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1. INTRODUCTION

I The demands tbr structural systems to perform reliably under severe operating

conditions continue to increase. Structural components such as hot-reheat steam lines,

i heaters, drums, and primary steam lines in a modern plant experience degradation and
power

damage because they must operate in a high-temperature environment where time dependent

I straining becomes important. In addition, reusable space vehicles must be capable of
withstanding repeated thermomechanical histories without failure. This work is focused on

I studying creep crack growth, a frequent failure mechanism of structural components which
experience time dependent straining.

I Most investigations which have appeared to date are concerned with creep crack
growth which occurs under a constant load and temperature. However, most structural

components experience complicated load histories. For example, each time a power plant isshut down for maintenance purposes, a number of components experience low cycle fatigue.

I The history of degradation and damage which accumulates at the crack tip is greatly influ-enced by these transients. The subject of this work is a study of history effects on the creep

I crack growth process.The development of a successful predictive analytical methodology involves i)

the choice of an appropriate constitutive model that incorporates both nonlinear material

I behavior and load history effects and ii)selection of a suitable fracture parameter that _,_ _. qT_characterizes the crack tip process under constant and variable loads. This work focuses _ _'_

I
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!
I primarily on implementing nonlinear material models that have described load history effects

successfully into a finite element (FE) program and on studying the constant load creep crack

I growth problem. Once such a tool that models the material accurately is available in a
numerically robust form, the parameters that govern the creep crack growth process can be

I studied in great detail. Development of such an algorithm is therefore an essential part of this
work. As shown by Saxena [1], the constitutive model chosen significantly influences the

I stress and strain fields in the vicinity of the crack tip in a time dependent material.
In the following section a brief review of constitutive models is presented along

I with the implications of using them in creep crack growth studies under variable loads. The
model selected for this study, developed by Murakami and Ohno [2], is discussed along with

I its special features that make is particularly suitable for this investigation. This model is basedon the creep hardening surface and is particularly useful for variable and fully reversed load

t histories. In Section 3 an implicit finite element algorithm for this model is derived. Detailsregarding implementation of this method into FVP [3], an existing FE program to study creep

crack growth, are also discussed. The results of the algorithm are verified against closed form

I solutions for simple geometries in Section 4. Sources of error and differences between using

explicit and implicit schemes are also presented. Section 5 compares the numerical results

I with experimental data [2] for the case of combined tension and torsion and fully reversed

load histories. Section 6 provides results of some of the constant load creep crack growth

I analyses that have been performed to date.

Because a wealth of experimental data has been developed for creep crack

I under constant conditions, to develop our own creep growth
load the need crack data for this

study was minimal. In particular, the VAMAS report (Reference [4]) provides state-of-the-art

I constant load crack growth data produced in countries. Professor A. Saxena of
creep many

Georgia Tech, who is one of the main participants of the VAMAS project, has been extremely

I helpful in providing us with additional data. These experiments are being modeled via the
finite element method, and fracture theories are currently being developed and examined.

I Conclusions of the Phase I work as well as work planned for the future are discussed in
Section 7. Finally, Sections 8 and 9 discuss publications and the Phase II effort, respectively.

I Finally, the implementation of large strain and friction/contact algorithms into
the finite element code and the implementation of three additional non-linear constitutive laws

I (endochronic law [5], Bodner [6] (popular at the Air Force), and the Walker Model [6](popular at NASA) are not discussed here. The large strain algorithm is complete, the

!
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endochronic theory is nearly complete, while subroutines for the Bodner and Walker models

I were obtained from the agencies described above. These theories will be used during the

Phase II effort as we s:udy load history dependent crack growth in conjunction with the

I Murakami-Ohno law. The friction/contact capability is necessary during Phase II since, during
global unloading, the crack faces will come into contact under certain load conditions to be

I considered.

I 2. CONSTITUTIVE MODELLING
Time dependent behavior under constant sustained load at high temperature is

I generally classified into three phases: primary or trm'sient creep, secondary, and tertiary creep
as shown in Figure la. For a cracked component, in the vicinity of the growing crack tip, the

I material is in a state of nonlinear transient creep. Hence, traditional creep equations [4], such
as the Norton law for secondary creep, are not applicable in this region. Therefore, ali further

i discussion in this work will pertain to models that describe primary or transient creep.Figure lb shows a schematic of a typical creep strain response under a constant

I sustained load applied to a uniaxial specimen for time t 1. At time t1 if the load is removedthen a material may exhibit "anelastic" recovery in the absence of any applied load. If

however the load is fully reversed with the same magnitude, a temporary increase in strain rate

I is observed due to stress softening [2,7] before the creep rate asymptotically approaches that

without stress reversals. Models that are capable of describing such phenomena are therefore

I important in studying creep crack growth under variable loads. Conventional Time-Hardening

or Strain-Hardening models [4] which successfully describe creep under constant sustained

I load cannot account for these phenomena that occur under varying loads.

Although a number of constitutive equations have been proposed to handle

I such phenomena [6], their mathematical structures are often too complicated to be employed
in practical analyses of creep. The determination of material constants in these models also

i causes major successfully creep under non-steady state
difficulties. One model that describes

of stress and which is simple to obtain material constants is that developed by Murakami and

I Ohno [2] and is based on the concept of a creep hardening surface (CHS).
This model has been shown to perform very well when compared to complex

I load experimental data [8]. Moreover, in the Inoue benchmark problem [8], the Murakami
and Ohno model performs as well or better than the ten other constitutive laws studied in that

!
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work. In this model a boundary g - 0 with a center aij and radius p, analogous to the

I concept of a yield surface in the theory of plasticity [8], is first defined. On the boundary

(g = 0) the creep deformation pertains to irreversible deformations whereas within the

I boundary (g < 0) the creep rate temporarily increases due to stress softening.

The total strain tensor, ei] as described by the model is first separated into a

I time-independent elastic comp3nent ei]c and a time-dependent creep component ei]c given by

I • e (1)
etl = ¢_ + etl .

i In standard indical notation, oi] and sij are used to denote the total anddeviatoric component of the stress tensor, respectively. For the general multi-axial ease, the

'li creep strain rate in this model is given by
U

1 n-m m-1

., - 3 m{A)-_(_)-ff-(q)--ft (2)

! -e_j= C(o,q)s_j= 2 s_]

i where A, m, and n are material constants,and

!
I = + - 'xij (3)

q P
slj .

I The evolution equations for the center of the yield surface and radius p are given byIlij,

_][,, &ii = 15=0 ff g<0 or O-_gc__ <0 (4)
li 8e_j

| 1o
1 .c ifg = 0 and ag_>0 (5)

where _lii is the outward normal vector to the CtiS defined as

!
I
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I celi - at)

_U = _" (6)

The CHS is given as

l 2 c c

g = "_ (cii-aij)(¢ij-ctij) - p2 = 0 on CHS (7)

I < 0 inside

The radiusand centeroflhcCHS thereforechangeonlywhen thematerialstateison the

I CHS (g =0) and remain the same when the state of creep strain is inside the CHS (g < 0).

