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Abstract erating system (OS) such as in file systems and vir-
tual memory systems. While these systems may be

Parallel computers are becoming more powerful and easy to use, their general nature makes them inefficient
more complex in response to the demand for computing for many specialized scientific applications. In these

power by scientists and engineers. Inevitably, new an(; cases, the I/O must be explicitly managed by the ap-
more complex I/O systems will be developed for these plications progammer either explicitly, or though calls
systems. In particular we believe that the 1/0 system to libraries. In the future, programmers may be able
must provide the programmer with the ability to ex- accomplish efficient I/O by providing "hints" to I/0

plicilly manage storage (despite the trend toward corn- management systems in the operating system.
plex parallel file systems and caching schemes). One In this paper, we will describe our experiences in
method of doing so is to have a partitioned secondary producing high performance scientific codes that re-
storage in which each processor owns a logical disk. quire the use of disks for temporary storage of data.
Along with operating system enhancements which al- We will discuss both algorithmic issues (e.g., ways to
low overheads such as buffer copying to be avoided and structure the code to reduce the I/0 bottleneck) and
libraries to support optimal remapping of data, this systems issues (e.g., features of the OS that can make
sort of I/O system meets the needs of high performance it easier to produce high performance codes). To il-
computing, lustrate these issues, we will use LU factorization for

dense matrices. LU factorization is a common scien-

tific kernel used in the solution of linear systems and
1 Introduction the data movement is representative of many dense

matrix algorithms.

'rh_ solution of Grand Challenge Problems will re-
quire computations which are too large to fit in the

memories of even the largest machines. The speed of 2 Characteristics of I/O
individual processors is growing too fast to be matched
with increased memory size economically. Successful I/O can generally be divided into three phases: the
high performance programs will have to be designed initial input of data, the maintenance of temporary
to run in the presence of a memory hierarchy. Great data, and the output of program results.
efforts have already been made to optimize computa- The initial input of date. often involves the transfer
tions for the fastest end of the hierarchy - the use of of data over HiPPI, from disk, or from another corn-
high speed registers and caches. The result has been puter. It is a one time opera;l_:,, and the limiting
the creation of optimized codes such as those in the factor is often the speed of _he hardware. Although
BLAS. At least as large an effort must now be made to it can lead to significant overhead, it is rarely an in-
address the slow end of the hierarchy - the use of sec- surmountable bottleneck. An important issue is the

ondary storage such as disks or even SRAM backing format of the data. Because the input to one program
stores, may be the output to another, data may not be input

The term I/O typically refers to the slow end of in the most efficient format. Thus, the translation of
the spectrum and often involves the transfer of data data from one format to another is an important op-
between main memory and a disk system or between eration. We will have more to say about this later.
machines. I/O is often left in the control of the op- The output phase has similar characteristics to in-

MASTER
DISTRIBUTION OF THIS DocUMENT IS UNLIMITED



put phase. As before, a translation of the data may data is clone by explicit message passing, and thus tile
I)e necessary, such as in the display of data. PSS system strictly adheres to the distributed menl-

TIle handling of teml)orary values is much more ory paradigm. Tile programming required to make
problematic. Temporary values must be both written effective use of PSS is more complicated than that re-
and read, anti the order in which they are accessed quired for PFS or for a virtual memory systenl. How-

can change over time. If the managelnent of tempo- ever, we expect that anyone already programming ill
rary memory is not efficient, it can slow the whole distributed memory environment will be able to use
con lputation to a crawl. Virtual memory is one possi- PSS easily and effectively.

ble approach to maintaining temporary storage which The important feature of PSS is that the logical
is being provided by vendors. While this simplifies the disks can be treated as local secondary storage, and
programming, no virtual memory system can perform this enables the programmer to control data format
as well as a code written by a programmer who under- and locality. The programmer can thus plan the data
stands the algorithm being implemented; the overhead format to match the computational requirements and
of a virtual memory system often defeats the advan- plan the overlap of I/O and computations to match
(age of using a parallel supercomputer, i.e., computa- interprocessor communications. The programmer can
tional speed, also plan the data format and I/O to maximize data

reuse.

