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L. INTRODUCTION

The demands for structural systems to perform reliably under severe operating
conditions continue to increase. Structural components such as hot-reheat steam lines,
heaters, drums, and primary steam lines in a modern power plant experience degradation and
damage because they must operate in a high-temperature environment where time dependent
straining becomes important. In addition, reusable space vehicles must be capable of
withstanding repeated thermomechanical histories without failure. This work is focused on
studying creep crack growth, a frequent failure mechanism of structural componernis which
experience time dependent straining.

Most investigations which have appeared to date are concerned with crcep crack
growth which occurs under a constant load and temperature. However, most structural
components experience complicated load histories. For example, each time a power plant is
shut down for maintenance purposes, a number of components experience low cycle fatigue.
The history of degradation and damage which accumulates at the crack tip is greatly influ-
enced by these transients. The subject of this work is a study of history effects on the creep
crack growth process.

The development of a successful predictive analytical methodology involves i)
the choice of an appropriate constitutive model that incorporates both nonlinear material
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primarily on implementing nonlinear material models that have described load history effects
successfully into a finite element (FE) program and on studying the constant load creep crack
growth problem. Once such a tool that models the material accurately is available in a
numerically robust form, the parameters that govern the creep crack growth process can be
studied in great detail. Development of such an algorithm is therefore an essential part of this
work. As shown by Saxena [1], the constitutive model chosen significantly influences the
stress and strain fields in the vicinity of the crack tip in a time dependent material.

In the following section a brief review of constitutive models is presented along
with the implications of using them in creep crack growth studies under variable loads. The
model selected for this study, developed by Murakami and Ohno [2], is discussed along with
its special features that make is particularly suitable for this investigation. This model is based
on the creep hardening surface and is particularly useful for variable and fully reversed load
histories. In Section 3 an implicit finite element algorithm for this model is derived. Details
regarding implementation of this method into FVP [3], an existing FE program to study creep
crack growth, are also discussed. The results of the algorithm are verified against closed form
solutions for simple geometries in Section 4. Sources of error and differences between using
explicit and implicit schemes are also presented. Section 5 compares the numerical results
with experimental data [2] for the case of combined tension and torsion and fully reversed
load histories. Section 6 provides results of some of the constant load creep crack growth
analyses that have been performed to date.

Because a wealth of experimental data has been developed for creep crack
under constant load conditions, the need to develop our own creep crack growth data for this
study was minimal. In particular, the VAMAS report (Reference [4]) provides state-of-the-art
constant load creep crack growth data produced in many countries. Professor A. Saxena of
Georgia Tech, who is one of the main participants of the VAMAS project, has been extremely
helpful in providing us with additional data. These experiments are being modeled via the
finite element method, and fracture theories are currently being developed and examined.
Conclusions of the Phase I work as well as work planned for the future are discussed in
Section 7. Finally, Sections 8 and 9 discuss publications and the Phase II effort, respectively.

Finally, the implementation of large strain and friction/contact algorithms into
the finite element code and the implementation of three additional non-linear constitutive laws
(endochronic law [5], Bodner [6] (popular at the Air Force), and the Walker Model [6]
(popular at NASA) are not discussed here. The large strain algorithm is complete, the
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endochronic theory is nearly complete, while subroutines for the Bodner and Walker models
were obtained from the agencies described above. These theories will be used during the
Phase II effort as we s:udy load history dependent crack growth in conjunction with the
Murakami-Ohno law. The friction/contact capability is necessary during Phase II since, during

global unloading, the crack faces will come into contact under certain load conditions to be
considered.

2. CONSTITUTIVE MODELLING

Time dependent behavior under constant sustained load at high temperature is
generally classified into three phases: primary or trarsient creep, secondary, and tertiary creep
as shown in Figure 1a. For a cracked component, in the vicinity of the growing crack tip, the
material is in a state of nonlinear transient creep. Hence, traditional creep equations [4], such
as the Norton law for secondary creep, are not applicable in this region. Therefore, all further
discussion in this work will pertain to models that describe primary or transient creep.

