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1. Introduction: what are vortex methods?

Vortex methocds originated from the observation that in incompressible inviscid flow
vorticity (or, more accurately, circulation) is a conserved quantity, as can be readily de-
duced from the absence of tangential stresses. Thus, if the vorticity is known at time
t =0, one c..n find the flow at a later time by simply following the vorticity. In this narrow
context, a vortex method is a numerical method that follows vorticity.

However, more generally, viscous flow problems have a Lagrangian, albeit stochas-
tic, representation [C4],(G2],[L4]. Compressible flow has Lagrangian representations [L1].
More generally yet, in many problems there are variables such as charge, stellar or plasma

mass, helicity, impulse, chemical species, that are transported either passively or modified



by known interactions; this transport/mo-lification can be represented by following parti-
cles, or polygons, or domain boundaries; by moving particles, or by finite elements, finite
differences, or boundary integrals. Lagrangian methods have a close resemblance to inte-
gral methods (see e.g. [G3]). Aspects of Lagrangian methods, such as particle creation at
walls, have found application in non-Lagrangian methods (see e.g. [H5]). Fast summation
methods, designed for particle methods, have found uses outside of computational physics.

Even more generally, the analysis of vortex methods leads, as we shall see, to problems
that are closely related to problems in quantum physics and field theory, as well as in
harmonic analysis. A broad enough definition of vortex methods ends up by encompassing
much of science. Even the purely computational aspects of vortex methods encompass a
range of ideas for which vorticity may not be the best unifying theme.

We shall restrict ourselves in these lectures to a special class of numerical vortex
methods, those that are based on a Lagrangian transport of vorticity in hydrodynamics by
smoothed particles (“blobs”) and those whose analysis contributes to the understanding of
blob methods. Blob methods started in the thirties as two-dimensional “point” methods
[R3]. By the fifties, it was discovered that “point vortex” methods had drawbacks, and
a misinterpretation of the Poincaré recurrence theorem led to the conclusion that the
drawbacks could not be remedied (for an analysis, see [K7]). In the late sixties and
early seventies, the virtues of smoothing were discovered [C3],[C4],[C12] and viscosity and
boundaries were added.

The generalization to three dimensions followed soon [C5],[L.2],[L3], and was found to

be non-unique. Arrows, filaments, dipoles, magnets, all generalize two-dimensional blobs,



and we shall compare them below. All three-dimensional inviscid blob methods eventually
lose stability; the analysis of that instability requires a deeper understanding of turbulence
and contributes to the understanding of quantum fluids.

Are vortex methods good numerical methods? The answer is time-dependent and
problem dependent. Vortex methods made possible pioneering investigations of vortex
sheets [K6],[K7],[T1], high Reynolds number wakes [C2], and various three-dimensional
problems involving vortex rings, jets, and wakes (see e.g. [A5],[K4],[M4]). As time pro-
gressed, other methods caught up with some of these applications, but then vortex meth-
ods also improved. Vortex methods (i.e., “blob” methods) are a very useful part of the
panoply of computational fluid mechanics, but do not exhaust it. An important class of
vortex methods are “hybrids”, which borrow some of the devices of vortex methods and
couple them with other ideas [C17],[R4],[W1]. Good examples are the methods developed
recently by Cottet, in which a finite difference method is used near boundaries to resolve
boundary layers, while a vortex method is used far from the wall to ensure the correct
transport of vorticity. Another class of methods, first implemented by Sktestakov, uses
finite differences in the interior and vortices near walls; it has been recently suggested by
Bernard that in some problems such methods can obviate the need for extraordinarily fine
resolution and very small time steps near walls that bedevils finite difference methods used
alone. I shall disregard here all hybrids, but advise the numerical analyst to keep them in
mind.

I will put some emphasis on a more arcane use of vortex methods. Vortex methods for

inviscid flow lead to systems of ordinary differential equations that can be readily cast in



Hamiltonian form, both in three and two space dimensions, and they can preserve exactly a
number of invariants of the Euler equations, including topological invariants. Their viscous
versions resemble Langevin equations. As a result, they provide a very useful cartoon of
statistical hydrodynamics, i.e., of turbulence, one that can to some extent be analyzed
analytically and, more importantly, explored numerically, with iraportant implications
also for superfluids, superconductors, and even polymers. In my view, vortex methods
provide the most promising path to the understanding of these systems.

Before launching in the description of vortex methods, I would like to say a few words
of caution. Vortex methods operate with objects, vortices, that have a clear physical
interpretation. Nature is rife with vortices, (tornadoes, hurricanes, ...), and it is very
tempting to identify the numerical objects with physical ones. This near-physicality has
many attractions, but also some dangers. A vortex method produces easily results that
look plausible to the naked eye, or when presented on a videotape. Such results are not
necessarily accurate. People have tried to model, say, turbulent boundary layers, with a few
dozen vortex elements, while being aware that a spectral calculation would require millions
of unknowns to yield useful results in the same problem. Even the wildest proponent of
vortex methods will not suggest that a vortex method can give something useful with no
effort.

