

Conf-9209266--6

ANALYTICAL ANALYSES OF STARTUP MEASUREMENTS ASSOCIATED WITH
THE FIRST USE OF LEU FUEL IN ROMANIA'S 14-MW TRIGA REACTOR*

ANL/EP/CP--77812

DE93 004152

M. M. Bretscher and J. L. Snelgrove
Argonne National Laboratory
Argonne, Illinois 60439 USA

and

M. Ciocanescu
Institute for Nuclear Research
Pitesti, Romania

To be presented at the

XV International Meeting on
Reduced Enrichment for
Research and Test Reactors

September 27 to October 1, 1992
Roskilde, Denmark

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

RECORDED BY OSR
DEC 09 1992
The submitted manuscript has been authored
by a contractor of the U. S. Government
under contract No. W-31-109-ENG-38.
Accordingly, the U. S. Government retains a
nonexclusive, royalty-free license to publish
or reproduce the published form of this
contribution, or allow others to do so, for
U. S. Government purposes.

*Work supported by the U.S. Department of Energy, Office of Arms Control and Nonproliferation under Contract No. W-31-109-ENG-38.

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

ANALYTICAL ANALYSES OF STARTUP MEASUREMENTS ASSOCIATED WITH THE FIRST USE OF LEU FUEL IN ROMANIA'S 14-MW TRIGA REACTOR

M. M. Bretscher and J. L. Snelgrove
Argonne National Laboratory
Argonne, Illinois 60439 USA

and

M. Ciocanescu
Institute for Nuclear Research
Pitesti, Romania

ABSTRACT

The 14-MW TRIGA steady state reactor (SSR) is located in Pitesti, Romania. Beginning with an HEU core (10 wt% U), the reactor first went critical in November 1979 but was shut down ten years later because of insufficient excess reactivity. Last November the Institute for Nuclear Research (INR), which operates the SSR, received from the ANL RERTR program a shipment of 125 LEU pins fabricated by General Atomics and of the same geometry as the original fuel but with an enrichment of 19.7% ^{235}U and a loading of 45 wt% U. Using 100 of these pins, four LEU clusters, each containing a 5 x 5 square array of fuel rods, were assembled. These four LEU clusters replaced the four most highly burned HEU elements in the SSR. The reactor resumed operations last February with a 35-element mixed HEU/LEU core configuration.

In preparation for full power operation of the SSR with this mixed HEU/LEU core, a number of measurements were made. These included control rod calibrations, excess reactivity determinations, worths of experiment facilities, reaction rate distributions, and thermocouple measurements of fuel temperatures as a function of reactor power. This paper deals with a comparison of some of these measured reactor parameters with corresponding analytical calculations.

INTRODUCTION

The 14-MW TRIGA Steady State Reactor (SSR) is located in Pitesti, Romania, and is operated by the Institute for Nuclear Research. Initially, the beryllium-reflected core contained 29 HEU fuel clusters each consisting of a square 5x5 array of Incoloy-clad uranium-zirconium hydride-erbium fuel pins enclosed within an aluminum shroud. As burnup proceeded, the core size increased until the complete inventory of 35 fuel clusters was in use. After about 13,600 MWD's of operation, the SSR was shut down in 1990 because of insufficient excess reactivity.

At the time of the 1991 International RERTR Meeting in Jakarta, Indonesia, the Institute for Nuclear Research received a shipment of 125 LEU TRIGA pins from the ANL RERTR program for use

in the SSR. These pins are of identical geometry as the original HEU fuel. After a detailed series of inspections and measurements performed by SSR personnel, four LEU fuel clusters were assembled.

In preparation for full-power operation of the SSR with a mixed HEU/LEU core consisting of 31 burned HEU and 4 fresh LEU elements, a series of measurements was undertaken last February at which time the ANL authors of this paper were present. This paper deals with a comparison of some of these measured reactor parameters with corresponding analytical calculations.

The first set of measurements was made in the 35-cluster HEU core shown in Fig. 1. Based on ^{137}Cs gamma-scanning measurements of the irradiated fuel pins together with an absolute ^{137}Cs standard, cluster-averaged burnups had been assigned to each fuel element. Table 1 summarizes these results. This table differs somewhat from that given in Ref. [1] because of the rearrangement of some fuel pins so as to maximize the burnup of those clusters which were to be replaced with four fresh LEU fuel elements.

Experiment loops are normally located in grid positions G7 (A Loop), D6+E6 (C1 Capsule), and E4 and E9 (standard natural uranium experiments) and may be replaced with water. These loops are described in Ref. [2]. The A Loop includes six zircaloy-clad CANDU type UO_2 rods with 5% enrichment while the C1 Capsule is loaded with a single 5% enriched UO_2 rod. The standard experiments in E4 and E9 each contain three natural uranium UO_2 rods.