In addition to describing stress reversal situations accurately, the principal

i advantage of this theory is that it coincides with the classical strain hardening theory for the

case of uniaxial constant stress. Therefore, ali material constants for this theory can be

I obtained from uniaxial data which exist for a most materials. This is a tremendouscreep

advantage in this model compared to the other models (see References [6} and [8]).

i The above equations are used in describing the Simple Theory [2]. The authors
[2] also propose a more Elaborate Theory to account for non-coaxiality between the creep rate

I tensor _cj and the deviatoric stress rate tensor whenever For this theory the
necessary.

creep strain rate, _.:.1_, is given by

I
• c (.2 m-I it

I E|j = m (A)l/m(o ===_(O) _ Fi/(Fkl Fkl )It2 (8)

I Fij - Sij =-_q} {e_j _ij} (9)

3

2 P-- - _{1 -o 2p

I and

I q = 2p {A +(E_j - (X .'_ Sij }_ (10)

2 iY2--_ "

I
In a second paper Ohno, Murakami, and Ueno [51extend their earlier work [21

i
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to account for the anelastic recovery upon unloading. For this theory the total creep strain is

t separated into viscous (non-recoverable) and anelastic (recoverable) components given by

i c , a (11)Etl = etl + etl .

I The anelastic component of the creep strain rate is described by

I _- A'(3 Azsij-_) (12)

where A 1 and A2 are material constants determined from creep/creep-recovery tests. The

t viscous component of the creep strain, c_j, is described by Equations (2)-(7) given above for

i the Simple Theory.A finite element (FE) algorithm using an implicit or tangent modulus scheme

, will be derived next for the case of the simple theory of Ohno and Murakami [2]. The implicit

I algorithm has the advantage of ensuring convergent and stable solution for large time step

sizes, unlike explicit integration schemes. In studying creep crack growth phenomena the

I implicit scheme will therefore allow us to investigate the nature of the crack tip fields over

long times efficiently and accurately and also the variation of fracture parameters [9] with time.

I References [8, 10, 11-12, 14] compare the performance of more than ten different creep
constitutive theories, clearly shows that the Murakami-Ohno constitutive laws can model the

I behavior of multi-axial loadscomplex cases.

I 3. THE IMPLICIT FE ALGORITHM
In an implicit scheme involving finite increments in time At, the problem

I involves finding a solution at time ta+ 1,given a solution at time ta where the superscript n
indicates the time step. The solution at ali times must satisfy the usual equations of static

I equilibrium in the absence of body forces, the kinematic relation between strains and
displacements, and the given constitutive model.

I The algorithm presented here to study high temperature creep of materials is
developed along the same lines as those outlined by Owen and Hinton [13] available in the FE

I code FVP [3]. For a given time step At, the change in the stress Ao, change in total strain A£,
and creep strain A_ are related by the equation

!
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I Ao = D(A_ - A_0 (13)

where D i,,;the matrix of elastic constants for the material. Once Age is known, this Equation

! -(13) can be restated for the creep constitutive model described above as

i Ao = DCA_- l_At) (14)

In Equation (14) 15 is used to define the stiffness matrix K and E is used to modify the change

'1 . nin the force vector At_ in the global equation that relates the change in forces, AF, and

i displacements, A during the time step At, or
A u = K-IAF . (15)

I The matrices/_ and E will differ for the two cases i) when the state of strain is on the CHS,

i that is, g = 0, and ii) when the state of strain is inside the CHS g < 0. The two algorithmsare therefore derived separately.

The change in the creep strain vector in Equation (13) for time At for the

W implicit scheme is given as

I Ai c= [(1-0)i_c" + 0_c'"] At (16)

i where 0.5 < 0 < 1 is a parameter for the forward difference method used in the implicit
method to ensure a stable convergent solution [10]. If O - 0, the method reduces to an

I explicit integration scheme [13]. The creep strain rate t:e"'_ in Equation (16) can be obtained
from Equation (2) as

I , ai c, aic"
.¢c'" = i_c + Ao + Aq . (17)

I a_o_* aq*
For convenience, we define

!
!
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I _ _°"

i and

I _, _ _. .

!
Once Aq is established in terms of quantities known at time P, Equations (14), (16) and (17)

I can be used to solve for Ao and, hence, obtain the matrices f_ and E for the two cases.

I Case i) State of Strain on the CHS, g =0
On the CHS since g = 0, differentiating Equation (7) and simplifying we have

!
a{i '_ = at c - I.,*ap (18)

!
where

l Ln = 3 (t c" - {in) pn

i 2 (t c" - _.n)T (_c" _ {In)

I Also differentiating Equation (3) we obtain an expression for Aq as follows

i aq II,*" "" a (19)

= ag.+Q_t ( {i- ai°)+ ap

where

li H°,_0 qO_

I and

| _.,_ 0q _ ___ .

I
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I Once a p is known, we can use Equations (16) to obtain A£c. Combining

Equations (18) and (191, we have

l
I _- "''"""+ (,-Q,"L')_ <_o>
II

I Analogous to the Equation (16) for Ai c, Ap, can be expressed as
Ao -[(1-0)(,* + _*" 0]at . (21)

t Since #n = i_n ((_c" t _n), Equation (5), we have

i (22/p*'_= p* + It,*"ai' + l_" an

I where

i R_.ta, . 1,r - alb* and 1_ *r- 015" .ai" an*

I _v =_*Axz+_* Aq (23)

I as shown in Equation (17). Since 11±jis a unit outward normal vector, 11±jrl ij - 1, which upon
differentiation yields An -- 0. Combining Equations (21) - (23), AI) can be expressed as

i ap = boat + OAt R_R.t*'____* Ao + G._" Aq) . (24)

I Now, using Equation (16) aq can be expressed in terms of quantities that are known at
time ttaas follows

!
Aq = R_*rAa + 1(1 -Q.Qt*r L*)lS,At (25)

l ,where

I
I
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I _,, _-_.T + 0_ + (1 - _," L*)R,*"_]± Y

I and

Combining Equations (25), (17) and (16) and substituting the result into Equation (13), we obtain/_

i and E for the case when a point is on the CHS, that is, g - 0 as follows

i and

Case ii) Point inside the CHS, g < 0

I_ Inside the CHS, as shown in Equation (5)

i p* = b,." = 0

. and, therefore,

I A9 = ntz= 0 . (27)

I
Hence, Equation (19) for this case simplifies to

i Aq = Ht "r A_tz- Qt ar Ag ¢ • (28)
i

i Repeating the above procedure described for Case (i), we have the following expressions for/5

I and E

-I
i
I
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I l_ = [D-' + OAt Rs R_]-' (29)

I where

I _=[I-0At_"g-?
I

1_ ---H," + G___amG_Qt*r

!
and 1: is the identity matrix,

l

I I_= R__° . (30)

1
The expressions for the matrices ttno, ._, B2r, and O_T in terms of the material

I constants and constitutive law are given below

I H_.t._ = -c3__s. 3(q*-p*) s
(eo') (ga) T

i o a o 2(,g.,)2

(m-'/I _'= _ _°"

I Q.._.ar= -
0

I
I H_a : 1 f'¢N" 2m(_)2 a--o

I Again, if the forward difference parameter 0 is set equal to O in the above algorithm, it

!
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reduces to the explicit integration scheme, which does not guarantee a stable convergent solution

I for ali time step sizes.

