signals received from the watchdog and
take action based on the status of the system. The “failsafe” operation of the system would be
configurable by the design of this unit.

To summarize, the approach was to use LSMs to formally define the system to be
monitored. The LSM representation was useful both in the validation of the watchdog design
and in the realization of the system hardware in the form of an ASIC. As with any watchdog
monitor system, the tradeoff in this approach is between the increased safety versus the
decreased reliability of the system. An attempt to maximize this tradeoff was made by using a
formal specification to help ensure compatible operation of the watchdog design and system
design. Also, the formal specification was used in the design of the watchdog ASIC so the
chance of an defect in the ASIC state machine was minimized. By using an ASIC, minimal
hardware is needed to implement the watchdog which also helps to improve the reliability of
the design. The conclusion of this report was that this approach is applicable to systems that
generate event orderings based on receive data and which are implemented as state machines
(81, [28].

David Dill-Stanford University, John Rushby-SRI International: The system developed
by Prof. David Dill at Stanford employs a transition-rule-based description language for
concurrent systems, called "Murphi". Murphi is a relatively high-level language that provides
complete finite-state verification. It has been tested extensively on real-world examples. The
system implements basic verification by state enumeration.

Dr. Rushby has developed a system, called PVS, which attempts to combine an expressive
specification notation with a significant degree of automation. PVS is able to support a
powerful type system containing predicate subtypes, dependent types, and abstract data types.
The theorem prover provides a powerful set of interactive proof construction primitives that
can be used to debug proofs and specifications efficiently. It has also been tested with real-
world examples. :

Dill and Rushby are worklng together to join their two systems to combine the strengths of
finite-state and theorem-proving approaches in order to build an environment that is a powerful
aid in the design and debugging of complex, high-assurance systems.

Most of the real-world experience with the above systems has been with hardware systems.
Dill believes that the tools can be valuable in developing a software system. The primary
domain of application is small, tricky algorithms involving concurrency and/or non-
determinism. These applications often have subtle bugs (so verification has a high payoff), and
can often be analyzed without dealing with too many states (so they are feasible). This would
not be solving the problem of "programming in the large"-rather it would be direct to the core
code that is most likely to cause reliability problems due to flaky, nonrepeatable errors.

John McDermid-University of York: The effort reported [23] by Hutcheon, Jepson, and
McDermid attempted to apply techniques contained in the United Kingdom's Ministry of
Defense interim standards IDS 00-56 to the software development process. Specifically, they
looked at Ada development tools for developing high integrity software. They discuss the
requirements and a generic development process for the production of such software and
consider how the tools currently in general use meet the needs. Finally, they identify an ideal
toolset for developing high integrity software, and match this set against tools which are
currently commercially available.

The context of this work is the development of a safety-critical software component. A
significant factor which underlies this work is that software integrity cannot be measured
directly, although certain manifestations of lack of integrity may be recognizable. The integrity
of software can be increased, decreased or maintained by the development process, although it
can never exceed that of the requirements. Tools which perform transformations to carry out
steps of the development process can directly affect integrity.

Defects can be made at any stage of the life cycle and can find their way into the software.
So the integrity of tools have to be looked at in two different ways: 1) the defects they
introduce into the system, and 2) the defects from "upstream" which they are able to filter out.
The iterative nature of development complicates this process.

We can make a relatively simple correlation between broad quality and the likelihood of a
tool failure, even though we cannot directly relate the tool failure modes to application hazards.
A tool which has fewer failures will, in general, introduce fewer faults into a program.
However, this link cannot be made to hazards directly as the less trustworthy tool may place its
faults in unimportant areas than the more trustworthy one.

The idealized software development process is shown in Figure 11. The deliverables
produced by the development process can be separated into three groups according to
"closeness" to the software which is installed in the target system:

1. The executable system;
2. The requirements, specification, design, source code, object code; and
3. All verification and validation material.

The development process for the British Aerospace Eurofighter software is shown in Figure
12. It was analyzed to get a feeling for the current state of the practice in the production of
high integrity systems. The toolset used is rather sparse when compared to the idealized
development process of Figure 11.

