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ABSTRACT

Expressions for the spatial moments and macrodispersion tensor for sorbing solutes in
heterogeneous formations were presented using a probabilistic model of a fluid residence time
coupled with the particle posmon analysis. The fluid residence time was defined as a fraction
of the actual time during which the particle stayed in the mobile fluid phase of the aqulfer The
fluid residence time is a random variable whose variability comes as a result of the
non-equilibrium sorption properties. The sorbing solute was assumed to be governed with
first—order linear kinetics. The closed—form expressions were based on the stationarity in the
kinetic process and on the first—order approximation in the hydraulic conductivity field and in
the fluid residence time. The non—equilibrium effects were presented as a function of the spatial
variability in hydraulic conductivity and temporal variability in the fluid residence time. The
importance of the non—equilibrium processes in the field scale was found to be dependent on
reaction rates, retardation factor, mean velocity, and on variance and correlation scale of the
hydraulic conductivity. The time needed to reach the asymptotic macrodispersivity is dependerni
on the degree of non—equilibrium processcs and distribution coefficient. The impact from the
uncertainty in parameters upon the spatial moments was examined and compared with the

organic tracer used in the Borden field experiment.
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INTRODUCTION

To accurately predict the movement of pollutants in natural formations is necessary to
develop effective strategies for groundwater quality management and restoration programs.
Solute transport by groundwater results from complex interactions between physical, chemical,
and biological processes occurring in natural aquifers. A solute partitioning between solid and
fluid phase, such as surface chemical reaction, is one of the most important processes influencing
the fate of many pollutants. On a microscopic scale and in laboratory experiments, this sorption
mechanism has been extensively studied and, although complex in nature, has been reasonably
well understood for predictive purposes. The common approach in simulating the transport of
reactive solutes is to consider either local equilibrium assumption (LEA;) when reaction rates are
much faster than the fluid flow rate, or first—order non-equilibrium models. The wide use of
LEA models was prompted mainly because of significant mathematical simplifications,
however, many researchers pointed out obvious limitations and studied important deviations of
such an assumption (Valocchi, 1985, 1988; Bahr and Rubin, 1987; Bouchard et al., 1988;
Roberts et al., 1986; Jennings and Kirkner, 1984; Brusseau et al., 1989). Non-equilibrium
processes or rate-limited mechanisms have also been examined at the laboratory scale, focusing
either on the chemical non—equilibrium (chemical kinetics) and/or physical or transport related
non—equilibrium (van Genuchten and Wierenga, 1976; Nkedi-Kizza et al., 1984; Goltz and
Roberts, 1986; Brusseau and Rao, 1989), which describes the physical resistance encour tered
by solute trying to reach the sorption sites of the porous medium as transported by groundwater.
The occurrence of non—equilibrium processes of any origin may have significant impact on
groundwater remediation efforts and on the risk assessment of radionuclide migration. The
non-equilibrium process results in much longer time for aquifer restoration because of increased
“tailing” (slow desorption) of the solute plume and the larger horizontal spreading may impact
the prediction for the water supply protective area.

Studying reactive transport at the laboratory scale is usually restricted with the
homogeneous soil and governing equations applicable for such porous media (e.g., the
advection—dispersion equation with constant dispersivity). However, the major difficulty occurs
when trying to extrapolate the findings from the laboratory scale to a field-scale problem. The
field data analysis from the Borden aquifer revealed the difficulties in interpreting the reactive
solute transport (Roberts et al., 1986; Curtis et al., 1986) which was attributed to the spatial
variability of the porous media and non-equilibrium behavior. Valocchi (1989) applied the Aris
method of spatial moment analysis (Aris, 1958) to the perfectly stratified aquifer and observed
that LEA validity depends on the spatial variability of pore-water velocity, as well as the reaction
rates.



It is now generally accepted that spatial variability in hydraulic properties of natural
aquifers has a strong impact on the solute plume movement (e.g., Dagan, 1982, 1984; Gelhar
and Axness, 1983). In addition, the sorption mechanism, regardless of its origin (chemical or
physical), also affects the solute movement and may significantly alter the transport
characteristics. It is, therefore, of great practical interest to understand the field—scale transport
properties of the-solute undergoing sorption in conjunction with the spatial variability, of aquifer
properties. Several numerical simulation experiments recently examined some impacts of the
kinetically sorbing solutes on transport characteristics at large scale (Valocchi and Quinodoz,
1989, in a one-dimensional case; Andricevic and Foufoula-Georgiou, 1991, for stratified
formations; and Selroos and Cvetkovic, 1992, for two—dimensional heterogeneous formations).
The solute flux approach (which provides one-dimensional mass breakthrough curves by
integrating over the plane perpendicular to the mean flow direction) coupled with kinetically
sorbing solutes was employed by Cvetkovic and Shapiro (1990) for a saturated medium and by
Destouni and Cvetkovic (1991) in an unsaturated medium. Sposito and Jury (1988) studied a
movement of sorptive solutes using the concept of the lifetime probability density function in
heterogeneous porous media and Chrysikopoulos et al. (1992) employed Taylor—Aris—-Brenner
moment analysis to derive the macrodispersion tensor for solute transport with spatially periodic
retardation factor and velocity field.

The main focus of this paper is on the solute particle displacement moments and
macrodispersive characteristics for kinetically sorbing solutes in a heterogeneous porous
formation and large—scale problems. The probabilistic model is presented and coupled with the
Lagrangian description of the particle displacement to obtain closed—form expressions of the
first two spatial moments. The uncertainty in the reaction parameter estimates is considered and
its impact on the spatial moments is investigated. The presented results assume (but are not
limited to) the uniform mean flow, isotropic heterogeneity of the aquifer, and first—order
approximation in hydraulic conductivity variance. The non—equilibrium effects are presented
as a function of the spatial variability in hydraulic conductivity and temporal variability in the
fluid residence time. The LEA validity for the field—scale problems is analyzed and a
non-equilibriumindex is introduced which can be seen as a field—scale version of the Damkohler
number. The importance of the non—equilibrium processes in the field scale is found to be
dependent on reaction rates, retardation factor, mean velocity, and on variance and correlation
scale of the hydraulic conductivity. The presented approach is also applicable in the case of
transport related nonequilibrium processes if they can be approximated by first—order kinetics.




