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ABSTRACT

Expressions for the spatial moments and macrodispersion tensor for sorbing solutes in

heterogeneous formations were presented using a probabilistic model of a fluid residence time

coupled with the particle position analysis. The fluid residence time was defined as a fraction,

of the actual time during which the particle stayed in the mobile fluid phase of the aquifer. The

fluid residence time is a random variable whose variability comes as a result of the

non--equilibrium sorption properties. The sorbing solute was assumed to be governed with

first-order linear kinetics. The closed-form expressions were based on the stationarity in i'he

kinetic process and on the fin'st--order approximation in the hydraulic conductivity field and in

the fluid residence time. The non--equilibrium effects were presented as a function of the spatial

variability in hydraulic conductivity and temporal variability in the fluid residence time. The

importance of the non--equilibrium processes in the field scale was found to be dependent on

reaction rates, retardation factor, mean velocity, and on variance and correlation scale of the

hydraulic conductivity. The time needed to reach the asymptotic macrodispersivity is dependent

on the degree of non--equilibrium processes and distribution coefficient. The impact from the

uncertainty in parameters upon the spatial moments was examined and compared with the

organic tracer used in the Borden field experiment.
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INTRODUCTION

To accurately predict the movement of pollutants in natural formations is necessary to

develop effective strategies for groundwater quality management and restoration programs.

Solute transport by groundwater results from complex interactions between physical, chemical,

and biologica! processes occurring in natural aquifers. A solute partitioning between solid and"! Q

fluid phase, such as surface cl_emical reaction, is one of the most important processes influencing "

the fate of many pollutants. On a microscopic scale and in laboratory experiments, this sorption

mechanism has been extensively studied and, although complex in nature, has been reasonably

well understood for predictive purposes. The common approach in simulating the transport of

reactive solutes is to consider either local equilibrium assumption (LEA) when reaction rates are

much faster than the fluid flow rate, or first--order non--equilibrium models• The wide use of

LEA models was prompted mainly because of significant mathematical simplifications,

however, many researchers pointed out obvious limitations and studied important deviations of

such an assumption (Valocchi, 1985, 1988; Bahr and Rubin, 1987; Bouchard et al., 1988;

Roberts et al., 1986; Jennings and Kirkner, 1984; Brusseau et al., 1989). Non-equilibrium

processes or rate-limited mechanisms have also been examined at the laboratory scale, focusing

either on the chemical non--equilibrium (chemical kinetics) and/or physical or transport related

non--equilibrium (van Genuchten and Wierenga, 1976; Nkedi-Kizza et al., 1984; Goltz and

Roberts, 1986; Brusseau and Rao, 1989), which describes the physical resistance encourtered

by solute trying to reach the sorption sites of the porous medium as transported by groundwater.

The occurrence of non-equilibrium processes of any origin may have significant impact on

groundwater remediation efforts and on the risk assessment of radionuclide migration. The

non-equilibrium process results in much longer time for aquifer restoration because of increased

"tailing" (slow desorption) of the solute plume and the larger horizontal spreading may impact

the prediction for the water supply protective area.

Studying reactive transport at the laboratory scale is usually restricted with the

homogeneous soil and governing equations applicable for such porous media (e.g., the

advection-dispersion equation with constant dispersivity). However, the major difficulty occurs

when trying to extrapolate the findings from the laboratory scale to a field-scale problem. The

field data analysis from the Borden aquifer revealed the difficulties in interpreting the reactive

solute transport (Roberts et al., 1986; Curtis et al., 1986) which was attributed to the spatial

variability of the porous media and non--equilibrium behavior. Valocchi (1989) applied the Aris

method of spatial moment analysis (Aris, 1958) to the perfectly stratified aquifer and observed

that LEA validity depends on the spatial variability of pore-water velocity; as well as the reaction
rates.



It is now generally accepted that spatial variability in hydraulic properties of natural

aquifers has a strong impact on the solute plume movement (e.g., Dagan, 1982, 1984; Gelhar

and Axness, 1983). In addition, the sorption mechanism, regardless of its origin (chemical or

physical), also affects the solute movement and may significantly alter the transport

characteristics. It is, therefore, of great practical interest to understand the field-scale transport

.... properties of the.solute undergoing sorption in conjunction with the spatial variability.of aquifer .

properties. Several numerical simulation experiments recently examined some impacts of the

kineticaUy sorbing solutes on transport characteristics at large scale (Valocchi and Quinodoz,

1989, in a one--dimensional case; Andricevie and Foufoula--Georgiou, 1991, for stratified

formations; and Selroos and Cvetkovic, 1992, for _wo-dimensional heterogeneous formations).

The solute flux approach (which provides one--dimensional mass breakthrough curves by

integrating over the plane perpendicular to the mean flow direction) coupled with kinetically

sorbing solutes was employed by Cvetkovic and Shapiro (1990) for a saturated medium and by

Destouni and Cvetkovic (1991) in an unsaturated medium. Sposito and Jury (1988) studied a

movement of sorptive solutes using the concept of the lifetime probability density function in

heterogeneous porous media and Chrysikopoulos et al. (1992) employed Taylor-Aris-Brenner

moment analysis to derive the macrodispersion tensor for solute transport with spatially periodic

retardation factor and velocity field.

The main focus of this paper is on the solute particle displacement moments and

macrodispersive characteristics for kinetically sorbing solutes in a heterogeneous porous

formation and large-scale problems. The probabilistic model is presented and coupled with the

Lagrangian description of the particle displacement to obtain closed-form expressions of the

first two spatial moments. The uncertainty in the reaction parameter estimates is considered and

its impact on the spatial moments is investigated. The presented results assume (but are not

limited to) the uniform mean flow, isotropic heterogeneity of the aquifer, and first--order

approximation in hydraulic conductivity variance. The non--equilibrium effects are presented

as a function of the spatial variability in hydraulic conductivity and temporal variability in the

fluid residence time. The LEA validity for the field-scale problems is analyzed and a

non--equilibrium index is introduced which can be seen as a field-scale version of the Damkohler

number. The importance of the non--equilibrium processes in the field scale is found to be

dependent on reaction rates, retardation factor, mean velocity, and on variance and correlation

scale of the hydraulic conductivity. The presented approach is also applicable in the case of

transport related nonequilibrium processes if they can be approximated by first--order kinetics.



BASIC TRANSPORT FORMULATION

We assume that the solute undergoes transport by convection by steady groundwater

velocity, by dispersion, and by non-equilibrium sorption described with the first-order

reversible linear kinetics, i.e., c(x,t); the volumetric concentration (species mass/fluid volume)

satisfies the macroscopic mass balance equation
• +.