The methods used to determine atom densities in fresh HEU and LEU fuel as well as burnup- and axially-dependent atom densities for the fuel described in Table 1 are discussed in detail in Ref. [1]. This reference also describes the structure of the 8-group cross section sets used in this study and the modeling methods needed for diffusion and burnup calculations.

EXCESS REACTIVITIES FOR 13 SSR CORE CONFIGURATIONS WITH FRESH HEU FUEL

It is useful to test multigroup cross sections, modeling procedures, and computational methods by comparing calculated and measured excess reactivities for relatively simple core configurations. The initial approach-to-critical measurements in the SSR and the cluster-by-cluster expansion from the just critical 17-element fresh HEU core configuration to the 29-element standard core provides a very useful set of data for testing computational techniques. A reactivity computer was used to measure the excess reactivity of each of these 13 core configurations. The results of these measurements, including control rod elevations at critical, are recorded in the SSR logbook [4].

The reactivity computer determines the excess reactivity by analyzing the shape of the time-dependent amplitude of a detector signal, proportional to the instantaneous reactor power, during a small positive reactivity transient. Table 2 lists the kinetic parameters used by the reactivity computer (see Ref. 3, p. 17). They are based on the properties of fresh HEU fuel. For comparison, Table 2 includes a calculated set of delayed neutron parameters for the 35-cluster core with 31 burned HEU fuel elements and 4 fresh LEU clusters. The loading sequence for expanding the fresh core from 17 to 29 fuel clusters is shown in Fig. 2.

Table 3 summarizes the results of measured and calculated excess reactivities for each of the 13 HEU core configurations. This table also shows that both measurements and calculations indicate that the 16-cluster assembly is subcritical. For these measurements all eight control rods were banked together and operated as a unit. Fully inserted and fully withdrawn control rods correspond to 100 and 900 units of withdrawal, respectively, which represents a total rod displacement equal to the height of the fuel column (55.88 cm). The intermediate rod bank positions shown in Table 3 are the experimentally

SSR 35 HEU CLUSTER CORE CONFIGURATION
(with experiment loops)

	K	J	I	H	G	F	E	D	C	B	A	12
H_2O	H_2O	H_2O	$Be-H$	Be								
H_2O	$Be-H$	$Be-H$	$Be-H$	$Be-H$	$Be-H$	Be	Be	Be	Be	Be	Be	11
H_2O	$Be-H$	$C07$	$CR-8$	$C13$	$CR-7$	$C04$	$C25$	Be	Be	Be	Be	10
H_2O	$Be-H$	$C03$	$C15$	$C20$	$C08$	$Std.$	$C02$	Be	Be	Be	Be	9
H_2O	$Be-H$	$CR-4$	$C37$	$CR-2$	$C14$	$C27$	$C26$	Be	Be	Be	Be	8
H_2O	$Be-H$	$C29$	$C31$	A	$C34$	$C09$	$C17$	Be	Be	Be	Be	7
H_2O	$Be-H$	$C06$	$C30$	$C36$	$C33$	$C1$	$Capsule$	Be	Be	Be	Be	6
H_2O	$Be-H$	$CR-1$	$C28$	$CR-3$	$C16$	$C23$	$C10$	Be	Be	Be	Be	5
H_2O	$Be-H$	$C18$	$C24$	$C19$	$C21$	$Std.$	$C12$	Be	Be	Be	Be	4
H_2O	$Be-H$	$C05$	$CR-6$	$C22$	$CR-5$	$C01$	$C11$	Be	Be	Be	Be	3
H_2O	$Be-H$	$Be-H$	$Be-H$	$Be-H$	$Be-H$	Be	Be	Be	Be	Be	Be	2
H_2O	H_2O	H_2O	H_2O	H_2O	1							
POOL												

TABLE 1
SSR HEU FUEL CLUSTER EXPOSURES AND ^{235}U BURNUPS
(Based on Gamma-Scanning Measurements)

Fuel Cluster	MWD's Exposure	% ^{235}U Burnup
C11	498	62.7
C05	487	61.4
C04	485	61.2
C25	482	60.8
C01	475	59.9
C23	448	56.6
C22	447	56.5
C21	444	56.2
C02	440	55.6
C12	436	55.1
C18	433	54.8
C24	433	54.7
C26	431	54.6
C03	431	54.5
C07	430	54.3
C13	429	54.2
C17	428	54.1
C27	427	54.0
C29	426	53.9
C19	426	53.8
C08	425	53.8
C15	422	53.4
C10	421	53.2
C20	418	52.9
C28	416	52.7
C06	411	52.0
C09	402	51.0
C16	399	50.5
C14	393	49.8
C31	246	31.4
C34	245	31.3
C33	195	24.9
C37	35	4.5
C30	33	4.2
C36	29	3.7