BASIC TRANSPORT FORMULATION

We assume that the solute undergoes transport by convection by steady groundwater
velocity, by dispersion, and by non—equilibrium sorption described with the first—order
reversible linear kinetics, i.e., c(x,t); the volumetric concentration (species mass/fluid volume)
satisfies the macroscopic mass balance equation

a(0 a(os)
.La‘c_) + V-V(@0) = V- [DyO)] - T2 1)
X0~ ky@0) ~ kylos) = kofkdec) ~ (09)] @

where s is the adsorbed species concentration (species mass/solid mass); @ is the bulk density
(solid mass/aquifer volume); @ is the porosity (fluid volume/aquifer volume); Dy is a
hydrodynamic dispersion tensor (each entry has units L%T); k; is the forward rate coefficient
(T-1); ky is the reverse rate coefficient (T-1); ky is the equilibrium distribution coefficient (fluid
volume/solid mass); V(x) = (K/8)Vh is Eulerian seepage velocity (L/T) in space coordinate x;
K is the hydraulic conductivity; and A is the hydraulic head. Note that parameters ¢ and 6 are
introduced in (1) by passing from the mass balance equation at the microscopic scale to the one
at the macroscopic scale by performing either spatial averaging (e.g., over the representative
elementary volume (rev) (Bear, 1979)) or ensemble averaging over the number of realizations
of the porous media. A common approach is to consider the spatial variability in the hydraulic
conductivity as a dominant aquifer spatial variability, and to assume g and @ to be constant in
(1). Dividing, then, (2) with 8 and assigning S = @s/@ as a transformed adsorbed phase
concentration with same units as c, the first-order linear rate reduces to (Velocchi, 1989)

8 = ke - kS = kfKe-S) €)
where K; = (0ka/6) = ky/k; is the dimensionless equilibrium distribution coefficient. Although
simple, with respect to the complex chemical and physical reactions occurring at the solid-fluid
interface, the first-order linear rate expression in (2) and (3) is a reasonably accurate
approximation of the more complex non-equilibrium models based on diffusive transport
between mobile and stagnant fluid zones (Nkedi—Kizza et al., 1984; van Genuchten, 1985;
Parker and Valocchi, 1986). The raie law (3) approaches the local equilibrium condition with
the linear adsorption isotherm, S = K¢, when the reaction rates, k; and k3, approach infinity at
constant Ky (Jennings and Kirkner, 1984). In this case, the reaction rates are fast relative to the
rate of concentration changes resulting from the transport mechanism (convection and
dispersion). Then, the LEA can be used to solve (1), yielding essentially the same formulation




as in the non-reactive case with velocity (or time) scaled by retardation coefficient R = 1 + K.
The simplicity of this formulation attracted many researchers to widely use the LEA for
modeling sorptive solute. Since the LEA is an approximation, its use may easily result in
erroneous prediction of the plume movement having serious consequences, particularly in the
aquifer remediation programs. The usual concern about validity of the local equilibrium comes
Trom the fact that under conditions of steady or transient groundwater flow and estimated actual
speed of chemical reactions for given solute, the contact time available to achieve sorption
equilibrium may be insufficient. The other reason to cast doubt on the validity of the LEA,
particularly in the field—scale problems, is a fact that after averaging over space or over an
ensemble of realizations, the macroscopic mass balance equations (1) under LEA assume that
the rate of concentration changes due toreactions is fast (instantaneous) over the entire averaging
volume, i.e., the LEA implies its validity over the entire size of REV. Although frequently
overlooked, this condition is seldom satisfied in modeling field—scale transport problems.

The occurrence of non—equilibrium processes may have significant impact on delineating
groundwater contamination and aquifer remediation efforts. For example, during the
pump-and-treat activity, the induced flow field may easily cause nonequilibrium processes to
become significant, resulting in much longer time for aquifer restoration due to the increased
“tailing” (slow desorption) of the solute plume. Determining the impact of non-equilibrium
sorption on the solute transport in two— and three-dimensional heterogeneous aquifers is the
main goal of the present study.

A common approach for solving (1) and (2) is to follow the Eulerian framework, which
considers ¢ as a dependent variable in a mass balance equation. Along these lines, several
techniques have been applied: analytical solutions for homogeneous aquifers using suitable
transformations (van Genutchen and Wierrenga, 1976; Cameron and Klute, 1977; van
Genutchen, 1981; Rao and Jessup, 1983; Valocchi, 1985; Goltz and Roberts, 1986; among
others); Taylor-Aris method of moments for evaluating temporal and spatial moments of the
fluid—phase concentration (Sudicky, 1983 and Guven et al., 1984, for non-reactive solute; Goltz
and Roberts, 1987, for homogeneous aquifer and non—equilibrium models; Valocchi, 1988,
1989, for kinetically sorbing solutes in idealized stratified systems; and Chrysikopoulos et al.,
1992, for spatially periodic retardation factor and velocity field, solute flux approach (Cvetkovic
and Shapiro, 1990, for saturated porous media; and Destouni and Cvetkovic, 1991, for
unsaturated porous media); and numerical solutions, which usually involve integrating the
chemical reaction rate over the transport time scale (Ahlstromet al., 1977; Jennings and Kirkner,



1984; Bahr and Rubin, 1987; Brusseau et al., 1989; Valocchi and Quinodoz, 1989; Andricevic
and Foufoula-Georgiou, 1991; Selroos and Cvetkovic, 1992).

In the Lagrangian framework, the equivalent of integration over time for solving (2) is the
estimation of the particle residence time, ., in the fluid phase. A solute particle is transported
by groundwater only while residing in the mobile fluid phase of the porous media. Thus, the
 determination of the particle fluid residence time as a fraction of the actual time is crucial to
accurately predicting the solute movement. Both physical and chemical non—equilibrium
processes occurring in the porous medium will directly affect the particle fluid residence time
and therefore will make directimpact on the spreading of the solute plume. In this paper, the fluid
residence time of the solute particle will be described with a probabilistic model and defined as
a random variable which depends on reactive parameters.