O(Oc.__)+ V" V(Oc)= V'[DdV(Oc) ] -a-(gO--t)- (1)at

o(os)
ot .:-"k(Oc) - k2Cos)= k2[kd(OC)- (0s)] (2)

!

where s is the adsorbed species concentration (species mass/solid mass); 0 is the bulk density

(solid mass/aquifer volume); 0 is the porosity (fluid volume/aquifer volume); Dd is a

hydrodynamic dispersion tensor (each entry has units L2/T); kl is the forward rate coefficient

(T-l); k2 is the reverse rate coefficient (T-l); kd is the equilibrium distribution coefficient (fluid

volume/solid mass); V(x) = (K/O)Vh is Eulerian seepage velocity (L/T) in space coordinate x;

K is the hydraulic conductivity; and h is the hydraulic head. Note that parameters Q and 0 are

introduced in (1) by passing from the mass balance equation at the microscopic scale to the one

at the macroscopic scale by performing either spatial averaging (e.g., over the representative

elementary volume (rev) (Bear, 1979)) or ensemble averaging over the number of realizations

of the porous media. A common approach is to consider the spatial variability in the hydraulic

conductivity as a dominant aquifer spatial variability, and to assume 0 and 0 to be constant in

(1). Dividing, then, (2) with 0 and assigning S = 0S/0 as a transformed adsorbed phase

concentration with same units as c, the first-order linear rate reduces to (Velocchi, 1989)

OS _ k_c- k2S = k2(rdc-S) (3)Ti-

where Kd = (QkdlO)= kllk2 is the dimensionless equilibrium distribution coefficient. Although

simple, with respect to the complex chemical and physical reactions occurring at the solid-fluid

interface, the first-order linear rate expression in (2) and (3) is a reasonably accurate

approximation of the more complex non-equilibrium models based on diffusive transport

between mobile and stagnant fluid zones (Nkedi-Kizza et al., 1984; van Genuchten, 1985;

Parker and Valocchi, 1986). The rate law (3) approaches the local equilibrium condition with

the linear adsorption isotherm, S = Kdc, when the reaction rates, kl and k2, approach infinity at

constant Kd (Jennings and Kirkner, 1984). In this case, the reaction rates are fast relative to the

rate of concentration changes resulting from the transport mechanism (convection and

dispersion). Then, the LEA can be used to solve (1), yielding essentially the same formulation



as in the non-reactive case with velocity (or time) scaled by retardation coefficient R = 1 + Kd.

The simplicity of this formulation attracted many researchers to widely use the LEA for

modeling sorptive solute. Since the LEA is an approximation, its use may easily result in

erroneous prediction of the plume movement having serious consequences, particularly in the

aquifer remediation programs. The usual concern about validity of the local equilibrium comes

lrrom the fact that under conditions of steady or transient groundwater flow and estimated actual

speed of chemical reactions for given solute, the contact time available to achieve sorption

equilibrium may be insufficient. The other reason to cast doubt on the validity of the LEA,

particularly in the field-scale problems, is a fact that after averaging over space or over an

ensemble of realizations, the macroscopic mass balance equations (1) under LEA assume that

the rate of concentration changes due to reactions is fast (instantaneous) over the entire averaging

volume, i.e., the LEA implies its validity over the entire size of REV. Although frequently

overlooked, this condition is seldom satisfied in modeling field-scale transport problems.

The oc,currence of non--equilibrium processes may have significant impact on delineating

groundwater contamination and aquifer remediation efforts. For example, during the

pump-and-treat activity, the induced flow field may easily cause nonequilibrium processes to

become significant, resulting in much longer time for aquifer restoration due to the increased

"tailing" (slow desorption) of the solute plume. Determining the impact of non-equilibrium

sorption on the solute transport in two-- and three--dimensional heterogeneous aquifers is the

main goal of the present study.

A common approach for solving (1) and (2) is to follow the Eulerian framework, which

considers c as a dependent variable in a mass balance equation. Along these lines, several

techniques have been applied: analytical solutions for homogeneous aquifers using suitable

transformations (van Genutchen and Wierrenga, 1976; Cameron and Klute, 1977; van

Genutchen, 1981; Rao and Jessup, 1983; Valocchi, 1985; Goltz and Roberts, 1986; among

others); Taylor-Adds method of moments for evaluating temporal and spatial moments of the

fluid--phase concentration (Sudicky, 1983 and Guven et al., 1984, for non-reactive solute; Goltz

and Roberts, 1987, for homogeneous aquifer and non--equilibrium models; Valocchi, 1988,

1989, for kinetically sorbing solutes in idealized stratified systems; and Chrysikopoulos et al.,

1992, for spatially periodic retardation factor and velocity field, solute flux approach (Cvetkovie

and Shapiro, 1990, for saturated porous media; and Destouni and Cvetkovie, 1991, for

unsaturaied porous media); and numerical solutions, which usually involve integrating the

chemical reaction rate over the transport time scale (Ahlstrom et al., 1977; Jennin gs and Kirkner,



1984;Bah:'and Rubin, 1987;Brusseau et al., 1989;Valocchiand Quinodoz, 1989;Andricevic

and Foufoula--Georgiou, 1991; Selroos and Cvetkovic, 1992).

In the Lagrangian framework, the equivalentof integration over time for solving (2) is the
estimation of the particle residence time, t,, in the fluid phase. A solute particle is transported

by groundwater only while residing in the mobile fluid phase of the porous media. Thus, the
q

• " determination of the particle fluid residence time as a fraction of the actual time is crucial to •

accurately predicting the solute movement. Both physical and chemical non-equilibrium

processes occurring in the porous medium will directly affect the particle fluid residence time
•., andtherefore will make direct impacton the spreadingof the solute plume. In thispaper, thefluid

" residence time of the solute particle willbe described with a probabilistic model anddefined as

a random variable which depends on reactive parameters.

In heterogeneous aquifers, the velocity field is uncertain and spatially variable resulting

from the uncertainty in the transport mechanism(estimation of parameters characterizing flow

and location of boundaries) and spatial variability of the aquifer properties (permeability,

porosity). Therefore, theLagrangian approachfor transport of sorbing solutes in heterogeneous

aquifers can be described with the motion of the indivisible solute particle in the velocity field

during the random fluid residence time, t., that a particle stays in the velocity field. In other

words, the transport of kinetically sorbingsolutes is affected by spatial variability of thevelocity

field and temporal variability of the fluid residence time. Spatial variability comes as a result

of tortuous pathways in heterogeneous formations, while temporal variability results from

non--equilibrium processes. We focus on the steady state velocity field V(x), in the space

coordinate x, which satisfies Darcy's law, together with continuity equation V • V = 0, and

possess a statistical homogeneity which results in decomposing V(x) = (V(x)) + v(x), where

(V(x))= U denotes the ensemble average vector of the velocity field and v(x) is a random

fluctuation with zero mean and covarianee matrix Rv(xi-xj), depending only on the separation

between two points. Following the Lagrangianformulation for the non--reactivesolute (Dagan,

1982, 1984, 1987), the random displacement vector X(O of the kinetically sorbing solutes can

be expressed with a modified kinematic relation

t, t,

X(t) = I V_X(,.)]dro + Xa - Ut. + f v[X(,.)]d'c. + X d t. _ t (4)
0 0

where X(t) is a three--dimensional displacement vector, Xa is the pore-scale dispersion

(molecular diffusion is neglected), and r, is the integration variable going from 0 to t, where

t, < t.Thus, the right-hand side of (4) isexpressed in the new time variable t, which is a fraction



of the actualtime t. Since theparticle is sorbing with the soil, the randomfluidresidencetime

appearsas an upperlimit in the integrationof the velocity field. In (4), the particlerandom

displacementis initiallyfor t = 0 at X(O)= 0 andit is permanentlytransportedby the random

velocity field,The difficultiesandpossible approximativesolutionof the kinematicrelationfor
thenon-reactivecase(4) replacingt, witht) was extensivelydiscussedbyDagan (1989).In the

case of kinetically sorbingsolute, the additionalrandomvariable t. appearsin the ldnemati.c
relation.