Be-H = Beryllium reflector element with central water hole

FIGURE 1

SSR GRID LOCATIONS FOR THE INITIAL CORE LOADING SEQUENCE

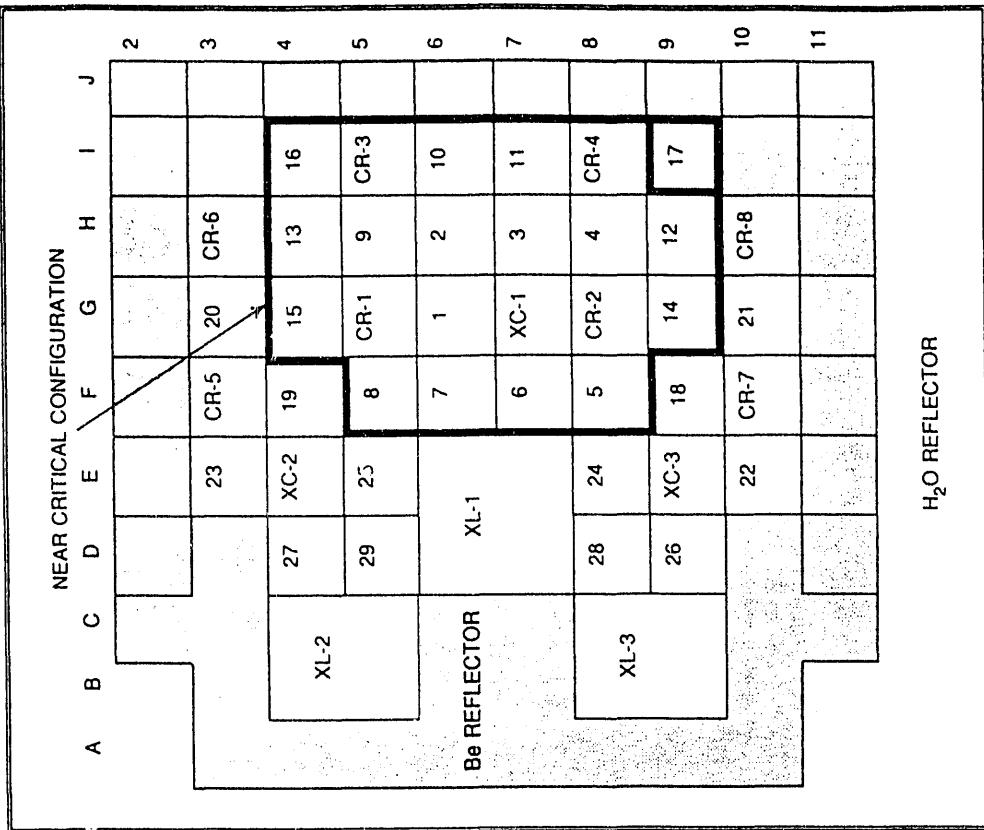


TABLE 2
SSR DELAYED NEUTRON PARAMETERS FOR THE 29-CLUSTER FRESH HEU CORE
AND FOR THE 35-CLUSTER BURNED HEU/LEU MIXED CORE**

29-Cluster Fresh HEU Core.		35-Cluster Burned HEU/LEU Mixed Core**					
Group	λ_i (sec ⁻¹)	β_i	a_i	λ_i (sec ⁻¹)	β_i	a_i	δ_p · μ s
1	1.244·2	2.31·4	0.033	1.2722·2	2.7961·4	0.038241	
2	3.051·2	1.533·3	0.219	3.1737·2	1.5497·3	0.21195	
3	1.114·1	1.372·3	0.196	1.1617·1	1.3732·3	0.18780	
4	3.013·1	2.765·3	0.395	3.1137·1	2.9748·3	0.40684	
5	1.1362	8.05·4	0.115	1.4001	9.4171·4	0.12879	
6	3.0135	2.94·4	0.042	3.8706	1.9297·4	0.026390	
TOTAL	7.00·3	1.000	22.0***	7.3120·3	1.0000	27.90	
XL-3		CR-2		CR-4		CR-4	
XL-2		CR-5		CR-6		CR-6	
XL-1		CR-7		CR-8		CR-8	
H ₂ O REFLECTOR		CR-9		CR-10		CR-10	

* See Ref. 3, p. 17.