Figure 1b shows a schematic of a typical creep strain response under a constant
sustained load applied to a uniaxial specimen for time t,. At time t, if the load is removed
then a material may exhibit “anelastic” recovery in the absence of any applied load. If
however the load is fully reversed with the same magnitude, a temporary increase in strain rate
is observed due to stress softening [2,7] before the creep rate asymptotically approaches that
without stress reversals. Models that are capable of describing such phenomena are therefore
important in studying creep crack growth under variable loads. Conventional Time-Hardening
or Strain-Hardening models [4] which successfully describe creep under constant sustained
load cannot account for these phenomena that occur under varying loads.

Although a number of constitutive equations have been proposed to handle
such phenomena [6], their mathematical structures are often too complicated to be employed
in practical analyses of creep. The determination of material constants in these models also
causes major difficulties. One model that successfully describes creep under non-steady state
of stress and which is simple to obtain material constants is that developed by Murakami and
Ohno (2] and is based on the concept of a creep hardening surface (CHS).

This model has been shown to perform very well when compared to complex
load experimental data [8]. Moreover, in the Inoue benchmark problem (8], the Murakami

and Ohno model performs as well or better than the ten other constitutive laws studied in that
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work. In this model a boundary g = 0 with a center a; and radius p, analogous to the
concept of a yield surface in the theory of plasticity [8], is first defined. On the boundary
(g=0) the creep deformation pertains to irreversible deformations whereas within the
boundary (g <0) the creep rate temporarily increases Cue to stress softening.

The total strain tensor, €; as described by the model is first separated into a

time-independent elastic component eif and a time-dependent creep component ¢;° given by
_ e c 1

In standard indical notation, oy and sy are used to denote the total and
deviatoric component of the stress tensor, respectively. For the general multi-axial case, the
creep strain rate in this model is given by

1 n-m m-1
3
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where A, m, and n are material constants,
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The evolution equations for the center of the yield surface e, and radius p are given by

dij = ‘:) = 0 if g<0 or 'Qg—c'é; <0 (4)
Oc;
A 1,.c . 1 . . N ag .
aij = E(Gu nu)'fli,- P = “/—8 E:i nij if g = 0 and ¥€§>0 (5)

where ny is the outward normal vector to the CFiS defined as
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{(e - o) (6 - o)}
The CHS is given as
g = % (65 -y (6 -;) - o> =0oncHS )

< 0 inside

The radius and center of the CHS therefore change only when the material state is on the
CHS (g=0) and remain the same when the state of creep strain is inside the CHS (g <0).

In addition to describing stress reversal situations accurately, the principal
advantage of this theory is that it coincides with the classical strain hardening theory for the
case of uniaxial constant stress. Therefore, all material constants for this theory can be
obtained from uniaxial creep data which exist for a most materials. This is a tremendous
advantage in this model compared to the other models (see References [6} and [8]).

The above equations are used in describing the Simple Theory [2]. The authors

[2] also propose a more Elaborate Theory to account for non-coaxiality between the creep rate

tensor ¢{; and the deviatoric stress rate tensor sy whenever necessary. For this theory the

creep strain rate, ¢&j:, is given by

m-1 -1 a
& = \J— m (A)¥(q) ® (@)™ FJF, )" (®)
3 si.
i =5 P - El1 - ——-} ley - o 9)
and
= = +(g - % ) 10
q 2P ( (Gij aJ)Z } . (10)

In a second paper Ohno, Murakami, and Ueno [5] extend their earlier work [2]
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to account for the anelastic recovery upon unloading. For this theory the total creep strain is

separated into viscous (non-recoverable) and anelastic (recoverable) components given by
c _ v a 11
€ =€ * € - (11)
The anelastic component of the creep strain rate is described by

&AL As, - 2

where A, and A, are material constants determined from creep/creep-recovery tests. The

viscous component of the creep strain, €5, is described by Equations (2)-(7) given above for
the Simple Theory.

A finite element (FE) algorithm using an implicit or tangent modulus scheme
will be derived next for the case of the simple theory of Ohno and Murakami [2]. The implicit
algorithm has the advantage of ensuring convergent and stable solution for large time step
sizes, unlike explicit integration schemes. In studying creep crack growth phenomena the
implicit scheme will therefore allow us to investigate the nature of the crack tip fields over
long times efficiently and accurately and also the variation of fracture parameters [9] with time.
References [8, 10, 11-12, 14] compare the performance of more than ten different creep

constitutive theories, clearly shows that the Murakami-Ohno constitutive laws can model the

behavior of complex multi-axial loads cases.