I 4. IMPLEMENTATION AND VERIFICATION OF THE ALGoRrrHM

The algorithm described above has been implemented into the FE code FVP [3],

I already equipped to hardening constitutive laws. The
which is handle both time and strain

following features regarding the implementation of this method need to be highlighted:

|
i) !f the mrward difference parameter e is set equal to 0 in the above algorithm, it reduces

I to the explicit integration scheme. Although this scheme d,'_es not guarantee a stable convergent
solution for large time step sizes, sufficiently accurate solutions can be obtained for small step

I sizes, this will be shown in the following section.

I ii) At time t = 0, upon application of the load, q = 0. Hence, from Equation (2) the strain
rate £c-'** since m < 1 for primary creep. Therefore, as is commonly done in such cases, for a

I short period of time, _t, an explicit time hardening law is used for the problem. Since the two
laws are identical initially, this does not introduce any error in the solution procedure at later

I steps.

i iii) At time t - ht, upon obtaining an initial solution for the creep strains, the values for thecenter ttand the radius p of the CHS have to be initialized. These values can be obtained from

i Equations (4) and (5) as follows
1 ,

I aiJ 2 Eli

I and

| 10p - _/ ¢ij l'_ij •

!
iv) The total creep strain at any time tn is computed by calculating the cumulative creep strain.

I
!
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i This is computationally more efficient than using Equation (1) to determine gE.

I v) On the CHS, even though g = 0 as shown in Equation (7), due to numerical ,error it is notexactly equal to 0 during the computational procedure. Therefore, it is difficult to determine if

i a given state of creep strain is exactly on the CHS or inside it. A better method to determine thisin a computational scheme is to calculate the quantity

I

I at each time and it with its maximum value evaluated the time
compare Gmax throughout previous

history. If G > Grow then a given point is on the CHS while G < Gm_x indicates that a point is

i inside it. Although mathematically the two methods are equivalent, numerically it is more efficient
to do the latter.

|
vi) For ali times t > St, large time steps At can be taken in the solution procedure since an

I implidt scheme is used. When the applied load is changed, however, the elastic solution is
recomputed so that the elastic component of the total strain corresponds to the new load. As is

i done upon initial loading, after a load change a solution is first obtained for a small time step ofSt, after which the computations using large time steps are resumed.

I vii) The Elaborate Theory described by Equation (8) - (10) as well as the modification to

i handle anelastic recovery, Equations (11)- - (12) have been incorporated into the code using theexplicit scheme 0 = 0. Since it is expected that the Simple Theory will work satisfactorily for

most cases of interest in this work [2], only a few computations using the two extensions may be

I necessary in studying creep crack growth. These can be done using the explicit scheme, thus

avoiding the complexities of developing separate implicit algorithms for these models.

I Once the algorithm involving the Simple Theory was implemented, the numerical

results were verified using closed form solutions to Equation (2) for the case of uniaxial tensile

I stress and pure shear stress involving three fully reversed load steps. Figures 2a and 2b show the

FE mesh and the boundary conditions used to simulate pure tension and pure shear loads

I respectively. Figures a comparison of non-dimensionalized strain as predicted
3a and 3b show the

by the FE results (using both explicit and implicit schemes) with the closed form solution. Time

l
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steps At - 0.5 hours were used in this case. As seen, the FE results using the implicit scheme are

I in excellent agreement with tbe exact solution. Also, as would be expected, the implicit scheme

yields more accurate results than the explicit scheme for the same time step size.

I The error in the solution procedure is influenced significantly by the size of the

time step At. Figures 4a and 4b show results for the same load cases discussed above but with

I time step sizes t ffi 0.1, 0.25, 0.5, 1.0 and the implicit integration seen, error
scheme. As the

introduced in the numerical procedure decreases as the step size is reduced for the tension case

I and is insensitive to At for the shear case. For small step sizes, for example At = 0.1 in this
very

case, both the implicit and explicit methods are equally accurate. Such errors have been shown

I to vary inversely with the number of steps used to reach time ta by Krishnaswamy [14].

I 5. COMPARISON WITH EXPERIMENTAL RESULTS
The numerical predictions from the FE analysis will now be compared with

I experimental data for repeated multiaxial loading histories of Murakami and Ohno [2]. Thedetails of these experiments conducted on thin-walled tubes of Type 304 stainless steel at 650

I degrees C under combined tension and torsion loads are given in Reference [2]. The materialconstants A, m, and n for the Simple Theory described above obtained from pure shear (torsion)

I tests at stress levels of ¢_ o12 = 117.7, 137.3 and 156.9 MPa where A = 3.1 x 10 -19 m = 0.54,
and n -- 7.2. For each test the change in the principal stress direction Odue to a change in load

W is given by
II,

W Cos 0 = sij sij/(S_a Ski S-*- S_) t/2 (32)

where s_jand s_ are the different states of deviatoric stress.

I Figure 5 shows a comparison between the numerical and experimental results for

the case of cyclic torsional loading (0 - 180 degrees) using both the Simple Theory as well as the

W Strain-Hardening Theory. implicit steps At - was
conventional The scheme with time 0.5 hours

used in ali cases. As seen, the Simple Theory is significantly better than the conventional model

I in predicting experiments. For cases where 0 = 150, 90, and 30 degrees, the results are shown
in Figures 6, 7, and 8, respectively. In ali cases, the Simple Theory matches experimental

I observations significantly better.
For 0 = 150 degrees, additional computations using the Elaborate Theory were

!
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i also performed using both the explicit and the existing implicit scheme. Additional materialconstants C - 2.1 and _ = 0.25 are necessary to account for non-coaxiality between the creep

strain rates and deviatoric stresses for this model. As would be expected, the numerical

I predictions of this theory are better than those for the Simple Theory, Figure 9. Since a separate

implicit algorithm was not developed for the Elaborate Theory, the predictions of the implicit

I scheme are not as accurate as those for the explicit scheme (At --- 0.1 hours).