In heterogeneous aquifers, the velocity field is uncertain and spatially variable resulting
from the uncertainty in the transport mechanism (estimation of parameters characterizing flow
and location of boundaries) and spatial variability of the aquifer properties (permeability,
porosity). Therefore, the Lagrangian approach for transport of sorbing solutes in heterogeneous
aquifers can be described with the motion of the indivisible solute particle in the velocity field
during the random fluid residence time, t., that a particle stays in the velocity field. In other
words, the transport of kinetically sorbing solutes is affected by spatial variability of the velocity
field and temporal variability of the fluid residence time. Spatial variability comes as a result
of tortuous pathways in heterogeneous formations, while temporal variability results from
non-equilibrium processes. We focus on the steady state velocity field V(x), in the space
coordinate x, which satisfies Darcy’s law, together with continuity equation V - V =0, and
possess a statistical homogeneity which results in decomposing V(x) = (V(x)) + v(x), where
(V(x)) = U denotes the ensemble average vector of the velocity field and v(x) is a random
fluctuation with zero mean and covariance matrix R,(x-x;), depending only on the separation
between two points. Following the Lagrangian formulation for the non-reactive solute (Dagan,
1982, 1984, 1987), the random displacement vector X(z) of the kinetically sorbing solutes can
be expressed with a modified kinematic relation

[ te

X@ = JV[X(r.)]a‘r. +X, = Ut + [ vX@)dr. +X; tost )
0

where X(1) is a three-dimensional displacement vector, Xy is the pore-scale dispersion
(molecular diffusion is neglected), and 7. is the integration variable going from 0 to t+ where
t« < t. Thus, the right-hand side of (4) is expressed in the new time variable 4 which isa fraction



of the actual time ¢. Since the particle is scrbing with the soil, the random fluid residence time
appears as an upper limit in the integration of the velocity field. In (4), the particle random
displacement is initially for ¢ = 0 at X(0) = 0 and it is permanently transported by the random
velocity field. The difficulties and possible approximative solution of the kinematic relation for
the non-reactive case (4) replacing r. with #) was extensively discussed by Dagan (1989). In the
case of kinetically sorbing solute, the additional random variable ¢, appears in the kinematic
relation.

We start our solution process with formal first-order approximation of the Lagrangian
displacement by expanding the right-hand side of (4) in the Taylor series up to the first order
around the ensemble mean fluid residence time, (ts(1)), and the ensemble mean displacement,

(X(1)), and by neglecting the pore scale dispersion; this yields

te {te)

X = Un + I v[X(z,))dre = Ups) + f v[(X(r.))]dt. +

0
e

+ 1.V, - {Uts + I v[X(z.)dr. I =gy + (5)
8 X=X
13

+ X'())Vy - 4Uts + IU[X(Tt)]dtt l tem(ty  +..
J X(0)= X))

where te = t, — (t«) denotes the fluctuations around the mean residence time, X°(¢) is the
residual displacement, and V., and Vy denote the gradient of (4) with respect to the fluid
residence time and particle displacement, respectively. The neglect of the pore—scale dispersion
coefficient compared to other terms in (4) implies that the case with large Peclet numbers is
considered. Neuman et al. (1987) have considered other cases with small Peclet numbers, but
these special cases are not considered here.

After taking differentiation, ¢, and X(t) are replaced with corresponding mean values such
that the first displacement moment, (X(#)) = U(t.), is obtained by taking the ensemble average

of (5) and assuming the independence between the random velocity field and fluid residence
time. Keeping only first-order terms, the displacement residual is, then, given with




(t+)
X'(0) = X — X)) = ] v[Ur.dr. + Ut, ©
0

The second moment of the particle displacement follows by taking the ensemble average
of X'(x')T
X0 = X&)y = (X - XOPXE — X@OPT)
{te)
=2 J [(ta) - Tt]Rv[Ur#]drt + UO',Z.(I)UT
0
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where R,[Ut,] is the covariance matrix of the velocity field for two points separated by the
displacement Uz, where 7, is the integration variable going from 0 to (t‘). The first term in (7)
is the first-order estimate of the displacement covariance evaluated at the first moment of the
fluid residence time. The second term represents the contribution coming from the kinetically
sorbing activity of the particle which follows the first—order reaction rate given in (2). These two
terms combined are the main reason for the additional spreading which occurs in the case of the
kinetically sorbing solutes. The magnitude of the variance 02, relative to the first term in (7),
will determine the importance of the kinetics process over the local equilibrium condition.

To evaluate (7), the first two moments of the fluid residence time have to be derived. In
the next section, we present a probabilistic model used to evaluate the first two moments of the
fluid residence time.

PROBABILISTIC MODEL FOR KINETICALLY SORBING SOLUTES

In this section, the probabilistic model for kinetically sorbing solutes applicable for two—
or three—dimensional flow in heterogeneous formations is presented. Coupled with Lagrangian
formulation of the transport, this approach provides a way to evaluate the particle displacement
moments for kinetically sorbing solutes.

Let Z denote the binary (indicator) process defined as follows:

0 particle attached to the solid matrix
Zt = (8)

1 particle travels with the fluid

where ¢ > 0 and Z; will be modeled as a time-homogeneous stochastic process. Specifically, Z;
is a two-state Markov process with state 1 indicating the particle is in the fluid phase and state



0 that it is in the solid phase. Vallochi and Quinodoz (1989) in their numerical simulation study
employed the two—state continuous Markov chain to generate the fraction of time step 4t from
the four conditional probability distributions (see also Keller and Giddings, 1960). The
extension of their work is reported by Andricevic and Foufoula-Georgiou (1991), who
employed the two-state Markov chain as a subclass of a more general birth and death process
which may be used for multi-component solute transport and modeling bioremediation activity.
Recently, Selroos and Cvetkovic (1992) employed the solute flux approach with particle
tracking technique to simulate breakthrough curves for kinetically sorbing solutes. In contrast
to above numerical studies, we present a closed—form derivation of the first two moments of the
fluid residence time distribution for any time instant ¢, £ > 0 as a direct function of reaction rates.
This will allow the derivation of the first two moments of the particle displacement undergoing
the non—equilibrium sorption described with linear kinetics.

During each “visit,” a particle stays in the fluid or solid phase an amount of time, w, which
is exponentially distributed as

flwi) = kiexp(— kw)w; > 0;i = 0,1 ©

where &; denotes the reaction parameters as given in (2). The probabilistic description of this
two-state process is given by the following Kolmogorov differential equation

where i =0,1 and j=0,1 are the states of the process and P; j(f) denotes the transition probability
that process is at state i at time ¢, given that it was at state j at ¢ = 0. For the two—state chemical
process as described in (2), the parameters are A} = k;, 4, = 0, 4 =0, and u, = kp. With this
parameter description, the above Kolmogorov equations can be easily solved (see Ross, 1985)
yielding the transition probability matrix P whose elements are:

Py(t) = kl’:g 5 kl’_‘f kzexp[—- (ky + kp)t] = -;%[Kd+ exp(— Rkn] (1)
P, = kll-?kz + kl’i‘ kzexp[—- (ky + k)] = %[1 + Kgexp(— Rkpt)]  (12)
Poi(t) = 71%72[1 — expl(k + k] = %[1 — exp(— Rky1)] (13)
Py = E—’}E[x — exp[— (ky + k)] = %{1 — exp(— Rky1)] | (14)