3. THE IMPLICIT FE ALGORITHM

In an implicit scheme involving finite increments in time At, the problem
involves finding a solution at time t**1, given a solution at time t® where the superscript n
indicates the time step. The solution at all times must satisfy the usual equations of static
equilibrium in the absence of body forces, the kinematic relation between strains and
displacements, and the given constitutive model.

The algorithm presented here to study high temperature creep of materials is
developed along the same lines as those outlined by Owen and Hinton [13] available in the FE
code FVP [3]. For a given time step At, the change in the stress A @, change in total strain Ag,

and creep strain A€€ are related by the equation
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Ac = D(Ag - A€®) (13)

where D is the matrix of elastic constants for the material. Once A&°€ is known, this Equation

(13) can be restated for the creep constitutive model described above as

Ac = D(Ae - EAY) . (14)

In Equation (14) D is used to define the stiffness matrix K and E is used to modify the change

in the force vector AE in the global equation that relaies the change in forces, AF, and

displacements, A during the time step At, or

Au=K'AF . (15)

The matrices B and E will differ for the two cases i) when the state of strain is on the CHS,

that is, g = 0, and ii) when the state of strain is inside the CHS g < 0. The two algorithms
are therefore derived separately.

The change in the creep strain vector in Equation (13) for time At for the
implicit scheme is given as

Ae® = [(1-6) &= + 6= | At (16)

where 0.5 < 8 < 1 is a parameter for the forward difference method used in the implicit

method to ensure a stable convergent solution [10]. If @ = 0, the method reduces to an

explicit integration scheme [13]. The creep strain rate £°"" in Equation (16) can be obtained

from Equation (2) as

Aq . 17

For convenience, we define
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H® =
and
"
G = —
oq

Once Aq is established in terms of quantities known at time t®, Equations (14), (16) and (17)

can be used to solve for Ao and, hence, obtain the matrices B and E for the two cases.

Case i) State of Strain on the CHS, g=0
On the CHS since g = 0, differentiating Equation (7) and simplifying we have

Ag® = Ag® - L Ap (18)
where
Lo = 3(g°" - aP)p”
2(e°” - ™7 (g°" - g")
Also differentiating Equation (3) we obtain an expression for Aq as follows
Aq = HP Ag+ Q" '(Aa - A + Ap (19)
where
H® = 9q
—1 a-o-
and
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Once Ap is known, we can use Equations (16 ) to obtain Ag©. Combining
Equations (18) and (19), we have
Aq = H™ Ag +(1-Q"'L%) Ap . (20)
Analogous to the Equation (16) for A€, Ap, can be expressed as
Ap =[(1-8)p + p™! B]At . (21)
Since p = p™(£°", n™), Equation (5), we have
B - R A+ R A (22)
where
B B g O
Also
A& = HPAg + G," Aq 23)

as shown in Equation (17). Since n;4is a unit outward normal vector, N33N;5 = 1, which upon

differentiation yields An = 0. Combining Equations (21) - (23), Ap can be expressed as
Ap = p,At + At R (H." Ag + G AgQ) . (24)

Now, using Equation (16) Aq can be expressed in terms of quantities that are known at
time t® as follows

Aq = R"Ag + %(1 - Q" LM, At (25)

where



[

and
y=1- (l _ an'Ln)Blnfgnn

Combining Equations (25), (17) and (16) and substituting the result into Equation (13), we obtainB
and E for the case when a point is on the CHS, that is, g = 0 as follows

D =[D" +0AtH? + (849 G,* R (26)
and
E = & + 6At [gnn(l - QTT L")b,,]
Y

Case ii) Point inside the CHS, g<0
Inside the CHS, as shown in Equation (5)

P =2 =0

and, therefore,

Ap = Agq =0 . (27)
Hence, Equation (19) for this case simplifies to
Aq=H" A g -Q" Ae® . (28)

Repeating the above procedure described for Case (i), we have the following expressions forD
and E
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D - [D* + 8At R, 55]" (29)
where

R, = [I - 84t G, 6"

Rg = H + G G

and I is ihe identity matrix,

E-=R ¢ . (30)

The expressions for the matrices HY, G2, H!, and QP in terms of the material

constants and constitutive law are given below

o1 (€) -ad 35 3(g"-pY) .

H
— o dg 2(g)?