Results for both the Simple and Elaborate Theory using the FE algorithm are in

I excellent agreement with those presented by Murakami and Ohno [2] for the cases discussed
above.

!
6. THE USE OF INTEGt' AL FRACTURE PARAMETERS FOR CREEP

i CRACK GROWTH
The creep crack growth process is studied in the following section by performing

I analyses of creep crack growth experiments. The creep crack growth experiments are constant
load tests, which are the focus of the Phase I effort for this program. The experimental data is

I from a state-of-the-art document from the VAMAS group conference [4]. The VAMAS report
provides a detailed compilation of creep material and crack growth data. In addition, the

I preseutly accepted procedures for evaluation of creep crack growth in constant load structures asagreed upon by the VAMAS group experts is presented. This presently accepted method, which

i is based on the Ct parameter of Saxena [1, 16] will not be appropriate for the history dependentload cases to be examined in the Phase II and Phase II/efforts. Hence, in addition to the new

i creep fracture parameters which are being studied in this program, the ability of the presentlyaccept_,a methods will be considered. In this fashion, it may be possible to extend the simple

engineering analysis procedures to be applicable for the severe load cases being considered in this

I program.

This section first provides a description of many of the parameters which are being

I considered in this program. Second!y, the results for the stationary crack problem are provided.

This will allow us to verify our finite element analysis procedure accuracy by tying into known

solutions for the stationary, crack problem. Finally, results are presented for the growing crack

problem. This is doric by modeling one of the experiments from the VAMAS report.

I The results presented here provide results from the specialization of the Murakami-

Ohno law to a secondary (Norton) creep law. Additionally, the present results represent the

I of test from Reference [4]. Results from other tests areanalysis one currently being produced

I

In
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using the many different forms that the Murakami-Ohno model may take, from simple theory

I through the complicated form. These results from different tests (which experience different

conditions) will be used to identify which parameters are valid for use in constant load creep

I crack growth. The most promising parameters will be more extensively examined and further

developed in the Phase II and m effort. In this fashion, a rational high temperature fracture

I theory valid for severe load conditions is being developed.

I 6.1 Creep Fracture Parameter_
Perhaps the most promising practical engineering approach to predicting the crack

I growth behavior of cracked solids that undergo time dependent straining is the Ct parameter
approach developed by Saxena [1, 16]. This approach may be described as follows. From a series

I of creep experiments on laboratory specimens a simple functional relationship is developed
between creep crack growth rate, & _-da/dt, and Ct. With Ct theory, this relationship defines

I the material crack growth law. With this material crack growth law defined, the life of an
engineering component is predicted by integrating the creep crack growth law with respect to time

I using an estimate of Ct.The simplicity of the Ct approach is quite appealing to the practicing engineer.

I Two difficulties with this approach currently being addressed in the literature are: predicting theservice value of Ct versus time in the engineering component of interest and based upon a

I constitutive theory of an elastic-secondary creep model. The Ct approach, however, is applicableonly to simple (constant load) conditions, although it is routinely used beyond its applicable range.

An alternative approach considered here is based upon using integral parameters

I to characterize the creep crack growth process. This method may be described as follows. A

material resistance curve is developed by performing an experiment on a laboratory fracture

I specimen. The experiment is then modeled via the finite element method where the integral

parameter(s) of interest are calculated along a small finite-sized path. This numerical experiment

I then produces the material resistance curve(s). The behavior of other arbitrarily loaded and

cracked structures can then be predicted by modeling the time history of loading and using this

I generated curve as a growth curve to an
resistance crack criterion. The resistance is assumed be

intrinsic material property. The time history of crack initiation and growth may thus be predicted.

I The analogy to elastic-plastic fracture mechanics based the J-integral be made. A
upon may

!
II

-II



!
I 17

disadvantage of this approach is that currently a finite element solution is required to apply the

i technique.

A number of time dependent crack tip parameters expressed in integral forms have

I appeared in the literature. These include Blackburn [17] ('_B) ;Kishimoto, Aoki, and Sakata [18]

i (,_) ; McClintock [19] (,_,) ; Watanabe [20] ('_w) ; Goldman and Hutchinson [21] (C*); Brust
and Atluri [22] (T*); and others. If an asymptotic crack tip solution with a free amplitude

I parameter exists (as for a stationary crack), then it can be shown that the strength of the field can
1)be written in terms of the chosen integral, as long as the integral is of order 0 (T "

I The superimposed "dot" above these parameters signifies the material rate, and the

total form is obtained via tin. _ integration. The physical interpretation of many of these integral

I parameters is not entirely clear except for the T°. Brust, Nakagaki and Gilles [23] showed that

the physical interpretation of the T° integral is that of the energy release rate to a finite sized

I --material volume in the vicinity of the crack tip. The ability of the T" integral and other

parameters to characterize nonlinear fracture have been documented in Reference [23] and many

I references cited therein. The finite element implementation _f these parameters is discussed by

Brust, Nakagaki, and Springfield [24].

I Finally, (and engine subcontractors) experienced great
the NASA Lewis their have

success in attempting to use integral parameters to characteriz.. • high temperature severe load

I (creep-fatigue) conditions [25]. The NASA approach is to develop a simple engine fatigue life
design procedure by writing the crack growth rate per load cycle as a simple function of the

I change in integral parameter. This results in a simple extension of classical fatigue life prediction
based on the stress intensity factor or J-integral. While our approach is fundamentally much

I different from theirs, this result gives us great hope in achieving success here.

I 6.2 Results - Stationary CrackA standard compact tension specimen of width 50.8 mm, thickness 6.35 mm, and

I crack length over width ratio of 0.516 was discretized into 8-noded isoparametric finite elements(See Figure (10)). A small deformation plane stress analysis was performed using an elastic-power

i law creep equation described by"

I _=__+A_ _
E

I
I
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I This represents a special case oi the Murakami-Ohno creep law discussed in Section 3. Here

I represents total strain, x --- stress, E = 129.5 MPa, n ffi 5.6, and A = 6.46 x 10la (MPa) "n •hr"1.
These represent material properties of ASTM grade A470 class 8 1Cr-lMo-0.25V of the ASTM

I Task Group report [1] and the VAMAS report [4]. A load of 1.7 kN was applied wherein initially
elastic response occurred. The specimen was permitted to creep until steady-state conditions were

I achieved at constant crack length. Ali of the integral parameters described earlier werecalculated.