The above transition probabilities represent the probability of transitions across the
solid-surface interface and it is of interest to analyze their temporal behavior. It has been shown
that after the solute particle has been introduced in the porous formation with availability of
exchange sites, the relaxation time for the first attachment of the adsorbate molecules on the solid
interface is of the order between 10 and 100usec (e.g., Ruzic, 1987). This results in reaching the
stationary transition probabilities quickly, particularly in the field—scale transport problems.
Mathematically, this can be written that after enough transitions across the solid—fluid interface,
the following limiting probabilities are reached

k K

Poo(®) = P1o(t) = po = - +‘k2 =kt > 2 (15)
k

Pn(‘)'”’m(‘)”m—’zrf‘;; =7% kot > 2 (16)

where po and p; are the elements of the stationary probability row vector p of unconditional
probabilities of the particle being in fluid and solid phase, respectively. It can be easily shown
using (11)(14), (15), and (16) that the stationary vector p has the unique and non-negative
solution of the form:

PP = plpoPoo +P1Pr10 3 PoPor + PiPyi] 17)
Differentiating the first element of the row vector p from the above and using (10) yields

By _ 4

ET, 1P1 ~ kaPo (18)

which demonstrates the full analogy (3) if unconditional probabilities pg and p, are substituted
for the S and c, respectively. Note that the above stationary probabilities, in the field—scale
transpor: problems of the kinetically sorbing solutes, are reached rather quickly. In the
probabilistic terminology it means that the process is of very short memory and the initial state
(e.g., when and how is the solute introduced in the aquifer) of the sorbing particle quickly
becomes irrelevant. Figure 1 shows the necessary time for attaining the limiting probability for
three different K; values as a function of the wide range of the dimensionless time k. Itis clear
from Figure 1 that for all practical purposes the dimensionless time kyt > 2 will guarantee near
limiting probabilities. The stationarity of transition probabilities is reached even sooner for
K4 > 2. Furthermore, since the focus of this study is on the large—scale transport in the natural
formation, the limiting probability and stationarity condition for the kinetic process almost
always prevails. This results from the fact that the time scale of the kinetic process is several
orders of magnitude smaller than the time scale of the regional transport problems. Andricevic
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Figure 1. Temporal behavior of the transition probability Py;.

and Foufoula-Georgiou (1991) defined the counting process N(t) of transitions across the
solid—fluid interface, as an indicator of the speed of the kinetic process with the expected value
(N(1)) equal to kpK;¢/R. They demonstrated through numerical experiments that the limiting

probability of the kinetic process is reached after only several transitions (e.g., 3-4), and in the
natural aquifers this happens on the time scale much smaller than the transport time scale of
interest (e.g., for relatively slow rate k3 = 0.01(Ar-1), it is easy to demonstrate that a single
sorbing particle introduced into the groundwater at time ¢ = 0 will reach k5t > 2 in 9 days, which
in terms of the field—scale transport may still be considered as a short transport travel time; in
practice, the plume often has not yet been discovered).

Besides its direct applicability in the field—scale transport problems in the stationary form,
(18) can be also used for studying the small—-scale or laboratory experiments. However, in that

10




case, the unconditional probabilities pg and p; are time dependent and should be evaluated
through propagation in time by knowing initial conditions, i.e., when and how the sorbing solute
was introduced into the porous medium. These type of problems (e.g., laboratory column
experiments and small—-scale field tracer tests) are not considered in this study.

If the interesting increment of time extends from O to ¢, we define the fluid residence time
(traveling with the fluid) t.(¢) as

1

L) = sza‘t (19)

=0

where the Z; is a binary process as defined in (8). The expected value, (ts(1)) can be obtained by
taking the expected value of (19)

(1)) = I (Zo)dr (20)
t=0
Since Z is a binary process
! t
{te(D)) = IProb[Zt = lldr = Jp,dr = K ,‘?kzt = le-t 21)
t=0 t=0

where R = 1 + K is the retardation factor. Therefore, after the stationarity is reached, the mean
displacement is linearly related to the time with slope of R-1. However, before the stationarity
is reached, the mean displacement is nonlinearly related to time and reaction parameters
(Quinodoz and Valocchi, manuscript submitted 1992), since the evaluation of Prob[Z = 1]
involves the transition probabilities. This early time—scale characteristic of the kinetic process
may be important in the laboratory column experiments and in some small-scale field tests, but
its impact on the regional transport characteristics and macrodispersion is becoming negligible
when the stationarity prevails. Thus, using (21), the first term in (7) represents the displacement
second moment of the sorbing solute particle satisfying the local equilibrium condition.

The second moment of the fluid residence time is of particular interest to this study because
it is precisely this variability that causes the increased spreading and tailing of the contaminant
plume. Applying the variance operator to both sides of (19) yields

1




t !

Varltu(t)] = o2(t) = I I CoV|Z.,Z, Jdvdr' (22)

tm0 ¢'=0
where Cov denotes the auto—covariance of the binary process Z. The above expression is
evaluated in the Appendix and takes the final form

o%(n) = 2kaky L [(k, + ko)t — 1 + exp[— (k; + ko) t]]

G+ k
(23)
2K
= -ﬁé; [ RkZ[l - exp( szt)]]

The variance of t. shows the symmetry of k; and k;. This implies that the Var[t.(r)] is equal
to Var[t — t.(1]. In other words, we can state that regardless of the magritude of reaction rates,
the variability about the mean time spent in the fltid or solid phase is the same.

It is always of interest to examine the Var[r.(z)] for small- and long—time limit. Consider
first the behavior for the small-time limit. Expanding the exponential in (23) about ¢ =0 up to
the second order yields

2kky
Var{t.(1)] —»m[(k, k)t =141 = (kg +kJe+5 (k1 + k) %t
24
= kb o _ Kip
(ky + ko) R?

indicating that the standard deviation of the small-time limits of the residence time is
proportional to the time.

The long-time behavior is more interesting, particularly when travel time distribution
analysis is needed for the environmental regulatory standards. Taking the limit in (23), the
exponential term and singleton 1 are rendered insignificant, yielding

2%k, 2%y,

Var{t.(ﬂ]"m‘ = R3k2 (25)

The standard diviation of the residence time for the long—time limit seems to obey a t!/2
law, similar to that of the Brownian motion. In Figure 2, the first two moments of the residence
time distribution and the coefficient of variation (CV) are plotted in the dimensionless form for

= 0.1 (Figure 2a), Kz = 1.0 (Figure 2b), and Kz = 10 (Figure 2c). The mean residence time
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is normalized with (1.)k2 such that it is represented with a straight line of the slope equal to 1/R.
The standard deviation of the fluid residence time is normalized with 0, k,, and for large values
of the argument k2t shows a growth proportional to Jt, while close to zeroit behaves proportional
to. Itis interesting to note that a point when o, begins to grow proportional to //t (like Brownian

process) is around k2t > 2, which corresponds, as we have seen from Figure 1, to a point when
limiting probabilities are reached. The CV of the random process #.(t) maintains approximately

a constant value of lim_L,o,CV = ‘/1—(; for kyt > 2, and decays proportional to

Ve~1{lim, .o CV = J2K, /Rk,Vt~1) for kot > 2. Figure 2 also indicates that the random
d/ 1'%y 2 g

process t.(t) is underdispersed (e.g., more regular process) after limiting probabilities are
reached.