3 Systems for I/O

Our goal is to achieve high performance using large 4 Algorithmic issues
numbers of processors, and we cannot afford to pay the

overhead of a general purpose memory management In the previous section, we advocated a PSS sys-
system such as virtual memory. Instead, we will focus tern for I/0, which conforms to a distributed mere-
on the explicit management of temporary data by a ory model of progralnming. In this model, the pro-
programmer who understands the algorithm and can grammer h_ tile flexibility/responsibility to extract.
tailor the I/O to the algorithm, performance from the I/O subsysteln by algorithmic

There are two approaches to I/O supporting this modifications. These include changing the data for-
type of use, the parallel file system (PFS) and what mat on the disk to give more efficient access patterns,
we call partitioned secondary storage (PSS). In one or combinbing subproblems and redistributing loops
mode in which a parallel file system can operate, a to reduce the amount of I/0 or communications re-
processor node accesses a single file that is distributed quired. In this section, we discuss several algorithmic
over many [/O nodes by the operating system. (On issues in the context of an out-of-core LU factoriza-
the paragon, each I/O node is connected to one RAID tion code.
array. On the nCUBE, each I/O node is connected

to a single disk.) If there are more I/O nodes than
4.1 I/O complexitycompute nodes, this may result in improved disk-to-

memory transfer rates compared to rates from a sin-
gle disk to a single processor, tIowever, if there are One of the first steps in writing parallel algorithms
more compute nodes than I/O nodes (the usual case in is to understand how much I/O and interprocessor
massively parallel computers), then the PFS reduces communication is required by the algorithm and the
transfer rates due to increased system overhead and tradeoffs between ease of programnfing and cornputa-

conflicts between processors demanding I/0 service, tional speed and l/O and communication. This type
Tile second mode in which a PFS can operate is of analysis often falls under the heading I/0 complex-

using global files, i.e., each file is shared by all pro- ity.
cessors and is distributed across all I/O nodes. This An upper bound on the I/O required for LU factor-
mode shares both the advantages and the drawbacks ization (with or without pivoting) can be derived by
of the shared memory paradigm in a massively parallel writing the algorithm recursively. We denote the LU

computing environment, factorization of a matrix A by [L, U] = LU (A), where
In a PSS system, each processor has its own logi- L and U are the lower and upper triangular factors

cal disk, and the data of a processor's disk is treated respectively. We also subdivide the matrices A, L antt
similarly to the data in its local memory: the proces- U into four submatrices and denote these subnmtrices
sor will have sole control of this data. Any sharing of with subscripts. The LU factorization algorithm can
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then be written as follows [4]. we see that O(n4/M) entries must be read yielding an

[L1,1 U1,1] LU (A1,1) I/O complexity of O(n4/MB)., = Tile complexity of the second algorithm differs form
U1,2 = L-1A1,1 i,2 that of the first algorithm by a factor of n/v/-M. A

LI,_ = 0 partial solution to this problem is to overlap I/O with

U2,1 = 0 computation. In particular, we note that tile read
of Lj+I can be accomplished while Lj is being used

L2,1 = A_,IUI,_ for computations. This is, however, only a partial so-

[L2,2, U2,2] = LU (A2,2- L2,1U1,2). lution; by providing buffer space for I/O, we reduce
the memory available for computations by a factor of

If we let n denote the size of the matrix A, M the 2, thereby increasing the amount of I/O. Also, tile
size of memory and B the size of an I/O request amount of I/O is greater than the amount of compu-
across all processors, then the I/O complexities to ations by O(n) so that for very large matrices not all
compute the products L'[,_AI,_ A2,1U -1 and L2,1U1, 1,1, ,2 the I/O can be hidden. (We remark here that for all
are O(n3/Bv/M) [2, 6, 8]. We can now express the the experiments presented later in the paper, the I/O
number of I/O operations to factor an n x n matrix, time was dominated by the computation time.)
TLu(n), by the recursion