-1) .
O c
- (mq)ﬁ

Again, if the forward difference parameter 6 is set equal to 0 in the above algorithm, it
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reduces to the explicit integration scheme, which does not guarantee a stablc convergent solution
for all time step sizes.

4. IMPLEMENTATION AND VERIFICATION OF THE ALGORITHM
The algorithm described above has been implemented into the FE code FVP [3],
which is already equipped to handle both time and strain hardening constitutive laws. The

following features regarding the implementation of this method need to be highlighted:

i) If the forward difference parameter 6 is set equal to 0 in the above algorithin, it reduces
to the explicit integration scheme. Although this scheme does 1ot guarantee a stable convergent

soluiion for large time step sizes, sufficiently accurate solutions can be obtained for small step

sizes. this will be shown in the following section.

ii) At time t = 0, upon application of the load, g = 0. Hence, from Equation (2) the strain
rate £~ since m < 1 for primary creep. Therefore, as is commonly done in such cases, for a

short period of time, 3t, an explicit time hardening law is used for the problem. Since the two
laws are identical initially, this does not introduce any error in the solution procedure at later
steps.

iii) At time t - 8t, upon obtaining an initial solution for the creep strains, the values for the
center &and the radius p of the CHS have to be initialized. These values can be obtained from

Equations (4) and (5) as follows

an.

v) The total creep strain at any time t; is computed by calculating the cumulative creep strain.
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This is computationally more efficient than using Equation (1) to determine €<.

v) On the CHS, even though g = 0 as shown in Equation (7), due to numerical error it is not
exactly equal to 0 during the computational procedure. Therefore, it is difficult to determine if
a given state of creep strain is exactly on the CHS or inside it. A better method to determine this
in a computational scheme is to calculate the quantity

G = (g5 - @) (6 - @ G1)

at each time and compare it with its maximum value G_,,, evaluated throughout the previous time
history. If G 2 Gp,, then a given point is on the CHS while G < G, indicates that a point is

inside it. Although mathematically the two methods are equivalent, numerically it is more efficient
to do the latter.

vi) For all times t > 8t, large time steps At can be taken in the solution procedure since an
implicit scheme is used. When the applied load is changed, however, the elastic solution is
recomputed so that the elastic component of the total strain corresponds to the new load. As is
done upon initial loading, after a load change a solution is first obtained for a small time step of

8t, after which the computations using large time steps are resumed.

vii)  The Elaborate Theory described by Equation (8) - (10) as well as the modification to
handle anelastic recovery, Equations (11)- - (12) have been incorporated into the code using the
explicit scheme & = 0. Since it is expected that the Simple Theory will work satisfactorily for
most cases of interest in this work [2], only a few computations using the two extensions may be
necessary in studying creep crack growth. These can be done using the explicit scheme, thus
avoiding the complexities of developing separate implicit algorithms for these models.

Once the algorithm involving the Simple Theory was implemented, the numerical
results were verified using closed form solutions to Equation (2) for the case of uniaxial tensile
stress and pure shear stress involving three fully reversed load steps. Figures 2a and 2b show the
FE mesh and the boundary conditions used to simulate pure tension and pure shear loads
respectively. Figures 3a and 3b show a comparison of the non-dimensionalized strain as predicted

by the FE results (using both explicit and implicit schemes) with the closed form solution. Time
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steps At - 0.5 hours were used in this case. As seen, the FE results using the implicit scheme are
in excellent agreement with the exact solution. Also, as would be expected, the implicit scheme
yields more accurate results than the explicit scheme for the same time step size.

The error in the solution procedure is influenced significantly by the size of the
time step At. Figures 4a and 4b show results for the same load cases discussed above but with
time step sizes t = 0.1, 0.25, 0.5, 1.0 and the implicit integration scheme. As seen, the error
introduced in the numerical procedure decreases as the step size is reduced for the tension case
and is insensitive to At for the shear case. For very small step sizes, for example At = 0.1 in this
case, both the implicit and explicit methods are equally accurate. Such errors have been shown

to vary inversely with the number of steps used to reach time t® by Krishnaswamy [14].