I Figure 11 shows the near-crack-tip field and far field value of C° calculated via the
line integral definition, along with the rate form of the T° integral (T °), and Ct evaluated via the

I experimental formula for small-scale creep

PVc G (a/w) . (33)
i Ct-

BW

I In the above equation P is load, _/¢is the current load-line displacement rate due to cIcep alone,
B is thickness, W is specimen width, and G (a/w) is solely a function of geometry (given in

I Reference [4]).
At early times transient creep effects are quite important, as seen by observing the

I path dependence of C°. Note that the far field C'-integral compares quite well with Ct for time
greater than about 2 hours even though steady state is not achieved until about 20 hours. At

I steady state C ° becomes path independent and equivalent to Ct while T° is slightly higher than C°.The value of C° compares well with the known solution from the engineering handbooks verifying

I the analysis procedure. The behavior of the rate forms of the other integral parameters ispresented in Figure 12. Note that the numerical values of all of these integrals differ throughout

i the time history. _ and ,3,initially rise from negative values at very small times where transient
effects are significant. At very small times nonsteady state conditions dominate, hence the rate

I form of any characterizing parameter should be non-negative. This seems to indicate that the T"and Jw integrals behave more realistically than the other integral parameters. Figure 12 shows

i the development of the creep zone size ligament. It is seen that a contained creep zone existsuntil the zone rapidly extends across the entire ligament for times greater than 30 hours. Note

!
|
J
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i that, despite this, the steady state value of the C° integral and 5"° approach their steady state
values (constant rate) at times much less than this; i.e., at about 10 hours.

I 6.3 Results - Growing Crack

i The standard compact tension specimen, which was described above in Section 6.2,was again analyzed, including crack growth. The experimental load of 1.7 KN was applied and

the experimentally produced crack growth versus time history was modeled. The test was

I conducted at 538 degrees C. The Murakami-Ohno constitutive law and the material properties

were specified to produce a Norton creep law. The Norton law parameters are listed in Section

I 6.2.

A comparison between predicted and experimentally measured load line

I displacement versus time is illustrated in Figure 14. It is seen that a very good comparison

between experiment and analysis is produced throughout most of the time history. This good

I occurred the fact that Norton constitutive law used.comparison despite simple creep was

However, it will be seen shortly that while far field quantities may be predicted reasonably well

I using a simple constitutive law, quantities evaluated near the crack tip, such as integral
parameters,

are inaccurate. Indeed, the T'-integral has a known energy interpretation, and the other

I parameters are related to energy dissipation. Clearly, for a growing crack, the amount of energy
dissipation in the vicinity of the crack tip will depend strongly on the constitutive response of the

I material in the crack tip region. This effect is being seen as we continue to analyze this specimen
and other test specimens from References [1] and [14].

I The behavior of the Ct parameter, evaluated via Equation (32), is compared withthe C° integral, evaluated on a path very close to the crack tip, in Figure 15. The C" integral was

i evaluated on numerou_ paths which encompassed the growing crack tip and was very much pathdependent. Interestingly, the far field Ct value compares very well with the near field C° integral.

i This suggests that the far field experimentally evaluated Ct parameter is directly related to nearfield damage processes. This may be one reason that the Ct parameter has been successful in

characterizing constant load creep crack growth data to engineering accuracy. When steady state

I creep conditions are experienced throughout the body, the C° integral becomes nearly path

independent (for slow crack growth) and, hence, Ct = C°. However, such good comparison is not

I expected under the history dependent loading conditions to be examined in Phase II.

!
!
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The behaviors of total integrated values for five integral parameters are illustrated

I in Figures 16-18 for different path radii. The path radius is defined as the distance from the crack

tip where the line integral passes in a direction perpendicular to the crack growth direction. For

I the stationary crack (before crack growth commences), this also represents the radial distance

ahead of the crack tip. As the crack grows, the path extends in a "Dugdale" fashion, as fully

I discussed in Reference As in 16-18, the values of ali of the[231. seen Figures integral parameters

increase as the path size radius increases from R - 0.45 mm (Figure 16) to R - 0.8 mm (Figure

I 18). Note from these figures that the integrals begin to decrease at large times. As alluded to
above, this is apparently a consequence of using an inappropriate constitutive law (Norton power

I law creep). Preliminary results of ongoing analyses using the Murakami-Ohno constitutive law
indicate that the T° integral levels off to a constant value after a certain amount of crack growth.

I This is to be expected, as discussed in Reference [23] in the context of elastic plastic crack growth
using the T° integral. At minimum, though, for these parameters to be useful they must be non-

I decreasing. The analyses of this experiment continues using time hardening, strain hardening,

i and the Murakami-Ohno constitutive laws. In addition, three additional experiments fromReference [4], which represent the same material but under different creep crack growth

conditions, are being identically analyzed. Ali of the above parameters, including Ct and C', are

I being evaluated. The integral parameters are being compared between the different tests (in

terms of parameter versus crack growth) to evaluate which parameters are invariant and, hence,

I represent an intrinsic material property. Ali such analyses are being completed as part of the

Phase I effort. This will lead naturally into the Phase II load cases, which interrogate the

I parameters much more closely.

I 7. CONCLUSIONS TO DATE

A new and powerful tool has been developed here that enables the analysis of

I crack growth in structures that variable load This in,_olvescreep experience history. methodology

i) the use of an existing sophisticated constitutive model based on the CHS that described the

I nonlinear, history-dependent material behavior during transient accurately; and, ii) a newly
creep

developed implicit FE algorithm for this model that ensures a stable convergent solution or large

I time steps.

!
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The method presented here has been verified for simple uniaxial and shear

I problems by comparing numeri_l results with closed-form solutions. The influence of time ste.p
size on the error has been studied.

I Analyses of a compilation of constant-load-creep-crack-growth tests using the above
described constitutive law continues as the Phase I effort is completed. The analysis results for

I these specimens will be completed and documented by the end of the Phase I effort.

I 8. PRESENTATIONS AND PUBLICATIONS
x_ae first portion of this report will be sent to the International Journal for

I Numerical Methods in Engineering for publication by the end of November, 1991. The second
portion of the report, describing creep crack growth studies, will be submitted to a fracture

I mechanics journal early in i_92, after results are finalized and verified. Additionally, the results
will be presented at two conferences during 1991. Hence, two publications and two presentations

i will result from the Phase I effort.

i 9. DISCUSSION OF FUTURE WORKNo significant deviation from the originally proposed work is expected. Upon

completion of Phase I, Phase II will begin and consists of two tasks. Task 1 involves variable load

I history tests while Task 2 involves using the integral parameters to predict crack growth versus

0me to failure response measured in the experiments.

I
PHASE II. EXPERIMENTS AND VAI2DATION

I
Task 1. Variable Load Creep Experiments

I
The Phase II text matrix is listed in Table 1. The load history of Figure 19 will be

I employed.

!
!
!
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TABLE 1. VARIABLE LOAD CREEP TEST MATRIX

! ,
Test Number Po tx P1 t2 P2 ao/W

I CT 2.1 0.5 15 0.1, 0 • 0.5 F 0.5

I CT 22 0.65 15 • 0 0.1 _ 0.66 15 0.25

CT 2.3 0.80 15 4 _ 0 • 0.80 15 0.25

! ,
i 1 1a is the limit load.2 ao = initial crack length: W = specimen width.