How steps from the idealized process shown in Figure 11 are actually utilized in the
research laboratory, leading edge industrial development centers, and in general is shown in
Table 6.

T8 T} "avy

ELNOMNNS « LNYEIN SO0 ¢
WiLSAS 001, [0 ianaoasg ax
F1VINIA
WD
200U
NOLLYILMEA
] NoLENI0
o]
3005 103r40 ROt < ,
)
CTanCO + SIMOEN « -——
FOHNOS vav heorioried NOLLVONS0 J00ud
MQIVENGD = iy, SHOLLVO(90 30084
VOLINOW “ e . ;)
TUNLONMILS 1331 000 NOIS3a Jo0 o
TNNOR FVURACO oy e
- - "+ RLMOAN -
] Vo Ll NOLLYIIA103dS '
oo eeee—— T w7 "
va isal
< SLWIE NOLIVOITVA. ..c._.w..i]

i) [wouwedin] R @‘ SININIUINDaY

Figure 11
The Software Development Process

EXECUTABLE
SYSTEM

Evrfighter Rev 1.2 83

Figure 12
BAe/Eurofighter Development Process

Activity : Area of Use*

Research Labs | State of Industrial Art | Widespread
formal software specification MA/TS MA NP
formal software refinement MA/TS/ME MA/NP NP
formal specification animation TS/ME MA NP
requirements/specification verif. MA/TS ' MA MA
validation proof obligation gen. MA NP NP
theorem proving TS/ME TS NP
proof checking TS/ME MA/TS NP
software design MA/TS MA MA
formal design refinement MA/TS - MA NP
refinement proof obligation gen. - MA/TS NP/MA NP
software coding - MA/TS MA MA
static analysis ' TS/ME - TS/ME NP
timing analysis - TSME MA/TS UC
resource analysis IF ‘ MA/TS UC
verification condition generation TS/ME MA/TS/ME NP
test data generation TS/ME MA/TS NP
test management ‘ NP TS TS
code instrumenting : - TS/ME TS/ME IF
test coverage monitoring TS/ME TS/ME IF
test harness generation , TS MA/TS MA
debugging B TS TS TS
compilation ' ME ME ME
link/loading ‘NP . ME ME
load verification MP , TS UC
source/object verification TS/ME . MA/TS UC
source/executable verification TS/ME MA/TS uUC
requirements testing - NP MA/TS MA
infrastructure / TS - TS TS
process coordinator NP MA/TS UC

*NP - Not practiced, or not an active area of study; UC -Uncontrolled; IF -Informal;
MA - Manual; TS -Tool supported; ME -Mechanical or automated.

~ Table 6
~ Industrial Usage of Software Development Steps

Although tools which are currently commercially available cover only parts of the idealized
development process, the technology to support almost the whole process exists in
experimental form and could be assembled in the medium term (ignoring integrity level
requirements).

SUMMARY AND CONCLUSIONS

Software fails. The consequence of software failure has, in some cases, been the loss of
life. A primary challenge for designers of high-consequence systems is assuring that the
software component of the system does not cause or allow an unsafe system state.

A sampling of current research and practices for software surety in high-consequence
system applications has been provided. This sampling supports the following conclusions.

State of Practice

The state of the practice is capable of producing software that satisfies reasonably low
software reliability concerns. Application of standards, good software engineering methods,
software inspections, and process improvement methods provide assurance that the software
has been designed for reliability. Use of reliability growth models and measures of test and
operational failures provides reliability quantification methods satisfactory for low reliability
concerns.

