I

54

I

4

mm—
e —
—
————
——

I

9l

JR———
—
——
]
——

“ : SAMOIZ -2 57 10

Con Az 10233 -

Achieving High Pertormance on the Intel Paragon

David S. Greenberg * Barney Maccabe Rolf Riesen
Stephen Wheat David Womble

Abstract

When presented with a new supercomputer most users will first ask “How much
faster will my applications run?” and then add a fearful “How much effort will it take
me to convert to the new machine?” This paper describes some lessons we learned
at Sandia while asking these questions about our new 1800+ node Intel Paragon. We
conclude that the operating system is crucial to both achieving high performance and
allowing easy conversion from previous parallel implementations to a new machine.
Using the Sandia/UNM Operating System (SUNMOS) we were able to port a LU
factorization of dense matrices from the nCUBE2 to the Paragon and achieve 92%
scaled speed-up on 1024 nodes. Thus on a 44,000 by 44,000 matrix which had required
over 10 hours on the previous machine we completed in less than 1/2 hour at a rate
of over 40 GFLOPS. Two keys to our achieving such high performance were the small
size of SUNMOS (less than 256kbytes) and the ability to send large messages with very
low overhead.

1 How fast can it run?

During the summer and early fall of 1993 Sandia has been installing a very large Intel
Paragon at its Massively Parallel Computing Research Laboratory. The machine consists
of 31 cabinets each capable of holding 64 nodes. Over 1800 of the nodes are used for
computation, 64 are used to control RAID disk controllers and the remaining serve as service
nodes and ports for ethernet and HIPPI. The vast size of this machine promised potential
peak performance of 140GFLOP. What performance could we achieve in practice?

As an indicator of performance we chose an LU factorization code which we had previ-
ously implemented on our 1024 node nCUBE2. LU is an important computation kernel for
applications such as molecular dynamics, electrodynamics, and boundary element methods.
It has the advantage of being highly computational intensive and thus can potentially make
use of the peak 75MFLOP rating of the i860 nodes. However, it is not embarassingly paral-
lel in the classical sense of having little or no communication. In fact, the LU requires the
communication of very large messages with low overhead.

In this paper we report results only for a version of the LU code which was derived directly
from the nCUBE code. No changes were made to the communication routines to optimize
for the mesh topology (as opposed to the nCUBLE’s hypercube topology) and consequently
the code could only run on a power of two number of nodes. Thus the largest number of

*Sandia National Laboratories Mail Stop 1423, P.O. Box 5800, Albuquerque, N 87185-3800. Supported
i part by the U.S. Department of Energy under contract DE-AC04-76BR080780-

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
K

computation could be cast in terms of the BLAS operations{2]. BLAS stands for Basic
Lincar Algebra Subroutines. They consist of a sel of optimized assembly codes for matrix
and vector calculations. As we will see below, the use of these subroutines was crucial for
high performance.

Although the communication required by LU factorization does not grow as fast as the
computation it is nonectheless significant. For an n x n matrix on p processors there are
O(n?\/p) bytes of interprocessor communication. Most of this communication occurs during
the broadcasting of rows or columns of the matrix. These broadcasts involve large amounts
of data in a single message and thus efficient schemes for buffering the data are essential.

We are also interested in the effect of /O on the ability of the Paragon to solve matrices

which are too big to fit in the local memories. In previous implementations on the nCUBE2

nd

we have seen that the number of I/O operations grows at best at the rate O(BT where B
is the disk block size and M is the total size of memory. In fact a simpler to code algorithm
in which the I/O grows as 0(73"—;,[—) may be preferable for realistic size problems. (For further
details on 1/O usage see [3].) Because of the large amount of local memory which SUNMOS
left available for matrix entries we have not yet begun to look at I/O issues on the Paragon
but expect to encounter them soon.

3 Local Memory size

The amount of memory available on each node of a parallel computer can have critical impact
on performance. We have already noted that larger memory means that fewer I/O operations
are required for a given sized problem. More importantly, if the memory if sufficiently large
then no 1/0 is necessary during the computation.

SUNMOS requires less than 256 kbytes per node for the OS itself. In addition it manages
all message buffers from a common pool. This means that buffers need not be assigned
on a per sending node basis. Requiring buffers for each possible sender has catastrophic
consequences when the machine is scaled to very large numbers of nodes. The default OS
used per sender buffers in order to help prevent the user from creating message deadlocks.
This is a worthy goal but was a price we were not willing to pay.

The net result of SUNMOS’ frugal use of memory is that almost all of memory is available
to the application. We were able to assign a 2000 x 2000 double precision submatrix to a
32Mbyte node -~ the matrix alone used 32 million bytes. SUNMOS, the program text, and
all auxilliary variables and buflers fit in the difference between 32 Megabytes and 32 million
bytes. On 1024 16Mbyte nodes we were able to fit a 44,016 x 44,016 entry matrix. This was
larger than the largest problen. we had been able to run out of core on our previous machine.

The large size of the submatrix assigned to each node gave us a large grained parallelism.
Large grain size is the key to good scalability. Between each need for communication there
was a large amount of computation to do. Further aiding our efforts was the interaction
of memory size and BLAS performance. When larger blocks are fed to BLAS it is more
efficient. Block size is increased either by increasing the size of the submatrix on a node (see
IPigure 1) or by increasing the BLAS block size (see Figure 2).

The BLAS block size requires some explanation. Qur original implementation of LU fac-
torization used BLAS level | vector-vector operations. However, the 1860 processor requires
high cache reuse in order to make full use of the arithmetic units. Level 1 operations use
cach data item once and vield almost 100% cache misses. [t was essential to convert the

assigned 1o rows than to columus because this yields longer veetors for the BLAST routines
such as the pivot scarches. In general the communication is occurring fast enough to make
tuning the communication portion of the code a second order effect.

[—Proc(,‘.ssors per column l Processors per row [MFLOPS J

32 1 1044
16 2 1208
8 4 1297
4 8 1320
2 16 1321
1 32 1267

7776 x 7776 matrix on 32 nodes

Figure 3: Dependence on processor assignment

5 Performance under SUNMOS

Tuning the code for cache usage by BLAS and for low communication volume would not
have rcsulted in high performance if the operating system were weak. We needed the OS
to leave most of memory for application use and to provide high bandwidth, low startup
communication. Fortunately SUNMOS does exactly this. As can be seen from Figure 4 we
were able to achieve quite high scaled efficiency. The efliciencies reported in the figure are
compared to the one node speeds. Even if we compare to the peak speed claimed by the
authors of BLAS for the routines we used (46MFLOPS) the 1024 node run achieves more
than 85% of the possible speed.

| Proc| n [MFLOP/node | Total MFLOP | Efficiency |

1 |13 42.8 42.8 :
4 | 2752 42.1 169 98.4
16 | 5504 41.4 662 96.7
64 [11008 40.6 2604 94.9
256 | 22016 39.7 10156 92.8
1024 [032] 39.4 40314 92.]

Figure 4: Scaled Speedup

6 Summary

We have shown that it is possible to achieve very high performance on the Intel Paragon.
The most important factor was that we had access to the SUNMOS operating system which
supplied us with fast message passing but did not require large amounts of memory. Running

ot

FILMED
| /a4 [