We startour solution process with formal fast--orderapproximationof the Lagrangian

displacementby expandingthe right-hand side of (4) in the Taylorseries up to the firstorder

aroundthe ensemblemean fluid residencetime, (t,(t)), and the ensemble mean displacement,

(X(t)), and byneglecting thepore scale dispersion;this yields

t. (t.I

X(t)=Ut.+ of_[X(_')]e_'_U<t'>+ 0f + !+ t.v,., t. + + (5)
x(t)=(x(o>

0

+x'(t)Vx,t.+ +...
0 X(t)=(X(t))

where t; = t. - (t.) denotes the fluctuations around the mean residence time, X'(t) is the

residual displacement, and Vr. and Vx denote the gradient of (4) with respect to the fluid

residencetimeandparticledisplacement,respectively.The neglectof thepore-scale dispersion

coefficient comparedto other termsin (4) implies that the case with largePeclet numbersis
considered.Neuman et al. (1987) have consideredothercases withsmall Peclet numbers,but

these special cases are notconsideredhere.

Aftertakingdifferentiation, t, andX(t) arereplacedwith correspondingmeanvalues such

that the fhst displacementmoment, (X(t)) -- U(t,), is obtainedby takingthe ensemble average

of (5) and assuming the independencebetween the random velocity field and fluid residence

time. Keeping onlyFast-order terms,the displacementresidual is, then,given with

6



(t0
P

ffix(t) - ixo))= I v[Ur._, + ut', (6)X'(t)
J
o

The secondmoment oftheparticledisplacementfollowsbytakingtheensembleaverage

of X' (X' )T

x_j(t)- _x'(x')r>= ¢(x(t)- (x(o))(x(t)- (x(t)))r)

=2 f [it.>-,-.]R,.,[v,-.b,,".+ c7)
o

where Rv[Uz,] is the covariance matrix of the velocity field for two points separated by the

displacement Uz,, where z, is the integration variable going from 0 to (t,). The first term in (7)

is the first--order estimate of the displacement covariance evaluated at the first moment of the

fluid residence time. The second term represents the contribution coming from the Idnetically

sorbing activity of the particle which follows the fast-order reaction rate given in (2). These two

terms combined are the main reason for the additional spreading which occurs in the ease of the

kinetically sorbing solutes. The magnitude of the variance cr_.,relative to the fh'st term in (7),

will determine the importance of the kinetics process over the local equilibrium condition.

To evaluate (7), the first two moments of the fluid residence time have to be derived. In

the next section, we present a probabilistic model used to evaluate the first two moments of the

fluid residence time.

PROBABILISTIC MODEL FOR K!NETICALLY SORBING SOLUTES

In this section, the probabilistic model for kinetically sorbing solutes applicable for two-

or three-dimensional flow in heterogeneous formations is presented. Coupled with Lagrangian

formulation of the transport, this approach provides a way to evaluate the particle displacement

moments for kinetically sorbing solutes.

Let Zt denote the binary (indicator) process defined as follows:

0 particle attached to the solid matrixZt = 1 particle travels with the fluid (8)

where t > 0 and Zt will be modeled as a time-homogeneous stochastic process. Specifically, 7-.t

is a two-state Markov process with state I indicating the particle is in the fluid phase and state



0 that it is in the solid phase. VaUochi and Quinodoz (1989) in their numerical simulation study

employed the two--state continuous Markov chain to generate the fraction of time step d t from

the four conditional probability distributions (see also Keller and Giddings, 1960). The

extension of their work is reported by Andricevic and Foufoula--Georgiou (1991), who

employed the two-state Markov chain as a subclass of a more general birth and death process

which may be used for multi-component solute transport and modeling bioremediation activity.

Recently, Selroos and Cvetkovic (1992) employed the solute flux approach with particle

tracking technique to simulate breakthrough curves for kinetically sorbing solutes. In contrast

to above numerical studies, we present a closed-form derivation of the fast two moments of the

fluid residence time distribution for any time instant t, t > 0 as a direct function of reaction rates.

This will allow the derivation of the first two moments of the particle displacement undergoing

the non--equilibrium sorption described with linear kinetics.
I

During each "visit," a particle stays in the fluid or solid phase an amount of time, co,which

is exponentially distributed as

f_toi) = kiexp(- k/oi),to i > 0;i = 0, 1 (9)

where k/denotes the reaction parameters as given in (2). The probabilistic description of this

two-state process is given by the following Kolmogorov differential equation

dPiJdt = 2j_leii_l(t) + l.tj+ lPij+ l(t) - (2j + l_j)Pio(t) (10)

where i = 0,1 andj = 0,1 are the states of the process and Pij(t) denotes the transition probability

that process is at state i at time t, given that it was at statej at t = 0. For the two-state chemical

process as described in (2), the parameters are 21 = kl, 2o = 0, ,uI = 0, and,uo = k2. With this

parameter description, the above Kolmogorov equations can be easily solved (see Ross, 1985)

yielding the transition probability matrix P whose elements are:

kl k2
Poo(t)- kl+ k2 + kl+ k2exp[-(kI+ k2)t] = IlK d + exp(- Rk2t)] (11)

Pl1(t)_ klk2+k2 + klk1+k2exl_[-(/q+ k2)t]= 111+ Kdexp(-Rk2t)] (12)

P01(t) k211 - exp[(kl + = - -

kl
[1- exp[-(k 1 + k2)t]] = _-_d[l- exp(- Rk2t) ] (14)Plo(t) - kl+k 2



The above transition probabilities represent the probability of transitions across the

solid-surface interface and it is of interest :o analyze their temporal behavior. It has been shown

that after the solute particle has been introduced in the porous formation with availability of

exchange sites, the relaxation time for the first attachment of the adsorbate molecules on the solid

interface is of the order between 10 and lO01,sec (e.g., Ruzic, 1987). This results in reaching the

stationary transition probabilities quickly, particularly in the field-scale transport problems.