For certain application domains with small, contained, critical components some
technologies are available that, in combination with a well-defined engineering process,
remove many variables that impact software reliability. Such technology methods include
fault tree analysis, failure modes and effects analysis, petri nets, and watchdog methods.
Although software reliability quantification at this level is difficult to verify, failure and defect
measurement are valuable indicators. Quantifying the risk associated with the use of software
in high-consequence applications requiring failure probabilities lower than 107 is currently
impractical. Software reliability growth models can be most effectively used in applications
where the failure probabilities are not less than 107,

State of Research

The state of the research is attempting to develop techniques and methods that are capable
of producing and/or verifying the reliability of software for high consequence applications.
There are isolated instances of projects that have applied some of the available research
methods, but without the capability to quantify (i.e., validate through measurement) the level of
reliability. Formal methods have been applied to very small, critical components. The
cleanroom process combines some of the best aspects of good software engineering processes
with specific analysis techniques to ensure correctness. The research efforts primarily amplify
the first principles of isolation, inoperability (no single point of failure), and incompatibility
(instantiation of high-consequence operation cannot be accomplished without some unique
signal compatibility/verification).

Best Technologies

Two techniques appear to offer the most promise in assuring the safety of a system that
contains software. These techniques are formal methods for software development and

independent watchdogs. The growing consensus among researchers and system developers is
that rigorous mathematical (formal) software design methods augmented with system safety
analyses provide improvement in the dependability of software in a safety-critical application.
Formal design methods for capturing requirements have been successfully applied to several
software development projects. Formal method tools such as - Z language and toolset, VDM,
are currently available. However, at thlS time, formal methods are not in widespread use by
industry. :

Simple independent Watchdogs that momtor the operational states of software-based
systems and have the capability to restore a system to a safe state, have been proposed by
several researchers. This concept has progressed as far as the design stage of a weapon control
unit for a Sandia National Laboratories development program.

It should be noted that formal methods and independent watchdogs are not "Silver Bullet"
solutions that guarantee absolute safety. However, these techniques when applied appear to
offer an improvement in the safety of a system. A strong need still exists for more research
into methods and tools to assess software surety.

REFERENCES

[1] T. Anderson, Resilient Computing System Vol. 1, Wlley Interscience, New York, NY,
1985.

[2] P. V. Bhansali, “Survey of Software Safety Standards Show Diversity”, in Computer, pp.
88-89, January 1993. '

[3] M. A. Blackledge Process Guldelme§ for Sandla WR_Software Development, Sandia
National Laboratories, July 1992. '

[4] S. Brocklehurst, P. Y. Chan, B. Littlewood, and J. Snell, "Recalibrating Software
Reliability Models", IEEE Trans. on Software Engineering, Vol. 16, No. 4, April 1990.

[5] R. W. Butler and G. B. Fihelli, "The Ihfeasibility of Eiperimental Quantification of Life-
Critical Software Reliability", Proc. of the ACM SIGSOFT91 Conference on Software for
Critical Systems, pp. 66-7, Dec. 1991.

[6] D. Craigen, S. Gerhart, and T. Ralston, An International Survey of Industrial Applications

of Formal Methods, Volume 1 Purpose, Approach, Analysis, and Conclusions, Naval Research
Lab, Washington, DC., September 1993.

[7] INTEC CS776, Software Inspectlons (Formal In-Process Reviews) Course Notes, Sandia
National Laboratories September 1992.

[8] L. J. Dalton and H. K. Knudsen, A Failure-Resistant Architecture and Methodology for
Reliable Specification and Design presented at. High Consequence Operations Safety
Symposium, Unpublished, Sandia National Laboratories, July 1994.

[9] Department of Defense Tru mputer em Evaluation Criteria, Department of
Defense, Fort George G. Meade, MD., December 1985.

[10] W. R. Dunn, et al, “Risk Assessment and Management of Safety-Critical Digital Industrial
Controls - Present Practices and Future Challenges.” University of Southern Colorado, 1994.

[11] M. Dyer, “Statistical Testing: Theory and Practice.” Tutorial at 7th International Software
Testing Conference, 1990

[12] M. Dyer, The Cleanroom Approach to Quality Software Development, John Wiley &
Sons, Inc., New York, NY, 1992.

[13] P. Fenelon and J. A. McDermid, “An Integrated Tool Set for Software Safety Analysis”,
J. Systems Software, pp. 279-290, 1993.