5. COMPARISON WITH EXPERIMENTAL RESULTS

The numerical predictions from the FE analysis will now be compared with
experimental data for repeated multiaxial loading histories of Murakami and Ohno [2]. The
details of these experiments conducted on thin-walled tubes of Type 304 stainless steel at 650
degrees C under combined tension and torsion loads are given in Reference [2]. The material

constants A, m, and n for the Simple Theory described above obtained from pure shear (torsion)
tests at stress levels of V3 6,, = 117.7, 137.3 and 156.9 MPa where A = 3.1x 10 ‘19, m = 0.54,

and n = 7.2. For each test the change in the principal stress direction 8 due to a change in load

is given by
Cos 8 = s, 5;/(Sy; Sy Sun S (32)

where s; and Si; are the different states of deviatoric stress.

Figurc 5 shows a comparison between the numerical and experimental results for
the case of cyclic torsional loading (6 = 180 degrees) using both the Simple Theory as well as the
conventional Strain-Hardening Theory. The implicit scheme with time steps At = 0.5 hours was
used in all cases. As seen, the Simple Theory is significantly better than the conventional model
in predicting experiments. For cases where 8 = 150, 90, and 30 degrees, the results are shown
in Figures 6, 7, and 8, respectively. In all cases, the Simple Theory matches experimental
observations significantly better.

For 8 = 150 degrees, additional computations using the Elaborate Theory were

"
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also performed using both the explicit and the existing implicit scheme. Additional material
constants { = 2.1 and § = 0.25 are necessary to account for non-coaxiality between the creep
strain rates and deviatoric stresses for this model. As would be expected, the numerical
predictions of this theory are better than those for the Simple Theory, Figure 9. Since a separate
implicit algorithm was not developed for the Elaborate Theory, the predictions of the implicit
scheme are not as accurate as those for the explicit scheme (At = 0.1 hours).

Results for both the Simple and Elaborate Theory using the FE algorithm are in

excellent agreement with those presented by Murakami and Ohno [2] for the cases discussed
above.

6. THE USE OF INTEG® AL FRACTURE PARAMETERS
CRACK GROWTH FOR CREEP

The creep crack growth process is studied in the following section by performing
analyses of creep crack growth experiments. The creep crack growth experiments are constant
load tests, which are the focus of the Phase I effort for this program. The experimental data is
from a state-of-the-art document from the VAMAS group conference [4]. The VAMAS report
provides a detailed compilation of creep material and crack growth data. In addition, the
preseutly accepted procedures for evaluation of creep crack growth in constant ioad structures as
agrced upon by the VAMAS group experts is presented. This presently accepted method, which
is based on the C, parameter of Saxena [1, 16] will not be appropriate for the history dependent
load cases to be examined in the Phase II and Phase III efforts. Hence, in addition to the new
creep fracture parameters which are being studied in this program, the ability of the presently
acceptzd methods will be considered. In this fashion, it may be possible to extend the simple
engineering analysis procedures to be applicable for the severe load cases being considered in this
program.

This section first provides a description of many of the parameters which are being
considered in this program. Second'y, the results for the stationary crack problem are provided.
This will allow us to verify our finite element analysis procedure accuracy by tying into known
solutions for the stationary crack problem. Finally, results are presented for the growing crack
problem. This is dorie by modeling one of the experiments from the VAMAS report.

The results presented here provide results from the specialization of the Murakami-
Ohno law to a secondary (Norton) creep law. Additionally, the present results represent the

analysis of one test from Reference [4]. Results from other tests are currently being produced
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using the many different forms that the Murakami-Ohno model may take, from simple theory
through the complicated form. These results from different tests (which experience different
conditions) will be used to identify which parameters are valid for use in constant load creep
crack growth. The most promising parameters will be more extensively examined and further
developed in the Phase II and III effort. In this fashion, a rational high temperature fracture

theory valid for severe load conditions is being developed.

6.1 Creep Fracture Parameters

Perhaps the most promising practical engineering approach to predicting the crack
growth behavior of cracked solids that undergo time dependent straining is the C, parameter
approach developed by Saxena [1, 16]. This approach may be described as follows. From a series
of creep experiments on laboratory specimens a simple functional relationship is developed
between creep crack growth rate, @ = da/dt, and C,. With C, theory, this relationship defines
the material crack growth law. With this material crack growth law defined, the life of an
engineering component is predicted by integrating the creep crack growth law with respect to time
using an estimate of C,.

The simplicity of the C, approach is quite appealing to the practicing engineer.
Two difficulties with this approach currently being addressed in the literature are: predicting the
service value of C, versus time in the engineering component of interest and based upon a
constitutive theory of an elastic-secondary creep model. The C, approach, however, is applicable
only to simple (constant load) conditions, although it is routinely used beyond its applicable range.