**These parameters were generated using ENDF/B-V delayed neutron data.

*** This value was obtained from Ref. 5, p. 2-224.

ALL EXPERIMENT LOCATIONS (XL-1, 2, 3; XC-1, 2, 3;
AND THE HOLES IN THE BERYLLIUM REFLECTOR) ARE FILLED WITH WATER

FIGURE 2

SSR RHO-EXCESS IN DOLLARS FOR FRESH HEU CLUSTERS

TABLE 3 ROOM TEMPERATURE EXCESS REACTIVITIES FOR 13 SSR CORE CONFIGURATIONS WITH FRESH HEU FUEL						
No. of Clusters	Rod Bank Units	$K_{\text{eff}}(\text{C})$	$K_{\text{eff}}(\text{E})$	$\rho_{\text{ex}}(\text{C})$ \$	$\rho_{\text{ex}}(\text{E})$ \$	C/E
16	900	0.9975	1.0101	1.23	1.43	0.86
17	900	1.0097	1.0000	1.0000		
18	900	1.0137	1.0133			
19	900	1.0026	1.0000	1.56	1.88	0.83
20	900	1.0201	1.0188			
21	900	1.0014	1.0000	2.62	2.64	0.99
22	900	1.0299	1.0266			
23	900	1.0021	1.0000	3.84	3.70	1.04
24	900	1.0347	1.0303			
25	647	1.0052	1.0000	4.05	4.20	0.96
26	900	1.0369	1.0317			
27	640	1.0045	1.0000	4.45	4.39	1.01
28	900	1.0403	1.0339			
29	631	1.0033	1.0000	5.06	4.69	1.08
30	900	1.0444	1.0386			
31	610	1.0032	1.0000	5.62	5.31	1.06
32	900	1.0509	1.0458			
33	581	1.0044	1.0000	6.30	6.26	1.01
34	900	1.0525	1.0476			
35	575	1.0026	1.0000	6.75	6.49	1.04
36	900	1.0548	1.0503			
37	565	1.0015	1.0000	7.20	6.84	1.05
38	900	1.0563	1.0532			
39	555	1.0010	1.0000	7.46	7.21	1.03
40	900	1.0585	1.0576			
41	539	1.0004	1.0000	7.84	7.78	1.01