Mathematically, this can be written that after enough transitions across the solid-fluid interface,

the following limiting probabilities are reached

kl Kd
Poo(t)-_Plo(t)--*po--*kl +k 2 :*.-_-- k2t > 2 (15)

k2 _ 1 k2t > 2 (16)
Pll(t)--_P°l(t)"_Pl"_k I +k 2 R

where P0 and Pl are the elements of the stationary probability row vector _ of unconditional

probabilities of the particle being in fluid and solid phase, respectively. It can be easily shown

using (11)-(14), (15), and (16) that the stationary vector _ has the unique and non-negative
solution of the form:

PP = P[PoPoo +PlPIo ; PoPol +Plell] (17)

Differentiating the first element of the row vector _ from the above and using (1O) yields

aPo - kip1 - kzPo (18)at

which demonstrates the full analogy (3) if unconditional probabilities P0 andPl are substituted

for the S and c, respectively. Note that the above stationary probabilities, in the field-scale

transpor, problems of the kinetically sorbing solutes, are reached rather quickly. In the

probabilistic terminology it means that the process is of very short memory and the initial state

(e.g., when and how is the solute introduced in the aquifer) of the sorbing particle quickly

becomes irrelevant. Figure 1 shows the necessary time for attaining the limiting probability for

three differentKd values as a function of the wide range of the dimensionless time k2t. It is clear

from Figure 1 that for all practical purposes the dimensionless time k2t > 2 will guarantee near

limiting probabilities. The stationafity of transition probabilities is reached even sooner for

Kd > 2. Furthermore, since the focus of this study is on the large-scale transport in the natural

formation, the limiting probability and stationarity condition for the kinetic process almost

always prevails. This results from the fact that the time sckle of the kinetic process is several

orders of magnitude smaller than the time scale of the regional transportproblems. Andricevic
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and Foufoula-Georgiou (1991) defined the counting process N(t) of transitionsacross the

solid-fluid interface,asanindicatorof the speedof thekinetic processwiththe expectedvalue

(N(O) equal to k2Kd#R.They demonstrated throughnumericalexperimentsthat the limiting

probabilityof the kinetic processis reachedafteronly severaltransitions(e.g., 3-4), and inthe

naturalaquifersthis happenson the time scale much smaller than the transporttime scale of

interest (e.g., for relatively slow rate k2 = 0.01(hr"Z),it is easy to demonstrate thata single
sorbingparticleintroducedinto thegroundwaterat time t = 0 will reachk2t> 2 in 9 days, which
in termsof the field-scale transportmay still be consideredas a short transporttravel time; in

practice, the plumeoften has not yet been discovered).

Besides its direct applicabilityin the field-scale transportproblems in the stationary form,

(18) can be also used for studying the small-scale or laboratory experiments. However, in that

10



case, the unconditional probabilities P0 and Pl are time dependent and should be evaluated

throughpropagation in time by knowing initial conditions, i.e., when and how the sorbing solute

was introduced into the porous medium. These type of problems (e.g., laboratory column

experiments and small-scale field tracer tests) are not considered in this study.

If the interesting increment of time extends from 0 to t, we define the fluid residence time

(traveling with the fluid) t,(t) as

t

t,(t) = f Zrdr (19)
t"0

where the Zt is a binary process as defined in (8). The expected value, (t.(t)) can be obtained by

taking the expected value of (19)

!

(t,(O) - ](Zr)dr (20)
t-O

Since _ is a binary process

t !

(t,(t)) = Prob[Zr = 1}dr = pldr kl +
t-O t-O

where R = 1 + Ka is the retardation factor. Therefore, after the stationarity is reached, the mean

displacement is linearly related to the time with slope of R'-1. However, before the stationarity

is reached, the mean displacement is nonlinearly related to time and reaction parameters

(Quinodoz and Valocchi, manuscript submitted 1992), since the evaluation of Prob[Za = 1]

involves the transition probabilities. This early time-scale characteristic of the kinetic process

may be important in the laboratory column experiments and in some small-scale field tests, but

its impact on the regional transport characteristics and macrodispersion is becoming negligible

when the stationarity prevails. Thus, using (21), the fast term in (7) represents the displacement

second moment of the sorbing solute particle satisfying the local equilibrium condition.

The second moment of the fluid residence time is of particular interest to this study because

it is precisely this'variability that causes the increased spreading and tailing of the contaminant

plume. Applying the variance operator to both sides of (19) yields

11



t I

Var[t,(t)] ffi a2,(t) = f f ¢o_Zr, Zr']a'rdr° (22)
r-O r'--O

where Cov denotes the auto--covariance of the binary process 74. The above expression is

evaluated in the Appendix and takes the f'mal form

2k2kl [(kI + k2)t- 1 + exp[-(k I + k2)t]]o (t)= +k2)4
(23)

, _ 2Kd [t-R-_2[l-exp(-
]

- Rk2t)]j

Thevarianceoft,showsthesymmetryofklandk2.ThisimpliesthattheVar[t,(t)]isequal

toVar[t- t,(t)].Inotherwords,we canstatethatregardlessofthemagnitudeofreactionrates,

thevariabilityaboutthemean timespentinthefluidorsolidphaseisthesame.

ItisalwaysofinteresttoexaminetheVar[t,(t)]forsmall-andlong-timelimit.Consider

firstthebehaviorforthesmall-timelimit.Expandingtheexponentialin(23)aboutt- 0 upto

the second order yields

2klk2 [(k l+k2)t-l+l-(k l+k2)t+l(k l+k2) 2t2]var[t.(t)]--. +/,2)4 l_ ,J

(24)

_ klk2 ,,t2 - Kdt2
-" (kI "4"k2)2 R 2"

indicating that the standard deviation of the small-time limits of the residence time is

proportional to the time.

The long-time behavior is more interesting, particularly when travel time distribution

analysis is needed for the environmental regulatory standards. Taking the limit in (23), the

exponential term and singleton 1 arc rendered insignificant, yielding

2klk 2 2/(d

Var[t,(t)]--_(k I + k2)3 t - R3]C2t (25)

The standard diviation of the residence time for the long-time limit seems to obey a t1/2

law, similar to that of the Brownian motion. In Figure 2, the first two moments of the residence

time distribution and the coefficient of variation (CV) areplotted in the dimensionless form for

Kd = O.1 (Figure 2a), Ka = 1.0 (Figure 2b), and Kd = 10 (Figure 2c). The mean residence time

12
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is normalizedwith (t,)k2 such thatit is representedwith a straightline of the slopeequal to 1/R.

The standarddeviation of the fluid residencetime is normalized with ot.k2,and forlargevalues

of theargumentk2tshows a growthproportionalto _, while close to zeroitbehavesproportional

to t. It is interesting to note thata pointwhen or.begins to grow proportionalto _ (likeBrownian

process) is aroundkzt > 2, which corresponds,as we have seen fromFigure 1, to a point when

limitingprobabilitiesarereached.TheCV of the randomprocess t,(t) maintainsapproximately

a constant value of limt-,®CV--V/_a for k2t > 2, and decays proportional to

t_ 2T(limt-,® CV = v/2Kd/Rkz t_)for kzt > 2. Figure 2 also indicates that the random

process t,(t) is underdispersed (e.g., more regular process) after limiting probabilities are
reached.

LON,._ITUDINALPLUME SPREADING

The expression for the second moment of the particle displacement (7) shows that the

variance of the fluid residence time 0`t2.is a driving force for the plume increased spreading

resulting from non-equilibrium processes. In fact, by allowing o'_.to approach zero, (7)

approaches the solution for the second moment of the particle displacement satisfying LEA.