[14] K. B. Gallagher and J. R. Lyle, “Software Safety and Program Slicing,” The Proceedings
of the Eighth Annual Conference on Computer Assurance, 1993. '

[15] S. Gerhart, D. Craigen, and T. Ralston, “Experience with Formal Methods in Critical
Systems”, IEEE Software , Vol. 11, No. 1, p. 21-8, January 1994.

[16] W. W. Gibbs, “Software’s Chronic Crisis” Scientific American, pp. 86-95, Sept. 1994.

[17] P. L. Goddard, “Validating The Safety of Embedded Real-Time Control Systems Using

FMEA”, The 1993 Proceedings of the Annual Reliability and Maintainability Symposium, pp.
227-230, 1993.

[18] A. L. Goel, "Software Reliability Models: Assumptions, Limitations, and Applicability",
IEEE Transactions on Software Engineering, Vol. 11, pp. 1411-1423, 1985

[19] L. D. Gowen and M. Y. Yap, “Traditional Software Development’s Effects on Safety”

Proceeding of the 6th Annual IEEE Symposium on Computer-Based Medical Systems, pp. 58-
63, 1993.

[20] L. D. Gowen, “Developing and Analyzing High-Level Designs for Safety-Critical
Software Systems”, Conference Proceedings - IEEE SOUTHEASTCON 1993, 1993.

[21] D. Harel, “Statecharts: A Visual Formalism for Complex Systems”, The Science of
Computer Programming., pp. 231-274, 1987.

[22] W. S. Humphrey, “Managing the Software Process”, The SEI Series in Software
Engineering, Software Engineering Institute, 1990.

[23] A. Hutcheon, B. Jepson, and J. McDermid, “A Study of High Integrity Ada, Tool Support
for High Integrity Software Development”, Ada in Tran81s1t10n 1992 Ada UK Internatinal
Conference Proceedings, p. 8-30, 1992 :

[24] “IEEE Standard for Developmg Software Life Cycle Processes,” IEEE Computer Society,
April 20, 1992.

[25] J. C. Knight and N. G. Leveson, “An Experimental Evaluation of the Assumption of

Independence in Muliversion Programming” JEEE Transactions on Software Engineering, pp.
96-109, Jan. 1986.

[26] J. C. Knight and D. M. Kienzle, “Safety-Critical Computer Applications: The Role of
Software Engineering”, University of Virginia, TR-92-93, 1993.

[27] H. K. Knudsen, Reliable ‘Speciﬁcation and Design Using Linked State Machines,
Unpublished, Sandia National Laboratories, June 1 994. ‘

[28] Levson, N. G. and Stolzy, J. L., "‘Safety Analysis Using Petri Nets" IEEE tran. on
Software Engineering, SE-13, January 1987, pp. 386-397.

[29] “Software Safety in Embedded Computer Systems” Communications of the ACM, pp. 34-
45, 1991.

[30] N. G. Leveson, “An Introduction to Software System Safety,” Tutorial notes from 15th
International Conference on Software Engineering, May 1993. -

[31] N. G. Leveson, “Requirements Specification fo“r‘ Process-Control Systems,” unpublished,
1994.

[32] N. G. Leveson and C. S. Turner, “An Investigation of the Therac-25 Accidents,” UCI
Technical Report #92-108, Info. and CS Dept Umversrcy of California at Irvine, November
1992 (also in IEEE Computer, July 1993).

[33] R. C. Linger, H. D. Mills, and B. L Wltt “Structured Programming: Theory and
Practice,” Addison-Wesley, 1979. '

[34] B. Littlewood and A. Sofer, "A Bayesian Modiﬁcation tc the Jelinski-Moranda Software
Reliability Model", Software Eng. Journal, Vol. 2, pp. 30-41, 1987.

[35] Y. K. Malaiya and P. K. Srimani, Software Reliability Models: Theoretical
Developments, Evaluation and Applications, IEEE Computer Society Press, 1990.