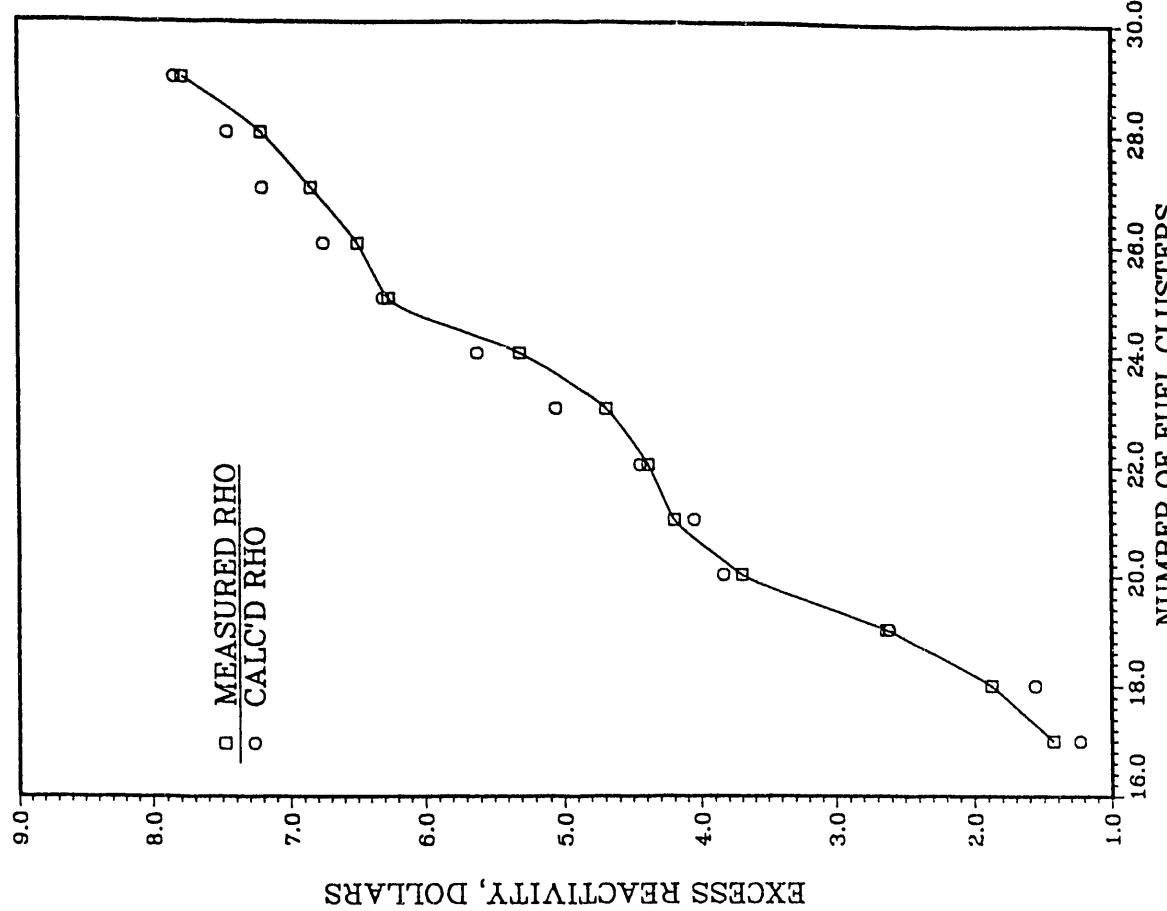


FIGURE 3

determined elevations for which the reactor cores are critical. A total delayed neutron fraction of 0.0070 (Table 2) was used to convert excess reactivities from absolute units to dollars and vice versa. The calculated-to-experiment (C/E) ratios given in Table 3 show that the analytical results are in reasonable agreement with the measured values, which lends credence to the computational methods used in this study. Note too the good agreement between the calculated value of k_{eff} for the critical rod positions and unity. For the 13 cores at critical the average calculated eigenvalue is 1.0026 ± 0.0015 . Figure 3 provides a graphical display of this data.

EXCESS REACTIVITIES FOR THE SSR CORE WITH 35 BURNED HEU FUEL CLUSTERS

The purpose of this set of measurements was to determine the reactivity worth of each of the experiment loops relative to water as well as that for a fresh LEU fuel element and a near-fresh HEU cluster. Figure 1 shows the core configuration used for these determinations. Before beginning these measurements, the reactivity computer was used to calibrate each of the control rods. Excess reactivities were obtained from the observed control rod elevations at critical and the rod calibration data. Since the measurements were made at low power (about 500 W), the analytical results are based on cross sections generated at 296K. As before, a value of $\beta_{\text{eff}} = 0.0070$ was used to compare measured and calculated excess reactivities.

The results of these measurements are summarized in Table 4. The calculated k_{eff} 's for the critical rod positions are consistent but below unity (0.9929 ± 0.0020). Improved modeling of the experiment loops may reduce some of the C/E ratios for the excess reactivities. Particularly disturbing is the large C/E ratio (1.48) for the case where the C36 HEU cluster (3.7% burnup) in grid location G6 was replaced with water. The consistency of the calculated critical k_{eff} 's for the three experiments involving the G6 location suggests that the banked rod position is correct in each case. One suspects that the discrepancy might be due to inaccuracies in the rod calibration curves, especially near the upper ends of travel. No errors in the measurements or in the calculations have been identified.

EXCESS REACTIVITIES FOR THE 35-CLUSTER SSR CORE WITH FOUR FRESH LEU ELEMENTS REPLACING FOUR HIGHLY BURNED HEU ELEMENTS

In preparation for the first use of LEU fuel in the SSR, some of the HEU clusters in Fig. 1 were relocated while all the experiment loops were removed and replaced with water. This modified core configuration is shown in Fig. 4. The highly burned fuel clusters C25, C01, C11, and C05 (see Table 1) were replaced, one at a time, with the fresh LEU clusters C42, C40, C38, and C39, respectively. With each fuel cluster replacement the control rod bank elevation at critical was determined. With the four LEU clusters in place at the end of these measurements, the control rods were recalibrated again making use of the reactivity computer. This calibration data was used to evaluate the measured excess reactivities. Later, the C1 Capsule was placed in grid positions D6+E6, the standard natural uranium experiments in E4 and E9, and a 5x5 stainless steel (SS) shim bundle in G7.

Table 5 summarizes the results of these measurements and the corresponding calculations. Except for the first case, measured and calculated excess reactivities are in good agreement. As in the last section, all these measurements were carried out at low power and so the analytical results are based on 296K cross sections. Also, a value of $\beta_{\text{eff}} = 0.0070$ was used.

SSR 35 HEU CLUSTER CORE CONFIGURATION
BEFORE THE ADDITION OF FOUR FRESH LEU ELEMENTS

TABLE 4 EXCESS REACTIVITIES FOR THE SSR FIGURE 1 CORES			
Deviation from Fig. 1 Core	Rod Bank Units	$K_{\text{eff}}(C)$	$K_{\text{eff}}(E)$
		$\rho_{\text{ex}}(C)$ \$	$\rho_{\text{ex}}(E)$ \$
None	900 545	1.03885 0.99240	1.04570 1.00000
G6: C36→H ₂ O	900 728	1.00880 0.99187	1.01153 1.00000
G6: C36→C38 (LEU)	900 517	1.04360 0.99256	1.05226 1.00000
D6+E6: C1→H ₂ O	900 568	1.03442 0.98994	1.04045 1.00000
G7: A Loop→H ₂ O	900 588	1.03214 0.99547	1.03606 1.00000
G7: A Loop→H ₂ O D6+E6: C1→H ₂ O E4, E9: Std Exps→H ₂ O	900 600	1.03114 0.99538	1.03349 1.00000
G7: A Loop→H ₂ O D6+E6: C1→H ₂ O	900 612	1.02756 0.99281	1.03101 1.00000