An alternative approach considered here is based upon using integral parameters
to characterize the creep crack growth process. This method mzy be described as follows. A
material resistance curve is developed by performing an experiment on a laboratory fracture
specimen. The experiment is then modeled via the finite element method where the integral
parameter(s) of interest are calculated along a small finite-sized path. This numerical experiment
then produces the material resistance curve(s). The behavior of other arbitrarily loaded and
cracked structures can then be predicted by modeling the time history of loading and using this
generated resistance curve as a crack growth criterion. The resistance curve is assumed to be an
intrinsic material property. The time history of crack initiation and growth may thus be predicted.

The analogy to elastic-plastic fracture mechanics based upon the J-integral may be made. A
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disadvantage of this approach is that currently a finite element solution is required to apply the

technique.
A number of time dependent crack tip parameters expressed in integral forms have

appeared in the literature. These include Blackburn [17] (Jp) ; Kishimoto, Aoki, and Sakata [18]
(J) ; McClintock [19] (Jy) ; Watanabe [20] (J) ; Goldman and Hutchinson [21] (C*); Brust

and Atluri [22] (T*); and others. If an asymptotic crack tip solution with a free amplitude

parameter exists (as for a stationary crack), then it can be shown that the strength of the field can

be written in terms of the chosen integral, as long as the integral is of order 0 (-i—) .

The superimposed “dot” above these parameters signifies the material rate, and the
total form is obtained via tin.= integration. The physical interpretation of many of these integral
parameters is not entirely clear except for the T". Brust, Nakagaki and Gilles [23] showed that
the physical interpretation of the T integral is that of the energy release rate to a finite sized
material volume in the vicinity of the crack tip. The ability of the T  integral and other
parameters to characterize nonlinear fracture have been documented in Reference [23] and many
references cited therein. The finite element implementation of these parameters is discussed by
Brust, Nakagaki, and Springfield [24].

Finally, the NASA Lewis (and their engine subcontractors) have experienced great
success in attempting to use integral parameters to characteriz: high temperature severe load
(creep-fatigue) conditions [25]. The NASA approach is to develop a simple engine fatigue life
design procedure by writing the crack growth rate per load cycle as a simple function of the
change in integral parameter. This results in a simple extension of classical fatigue life prediction
based on the stress intensity factor or J-integral. While our approach is fundamentally much

different from theirs, this result gives us great hope in achieving success here.

6.2 Results - Stationary Crack

A standard compact tension specimen of width 50.8 mm, thickness 6.35 mm, and
crack length over width ratio of 0.516 was discretized into 8-noded isoparametric finite elements
(See Figure (10)). A small deformation plane stress analysis was performed using an elastic-power

law creep equation described by:
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This represents a special case oi the Murakami-Ohno creep law discussed in Section 3. Here e

represents tolal strain, t = stress, E = 129.5 MPa, n = 5.6, and A = 6.46 x 1018 (MPa)™ - hr'l.
These represent material properties of ASTM grade A470 class 8 1Cr-1M0-0.25V of the ASTM
Task Group report [1] and the VAMAS report [4]. A load of 1.7 kN was applied wherein initially
elastic response occurred. The specimen was permitted to creep until steady-state conditions were
achieved at constant crack length. All of the integral parameters described earlier were
calculated.

Figure 11 shows the near-crack-tip ficld and far field value of C’ calculated via the
line integral definition, along with the rate form of the T integral (T"), and C, evaluated via the

experimental formula for small-scale creep

. PV

(33)
¢ Bw G (aw) .

In the above equation P is load, V_is the current load-line displacement rate due to c1zep alone,
B is thickness, W is specimen width, and G (a/w) is solely a function of geometry (given in
Reference [4]).