LONGITUDINAL PLUME SPREADING

The expression for the second moment of the particle displacement (7) shows that the

variance of the fluid residence time o2 is a driving force for the plume increased spreading

resulting from non—equilibrium processes. In fact, by allowing ¢? to approach zero, (7)
approaches the solution for the second moment of the particle displacement satisfying LEA.
Analyzing the long-time limits of the fluid residence time variance, it can be shown that the o?
will go to zero only when k; becomes very large (keeping K constant)

pm [,‘.‘.“; "'2'] = [m“;'] =0 (26)

In the case for k3 < % with large travel time, the residence time variance approaches (25), which
exhibits the linear growth of the residence time second moment.

Therefore, the spatial distribution of the kinetically sorbing particle at the field scale is
affected by two major mechanisms. One is the non—equilibrium sorption process which results
from the variability in fluid residence time and the other is the spreading caused mainly by the
spatial variability of the velocity field, which in tumn is caused by the spatial variability of the
hydraulic conductivity in the three-dimensional space. If the formation hydraulic conductivity
can be characterized following a log-normal distribution, Y = /nK, with constant mean and its
stationary isotropic covariance function of the exponential form.

Cylip) = a1 = H() + afexp( - r?/3?) 27
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where o2 represents the small-scale variability (the nugget effect), H is the Heaviside step
function, a}, is the variance attributable to the spatial separation, A is the integral scale of the
hydraulic conductivity. Although this representation neglects the aquifer anisotropy, for the sake

of simplicity and illustration purposes, we shall adopt in this study the isotropic type of the
exponential correlation in (27).

After mean displacement, (X( t)) = U(t.), the other most informative characteristic of the
transport of the kinetically sorbing particle is the second moment given in (7). Using the fluid
residence time variance (23), horizontal flow U(U,00), and derivation for the first term in (7)
obtained by Dagan (1989, p. 315) modified by considering (21), we obtain the closed-form
solution of the dimensionless displacement second moment for kinetically sorbing solutes in a
three—dimensional heterogeneous aquifer:

Xh() = ’-5%(‘—) [ —é,?[l exp(— Rtw]]

(28)
2l 2t _ 5|8 _ 4R 8R3_8R2( 5) oy
+ Oy[ZE 2[% g +-}73— _ITT 1+ e cxp( t/R)
and for the two-dimensional isotropic transport in the horizontal plane
.., X 11(‘) '
Xu(t) 12 R [“% Rl )5[1 - exp( Rt w)]] (29)

(%) - ] °""( )g?)*; )~

where Ei denotes the exponential integral, E = 0.577.. is the Euler number, and dimensionless
variables ¢’ and w are

+offob+3 - 3[&(—%) -

! = !_liq : w = kZ% (30)

where w is an index for the non-equilibrium sorption. The magnitude of this index determines
the importance of non—equilibrium over the LEA solution. Note that w depends not only on the
desorption rate coefficient k2 but also on the mean heterogeneity scale residence time (g = A/U),
such thatit can be seen as a field—scale version of a Damkohler number, which is here determined
by the ratio of the heterogeneity scale residence time to the reaction time and, as such,
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characterizes the degree of non-equilibrium in heterogeneous formations. The mean residence
time of the heterogeneity scale can be explained as a time the solute particle needs for traveling
one aquifer heterogeneity correlation scale (correlation scale of the /nK field). Damkohler
numbers have been used in the past extensively to evaluate LEA validity criteria (Rac and
Jessup, 1983; Jennings and Kirkner, 1984; Valocchi, 1985; Bahr and Rubin, 1987; Brusseau et
al., 1989). All of these studies were concentrated on one~dimensional homogeneous systems
and/or laboratory column experiments which can be described by the advection-dispersion
equation (ADE) with constant dispersivity. As a direct consequence, in those studies, the
Damkohler number indicated that far from the source the non—equilibrium effects are lost and
transport approaches LEA solution. For field-scale applications, the ADE with constant
dispersivity is not an appropriate model unless the domain size is not sufficiently large compared
to the heterogeneity integral scale. In the present study, the development leading to w in (30)
captures the three—dimensional field-scale behavior of sorbing solutes in a spatially variable
flow field.

Figure 3 represents the dependence of the three-dimensional X}; and ¢ for a range of
values of the non—equilibrium index (w = 0.1 — 10), with the LEA solution and the non-reactive
case also presented for a comparison. Notice that the non-reactive case is reached when k3 and
K4 go to zero in (28) and (29). Figure 3a displays the case for K4 = 0.1, Figure 3b the case for
K4 =1, and Figure 3c the case for Ky = 4. In all three cases there is clear additional spreading
as aresult of non-equilibrium sorption. As expected, by increasing w, the longitudinal spreading
approaches the LEA solution and asymptotically (28) and (29) equals the LEA when w —» «.
However, for all practical purposes, the longitudinal spreading for w > 10 closely follows the
LEA solution, and may be considered as a point when non—equilibrium effects are unimportant
in the direction of the mean flow. This criterion is in general agreement with the previous studies
of one—dimensional homogeneous systems reported by Rao and Jessup (1983), Jennings and
Kirkner (1984), Valocchi (1985), Bahr and Rubin (1987) and Brusseau et al. (1989). The
important difference is, however, that the field—scale Damkohler number w is now obtained as
a function of the correlation scale of the InK field. The consequence of this formulation is that
the increased spreading of the kinetically sorbing solutes is continuously present for large travel
times. Thus, the non-equilibrium sorption in longitudinal direction depends on the
heterogeneity scale of the natural aquifer formation such that the larger the /nX correlation scale,
the smaller the influence from the kinetically sorbing solutes. The accurate estimation of the InK
correlation scale in the field—scale transport studies is of major importance not only from the
point of modeling convection and dispersion, but also from the point of assessing the importance
of non-equilibrium processes. The choice of problem dimensionality may have strong
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implications on the importance of non-equilibrium effects. If the field—scale problem has
domain size of the order of the aquifer depth in the vertical direction and of the similar size in
the horizontal plane, the correlation scale of InK is found to be in few available field studies of
the order of meters. In such cases, the non-equilibrium index w may easily take values below
1, resulting in the strongly increased plumne spreading. In contrast, the regional-scale efforts
where the InK is averaged vertically yielding the transmissivity as a point variable, the
correlation scale has been found (Hoeksema and Kitanidis, 1985) to be of the order of
kilometers. At this scale, the importance of non—equilibrium effects, in the longitudinal
direction, may sooner diminish to the point that the LEA solution is an acceptable one. Note that
the above discussion is not limited only to the chemical non—equilibrium, but also applies in the
case of physical non—-equilibrium processes, when mass transfer resistance can be approximated
by the first-order kinetics.