K	J	I	H	G	F	E	D	C	B	A	12
H ₂ O	Be-H	Be									
H ₂ O	Be-H	Be-H	Be-H	Be-H	Be-H	Be	Be	Be	H ₂ O	Be	11
H ₂ O	Be-H	C02	CR-8	C15	CR-7	C18	C07	Be	H ₂ O	Be	10
H ₂ O	Be-H	C19	C24	C28	C06	H ₂ O	C12	Be	H ₂ O	Be-H	9
H ₂ O	Be-H	CR-4	C37	CR-2	C25	C09	C20	Be	H ₂ O	Be	8
H ₂ O	Be-H	C11	C31	H ₂ O	C34	C23	C10	Be	H ₂ O	Be	7
H ₂ O	Be-H	C05	C30	C36	C33	H ₂ O	Be	H ₂ O	Be	Be	6
H ₂ O	Be-H	CR-1	C29	CR-3	C01	C27	C08	Be	H ₂ O	Be	5
H ₂ O	Be-H	C21	C17	C16	C14	H ₂ O	C26	Be	H ₂ O	Be	4
H ₂ O	Be-H	C22	CR-6	CR-5	C04	C03	C13	Be	H ₂ O	Be	3
H ₂ O	Be-H	Be-H	Be-H	Be-H	Be-H	Be-H	Be	Be	H ₂ O	Be	2
H ₂ O	Be	1									
POOL											

Be-H = Beryllium reflector element with central water hole

FIGURE 4

TABLE 5
EXCESS REACTIVITIES FOR THE SSR FIGURE 4 CORES

Deviation from Fig. 4 Core	Rod Bank Units	$K_{\text{eff}}(\text{C})$	$K_{\text{eff}}(\text{E})$	$\rho_{\text{ex}}(\text{C})$ \$	$\rho_{\text{ex}}(\text{E})$ \$	C/E
None	900 636	1.02196 0.99116	1.02598 1.00000	4.344	3.618	1.20
F8: C25→C42 (LEU)	900 602	1.03204 0.99814	1.03282 1.00000	4.701	4.539	1.04
F8: C25→C42 (LEU)	900	1.03975	1.03933			
F5: C01→C40 (LEU)	572	1.00100	1.00000	5.319	5.406	0.98
F8: C25→C42 (LEU)	900	1.04603	1.04621			
F5: C01→C40 (LEU)	542	1.00124	1.00000	6.110	6.310	0.97
I7: C11→C38 (LEU)						
F8: C25→C42 (LEU)	900	1.05298	1.05214			
F5: C01→C40 (LEU)	517	1.00119	1.00000	7.018	7.079	0.99
I7: C11→C38 (LEU)						
I6: C5→C39 (LEU)						
F8: C25→C42 (LEU)	900	1.04769	1.04000			
F5: C01→C40 (LEU)	569	1.00111	1.00000	5.593	5.494	1.02
I7: C11→C38 (LEU)						
I6: C5→C39 (LEU)						
D6+E6: $\text{H}_2\text{O} \rightarrow \text{C1 Capsule}$						
E4, E9: $\text{H}_2\text{O} \rightarrow \text{Std. Nat. U Exp.}$						
G7: $\text{H}_2\text{O} \rightarrow \text{SS Shim Bundle}$						

INTEGRAL CONTROL ROD WORTHS FOR THE SSR 35-CLUSTER CORE WITH FOUR FRESH LEU FUEL ELEMENTS

This core configuration is shown in Fig. 4 but with the highly burned HEU fuel clusters in grid locations F5, F8, I6, and I7 replaced with fresh LEU fuel elements. Each control rod was calibrated using the reactivity computer [3] to measure the reactivity worth associated with small outward displacements of the control rod assembly. Measurements covered the full range of control rod motion from the fully inserted to the fully withdrawn position. The integral worth is the sum of the measured worths for each segment of rod withdrawal.

SSR control rod assemblies consist of an upper poison section and a lower aluminum follower section. The poison section (Ref. 5, p. 2-127) consists of a 58.42 cm stack of pressed B₄C (natural boron) pellets in the form of a square annulus with water at the center. For some initial diffusion calculations the poison section of the control rod was represented by a set of group-dependent internal boundary conditions (current-to-flux ratios) applied at the surface of the B₄C absorber and calculated by the methods described in Ref. [6]. It was soon learned, however, that nearly the same results for control rod worths are obtained by using normal diffusion theory with cross sections homogenized over the entire control rod cell. This more approximate method has the advantage of significantly reducing the number of mesh intervals needed. Use of the internal boundary conditions increases the calculated rod worth by about 0.3%.