Analyzing the long-time limitsof the fluidresidence time variance, it can be shown that the 0̀ 2i.

will go to zero only when k2becomes verylarge (keeping Kdconstant)

r I In]lim lime2 - lim t = 0 (26)
Jh-"_-" ® Lt'-,'® ®

Inthe case for k2< oowith large traveltime,the residencetime varianceapproaches (25), which

exhibits the linear growth of the residencetime second moment.

Therefore, the spatial distributionof the kinetically sorbing particleat the field scale is

affected by two major mechanisms.One is the non-equilibrium sorptionprocesswhich results

fromthe variability in fluid residencetime and the other is the spreadingcaused mainly by the

spatial variability of the velocity field, which in turn is caused by the spatial variability of the
hydraulicconductivity in the three-dimensionalspace. If the formation hydraulicconductivity

can be characterized following a log-normal distribution, Y = InK, with constant mean and its

stationary isotropic covariance functionof the exponential form.

Cy(i,f) = 0`_[1- H(r)]-6 o_,exp(- r2/X2) (27)

14



where o_ represents the small-scale variability (the nugget effect), H is the Heaviside step

function, o} is the variance attributable to the spatial separation, _. is the integral scale of the

hydraulic conductivity. Although this representation neglects the aquifer anisotropy, for the sake

of simplicity and illustration purposes, we shall adopt in this study the isotropic type of the

exponential correlation in (27).

After mean displacement, (X(t)) = U(t,), the other most informative characteristic of the

transport of the kinetically sorbing particle is the second moment given in (7). Using the fluid

residence time variance (23), horizontal flow U(U,00), and derivation for the first term in (7)

obtained by Dagan (1989, p. 315) modified by considering (21), we obtain the clos'_d-form

solution of the dimensionless displacement second moment for kinetically sorbing solutes in a

three-dimensional heterogeneous aquifer:

x,,(o 1 oxp-xh(e) = ,_2 ffia-r[.w- R(_o)2 _ (28)

+a}2_ 2 t,+t,-Y t,-r

and for the two-dimensional isotropic transport in the horizontal plane

X"(t)_2 R'_2Kd[_- ,I,,,,I exp( Rt'¢o)]]x'_(t')= = R,,..)2[- -
(29)

•
where gi denotes the exponential integral, E = 0.577.. is the Euler number, and dimensionless

variables t ° and ¢.0are

t'= I._ ; ca = k2b (30)

where ¢0is an index for the non-equilibrium sorption. The magnitude of this index determines

the importance of non-equilibrium over the LEA solution. Note that ca depends not only on the

desorption ratecoefficient k2 but also on the meanheterogeneity scale residence time (t,t= R/U),

such that itcan be seen as a field-scale version of a Damkohlernumber,which is here detem_ined

by the ratio of the heterogeneity scale residence time to the reaction time and, as such,

15



characterizesthe degreeof non-equilibrium in heterogeneous formations.The meanresidence

time of the heterogeneityscale can be explained as a time the soluteparticleneeds fortraveling
one aquifer heterogeneity correlation scale (correlation scale of the InK field). Damkohler
numbers have been used in the past extensively to evaluate LEA validity criteria (Rao and

Jessup, 1983; Jennings and Kirkner,1984;Valocchi, 1985;Bahr andRubin, 1987;Brusseau et

al., 1989). All of these studieswereconcentrated on one-dimensional homogeneous systems

and/or laboratorycolumn experiments which can be described by the advection--dispersion

equation (ADE) with constant dispersivity.As a direct consequence, in those studies, the

Damkohler numberindicated that farfromthe source the non-equilibriumeffectsare lost and

transport approaches LEA solution, For field-scale applicatiofis, the ADE with constant

dispersivityis notan appropriatemodelunlessthe domainsize is not sufficiently largecompared
to the heterogeneity integral scale. In the presentstudy, the development leading to coin (30)

captures the three-dimensional field-scale behavior of sorbing solutes in a spatially variable
flow field.

Figure 3 represents the dependenceof the three-dimensional X_l and t' for a range of

values of the non-equilibriumindex(ca= 0.1 - 10),with the LEAsolutionandthenon-reactive

case also presentedfor acomparison.Noticethatthenon-reactivecase is reachedwhen k2 and
Kd go to zero in (28) and(29), Figure3a displaysthe case for Kd= 0.1, Figure3bthe case for

Kd= 1, andFigure3c the case forKa = 4. In all threecases thereis clearadditionalspreading

asaresultof non-equilibriumsorption.As expected,byincreasingco,thelongitudinalspreading

approachestheLEA solutionandasymptotically(28) and (29) equals theLEAwhen ¢o-_ oo.
However, for all practical purposes,the longitudinalspreadingforco> 10closely follows the

LEAsolution,andmay be consideredasa pointwhen non-equilibriumeffectsareunimportant

in thedirectionof themeanflow.Thiscriterionis in generalagreementwiththe previousstudies

of one-dimensional homogeneous systems reportedby Rao and Jessup (1983), Jennings and
Kirkner(1984), Valocchi (1985), Bahr and Rubin (1987) and Brusseauet al. (1989). The

importantdifferenceis, however,thatthefield-scale Damkohlernumbercois nowobtained as

a functionof the correlationscaleof the ink field. The consequenceof this formulationis that

theincreasedspreadingof thekineticallysorbingsolutesis continuouslypresentforlargetravel

times. Thus, the non-equilibrium sorption in longitudinal direction depends on the

heterogeneityscale of thenaturalaquiferformationsuchthat thelargerthelnKcorrelationscale,
thesmallerthe influence fromthekineticallysorbingsolutes.Theaccurateestimationofthe InK

correlationscale in the field-scale transportstudies is of major importancenot only from the

point of modelingconvection anddispersion,butalso fromthepointOfassessingtheimportance

of non-equilibrium processes. The choice of problem dimensionality may have strong

16



Re1.1,ovf=!.O
O0

:, ;,/: :,.."
• e s ,_/_ - S eo

,mm--. ' ' "' _ J'*ee

X ..........t .." ,'_/'.*"

__._=, .." ,,_'_,._."

' ./8

...... LEA ' .._/. _'"

',__ J.""-.;,
' * ,,'e

/_aJa/i ." "" "'* ................A ...........................•.......

10

o
o 1o Io N 4o

tUn.

pl=ll,ovt=l.o

--.-- Nml_l'uwllvo(Ihl) .."
...... m4.l ..' ,''""- .....,, : /.,. ]
--- -=1 ." / ," .'/

W .....mlO ," / .," ,- -"l
j* / .e . de *"' /

_'X ," / -"" ""'-"" ._"
.,' / .," ,.." .,..- .._'--

....-/..._i._-
•"I ..-",:_,-/.,.."

.._. - "..._-',;,, -

o 10 lO N 4O
tun.

Io _ ......... . _ ,..... , _ _ ,, ......... _ , _ ....

" i""."_
:::=

4e ..... mlO

_'_n ---t ....