Figures 3a, 3b, and 3c also indicate the influence from the retardation factor upon the
longitudinal spreading. For strongly sorbing solutes, the non-equlibrium effects are less
pronounced compared to the case of K4 = 1. The similar conclusion can be made for the case of
the weak retardation (K = 0.1 - Figure 3a). This indicates that the LEA model is more likely
to be violated for the transport of solutes whose distribution coefficient is around one.

Since the focus of this study is at the transport on the large scale, the long—time limits are
of particular interest to analyze. For ' —» © we obtain

X11~—3—+20 £ @31)

The long-time limits show the influence resulting from the non—equilibrium sorption as
a result of the magnitude of the first term in (31), which is a function of the non-equilibrium
index w. It is clear that when w — o, the LEA solution is obtained and for practical purposes
the accurate assessment of w is needed before any statement about the importance of
non—equilibrium processes is made. Note also that the additional spreading coming from the
non-equilibrium sorption is additive to the LEA spreading, but only as X}; approaches its
asymptotic limit.

Thus, the impact of non-equilibrium processes in the natural formations depends not only
upon the reaction rate parameter and mean velocity, but also on the retardation factor, correlation
scale of aquifer heterogeneity, and the degree of aquifer heterogeneity. These results support
observations by Valocchi (1989) who ubserved that the deviation from the LEA solution depends
on the vertical spatial variability of the pore-water velocity. This study provides a way to
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quantify the non-equilibrium effects resulting from the spatial variability in hydraulic
conductivity and temporal variability in the fluid residence time in terms of the Lagrangian
description of particle displacement moments. With this approach, the importance of
non-equilibrium sorption is presented as a function of the correlation scale of the InK field,
introducing the index, w, as a measure of LEA applicability in heterogeneous aquifer systems.
However, although w appears to be a simple criterion for LEA validity, its determination in the
field settings is far from an easy task. Being dependent on A and mean velocity U, its
determination is subject to error due to the erroneous estimation process for the correlation scale
of the hydraulic conductivity in field settings. In fact, one can argue that w is by no means a
constant variable for the field-scale transport (due to ever changing data availability for
estimating A4 and choice for the scale of a domain size) resulting in potential problems in defining
whether the non—equilibrium is important in natural formations.

Transport described using the LEA can be adequate for fast adsorption and desorption rates
relative to the rates of concentration changes. For slow desorption processes (e.g., in case of
organic chemicals), the mean velocity has to be decreased or correlation scale increased (in other
words the residence time within one heterogeneity scale increased) to achieve sorption
equilibrium. Furthermore, the sorption equilibrium will be sooner attained if the solute is
strongly sorbing and has a higher degree of heterogeneity. These conditions are very often
violated in the field-scale problems, particularly during the pump-and-treat designs for aquifer
remediation, where induced flow field of the extraction wells can increase significantly the
velocity. This increase in the velocity may easily be sufficient to cause departures from the
equilibrium transport model commonly used for the pump-—and-treat feasibility study (see Bahr,
1989).

EFFECTIVE DISPERSION COEFFICIENT

The effective dispersion coefficient or macrodispersion, D;j, for the non-reactive solute is
known to depend on the travel time from the source and is expected to reach the constant value
after experiencing all variations in the random velocity field. For the kinetically sorbing solutes,
besides the random velocity field, the macrodispersion should have an additional dependence
on the non—equilibrium index w and distribution coefficient K. This is the case, since from the
first-order approximation of the displacement second moment (7) and (23) the dispersion tensor
is given by ‘
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t/R
Dn = %:‘-’%é-‘-)- = ! R.,[U(t/R - 7)ldr + %%:[l — exp(— Rkyf)] (32)

The first term on the right-hand side represents the dispersion resulting from the spatially
variable velocity field combined with the first moment of the fluid residence time, while the
second termis a pure increase in the dispersion resulting from the kinetics process described with
the first-order reversible reaction. Note that only under the assumption of the horizontal flow
aligned in x-direction, the transversal dispersion has only the first term from (32) and is affected
through the first moment of the fluid residence time. Instead of dealing with the dispersion
coefficient directly, it is common practice to introduce the dispersivity, which is equal to the
dispersion coefficient normalized relative to the mean velocity. Furthermore, we introduce the
dimensionless macrodispersivity, A;;(f), by normalizing it relative to the logconductivity
correlation scale A as follows

A =202 (33)

Figures 4a and 4b show the evolution of the dimensionless longitudinal macrodispersivity,
A,,(t") asafunction of ¢’ for Kz = 1 (Figure 4a) and K4 = 4 (Figure 4b). To present dimensionless
macrodispersivity as a function of the dimensionless time ¢’, we simply divide the second
moment of the particle displacement, X];, by 2¢' and obtain the macrodispersivity with
X,/2U1A. Figure 4 shows that the apparent macrodispersivity grows with the travel time and
its rate of growth is a function of the non—equilibrium index w and distribution coefficient K.
The macrodispersivity of the kinetically sorbing solute is tending toward the constant limit
considerably slower than the LEA solution and particularly slower than the non-reactive plume
which attains its constant value in the shortest time. This slow transition towards the asymptotic
macrodispersion for the non-equilibrium transport is more pronounced for smaller w. For the
case of Kd = 1 (Figure 4a), the overall growth of macrodispersivity is larger in magnitude and
slower than in the case of K; = 4 (Figure 4b), which, again, indicates that for the distribution
coefficient around 1, the transport mechanism may have the strong impact from the
non—equilibrium processes.