4.2 Numerical stability

TLtr(n) = 2TLu _ +0 In the previous subsection, we discussed the rise

/' n 3 '_ of I/O complexity in choosing an algorithm; however,
= 0 \Bv/-_] . the primary concern of the programmer must be the

stability and correctness of the algorithm being imple-
We note that the upper bound for LU factorization is mented. For example, even though column pivoting is
the same as that for matrix multiplication. We also required for the stability of LU factorization for gen-
note that pivoting does not change the upper bound, eral matrices, many early versions of out-of-core LU
which can be explained by observing that the com- factorization incorporated no pivoting or limited piv-

plexity of rearranging the rows of a matrix is only oting to allow operations on large square blocks that
0 (n2/B). From a practical standpoint, pivoting re- did not contain entire columns. This enabled more el-
quires a finer subdividing of the matrix so that all ficient use of BLAS 3 routines and reduced the amount

the submatrices holding any particular column can be of I/O required (even though, as we have shown, the
held in memory at the same time. overall complexity cannot be reduced by this tech-

Because the recursive algorithm can be difficult to nique). While this may be fine for some matrices,
implement, we describe a simpler algorithm and dis- the disadvantage is that the resulting codes could not
cuss its complexity. We begin by dividing the matrix be considered general purpose; the results depended
A into b column blocks of size n × k, where nk = O(M) not only on the matrix, but also on the number and
and denoting these blocks by Ai, i = 1,..., b. Denot- configuration of the processors.
ing the corresponding components of L and U by Li
and Ui, i = 1,..., b, we can write LU factorization as 4.3 Data format
follows.

Once the algorithm and the decomposition of the

for i = 1,...,b data to processors and disks have been chosen, the
for j = 1,...,i- 1 format of the data must be chosen. For example, if

update Ai with Lj a matrix is needed by rows, it does not make sense
to store it on disk by columns. Similarly, if a ma-

end for trix is needed in blocks, as in the recursive algorithms
compute Li and Ui described above, it does not make sense to store it by

end for. either rows or columns. Several reports have examined

this issue and found that pre- or post-permutations
The high order I/O terms in this algorithm arise from of data lead to a substantially reduced running time
the repeated reading of the Li. In particular Li has for many computations [31.
approximately (nk - (i- 1/2)k "_)entries and must be Sometimes a single computation will require data
read b - i times. Summing this up for i = 1,..., b, in different formats for different subcomputations. At



other times, tile input or outl)ut interface Inay require Finally, a useful addition to such a library would
data in a different format from that which is opt|- be memory |napping services. This would relieve the.
iltal for the computation, Thus the ability to converl, programrner of i,_ska t;uch a_sthe calculation of olfse,ts
between formats can be inq)ortant. Several authors for data transfer and atpport other services such as

have Itoted that using the I/0 system alone to per- caching.
form these conversions can be quite expensive. Typ-
ically data which is contiguous in large blocks in one
format is scattered in another. Sitice disk rates are 6 Implementations
itriuch lower when servicing scattered small rcquests,

the I/O for the scattered forrnat will suffer. A bet- The Lest aigorithni for our i/O work has been the
ter alternative is to always read arid write data to arid column-oriented version of LU factorization. As dis-
trorrt the disks in the disks' current large block format, cussed in earlier sections, there is a large amount of
When data is reeded iri a new forlnat, the intercon- !/O; however, t|lis I/O can be |iidden by coinputations
nection network can be used to reorder the data, ar, d for "'small" nlatriees. (Of conrse, the exact meaning

then write to the disks in the new fortnat [2]. of "sirtall" depends on the relative speeds of cornl)uta-
in our rnost efficient ilnl)lernentation of columrt- tions and I/O for a giw;n machine.) We also use partial

orient.ed LU factorization, we use two forrnats. The pivoting to ensure nunierical stability, and permute a
first, is used for the unfactored blocks of the niatrix column block of the rnatrix afl,er factoring to make

where tile trlatrix is stored by columrts. The second is the lower and tipper triangular portions of the ntatrix
used to store interrnediate results and the final (fac- contigitous within each processor's secondary storage.
tored) lrlatrix. In this the column blocks are perirulted We have illtplemented this algoritlirn on both the
so that the lower triangular entries are stored contigu- lntel Paragon and the nCUI31)] 2. The nCUI/E 2 at
ously and are followed by the upper triangular entries. Sandia is a 1,024 node machine. Each node has 4
Because the lower triangular portion must be read into M|)ytes of irtemory and is capable of 2.1 double l)reci-
lrielnory repeatedly, this results iri less bookkeeping I)y sion Mltops/second using the BLAS library. The disk
the program arid larger blocks of data transferred, systern consists of 16, one Gbyte disks, each with its

own SCSI controller.