/J..... ..... ..., -.:....-.?._ ._....
, __"_'_, ,,

O 10 20 N 40

,

Figure3. LongitudinaldisplacementvarianceX;l; (a)K4=O.I;(b)K4=l.0;(c)Kd=4.

17



implications on the importance of non-e,quilibrium effects. If the field-scale problem has

domain size of the order of the aquifer depth in the vertical direction and of the similar size in

the horizontal plane, the correlation scale of InK is found to be in few available field studies of

the order of meters. In such cases, the non--equilibrium index w may easily take values below

1, resulting in the strongly increased plume spreading. In contrast, the regional-scale efforts

where the InK is averaged venicaUy yielding the transmissivity as a point variable, the

correlation scale has been found (Hocksema and Kitanidis, 1985) to be of the order of

kilometers. At this scale, the importance of non-equilibrium effects, in the longitudinal

direction, may sooner diminish to the point that the LEA solution is an acceptable one. Note that

the above discussion isnot limited only to the chemical non--equilibrium, but also applies in the

case of physical non-equilibrium processes, when mass transferresistance can be approximated

by the f'u'st-orderkinetics.

Figures 3a, 3b, and 3c also indicate the influence from the retardation factor upon the

longitudinal spreading. For strongly sorbing solutes, the non--cqulibHum effects are less

pronounced compared to the case of IQ = 1. The similar conclusion can be made for the case of

the weak retardation (Kd = 0.1 - Figure 3a). This indicates that the LEA model is more likely

to be violated for the transport of solutes whose distribution coefficient is around one.

Since the focus of this study is at the transporton the large scale, the long-time limits are

of particular interest to analyze. For t' --,, oo we obtain

Tyff + 2a2R2xd' (31)

The long-time limits show the influence resulting from the non--equilibrium sorption as

a result of the magnitude of the first term in (31), which is a function of the non--equilibrium

index ¢o.It is clear that when ¢o_ ,o, the LEA solution is obtained and for practical purposes

the accurate assessment of _ is needed before any statement about the importance of

non--equilibrium processes is made. Note also that the additional spreading coming from the

non--equilibrium sorption is additive to the LEA spreading, but only as X_l approaches its

asymptotic limit.

Thus, the impact of non--equilibrium processes in the natural formations depends not only

upon the reaction rate parameter and mean velocity, but also on the retardation factor, correlation

scale of aquifer heterogeneity, and the degree of aquifer heterogeneity. These results support

observations by Valocch| (1989) who observed that the deviation from the LEA solution depends

on the vertical spatial variability of the pore-water velocity. This study provides a way to

!
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quantify the non-equilibrium effects resulting from the spatial variability in hydraulic

conductivity and temporal variability in the fluid residence time in terms of the Lagrangian

description of particle displacement moments. With this approach, the importance of
I

non-equilibrium sorption is presented as a function of the correlation scale of the InK field,

introducing the index, w, as a measure of LEA applicability in heterogeneous aquifer systems•

However, although ¢oappears to be a simple criterion for LEA validity, its determination in the

field settings is far from an easy task. Being dependent on ,_ and mean velocity U, its

determination is subject toerrordue to the erroneous estimation process for the correlation scale

of the hydraulic conductivity in field settings. In fact, one can argue that aJ is by no means a

cohstant variable for the field-scale transport (due to ever changing data availability for

estimating Aandchoice forthe scale of a domain size) resulting in potential problems in defining

whether the non-equilibrium is important in natural formations.

Transportdescribed using the LEA can be adequate for fast adsorption and desorption rates

relative to the rates of concentration changes. For slow desorption processes (e.g., in case of

organic chemicals), the mean velocity has to be decreased or correlation scale increased (inother

words the residence time within one heterogeneity scale increased) to achieve sorption

equilibrium. Furthermore, the sorption equilibrium will be sooner attained if the solute is

strongly sorbing and has a higher degree of heterogeneity. These conditions are very often

violated in the field-scale problems, particularly during the pump-and-treat designs for aquifer

remediation, where induced flow field of the extraction wells can increase significantly the

velocity. This increase in the velocity may easily be sufficient to cause departures from the

equilibrium transportmodel commonly used for the pump-and-treat feasibility study (see Bahr,

1989).

EFFECTIVE DISPERSION COEFFICIENT

The effective dispersion coefficient or macrodispersion, DO.,for the non-reactive solute is

known to depend on the travel time from the source and is expected to reach the constant value

after experiencing all variations in the random velocity field. For the kinetically sorbing solutes,

besides the random velocity field, the macrodispersion should have an additional dependence

on the non-equilibrium index w and distribution coefficient Kd. This is the case, since from the

fh'si-ordcr approximation of the displacement second moment (7) and (23) the dispersion tensor

is given by
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t/R

f KdU2
ffi 1..__ ffi Rv[U(t/R - _)_ + R--_k2[1 - exp(- Rk2t)] (32)o <t) 2 dt

The first term on the right-hand side represents the dispersion resulting from the spatially

variable velocity field combined with the first moment of the fluid residence time, while the

second termis a pureincrease in the dispersion resulting from the kinetics process described with

the first--orderreversible reaction. Note that only under the assumption of the horizontal flow

aligned in x-direction, the transversal dispersion has only the first term from (32) andis affected

through the first moment of the fluid residence time. Instead of dealing with the dispersion

coefficient directly, it is common practice to introduce the dispersivity, which is equal to the

dispersion coefficient normalized relative to the mean velocity. Furthermore, we introduce the

dimensionless macrodispersivity, Aij(t), by normalizing it relative to the logconductivity
correlation scale Xas follows

DlJ(t) (33)

Figures 4a and 4b show the evolution of the dimensionless longitudinal macrodispersivity,

A 1l(t') as a function of t' for Kd= I (Figure 4a) andKd = 4 (Figure 4b). To present dimensionless

macrodispersivity as a function of the dimensionless time t', we simply divide the second

moment of the particle displacement, X_1, by 2t' and obtain the macrodispersivity with

XI1/2Ut_. Figure 4 shows that the apparent macrodispersivity grows with the travel time and

its rate of growth is a function of the non-equilibrium index to and distribution coefficient Kd.

The macrodispersivity of the kinetically sorbing solute is tending toward the constant limit

considerably slower than the LEA solution and particularly slower than the non-reactive plume

which attains its constant value in the shortest time. This slow transition towards the asymptotic

macrodispersion for the non-equilibrium transport is more pronounced for smaller ca.For the

case of Kd = 1 (Figure 4a), the overall growth of macrodispersivity is larger in magnitude and

slower than in the case of Kd = 4 (Figure 4b), which, again, indicates that for the distribution

coefficient around 1, the transport mechanism may have the strong impact from the

non-equilibrium processes.