It is also of interest to derive the closed—form expression for the asymptotic
macrodispersion coefficients, which in the case of the longitudinal direction follows from (32)
2
K, ©

lim 4%, = -4 + X (34)

- = _1_
A= An(®) = o Jim o o R
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This expression for the constant macrodispersion can be employed in the
advection—dispersion equation

d *
_‘.g_;l = -Y.vg+v-[a Vo (35)

to model the transport of (c) (ensemble averaged volumetric concentration) for kinetically

sorbing solute after the plume has experienced all variations in the flow field and fluid residence
time. The elapsed time for the above ADE to become valid (and basically replace (1) and (2) with
one Fickian ADE) is usually called the relaxation time (Chrysikopoulos et al., 1992). It can be
seen from Figure 4 that this relaxation time in the case of kinetically sorbing solutes depends -
strongly on the non—equilibrium index w and on the distribution coefficient Ky. The direct
practical importance of the constant macrodispersion coefficient and the Fickian ADE is, for
example, in problems studying the migration of radionuclides from the nuclear waste disposal
sites where the transport scale of interest is at a very large time scale and first—order kinetics
might be used to describe a mass transfer resistance between the fracture plane and porous solid
matrix. In such cases, it is unreasonable to assume that the relaxation time is reached. The travel
time aspect of such a transport problem combined with the risk assessment analysis for
radionuclides (Andricevic et al, 1992) reveals the important impact coming from the
non—equilibrium processes as well as from the parameter uncertainty. In other cases of the local
scale and significant non—equilibrium effects, the relaxation time necessary for (35) to become
valid may be large, such that it is unlikely that within the one geologic unit (for which the flow
field variability is defined) the solute plume will ever behave according to the above ADE.
However, even if the asymptotic conditions are not reached, it is useful to know the converging
limits of the transport parameters.

The asymptotic macrodispersivity, A*, as a function of the non—equilibrium index w is
presented in Figure 5 for three values of Kj;. This plot clearly shows the increased
macrodispersivity (e.g., order of magnitude) for low values of w. Note that low values of w result
either from low k; or small heterogeneity scale residence time A/U. By increasing w, the effective
macrodispersivity does not change with non-equilibrium index, and Figure S indicates again,
that for w > 10, the asymptotic macrodispersivity becomes totally insensitive to w. This limit is

equal to the macrodispersivity of the LEA solution which from (34) is equal to 0§/R.

THE EFFECT OF PARAMETER UNCERTAINTY

The preceding section presented the development of the spatial moments and -

macrodispersion of the kinetically sorbing solutes in the randomly heterogeneos formation. The
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impact coming from the non-equilibrium processes is quantified using the closed-form
expression of the first two moments of the fluid residence time. These expressions together with
spatial moments depend, however, on a few parameters which are commonly estimated from the
field data or laboratory experiments. The estimates are subject to the uncertainty, which directly
affects the accuracy of provided tools in predicting the concentration plume in a given natural
formation. Dagan (1988) suggested an approach for studying the impact of parameter
uncertainty and Woodbury and Sudicky (1991) applied it to the second displacement moment
of the non-reactive plume at the Borden field experiment, by considering the uncertainty in the

estimates of the geostatistical parameters, namely a% and A. This study is focused on the

kinetically sorbing solutes and the impact from the uncertainty of the reactive parameters will
be examined.
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Recently, investigators studied the spatial variability in the distribution coefficient K4
(Garabedian et al., 1988; Valocchi, 1989; Robin et al., 1991; Chrysikopoulos et al., 1992)
analyzing the effect such variability may have on the transport characteristics. In the particular
case of radionuclides, the work of Sheppard and Thibault (1990) reported a detailed description
of the variability in the distribution coefficient (found in the laboratory and field experiments),
its distributional characteristics, and correlation with several soil characteristics like clay
content, soil-to—plant concentration ratio, and pH factor. Consequently, the transport of sorbing
solutes is clearly affected by the estimated mean distribution coefficient, (K4), and with the

uncertainty of such estimate, 0(2,(‘). In what follows, the effect of uncertainty in K on the second

spatial moment will be analyzed. The role of the non—equilibrium process in this case can be seen
also as a result of the mass transfer resistance between the mobile fractured void space and the
immobile porous solid matrix.

The expected value of the second displacement moment of kinetically sorbing solutes, as
a result of uncertainty in the distribution coefficient estimate, is given with

X)) = f X' | K AK HdK (36)

where f{Ky) is the pdf of the distribution coefficient estimate. With this, the variance of X ,‘j is
obtained as

4 () = j [xiie KD)]zf(Kd)de - [(x,-j(:')>]2 37)

Although other parameters (e.g., U, 02, and ) are also subject to uncertainty (see
Woodbury and Sudicky, 1991; Dagan and Nguyen, 1989; Andricevic et al., 1992), in this study,
we limit the analysis on examining the impact coming from the uncertainty in the mean
distribution coefficient estimate. Since this work was partially motivated by studying the
migration of radionuclides for which the strong spatial variability was documented (see
Sheppard and Thibault, 1990), the impact on the solute spreading was expected to be important,
particularly due to the strong nonlinear interactions.

Figure 6 shows the expected rate of plume spreading in the longitudinal direction, (X ;1),
with + 20y, error bars which form approximately the 95 percent confidence limit. The

non-reactive and LEA spreading is also plotted for the reference. The confidence limit
interpretation assumes that a posteriori distribution for K is Gaussian, which is warranted in
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the case of a large number of data. The pdf AKy) is assumed, thus, normal with mean (Kd = 1)
(Figure 6a) and (Kd = 4) (Figure 6b). The estimation standard deviation, Tk is assumed 10
percent of the mean value, which represents the very low bound estimated from the reported
variability in K4 for radionuclides for the sand soil (Sheppard and Thibault, 1990). For the mean
distribution coefficient K4 = 1 and non-equilibrium index @ = 0.5, the 95 percent confidence
limit of the longitudinal spreading almost captures the entire range between the LEA and
non-reactive case (Figure 6a). This reveals how sensitive the second displacement moment in
the longitudinal direction is on the uncertainty in the estimated mean distribution coefficient,
even for relatively small variability in the mean K, estimate. However, for K4 = 4 (higher
rctardatibﬁ). the longitudinal spreading envelopes are reduced and positioned just above the
LEA solution, indicating that strongly sorbing solute besides reducing the non—equilibrium
effect also reduces the effect from the uncertainty in the parameter estimate. Although this
analysis assumes other parameters, like mean velocity, U, o%, and A known with certainty, it is
easy to see what effect those parameters would have on the confidence limit, For example, by
considering error in the mean velocity estimate together with Kz (Andricevic et al., 1992), the
difference between (X11) and X}, using (Ka) as deterministic value would be more apparent,

particularly if K, is assumed to be negatively correlated with the velocity field.