3 _ is transition time (estimated via Riedel-Rice) between small scale and extensive

i specimen creep.
As illustrated in Figure 19, each will be subjected to a different load time history.

I The Xs marked B and C in Figure 19 depict times when, after unloading and/or reloading occurs,
crack growth again recurs. The hold time t2 - t1will influence when crack growth will occur again.

i The load time histories are chosen so that different results are obtained for each of the specimens.The text matrix of Table 1 ensures that three markedly different load histories, and

i corresponding crack-tip damage, will be experienced by each specimen. During the initial load(to Po) each specimen will encounter different time-independent plastic zones since the load levels

are different. During the initial hold period (to time tl) different amounts of creep damage and

I corresponding crack growth will occur between specimens. At time tv when the specimen is

unloaded, each specimen will experience different amounts of reverse time-independent damage.

I During the hold period (t 2 - tl) different amounts of stress relaxation at the crack tip will occur.

At final loading to P2, the instantaneous time-independent deformation, which occurs on top of

I ali previous damage, differs between specimen. Finally, the amount of subsequent crack growth

and time to failure during the final hold period will differ. Hence, it is seen that these tests were

I so predictions made using the two methods (one damage based, one integral
chosen that the

parameter) will clearly identify which method is capable of accounting for history dependent

I damage.
Finally, we show some results recently produced at Battelle, which illustrate the

I importance of considering history dependent damage. Transient crack growth experiments on a
9CR-1Mo-V-Nb steel using the loading spectrum shown in Figure 20 was performed. Significant

!
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displacement recovery was ob_rved during the unloading portions of the cycles, even at zero load,

I implying the role of accelerated primary creep under load reversals. Also, the load-point

displacemznt rates were high immediately on reloading; the rates settled down to lower values

I with time. Figure 21 illustrates the load, load-point displacement, and crack length (measured by
electric potential, EP) data corresponding to the loading spectrum shown in Figure 20. the

I displacement were significantly higher simple predictions on secondary
inelastic rates than based

creep, implying the importance of primary creep. Also, crack growth rates were higher than

I corresponding creep-crack growth (CCG) rates when C ° was used as the characterizing parameter.
Clearly, a more accurate analysis is required, which will be addressed in the Task 2 analysis efforts.

I Task 2. Analysis

I The integral parameters and damage-based techniques, as identified by the results
on the Phase I study and improved as necessary, will be used to predict the crack growth versus

I time to failure response measured in the Phase II experiments. The predicted results will becompared to experimental results as shown in Figure 22. In addition, simplified solution

i techniques which do not require numerical simulation will be considered. These analysesprobably will result in the implementation of a fourth constitutive model into the finite element

code during Phase II.

I
10. REFERENCES

I 1. Leung, C. P., McDowell, D. L., and Saxena, A., "Influence of Primary Creep in the
Estimation of C t Parameter", EPRI Topical Report, Contract 2253-10, August, 1988.

I 2. Murakami, S. and Ohno., N. "A Constitutive Equation of Creep Based On The concept
Of A Creep Hardening Surface, Int. J. of Solids and Structures, Vol. 18, No. 67, pp. 597-

i 609, 1982.
3. Brust, F. W., FVP-A Finite Element Program For Viscoplastic Materials, Battelle, 1991.

I 4. Gibbons, T. B., editor, Crack Growth, A State Of The Art VAMAS"Creep Report",
(Versailles Project on Advanced Materials and Standards) task group report, February,
1989.

I 5. Watanabe, O. and Atluri, S. N., "Internal Time, General Internal Variable and Multi-
Yield-Surface Theories of Plasticity and Creep: A Unification of Concepts", Int. J. Plast.,

I Vol. 2, No. 1, pp. 37-69, 1986.

!
!



!
I 24

6. Lindholm, U. S., Chan, K. S., Bodner, S. R., Weber, R. M., Walker, K. P., and Cassenti,

I B.N., "Constitutive Modeling for Isotropic Materials (HOST)", Prepared for NASA Lewisby SWRI, NASA Cr-174718, May 1984.

I 7. Ohno, N., Murakami, S. and Ueno, T., "A Constitutive Model of Creep Describing CreepRecovery and Material Softening Caused by Stress Reversals", J. Engineering Materials
and Technolo_, Vol. 107, pp. 1-6, 1985.

I 8. Inoue, T., et al., "Evaluation of Inelastic Constitutive Models Under Plasticity-Creep
Interaction For 2-1/4 Cr-lMo Steel at 600"C", Nuclear Engineering and Design, Vol. 114,

I pp. 295-309, 1989.
9. Brust, F. W., McGowan, J. J., and Atluri, S. N., "A Combined Numerical/Experimental

i Study of Ductile Crack Growth After A Large Unloading Usin_ T, J, and CTOA Criteria",Engineering Fracture Mechanics, Vol. 23, No. 3, pp. 537-550, 1986.

i 10. Inoue, T., "Inelastic Behavior of 2-1/4 Cr-lMo Steel Under Plasticity-Creep InteractionCondition", Nuclear Engineering and Design, Vol. 90, pp. 287-297, 1985.

11. Chaboche, J. L, "Viscoelastic Constitutive Equations For The Description of Cyclic and

I Anisotropic Behaviour of Metals", Bull. Acad. Polon. Ser. Sci. Tech., Vol.Sci., 25, page
33, 1977.

I 12. Miller, A., "An Inelastic Cor.stitutive Model for Monotonic, Cyclic and CreepDeformation", ASME J. Engn_. Mat. Tech., Vol. 98, page 97, 1976.

I 13. Owen, D. R. J. and Hinton, "Finite Elements in Plasticity", Pineridge Press, 1980.

14. Inoue, T., et al., "Evaluation of Inelastic Constitutive Models Under Plasticity-Creep

I Interaction in Multiaxial Stress State", Nuclear Engineering and Design, Vol. 126, pp. 1-11,1991.

Jt 15. Krishnaswamy, P., "Time Dependent Deformation and Fracture of Ductile Polymers: A
IN Finite Element Approach", Ph.D. Thesis, University of Washington, 1990.

i 16. Saxena, A., in Fracture Mechanics, Seventeenth Volume, ASTM STP 905, pp. 185-201,1986.

i 17. Blackburn, W. S., "Path Independent Integrals to Predict Onset of Crack Instability in anElastic Plastic Material", Int. Journal of Fracture Mech., Vol. 8, pp. 343-346, 1972.

i 18. Kishimoto, K., Aoki, S., and Sakata, M., "On the Path-Independent Integral-3'",Engineering Fracture Mechanics, Vol. 13, pp. 841-850, 1980.