The output from the reactivity computer is based on the delayed neutron parameters for fresh HEU fuel shown in Table 2. Probably a better set of parameters for this particular core is the second set also listed in Table 2. An estimate of the reactivity computer's response based on this second set of parameters resulted in a correction which tends to reduce the experimental results by about 1% or less. Because of uncertainties in this calculation, this small correction was not applied to the experimental data.

Table 6 compares the measured and calculated integral control rod worths. The calculations are based on the eigenvalues obtained for the fully withdrawn rod (900 units) and the fully inserted rod (100 units). For these calculations the remaining 7 rods are banked together and withdrawn to the position where the reactor was observed to be critical for the rod in question located at its mid withdrawal point (500 units). As before, a value of $\beta_{\text{eff}} = 0.0070$ (Table 2) was used to convert absolute worths to dollars.

Table 6 shows that the calculations and measurements are in satisfactory agreement for the relatively high worth rods (rods 1-4), but that the low worth rods (5-8) are significantly under-calculated. These low worth rods are located adjacent to the beryllium reflector and perhaps a different set of cross sections are needed for the evaluation of their worths. Since eigenvalue changes of only about 0.0004 would bring these calculated results into reasonable harmony with the measurements, the diffusion calculations require the eigenvalues to converge to within 1.0E-5. Figure 5 displays these results by showing the C/E ratio for each control rod and the % ²³⁵U burnup for each fuel cluster.

CONCLUSION

The 14-MW TRIGA research reactor in Pitesti, Romania, was shut down in 1990 because the fuel was too highly burned to continue operations. Last November they received a shipment of 125 unirradiated LEU fuel pins from the ANL RERTR program. After a number of preliminary measurements, the SSR resumed operations last February with a mixed 31 HEU/4 LEU core. Our calculations indicate that the SSR should be able to operate for about 2450 MWD's with this core configuration. Based on current operating schedules, this will allow the SSR to continue running until

CONTROL ROD WORTH C/E RATIOS AND % U-235 BURNUPS
FOR THE SSR 31 HEU/4 LEU CORE CONFIGURATION

TABLE 6
CONTROL ROD WORTHS FOR THE SSR 31 HEU/4 LEU CORE
CONFIGURATION
(without experiment loops)

Control Rod	Units of Elevation	$K_{eff}(C)$	$W(C)$	$W_c(C)^*$	$W(E)$	C/E
	Rod	Bank	\$	\$	\$	
1	900	519	1.00766	0.99612	1.642	1.798
	100	519				0.92
2	900	523	1.01529	0.98757	3.949	3.962
	100	523				1.03
3	900	525	1.01810	0.96510	4.553	4.568
	100	525				0.95
4	900	519	1.00786	0.99598	1.691	1.696
	100	519				1.02
5	900	505	1.00258	0.99861	0.566	0.568
	100	505				0.73
6	900	518	1.00395	1.00105	0.412	0.414
	100	518				0.566
7	900	517	1.00572	1.00011	0.797	0.799
	100	517				0.79
8	900	519	1.00398	1.00064	0.475	0.476
	100	519				0.535
						0.89

*Based on the use of internal boundary conditions for the B_4C .