The three-dimensional transversal second moment is affected by the uncertainty in the K4
estimate (Figure 7). Figure 7a and 7b depict cases for (Ka) = 1 and (Ky4) = 4, respectively. In the

case of (K4) = 1, the second transversal moment, with its error bars, shows the strong impact

coming from the relatively small error in the K estimate (0?(‘). Also, the plot of X ;1 for the
non-reactive solute indicates that in the case of sorbing solutes, the constant macrodispersion
is approached slower in the transverse direction and the 95 percent confidence limit may easily
extend over the non-reactive spreading. In the case of (Ka) = 4, the error bars are reduced and
they seem to approach the constant limit even slower. The fact that the large ¢’ error bars are
becoming smaller is due to the independence of X,,() = 20242/3 on the mean velocity and

distribution coefficient. However, the error in the estimate 0% and A will make a significant
effect on the transversal spreading (see Woodbury and Sudicky, 1991).

In the recent field experiment at the Borden site several reactive compounds were used and
their behavior in time and space was extensively analyzed (Roberts et al., 1986; Curtis et al.,
1986). One of their observations was related to the variability in the retardation factor found in
the field experiment, which may be attributed to several reasons, among which is the spatial
variability in the distribution coefficient and some non-equilibrium effects. Ball (1989), in his
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kinetic adsorption study with aquifer solids from the Borden site, reported a Ky value for
tetrachloroethylene (PCE) of 3.1 and desorption rate k3 = 0.3 @-1. Here we attempt to model the
data for the PCE plume by considering the uncertainty in the laboratory estimate of K4 and 43,
as well as their negative correlation as suggested by Brusseau et al. (1989). The uncertainty in
the K and k; estimate is assumed 20 and 25 percent of the corresponding mean values,
respectively. The three-dimensional anisotropic structure of the Borden aquifer is adjusted to
the horizontal isotropy by considering factor 0.74 as a result of vertical averaging (Woodbury
and Sudicky, 1991). The mean velocity U = 0.091m/d, a§ =(0.244, and A = 5.14m are the flow
parameters assumed perfectly known. The field data are also adjusted for the displacement
variance at ¢ = 0 (experiment had a finite injection zone), which for the bromide tracer was
estimated by Freyberg (1986) as 1.8m2.

Therefore, the function f{Ky4, k2) of the parameter estimates now is the two—dimensional
joint pdf between K4 and k;. The expected value and the variance of the second moment of the
particle displacement are obtained using (36) and (37), with the pdf Ky, k2) assumed jointly
normal. The integration over the two—dimensional parameter space is performed numerically
using the Gaussian quadrature. The final result is presented in Figure 8 and compared with field
data points for the PCE plume. The longitudinal spreading and field data points are presented
in the dimensionless form to be consistent with the previous presentations. Figure 8 shows how
strong an impact the uncertainty in the Ky and k3 estimates can have on the second spatial
moment. The reason for this can be seen from the highly nonlinear interactions K and k; have
in (28). The error bounds are again equal to + 20 and may be seen (under the assumption of the
Gaussian a posteriori process) as confidence limits. Almost all data points are within those limits
except one outlier at the early time of ¢ = 85days.

CONCLUDING REMARKS

In this work, the macrodispersion characteristics for kinetically sorbing solutes are
analyzed. The probabilistic model is developed and coupled with advective transport to obtain
closed—form expressions for the first two moments of the particle displacement. The effect from
the uncertainty in estimating the mean distribution coefficient K4 upon the second displacement
moment is examined. The theoretical developments and presented results reveal the following
characteristics of transport of kinetically sorbing solutes in the field scale:

1. Coupling advective transport with the first two moments of the fluid residence time
provides a way to obtain the closed—form expression for displacement moments and
asymptotic macrodispersion tensor. The solute plume spreading results from the
spatial variability in the velocity field and the temporal variability in the actual time
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the particle stays in the mobile fluid phase while being transported by groundwater.
The non-equilibrium index w = kpA/U is introduced, which can be considered as
field-scale Damkohler number, since it relates the reaction time k3 to the residence
time of the aquifer heterogeneity scale A/U.

2. Theimportance of the non—equilibrium sorption at field scale depends not only upon
the magnitude of the reaction rate parameter, but also upon the correlation scale of
the InK field A, the retardation factor, and variance of the InKX field.

3. The longitudinal spreading of the kinetically sorbing plume shows an increase
compared to the LEA model, however, forw > 10, for all practical purposes, the LEA
model can be used for spreading estimates in the direction of the mean flow.



4, The magnitude of the asymptotic macrodispersion is a function of the
non-equilibrium index @ and may increase significantly by decreasing w. The
relaxation time needed for macrodispersion to reach its asymptotic limit is highly
sensitive on the w and K4, and may be very large for the smaller w. This is particularly
evident for the cases of the distribution coefficient Xq4 around 1.

5. Due to the non-linear interactions, the uncertainty in estimating reaction parameters
(K4 and k3) has a strong impact on the expected value of the spatial moments,
particularly on the moment of inertia. For the smaller w, the effect of the parameter
uncertainty on the second displacement moment may be very significant. When
comparing with the field data, the parameter uncertainty may play a dominant role.
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APPENDIX
DERIVATION OF THE SECOND MOMENT OF THE FLUID RESIDENCE TIME

The variance of the fluid residence time is formulated in (22) and the evaluation of the
auto—covariance Cov|Z,,Z,] is the first step. Since Z, is a stationary, binary process, we have
(Z¢) = p,, such that

(Z:Zys) = ProblZ, = 1 N 2, = 1] (38)
If v < 7', the above becomes
(Z:Z,)) = Prob|Z; = 1) Prob{Z,, = 1 1Z, = 1] = p\P\,(z' = 1) (39)

and by setting 7 < 7', the above solution is reversed to yield p Py (r ~ t’). Therefore, the
general auto-covariance of the binary process can be evaluated with the following expression

CoVZnnZ,)| = (Z:Z,) = (Z)Ze) = prPu(lt = 7)) = pip) (40)
Combining (12) and (40), we obtain

Co\Z.,Z,)| = p\[p, + Poexp(— Rky k& — t'l)] = pypy = pop exp(— Rky b — 7'l)  (41)
Then, substituting the above in (22) yields

! ] ]

a2(t) = pop, I I exp{— Rk, kv — v'l)drdr’ = 2 I(: —1)exp(— Rkytkdr  (42)
t=0r' =0 v=0

Using the substitution x = ¢ - 7, the above can be rewritten as

2K 2K
oi(1) = —R-f- ! xexp(— Rky(t — x))dx = —k-i‘!cxp(—- Rkyt) J xexp(Rkyx)dx  (43)
Integrating by parts, the last integral from above can be analytically solved yielding

oi() = —Tcxp( szx){ RE, exp(Rkyt) — —%—ﬂcxp (Rkyt) - 1]} (44)

which can be further rearranged to yield

oi(n) = [ - Ei;[l — exp(— szt)]] (45)

which completes the derivation of the variance of the fluid residence time as given in (23).
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