It is also of interest to derive the closed-form expression for the asymptotic

macrodispersion coefficients, which in the case of the longitudinal direction follows from (32)

A* ffi A11(oo) ffi ._L lira Xll - + (34)
2U_.t--® R3co R
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This expression for the constant macrodispersion can be employed in the

advection-dispersion equation

a(c)
_ _ u_.V<c/+v. [a'. V<c)] (3s)Ot R

to model the transport of (c) (ensemble averaged volumetric concentration) for kinetically

sorbing solute after the plume has experienced all variations in the flow field andfluid residence

time. The elapsed time for the above ADE to become valid (and basically replace (1) and(2) with

one Fickian ADE) is usually called the relaxation time (Chrysikopoulos et al., 1992). It can be

seen from Figure 4 that this relaxation time in the case of kineticaUy sorbing solutes depends ..

strongly on the non-equilibrium index t0 and on the distribution coefficient Ka. The direct

practical importance of the constant macrodispersion coefficient and the Fickian ADE is, for

example, in problems studying the migration of radionuclides from the nuclear waste disposal

sites where the transport scale of interest is at a very large time scale and first-order kinetics

might be used to describe a mass transferresistance between the fracture plane and porous solid

matrix. In such cases, it is unreasonable to assume that the relaxation time is reached. The travel

time aspect of such a transport problem combined with the risk assessment analysis for

radionuclides (Andricevic et al., 1992) reveals the important impact coming from the

non-equilibrium processes as well as from the parameter uncertainty. In other cases of the local

scale and significant non-equilibrium effects, the relaxation time necessary for (35) to become

valid may be large, such that it is unlikely that within the one geologic unit (for which the flow

field variability is defined) the solute plume will ever behave according to the above ADE.

However, even if the asymptotic conditions are not reached, it is useful to know the converging

limits of the transport parameters.

The asymptotic macrodispersivity, A*, as a function of the non-equilibrium index o) is

presented in Figure 5 for three values of Ka. This plot clearly shows the increased

macrodispersivity (e.g., orderof magnitude) forlow values ofoJ. Note that low values of w result

either from low k2or small heterogeneity scale residence timeA/U. By increasing w, the effective

macrodispersivity does not change with non-equilibrium index, and Figure 5 indicates again,

that for _o> 10, the asymptotic macrodispersivity becomes totally insensitive to w. This limit is

equal to the macrodispersivity of the LEA solution which from (34) is equal to ¢r_/R.

THE EFFECT OF PARAMETER UNCERTAINTY

The preceding section presented the development of the spatial moments and'"

macrodispersion of the kinetically sorbing solutes in the randomly heterogeneos formation.The
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impact coming from the non-c.quilibriumprocesses is quantified using the closed-form

expressionof the f'a'sttwo moments of the fluidresidencetime. Theseexpressionstogetherwith
spatial momentsdepend,however,on a fewparameterswhich arecommonlyestimated fromthe

field data orlaboratoryexperiments.Theestimatesare subject to the uncertainty,which directly

affects the accuracy of providedtools in predictingthe concentrationplume in a given natural

formation. Dagan (1988) suggested an approach for studying the impact of parameter

uncertainty and Woodburyand Sudicky(1991) applied it to the seconddisplacement moment

of the non-reactive plume at the Bordenfield experiment,by considering the uncertaintyin the

estimates of the geostatistical parameters, namely cr_and 4. This study is focused on the

kinedcally sorbing solutesand the impactfrom the uncertainty of the reacti.v¢parameters will
b¢examined.
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Recently, investigators studied the spatial variability in the distribution coefficient Kd

(Garabedian et al., 1988; Valocchi, 1989; Robin et 8.1.,1991; Chrysikopoulos et al., 1992)

analyzing the effect such variability may have on the transportcharacteristics. In the particular

case of radionuclides, the work of Sheppard andThibault (1990) reported a detailed description

of the variability in the distribution coefficient (found in the laboratory and field experiments),

its distributional characteristics, and correlation with several soil characteristics like clay

content, soil-to-plant concentration ratio, andpH factor.Consequently, the transport of sorbing

solutes is clearly affected by the estimated mean distribution coefficient, (ha), and with the

uncertainty of such estimate, o_x,). In what follows, the effect of uncertainty in Ka on the second

spatial moment will be analyzed. The role of the non---equilibriumprocess in this case can be seen

also as a result of the mass transfer resistance between the mobile fractured void space and the

immobile porous solid matrix.

The expected value of the second displacement moment of kinetically sorbing solutes, as

a result of uncertainty in the distribution coefficient estimate, is given with

(Xij(t))- X_(t lKd)f(Ka)dKd (36)

wheref(Ka)isthepdfofthedistributioncoefficientestimate.Withthis,thevarianceofX_ is

obtainedas

II '- x;(.'' - (37

Although other parameters (e.g., U, er2r, and 2) are also subject to uncertainty (see

Woodbury and Suclicky, 1991; DaganandNguyen,1989; Andricevic et al., 1992), in this study,

we limit the analysis on examining the impact coming from the uncertainty in the mean

distribution coefficient estimate. Since this work was partially motivated by studying the

migration of radionuclides for which the strong spatial variability was documented (see

Sheppard and Thibault, 1990), the impact on the solute spreading was expected to be important,

particularly due to the strong nonlinear interactions.

Figure 6 shows the expected rate of plume spreading in the longitudinal direction, (X_I),

with 4- 2trxh error bars which form approximately the 95 percent confidence limit. The

non-reactive and LEA spreading is also plotted for the reference. The confidence limit

interpretation assumes that a posteriori distribution for Kd is Gaussian, which is warranted in
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the case of a largenumberof data.The pdf,f(Kd) is assumed,thus, normalwith mean(Kd= i)

(Figure 6a) and/Kd = 4) (Figure6b). The estimation standarddeviation, a(_,I, is assumed10

percentof the meanvalue, whichrepresentsthe very low boundestimated from thereported

variabilityinKdforradionuclidesforthesandsoil (SheppardandThibault,1990). Forthemean

distributioncoefficientKd = 1 and non-equilibrium index¢.o= 0.5, the 95 percentconfidence

limit of the longitudinalspreadingalmost capturesthe entire range between the LEA and

non-reacti-'e case (Figure6a).This reveals how sensitive the second displacementmomentin
the longitudinaldirectionis on the uncertaintyin the estimatedmean distributioncoefficient,

even for._latively small variabilityin the mean Kd estimate. However, for Kd = 4 (higher
retardation),the longitudinalspreadingenvelopes arereducedand positioned just above the

LEA solution, indicatingthatstrongly sorbingsolute besides reducing the non-equilibrium

effect also reduces the effect from the uncertainty in the parameter estimate. Although this

analysis assumes other parameters, like mean velocity, U, e_,,and 2 known with certainty,it is

easy to see what effect those parameters would have on the confidence limit. For example, by

considering error in the mean velocity estimate together with Kd (Andricevie et al., 1992),the

difference between (X_I)and X_I using (Ka)as deterministic value would be more apparent,

particularly if Kais assumed to be negatively correlated with the velocity field.