At early times transient creep effects are quite important, as seen by observing the
path dependence of C’. Note that the far field C -integral compares quite well with C, for time
greater than about 2 hours even though steady state is not achieved until about 20 hours. At
steady state C becomes path independent and equivalent to C, while T is slightly higher than C".
The value of C’ compares well with the known solution from the engineering handbooks verifying
the analysis procedure. The behavior of the rate forms of the other integral parameters is

presented in Figure 12. Note that the numerical values of all of these integrals differ throughout
the time history. J and J winitially rise from negative values at very small times where transient

effects are significant. At very small times nonsteady state conditions dominate, hence the rate
form of any characterizing parameter should be non-negative. This seems to indicate that the T
and Jy, integrals behave more realistically than the other integral parameters. Figure 12 shows
the development of the creep zone size ligament. It is seen that a contained creep zone exists

until the zone rapidly extends across the entire ligament for times greater than 30 hours. Note



19

that, despite this, the steady state value of the C" integral and +* approach their steady state

values (constant rate) at times much less than this; i.e., at about 10 hours.

6.3 Results - Growing Crack

The standard compact tension specimen, which was described above in Section 6.2,
was again analyzed, including crack growth. The experimental load of 1.7 KN was applied and
the experimentally produced crack growth versus time history was modeled. The test was
conducted at 538 degrees C. The Murakami-Ohno constitutive law and the material properties
were specified to produce a Norton creep law. The Norton law parameters are listed in Section
6.2.

A comparison between predicted and experimentally measured load line
displacement versus time is illustrated in Figure 14. It is seen that a very good comparison
between experiment and analysis is produced throughout most of the time history. This good
comparison occurred despite the fact that simple Norton creep constitutive law was used.
However, it will be seen shortly that while far field quantities may be predicted reasonably well
using a simple constitutive law, quantities evaluated near the crack tip, such as integral parameters,
are inaccurate. Indeed, the T'-integral has a known energy interpretation, and the other
parameters are related to energy dissipation. Clearly, for a growing crack, the amount of energy
dissipation in the vicinity of the crack tip will depend strongly on the constitutive response of the
material in the crack tip region. This effect is being seen as we continue to analyze this specimen
and other test specimens from References [1] and [14].

The behavior of the C, parameter, evaluated via Equation (32), is compared with
the C" integral, evaluated on a path very close to the crack tip, in Figure 15. The C° integral was
evaluated on numerous paths which encompassed the growing crack tip and was very much path
dependent. Interestingly, the far field C, value compares very well with the near field C’ integral.
This suggests that the far field experimentally evaluated C, parameter is directly related to near
field damage processes. This may be one reason that the C, parameter has been successful in
characterizing constant load creep crack growth data to engineering accuracy. When steady state
creep conditions are experienced throughout the body, the C' integral becomes nearly path
independent (for slow crack growth) and, hence, C, = C". However, such good comparison is not

expected under the history dependent loading conditions to be examined in Phase II.
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The behaviors of total integrated values for five integral parameters are illustrated
in Figures 16-18 for different path radii. The path radius is defined as the distance from the crack
tip where the line integral passes in a direction perpendicular to the crack growth direction. For
the stationary crack (before crack growth commences), this also represents the radial distance
ahead of the crack tip. As the crack grows, the path extends in a “Dugdale™ fashion, as fully
discussed in Reference [23]. As seen in Figures 16-18, the values of all of the integral parameters
increase as the path size radius increases from R = 0.45 mm (Figure 16) to R = 0.8 mm (Figure
18). Note from these figures that the integrals begin to decrease at large times. As alluded to
above, this is apparently a consequence of using an inappropriate constitutive law (Norton power
law creep). Preliminary results of ongoing analyses using the Murakami-Ohno constitutive law
indicate that the T  integral levels off to a constant value after a certain amount of crack growth.
This is to be expected, as discussed in Reference [23] in the context of elastic plastic crack growth
using the T  integral. At minimum, though, for these parameters to be useful they must be non-
decreasing.

The analyses of this experiment continues using time hardening, strain hardening,
and the Murakami-Ohno constitutive laws. In addition, three additional experiments from
Reference [4], which represent the same material but under different creep crack growth
conditions, are being identically analyzed. All of the above parameters, including C, and C’, are
being evaluated. The integral parameters are being compared between the different tests (in
terms of parameter versus crack growth) to evaluate which parameters are invariant and, hence,
represent an intrinsic material property. All such analyses are being completed as part of the

Phase I effort. This will lead naturally into the Phase II load cases, which interrogate the
parameters much more closely.