The lntel Paragon at Sartdia ha.s 1840 coinl)ute
nodes, each with two i860 processors, one for coinl)lt-

5 Libraries tat|on and erie for comttnieation. 528 nodes have 32

Mbytes of memory and tile reinainirig nodes have 16
For scalability reasc.,:.<;antong others, we have advo- Mbytes of memory. Each node is capable of 45.9 (lou-

cared a PSS system for out-of-core algorithms, which, ble precision M/lops/second using the BLAS DG EM M
a.s we have observed, imposes aii additional bltrden on routine. There are 48 1/O nodes availal)le, each witlt
the l)rogran_rrler, q'his burdeil can be relieved some- a RAID controller and five, one Gbyte disks.
what by the use of libraries. For each machine we have developed versions that

Oite of the primary tasks of such a library irnist be run un(ler the ven(lor--sul)i)lied operating systenis and
I,oconvert data between various formats. One exalrli)le versioris that run under PUMA, an operating systetn
of this inight be to convert a lnatrix stored in row for- develol)ed jointly by Sandia National laboratories and
tliat on 1024 virtual disks to one stored in block format the University of New Mexico [7], which iirlldeinei_ts
on 64 virtual disks. At_ot.her example wouhl be to con- PSS. The restllts given later in t|tis sect|err are taken
vert the same rrtatrix to a column format oft one vir- frotrt the nCUBE/PUMA version of the code. The
tual disk, where the virtual disk is distributed across status of the other irrtl)lemenl, ations is as follows.
litany physical disk in a PFS format. Many (if not

. nCUBE/Vertex. The nCUBE-supl)lied softwar(,
titost) change of format changes can be writteri a,s bit- that runs on the disk nodes cannot SUl)i)ort the
lierliiute--complement (BPC) or I_it-tnatrix-multitAy -

'" e high voluine of l/O required I)y tile algorithni.
COlll])]elilont (BMMC) transforlnations, lhes. have For small problems runlling on 16 nodes, l,hc

been examined iri detail in [2] arid urider other naliles eOml)uatiorial iates are siinilar to those of the
by several other authors, rICUBE/PUMA w'.rsioli, while the I/O rates are

Another task of such a lil_rary would be to transfer about half those achievable using the PSS.
to or from destinations other than disk. For example,
the destination might be me|it processor m,miory, a • Paragon/PUMA. The I/O support routines ill
IIiPPI cha.nne] or a grapliics frame buffer. PUMA have not beerl colrlllleted, and we arc not
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able to overlap compuatation and I/O. We typi- the nmmory used for a 2,048 x 2,048 matrix. The non-
(ally achieve computational rates in excess of 40 overlapped I/O time is not shown because the small
Mflops/node for large problems, size of tile matrix allowed effective caching of data by

the disk software in some cases. (Again, tile small size
• Paragon/OSF. Due to large memory require- was chosen to enable us to do a larger number of runs.)

ments by the operating system and communica- Tile results again show that the total I/O is inversely
tion buffer requirements, we have not been able proportional to the amount of memory available to the
to factor large matrices, program. Tile increase in total time, however, is tim

result of increased interprocessor communication. The
Ideally, we would present experiments that make data in Table 2 does show that the total I/O is almost

use of the entire capacity of the machine. Unfortu- independent of the number of processors. Thus the
nately, due to the cubic growth of computation time, algorithm scales well to large numbers of processors.
a single run of the largest matrices requires several
hours of computer time. Therefore, we instead present
two medium sized runs to demonstrate the ability to

overlap I/0 with computation and several small sized 7' Conclusions
runs to highlight the dependency on available memory
and on the number of processors used. In this paper we have discussed several aspects