19. McClintock, F. A., in Fracture 3, Ed. H. Liebowitz, Academic Press, 1971.

!
!
!



!
I 25

20. Watanabe, K., "The Conservation Law Related to Path Independent Integral and

I Expression of Crack Energy Density by Path Independent Integral", Bull. of JSME, Vol.28, No. 235, January 1985.

I 21. Goldman, N. L and Hutchinson, J. W., "Fully-Plastic Crack Problems: The CenterCracked Strip Under Plane Strain", Int. J. of Solids and Struct., vol. 11, No. 5, pp. 575-592,
1975.

I 22. Brust, F. W. and Atluri, S. N., "' ,tudies on Creep Crack Growth Using the 5"° Integral",
Engineering Fracture Mechanics, Vol. 23, No. 3, pp. 551-574, 1986.

I 23. Bn:st, F. W., Nakagaki, M., and Gilies, P., "Comparison of Elastic-Plastic Fracture
Mechanics Techniques", ASTM STP 1074, pp. 448-469, 1990.

I 24. Brust, F. W., Nakagaki, M., and Springfield, C. W., "Integral Parameters For Thermal
Fracture", Engineering Fracture Mechanics, Vol. 33, No. 4, pp. 561-579, 1989.

I 25. Kim, K. S., et al., "Elevated Temperature Crack Growth", Final Report to NASA Lewis
Research Center, November, 1988.

I
!
!
!
!
!
!
!
!
!
!



I
I

I ,_ i
i Primcry Secondary I TertiaryI

I
I Creep I

Strain

I II

I I
1 '

Time

|
i FIGURE la. TYPICAL CREEP STRAIN VERSUS TIME CURVE

I _-.
_a Unloading

I CreepStrain

I
I _c Full reversed load

I

i ,
I ,,

i Time
FIGURE ]b. TYPICAL CREEP STRATN _3_RSUS TIME SHOWING UN£OADTNG AND

i REVERSED LOADING AT TIME T_

I



!
i x2

%

×
!

i Ca)

I
| " ×

i p)" ), )

I

I x xI ( )c: )

!
__ v X

II
(b)

I FIGURE 2. FE MESH SHOWING BOUNDARY CONDITIONS FOR

i (a) UNIAXIAL TENSION AND (b) PUrE SHEAR

l



!
!
!

N Figure 3a Tension Case
Comparison between EE. & Closed Form

! 1 Explicit At - 0.5

N ,m.ma Qm.,,.

Closed form

N 0.00015 Implicit At - 0.5tq
U

i =opl

u 0.0001

5E-05

!
N 0 , , '_ ,

0 2 4 6 8 10 _o

n Time, Hours

FIGURE 3a. COMPARISON BETWEEN FE PREDICTION AND EXACT SOLUTION

n FOR UNIAXIAL TENSION

!
!
!
n
n



!
!
!
I 3b - Shear CaseFigure

Comparison between F.E. & Closed Form

I 0.003 ___
Explicit At - 0.5

i 0.0025 .......
_" Closed Form

I w 0.002• Implicit At - 0.5

I \ 0.001552

I • 0.001r./3

• _ 0.0005........
|

L_

I °
I -0.0005 , , , , ,0 4 8 12 16 20 24

Time, Hours

!
FIGURE 3b. COMPARISON BETWEEN FE PREDICTION AND EXACT

I SOLUTION FOR THE PURE SHEAR CASE

!
!
!
!
!

,...-



I
I
I
I
I 0.0002

I ClosedForm

0.00015-I At - 0,10

:_ At - 0.25
U

I = []'_ x At - 0.500.0001
X

At- 1.00° /
I _ X x5E-05

l
I I I I I

0
0 2 4 6 8 I0 12

I Time, Hours

i FIGURE 4a. EFFECT OF TIME STEP SIZE AT ON FE PREDICTIONSFOR UNIAXIAL TENSION

I
I
I
l
I



!
!
!
!
I Figure 4b - Shear CaseImplicit Method Comparison

0.003

0.0025 .......

I " At =0.10w 0.002 "<
"_ At = 0.25
Lr rn
\ 0.0015 At = 0.50

x

| " o.ool z_t= 1.oo
r./9 Applied Load

0.0005 -_ _,2.MPo
1

_ ..... t373 .......

I 0 O_ o.- 1, hr

-0.0005 I -,373
o i fi 12 16 2b 24

Time, Hours

I
FIGURE 4b. EFFECT OF TIME STEP SIZE At ON IrE PREDICTION

I FOR THE PURE SHEAR CASE

!
!
!
!



I
I
I
!
i Figure 5 - Pure Shear Case 0=180

Comparison between F.E. & Experimental

i 0.003
Experimental

! ..
0.002 _ Simple Implicit/kt- 0.5

I _ Strain Hardening At - 0.5

Applied Load

o'12,._ 0.001 _ MP(,

| _ .....,_ .......

_ o_ _,,_,

I -0.001
0 16 32 48 64 80

I Time, Hours

FIGURE 5. COMPARISON BETWEEN FE PREDIC_ON USING CLASSICAL

I AND SIMPLE THEORIES AND
STRAIN HARDENING
EXPERIMENTAL DATA FOR PURE TORSION

i (SHEAR,o= 18o")

!
!
I



I
l

0.004

I ".." Experimental

__ S-Staple--ImplicitAt 0.50.003 =

_____j_-,_. Straln-HardeningAt = 0.5

i _ _ _ Applied Load

0.002 _o_ .,,,M_
b_

o o _ 24

0.001 _ _.M_

l 1373

i ......

0 ' ' I -ll89
0 16 32 48 64 80

i Time, Hours

i (al

I 0.007

0.006- ),_ Experimental

,_ 0.005- , _ff_._,/--_ ---_Simple-ImplicitAt = 0.5

_ Strain-Hardening At = 0.5

ooo_L_

I 0 16 32 48 64 80Time,Hours

I (bl

I FTGURE 6. COMPARISON BETWEEN FIE PREDICSTON AND EXPERIMENTAL

RESULTS FOR 0 = 150 DEGREES (a) STRAIN Ell AND

I (b) STRAIN Elz

I
I



I
I

0.006 i .:

_ Experimental

_t_ Simple-Implicit At : 0

I _. //.0.004- _. Strain-Hardening At =

I _ 0.002- _ ..............
MPo

_12'

i ..............

i o e ,6 24
I I

0 16 32 48 64 80

I Time, hours

I (a)

I 0.007
_e_ Experimental0.006- _,:

! -_,_/... - Simple-Implicit/kt = 0.55 o.oo5-
* Strain-Hardening/kt = O.