The three-dimensional transversal second moment is affected by the uncertainty in theKct

estimate (Figure 7). Figure 7a and 7b depict cases for (Kd)= 1 and (Ka)- 4, respectively.In the

case of (Ka)= 1, the second transversal moment, with its error bars, shows the strong impact

coming from the relatively small error in the K,/ estimate (u_,). Also, the plot of X_l for the

non-reactive solute indicates that in the case of sorbing solutes, the constant macrodispersion

is approached slower in the transverse direction and the 95 percent confidence limit may easily

extend over the non-reactive spreading. In the case of (Ka)= 4, the error bars are reduced and

they seem to approach the constant limit even slower. The fact that the large t' error bars are

becoming smaller is due to the independence of X22( 0o) = 2cr_,22/3on the mean velocity and

distribution coefficient. However, the error in the estimate o'_,and _ will make a significant

effect on the transversal spreading (see Woodbury and Sudicky, 1991).

In the recent field experiment at theBorden site several reactive compounds were usedand

their behavior in time and space was extensively analyzed (Roberts et al., 1986; Curtis et al.,

1986). One of their observations was related to the variability in the retardation factor foundin

the field experiment, which may be attributed to several reasons, among which is the spatial

variability in thedistribution coefficient and some non-equilibrium effects. Ball (1989), in his
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kinetic adsorption study with aquifer solids from the Borden site, reported a/Cd value for

tetrachloroethylene (PCE) of 3.1 and desorption rate k2 =0.3 d -I. Here we attempt to model the

data for the PCE plume by considering the uncertainty in the laboratoryestimate of gd and k2,

as well as their negative correlation as suggested by Brusseau et al. (1989). The uncertainty in

the Kd and k2 estimate is assumed 20 and 25 percent of the corresponding mean values,

respectively. The three-dimensional anisotropic structure of the Borden aquifer is adjusted to

the horizontal isotropy by considering factor 0.74 as a result of vertical averaging (Woodbury

and Sudicky, 1991). The mean velocity U ,, 0.09 lmJd, o2g= 0.244, and ,1.,, 5.14m are the flow

parameters as.,umed perfectly known. The field data ate also adjusted for the displacement

variance at t = 0 (experiment had a finite injection zone), which for the bromide tracer was

estimated by Freyberg (1986) as 1.8m2.

Therefore, the function J[Kd, k2) of the parameter estimates now is the two-dimensional

joint pdf between gd and k2. The expected value and the variance of the second moment of the

panicle displacement are obtained using (36) and (37), with the pdff(Kd, k2) assumed jointly

normal. The integration over the two-dimensional parameter space is performed numerically

using the Gaussian quadrature.The final result is presented in Figure 8 and compared with field

data points for the PCE plume. The longitudinal spreading and field data points are presented

i,_the dimensionless form to be consistent with the previous presentations. Figure 8 shows how

strong an impact the uncertainty in the Kd and k2 estimates can have on the second spatial

moment. The reason for this can be seen from the highly nonlinear interactions gd andk2 have

in (28). The errorbounds arc again equal to :t:20 and may be seen (under the assumption of the

Gaussian aposteriori process) as confidence limits. Almost all datapoints are within those limits

except one outlier at the early time of t = 85days.

CONCLUDING REMARKS

In this work, the macrodispersion charar.'e.ristics for kinetically sorbing solutes are

analyzed. The probabilistic model is developed and coupled with advective transportto obtain

closed-form expressions for the first two moments of the panicle displacement. The effect from

the uncertainty in estimating the mean distribution coefficient Kdupon the second displacement

moment is examined. The theoretical developments and presented results reveal the following

characteristics of transport of kinetically sorbing solutes in the field scale:

1. Coupling advective transport with the first two moments of the fluid residence time

provides a way to obtain the closed-form expression fordisplacement moments and

asymptotic macrodispersion tensor. The solute plume spreading results from the

spatial variability in the velocity field and the temporal variability in the actual time
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Figure 8. The expected longitudinal displacement variance with error bars (2o) resulting
from the variability in/Caandk2 for the PCE plume in the Bordenfield experiment.
Solid line represents the model with parameter uncertainty and diamonds field
data.

the particle stays in the mobile fluid phase while being transported by groundwater.

The non-equilibrium index w = k:_/U is introduced, which can be considered as

field-scale Damkohler number, since it relates the reaction time k2 to the residence

time of the aquifer heterogeneity scale,I/U.

2. The importance ofthe non-equilibrium sorption at field scale depends not only upon

themagnRudeofthereactionrateparameter,butalsouponthecorrelationscaleof

the/aftfieldA,theretardationfactor,andvarianceoftheInfffield.

3. The longitudinal spreading of the ktnetically sorbing plume shows an increase

compared to theLEA model, however, for ca> 10, for all practicalpurposes, theLEA

model can be used for spreading estimates in the direction of the mean flow.
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4. The magnitude of' the asymptotic macrodispersion is a funcdon of the

non-e,quilibriumindex o_ and may increase significantly by decreasins w. The

relaxationtime needed for macrodispersionto reach its asymptoticlimit is highly

sensitiveonthe_ andKd,andmay beverylargeforthe smallerw. This is particularly
evident forthe cases of thedistributioncoefficientKa aroundI.

5. Due tothenon-linearinteractions,theuncertaintyinestimatingreactionparameters

(Kd and 12) has a strong impact on the expected value of the spadal moments,

particularlyon the momentof inertia.For the smallerw, the effect of the parameter

uncertaintyon the second displacementmoment may be very significant. When
comparingwith the fielddata,theparameteruncertaintymay play a dominantrole.
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APPENDIX

DERIVATION OF THE SECOND MOMENT OF THE FLUID RESIDENCE TIME

The variance of the fluid residence time is formulated in (22) and the evaluation of the

auto_ovariance Cov[Zr, Zr,] is the first step. Since Zr is a stationary, binary process, we have

(Zt) = Pl, such that

(z,z,,)= erob[Z,= I nz,, = 1] (3s)
If r s f',the above becomes

(Z,Z,,>- Pro_X,= 11Pro_Z,,- 1, Z, = 1],-plP_l(_°- ,) (39)
f

and by setting lr s lr', the above solution is reversed to yield ptPtlOr - T'). Therefore, the

general auto-covariance of the binary process can be evaluated with the following expression

Cov[Z,r,Z,,] = (Z,Zr0) - (Z,)(Z,,) - p1Ptl(hr - lr'J)- PlPl (40)

Combining (12) and (40), we obtain

Co_Z,:,Z,r'] - P,[Pl + Poexp( - Rk2 hr - lr'I)]- pip, = PoPl exp(- Rk 2 hr - r°l) (41)

Then, substituting the above in (22) yields

# t !

o2.(t)=poptIIexI_-Rk2}r-¢l_trdr'=2Jo(t-_)ex_-Rk2T_tr (42)1[ m0f' ii 0 lr

Using the substitution x = t- T, the above can be rewritten as

! t

°2"(t)= R"_'j2Kdf xexp(- Rk2(t - x))dx = _-_exp(-R Rk2t)_j xexp(Rk2x_ (43)

Integrating by parts, the last integral from above can be analytically solved yielding

which can be further rearrangedto yield

2A'.!"

which completes the derivation of the variance of the fluid residence time as given in (23).
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