$$W_c(C) = 1.003175 W(C).$$

	K	J	I	H	G	F	E	D	C	B	A
	H_2O										
	H_2O	$Be-H$									
	H_2O	$Be-H$	$C02$	$CR-6$	$C15$	$CR-7$	$C18$	$C07$	Be	H_2O	$Be-H$
				0.89	53.4	0.79	54.8	54.3			
	H_2O	$Be-H$	$C19$	$C24$	$C28$	$C06$	H_2O	$C12$	Be	H_2O	$Be-H$
				53.8	54.7	52.7		55.1			
	H_2O	$Be-H$	$CR-4$	$C37$	$CR-2$	$C42$	$C20$	$C20$	Be	H_2O	Be
				4.5	1.03	0.0	51.0	56.5			
	H_2O	$Be-H$	$C38$	$C31$	H_2O	$C34$	$C23$	$C10$	Be	H_2O	Be
				0.0	31.4		31.3	56.6			
	H_2O	$Be-H$	$C39$	$C30$	$C36$	$C33$	H_2O		Be	H_2O	Be
				0.0	4.2	3.7	24.9				
	H_2O	$Be-H$	$CR-1$	$C29$	$CR-3$	$C40$	$C27$	$C08$	Be	H_2O	Be
				0.92	53.9	0.95	0.0	54.0			
	H_2O	$Be-H$	$C21$	$C17$	$C16$	$C14$	H_2O	$C26$	Be	H_2O	Be
				56.2	54.1	50.5	49.8	54.6			
	H_2O	$Be-H$	$C22$	$CR-6$	$C04$	$CR-5$	$C03$	$C13$	Be	H_2O	Be
				56.6	0.73	61.2	0.73	54.5			
	H_2O	$Be-H$	$C02$	$CR-6$	$C04$	$CR-5$	$C03$	$C13$	Be	H_2O	Be
	H_2O	$Be-H$	$C02$	$CR-6$	$C04$	$CR-5$	$C03$	$C13$	Be	H_2O	Be
	H_2O	$Be-H$	$C02$	$CR-6$	$C04$	$CR-5$	$C03$	$C13$	Be	H_2O	Be
	H_2O	$Be-H$	$C02$	$CR-6$	$C04$	$CR-5$	$C03$	$C13$	Be	H_2O	Be
	H_2O	$Be-H$	$C02$	$CR-6$	$C04$	$CR-5$	$C03$	$C13$	Be	H_2O	Be
	H_2O	$Be-H$	$C02$	$CR-6$	$C04$	$CR-5$	$C03$	$C13$	Be	H_2O	Be
	H_2O	$Be-H$	$C02$	$CR-6$	$C04$	$CR-5$	$C03$	$C13$	Be	H_2O	Be
	H_2O	$Be-H$	$C02$	$CR-6$	$C04$	$CR-5$	$C03$	$C13$	Be	H_2O	Be
	H_2O	$Be-H$	$C02$	$CR-6$	$C04$	$CR-5$	$C03$	$C13$	Be	H_2O	Be
	H_2O	$Be-H$	$C02$	$CR-6$	$C04$	$CR-5$	$C03$	$C13$	Be	H_2O	Be
	H_2O	$Be-H$	$C02$	$CR-6$	$C04$	$CR-5$	$C03$	$C13$	Be	H_2O	Be
	H_2O	$Be-H$	$C02$	$CR-6$	$C04$	$CR-5$	$C03$	$C13$	Be	H_2O	Be
	H_2O	$Be-H$	$C02$	$CR-6$	$C04$	$CR-5$	$C03$	$C13$	Be	H_2O	Be
	H_2O	$Be-H$	$C02$	$CR-6$	$C04$	$CR-5$	$C03$	$C13$	Be	H_2O	Be
	H_2O	$Be-H$	$C02$	$CR-6$	$C04$	$CR-5$	$C03$	$C13$	Be	H_2O	Be
	H_2O	$Be-H$	$C02$	$CR-6$	$C04$	$CR-5$	$C03$	$C13$	Be	H_2O	Be
	POOL										

Be-H = Beryllium reflector element with central water hole

FIGURE 5

they receive a shipment of LEU fuel pins, now being fabricated by General Atomics, for 14 fresh fuel clusters.

To test ANL's analytical methods, a series of 13 fresh HEU core configurations was analyzed and excess reactivities were compared with directly measured values. Calculated results were found to be in good agreement with the measured ones.

In preparation for full power operation of the SSR with a mixed HEU/LEU core, a number of low power measurements were undertaken last February. Many of these measured values have been compared with calculated results. Generally speaking, the calculations agree rather well with the corresponding measurements. However, there are some notable exceptions. For the core shown in Fig. 1 the worth of the C36 fuel cluster, relative to water, is significantly overpredicted. The integral worths of the low worth control rods (rods 5-8) in the 31 HEU/4 LEU mixed core are underpredicted by 12 to 37%. These differences are being investigated, but no completely satisfactory explanation is currently available.

LEU fuel pins, sufficient in number for 14 additional clusters, are being fabricated by General Atomics. These pins are expected to be available for use in the SSR before the end of life of the current 31 HEU/4 LEU mixed core.

REFERENCES

1. M. M. Bretscher and J. L. Snelgrove, "Transition From HEU To LEU Fuel In Romania's 14-MW TRIGA Reactor," 14th International RERTR Meeting, Jakarta, Indonesia, November 4-7, 1991.
2. C. Iorgulis and C. Costescu, "Tridimensional Neutronic Calculation Methods Used In Romanian 14 MW TRIGA-SSR Fuel Management and Irradiation Experiments Evaluation," Eleventh European TRIGA Users Conference, Heidelberg, Germany, September 11-13, 1990, GA TOC-22.
3. "R-20A Reactivity Computer Operation and Maintenance Manual ELE 313-0000-2," General Atomic Company, E-115-569, February 1976.
4. The measured excess reactivities and critical control rod elevations for the fresh HEU core configurations were recorded in the SSR logbook on December 12, 1979.
5. "Safety Analysis Report of the TRIGA Steady-State Research/Materials and Testing Reactor for the Institute of Nuclear Technologies, Bucharest, Romania," General Atomic Company, E-117-323, Vol. II, February 1974.
6. M. M. Bretscher, "Blackness Coefficients, Effective Diffusion Parameters, and Control Rod Worths for Thermal Reactors," ANL/RERTR/TM-5 September 1984.

END

DATE
FILMED

2/1/91 93