I _ 0.004- Apphed Load

0.003- °"' _P°

I t r-
0.002- o .... --....

r_ oi2' MPe

0.001 ...........
") • f, h

o 8 • _4

I OY .......
0 16 32 4'8 6'4 80

Time, Hours

I (b)

I FIGURE 7. COMPARISON BETWEEN FE PREDICTION AND EXPERIMENTAL

RESULTS FOR 0 - 90 DEGREES (a) STRAIN Ell AND

I (b) STRAIN E12

I
m



I
I

0.004 )

I "Experimental

0.003 Simple--implieit At =,

I -
Strain-Hardening At :

i .-_ Appl)edLood
0:oo2

o u, MPo

OD _

J '_ I "89
_ 0 8 16 24

._ .

0 16 3'2 48 6'4 80

I Time, Hours

I (a)

Figm_ 8b - Ten.:.i_)n-+_he_,.r('ase 0=30

I Comparison b(4_'t.t,,_F F. A:Experimental0.01
)l(

I _"0.008 • _._ ._)_ Experimental

.'_*: - Simple--Implicit At = 0.5

I _" _ Strain-Hardemng At = U,-,0.006 _:.._
_: ._ AppliedLoad

I "'"i
fi 0.004 _. !_ ......I_ .......r---0_. O e _ 24 ** 1. r

I _ ._ _, Mpo0.002 __
I _ .....
0 8 mB 24 mL I,

| o
0 16 3'2 48 6'4 80

i. Time. ttours (b)

I FIGURE 8. COMPARISON BETWEEN FE PREDICTION AND EXPERIMENTAL

RESULTS FOR e - 30 DEGREES (a) STRAIN E n AND

I (b) STRAIN E12

i



I
I 0.004

i /t, Experimental
0.003 Simple-Implicit At = 0.f:

I : Elaborate-Explicit At : {.
LJ

•_ Elaborate--Implicit At = t
0.002

I ' Applied Load

%. M_

I _ " "............. 1---
0.001 o , _ _,, _'

,/3 ",z' M_

..... 137 3 .......

I , n_
' 8 6'4 ot L_I [_.. :='

16 32 4 80
....... -118.9 ......

i Time, Hours

(a)

I Figure 9b - Tension+Shear Case 0:150
Comparison between F.E. Methods

0.004

I -Experimental

I _ 0.003- Simple-Implicit/kt - 0.:Lj
,I)

Elaborate-Explicit At :
Lr

I _ ..............,. 0.002- Elaborate-lmolicit/'4 =

"_ Apphed Load

en, MF_

° l" % 6860.001 ....... 'r--I T---

I o_, MP_

,/3

l 1373

o _ _ o_......II
I o ,o= ,,_o,,_°Iu "
I (b)

I FIGURE 9. COMPARISON BETWEEN FE PREDICTION AND EXPERIMENTS
FOR 0 = 150 DEGREES USING THE ELABORATE AS WELL AS

I SIMPLE THEORIES (a) STRAIN E n AND (b)STRAIN E12

!1



I
I
I
I $

!
!
!
!
I

I
(a)

i FIGURE 10. TYPICAL FINITE ELEMENT MESH USED FOR
ANALYSES. NOTE THE

LINE MESH IN THE DIRECTION OF CRACK GROWTH.

I
!
I



!
!
!

!
!

!

!
!

!

!

!

!

iI __x
!

(b)

I FIGURE 10. TYPICAL FINITE ELEMENT MESH USED FOR ANALYSES. NOTE THE
LINE MESH IN THE DIRECTION OF CRACK GROWTH.

!
!
!
!



!
!
!
!
!
!
!
!
!

!
!
!

(c)

I FIGURE 10. TYPICAL FINrI'E ELEMENT MESH USED FOR ANALYSES. NOTE THE
I.JNE MESH IN THE DIRECTION OF CRACK GROWTH.

!
!
!
!



!
!
!
!
!

10

!
C_ Near Field

E ...... C* Far Fie ld\

_ C
_ 6 t

L

| _ 4r,_

-! II I I I I I I I

i 0 8 5 10 15 2_ 25 38 35 413 45

- Time, hours

-| . .FIGURE 11. BEHAVIOR OF C, Cv AND "i" FOR
A CREEPING STATIONARY CRACK

!

|
J

-!



I
I
I
I
I

5 'I
I

I I
l
I

E _\ •
Z "1'

, • %%° , .

_ _2_. ................................................

L

12. ,

_ -1 - .... ,_

m o BL •

_ S

n __ ___.fw

-5 I I n l I i l J

i 0 5 18 15 20 25 38 35 40 45
Time, hours

!
I FIGURE 12. BEHAVIOR OF VARIOUS INTEGRAL RATE PARAMETERSAS A FUNCTION OF TIME FOR A STATIONARY CRACK

I
I

I



!
!
!
!
!

1.2

!
I 1 .........

r-

E

! ° .8 m

_.J

! N°l-.

en .G --

! °o

U _

I I I I I I I I

l 0 0 5 10 15 20 25 30 35 40 45

Time, hours

I FIGURE 13. DEVELOPMENT OF CREEP ZONE SIZE LIGAMENT FORSTATIONARY CRACK

!
!
!
!



m
!
!

I 5 in i

' 1
o Exper imenta] o

o

_ 2

9 1

I
0 i I I i I i x
0 10 20 30 40 50 60 70 80

I Time, hours

FIGURE 14. COMPARISON OF EXPERIMENTAL AND PREDICTED

I DISPLACEMENTS FOR A COMPACT TENSION SPECIMENLOAD AND HELD AT LOAD TO FAILURE AT 84 HOURS
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I HGURE 15. COMPARISON OF C" EVALUATED ALONG A NEAR FIELD PATHAND THE FAR FIELD C" PARA_METER
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I FIGURE 16. INTEGRAL PARAMETERS VERSUS TIME FOR R = .45 MM
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I HGURE 17. INTEGRAL PARAMETERS VERSUS TIME FOR R = .60M

!
I
I
I



I
I
I

I
I



I
I

I

I P(1)

I ------a(_)

! t'
Pl1)

I xfE_n crackgro_h P_
Po A

o
o

_J

| ×c

!
I Pt X,

li Ii 12

I Tirr_ (_)

I FIGURE 19. POSSIBLE LOAD-VERSUS-TIME HISTORY OF ASOI.JD OPERATING AT HIGH TE1V_ER A.TURES
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FIGURE 20. LOAD SPECTRUM FOR A 9CR-1MO-V-NB COMPACT

SPECIMEN LOADED AT 538 C
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I FIGURE 21. LOAD, LOAD-POINT DISPLACEMENT, AND ELECTRICPOTEN'IIAL (EP) DATA FOR A 9CR-1MO-V-NB COMPACT

TENSION SPECIMEN, SUBJECTED TO THE LOAD SPECTRUM

I SHOWN IN FIGURE 20
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I FIGURE 22. SCHEMATIC OF RESEARCH APPROACH
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