7. CONCLUSIONS TO DATE

A new and powerful tool has been developed here that enables the analysis of
creep crack growth in structures that experience variable load history. This methodology involves
i) the use of an existing sophisticated constitutive model based on the CHS that described the
nonlinear, history-dependent material behavior during transient creep accurately; and, ii) a newly

developed implicit FE algorithm for this model that ensures a stable convergent solution or large

time steps.
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The method presented here has been verified for simple uniaxial and shear
problems by comparing numerical results with closed-form solutions. The influence of time siep
size on the error has been studied.

Analyses of a compilation of constant-load-creep-crack-growth tests using the above
described constitutive law continues as the Phase I effort is completed. The analysis results for

these specimens will be completed and documented by the end of the Phase I effort.

8. PRESENTATIONS AND PUBLICATIONS

The first portion of this repoxt will be sent to the International Journal for
Numerical Methods in Engineering for publication by the end of November, 1991. The second
portion of the report, describing creep crack growth studies, will be submitted to a fracture

mechanics journal early in 1992, after results are finalized and verified. Additionally, the results

will be presented at two confr:rences during 1991. Hence, two publications and two presentations
will result from the Phase I effort.

9. DISCUSSION OF FUTURE WORK

No significant deviation from the originally proposed work is expected. Upon
completion of Phase I, Phase II will begin and consists of two tasks. Task 1 involves variable load
history tests while Task 2 involves using the integral parameters to predict crack growth versus

time to failure response measured in the experiments.

PHASE II. EXPERIMENTS AND VALIDATION

Task 1. Variable Load Creep Experiments

The Phase II text matrix is listed in Table 1. The load history of Figure 19 will be
employed.
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TABLE 1. VARIABLE LOAD CREEP TEST MATRIX

Test Number ay/W i

“ CT 22 065 T c 0 01t | 066F | 025

“ CT 23 080 B 41 0 . 080T | 025

P is the Jimit load.

a, = initial crack length: W = specimen width.

< is transition time (estimated via Riedel-Rice) between small scale and extensive
specimen creep.

W N =

As illustrated in Figure 19, each will be subjected to a different load time history.
The Xs marked B and C in Figure 19 depict times when, after unloading and/or reloading occurs,
crack growth again recurs. The hold time t, - t; will influence when crack growth will occur again.
The load time histories are chosen so that different results are obtained for each of the specimens.

The text matrix of Table 1 ensures that three markedly different load histories, and
corresponding crack-tip damage, will be experienced by each specimen. During the initial load
(to Py) each specimen will encounter different time-independent plastic zones since the load levels
are different. During the initial hold period (to time t,) different amounts of creep damage and
corresponding crack growth will occur between specimens. At time t,, when the specimen is
unloaded, each specimen will experience different amounts of reverse time-independent damage.
During the hold period (i, - t,) different amounts of stress relaxation at the crack tip will occur.
At final loading to P,, the instantaneous time-independent deformation, which occurs on top of
all previous damage, differs between specimen. Finally, the amount of subsequent crack growth
and time to failure during the final hold period will differ. Hence, it is seen that these tests were
chosen so that the predictions made using the two methods (one damage based, one integral
parameter) will clearly identify which method is capable of accounting for history dependent
damage.

Finally, we show some results recently produced at Battelle, which illustrate the
importance of considering history dependent damage. Transient crack growth experiments on a
9CR-1Mo-V-Nb steel using the loading spectrum shown in Figure 20 was performed. Significant
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displacement recovery was observed during the unloading portions of the cycles, even at zero load,
implying the role of accelerated primary creep under load reversals. Also, the load-point
displacement rates were high immediately on reloading; the rates settled down to lower values
with time. Figure 21 illustrates the load, load-point displacement, and crack length (measured by
electric potential, EP) data corresponding to the loading spectrum shown in Figure 20. the
inelastic displacement rates were significantly higher than simple predictions based on secondary
creep, implying the importance of primary creep. Also, crack growth rates were higher than
corresponding creep-crack growth (CCG) rates when C’ was used as the characterizing parameter.

Clearly, a more accurate analysis is required, which will be addressed in the Task 2 analysis efforts.

Task 2. Analysis
The integral parameters and damage-based techniques, as identified by the results

on the Phase I study and improved as necessary, will be used to predict the crack growth versus

time to failure response measured in the Phase II experiments. The predicted results will be
compared to experimental results as shown in Figure 22. In addition, simplified solution
techniques which do not require numerical simulation will be considered. These analyses

probably will result in the implementation of a fourth constitutive model into the finite element
code during Phase II
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