'Fable 1 shows the results of running our LU factor- of "out-of-core" programrning on parallel machines.
ization algorithm for a 10,000 × 10,000 matrix on 64 This is part of the larger problem of moving data into
processors varying the amount of memory available to and out of these computers and is characterized by re-
tile algorithm. In the first run, each block of columns peated reformatting and transfer of data to and frorn
could be rnade large enough to cover the matrix with secondary storage. In particular, we discussed the ad-
14 block, while in the second run, half the memory vantages and disadvantages of several paradigms for
was not used thereby halving the potential size of a disk usage and made the case that an efficient parti-

tioned secondary storage (PSS) is necessary for highblock and doubling the number of blocks necessary.
The increase in the number of blocks almost doubled performance scientific computation.

tile amount of I/O done. The last colulnn records We also discussed many of the prograrnming issues
the amount of time spent doing I/O that could not be which arise when using a disk system for temporary
overlapped with computation, which we note is almost storage. These included data partitioning, data for-
constant as predicted by the complexity results, mat, I/O complexity, numerical stability and the use

The increase in total time is ahnost entirely due to of libraries. In each of these discussions, we used LU
increased interprocessor communication. The amount factorization as an example and in the end showed

of communication required is O(n2bv/'#), where b is that the use of PSS (the "block server" facility in tile
tim number of column blocks, and p is tile number of PUMA operating system) leads to a very efficient out-
processors. Thus the memory size is important in that of--core LU code. We also showed that an irnportant
it defines the grain size for the computation, but not feature of any I/O library or PSS system is the ability
because it affects the amount of visible I/O. to do background I/O. This enabled us to substan-

Table 2 shows the scaled efficiency for LU factoriza- tially reduce the "visible" I/O time in LU factoriza-
tion. We note that there is a substantial drop in scaled tion.
efficiency in going from one to four processors, but Even though we used an LU factorization code to

demonstrate the ideas of parallel I/O, most of the dis-it then remains almost constant up to 64 processors.
This can be explained by the physical configuration of cussions in this paper apply equally well to any code

that requires repeated access to large blocks of data.the nCUBE, which determines how the PUMA OS as-
signs disks to processors in the PSS system. There are (The discussion ofl/O complexity, of course, is specific
sixteen disks, each with eight connections to the lower to LU.)
512 processors of the nCUBE. Thus, there is one con-
nection to a disk for each cube of four processors, and Acknowledgements
PUMA assigns these four processors to the same disk
to minimize traffic through the interprocessor commu- This work was supported in part by the U.S. De-
nication network, partment of Energy and was performed at Sandia Na-
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'Fable 1.: Times to factor a double precision 10,000 × 10,000 matrix using 64 processors on the nCUBE 2

number of column-block memory total I/O total "visible" I/0

column blocks size (bytes/proc) used • (Mbyte:s) time(sec) ' time (sec)
i 14 ' 893,214 94% 4,924 6,320 85 "

27 463,148 49% 8,869 6,574 87......

Table 2: Scaled efficiency for LU factorization on an nCUBE 2

p n total I/O total "visible" I/O scaled

....(Mbytes) time (sea) .... time (see) efficiency
1 1,250 77 742 15 1.00
4 2.500 308 1,585 54 0.94

16 5,000 1,231 3,146 55 0.94
64 10,000 4,924 6,320 59 0.94

Tabie 3: Times to factor a double precision 2,048 × 2,048 matrix oil the nCUBE 2

number of column block memory total I/O total

p column blocks size (bytes/proc) used (Mbytes) time (sec)
16 4 - 524,800 55% 71 231
16 8 242,400 26% 132 254
32 2 525,312 55% 34 117
32 4 262,656 28% 71 126
32 8 131,328 14% 132 141
64 2 262,656 28% 34 67
64 4 131,328 14% 71 77
64 8 65,664 7% 132 99......
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