[36] H. D. Mills, “Mathematical Foundatlons for Structured Programming,” IBM TR FSC72-
6012, 1972.

[37] J. D. Musa and K. Okumoto, "A Logarithmic Poisson Execution Time Model For

Software Reliability Measurement", Proc. 7th International Conference on Software
Engineering, pp. 230-237, March 1983.

[38] J. D. Musa, A. Iannino, K. Okumoto, Software Reliability: Measurement, Prediction,
Application, McGraw-Hill, Inc., 1987.

[39] Trusted Network Interpretation of the Trusted Computer System Evaluation Criteria,
National Computer Security Center, Fort George G. Meade, MD, July 1987.

[40] P. G. Neumann, “Illustrative Risks to the Public in the use of Computer Systems and
Related Technology,” SRI International, Menlo Park, CA, 1993.

[41] P. R. Place and K. C. Kang, “Safety-Critical Software: Status Report and Annotated
Bibliography”, Carnegie-Mellon Universtity, Pittsburgh, PA, Software Engineering Inst., June
1993.

[42] J. Rushby, “Critical System Properties: Survey and Taxonomy,” Reliability Engineering
and System Safety, pp. 189-219, 1994.

[43] Sandia Software Guidelines Volume 3, Standards, Practices, and Conventions, SAND85-
2346, Sandia National Laboratories, 1986.

[44] K. G. Wika and J. C. Knight, “A Safety Critical Architecture”, University of Virginia, CS-
94-04, 1994.

[45] G. D. Wyss, “Fault Tree Analysis Methods Overview” presented to Mast Nuclear Safety
Oversight Team, Feb. 1994.

BIOGRAPHIES

Elmer Collins

Elmer Collins is a Senior Member of the Technical Staff in the Reliability Assessment
Department at Sandia National Laboratories. He is engaged in security fault analysis of use
control systems for nuclear weapons. His main research interest is in software reliability. He
received his B.S.E.E degree in 1976 from West Virginia Institute of Technology, M.S.E.E
degree in 1980 from West Virginia Umver51ty, and Ph.D. degree in 1985 from West Virginia
University.

Larry J. Dalton

Larry holds a BS in Applied Mathematics and an MS in Electrical Engineering from the
University of New Mexico. Larry has spent the past 17 years at Sandia National Laboratories
in Albuquerque, New Mexico engaged in high-consequence systems development. He has
developed personnel entry control systems for DOE high value facilities, an Aircraft Monitor
and Control System for gravity nuclear weapons on board the B-52, high performance airborne
multiprocessing systems for advanced concepts demonstration and gravity nuclear weapon
programmers. He currently manages the Command and Control Software Department at
Sandia that develops software and systems safety solutions for high-consequence operations.
These activities span nuclear weapons, biomedical applications, transportation, and information
security.

David E. Peercy

Dr. Peercy obtained his Ph.D. in Mathematics from New Mexico State University in 1971.
He has been involved in many software engineering activities at the national level and has a
national reputation in software logistics. He has been an invited speaker and panelist at several
national conferences. Dr. Peercy organized and chaired a National Workshop on Software
Logistics in 1989; he has been on the program committee for several conferences; and he has
been a reviewer for numerous IEEE standards. He has taught short courses/tutorials on
computer security, software reliability, software logistics, software quality assurance, and
software Independent Verification and Validation. At Sandia National Laboratories, Dr.
Peercy has current responsibility for the qualification evaluation of nuclear weapon related
software systems and technical leadership for development of a lab-wide Software
Management Program. He has also been a primary investigator on a contract with
SEMATECH to develop more reliable semlconductor equipment software through use of
process improvement methods.

Carl W. Sicking

Carl holds a B.S. degree in Computer Science from Texas A&M University and an
M.S.E.E degree in Computer Engineering from the University of New Mexico. Carl has
worked at Sandia National Laboratories in Albuquerque, New Mexico for 8 years. His

experience in developing high-consequence software includes embedded software for nuclear
weapon use control applications.