One should in particular draw a clear distinction between numerical approximation by
vortex methods (the main subject of these taiks) and physical modelling based on a vortex
representation. I shall give below some examples of the modelling mode, in the context of

vortex lattices. Modelling and approximation are different; in particular, the vortex cores



needed for accuracy are designed on the basis of an analysis of approximation kernels; they
are not normally meant to be “physical”’. I shall give below an example of a core designed
on the basis of physical models; it is not useless, but it is not as accurate as cores designed
by mathematical analysis. For accuracy, a physical vortex must be approximated by a
cloud of numerical vortices, or else the results will be quantitatively wrong (if occasionally
qualitatively beguiling). The confusion between vortex-based modelling and vortex-based

numerical methods is the origin of many misunderstandings.

2. Vortex methods in the plane.

We begin with a description of vortex methods for two-dimensional inviscid unbounded
flow.

Consider a velocity field u(x, t), u = (u1,u2), where x = (z1,2) is the 1 ssition vector
and t is the time. First, pick a fixed point x, and consider the points in the plane within a
distance h of x, i.e., x = x + h, h = (h1, hz2), h = |h| = length of h, small enough so that
h? is negligible. Then

w1 (x + h) = uy(x) + h101u; + h202uy, 0 = —a%,
uz(x + h) = ua(x) + h10y1us + haOaus,

or

u(x + h) = u(x) + (Vu)h,

where (Vu) is the matrix with entries (Vu);; = Ouj, 1 = 1,2, j = 1,2. Let D =

1 ((Vu) + (Vu)T) (T denotes a transpose) be the deformation matrix. Then

(Vu)h = grad, (Dh, h) + %ﬁ x h,



where
grad,(Dh,h) = (4, (Dh,h),8,(Dh,h)),

€ = (0,0, 6)1 £= Ozuy — O1uz,

h = (hl, hz,O).

(Note that & is a three-dimensional vector pointing out of the plane of the motion.) It
is easy to see that the velocity field grad, (Dh,h) represents a deformation, and 1€ x h
represents a rotation with angular velocity —;-E . Thus the most general motion of a fluid
can be locally written as the sum of a solid body translation, a deformation, and a rotation
with angular velocity %f : € is the vorticity.

An ideal fluid is, by definition, a fluid which cannot support tangential forces. Rotation
can then be neither started nor stopped, and one expects £ to be a privileged variable.

Indeed, the Euler equations for an incompressible fluid can be written as
du+ (u:-V)u=—grad p (1a)
div u =0. (1b)
where p is the pressure and V the differentiation vector. Taking a curl, one obtains

6t£ + (U' V)£ = 0»

or

D¢ _

=, @)

where D/Dt = 8, + u - V denotes differentiation following a particle. Vofticity is thus

conserved.



Another consequence of the equation of motion is the following: Let C be a closed
contour in the plane; let C; be its image under the flow (i.e., the locus of points that C

reaches after a flow during the time ¢). Then

/;u(x,O)-dsz/(;t u(x,t) - ds;

this invariant, the circulation along C, will be denoted by I'c. (The three-dimensional

analogue of this result also holds.) Note

/Cu-dszfzf-d)],

where ¥ is the interior of C.

The equation div u = Oyuy + duy = 0 is the statement of incompressibility. As
its consequence, there exists a function 1, the stream function, such that u; = 0,9,

ug = —01%. Substitution into the definition of ¢ yields
Ay = —¢, A = Laplace operator = 82 + 82,

Let G(x,x') = G(x — x') be the Green function for the Laplace operator; AG = §(x — x');
G = ——él;log |x — x'|, where |x| denotes the length of the vector x. Ay = —£ then
implies ¥ = 3 [log|x — x'|£(x')dx’, where dx = dx,dz, and then u = (8;,—8)¢ =
&7 (23, ) ek - %1 €xha

Introduce the notation

frg= / £(x - x')g(x')dx,




f * g is the convolution of f and g. For later reference, note:
fxg = g*/f,
f*6 = f, &= Dirac delta function,

and

D(f »g) = (Df x g) = (f * Dg),

for any differentiation operator D and whenever the expressions make sense. Thus,
u=K *¢,

0 -
where K = 2-17—( (_gl)logbd: 217 (—%7‘,%),7‘2 = z2 + 22.

T

Given any point in the fluid, located initially at cx, its subsequent motion is given by

%’t—‘ —uxt), x(0)=a. 3)

Let supp ¢ denote the support of £, i.e., the set of points where { # 0. Take a point
o in supp £. The motion of that point will also follow (3), with the attached vorticity
unchanged. If one considers an infinite number of equations, one per point in supp &, one
obtains the motion of the vorticity (since & (x(t)) = £(ax) if x(0) = ¢, by the conservation
of vorticity); £ gives rise to u by u = K * &, and the Euler equations are solved. To
discretize this system for computer use, one can take a finite number of initial points

Qy,...,Q N, and solve the finite set of ordinary differential equations

@ = Kxf i = 1,...,N,

x;(O) = Qy,



where £ on the right-hand side is attached to the moving points, i.e., { = va: 0 &:6(x —x;),

6 = Dirac delta, and the f,' are some appropriate constants. It is natural to require that
Y& = [&(x)dx. Then

dx,_ZK __x’

j#i

(the term i = j is excluded to avoid a singularity), or
% = X 'TL—T )5 rE = (2 —25)% + (i - ¥5)°
%;i = ]-7':1 2 QLT‘LEJ éj = constants.

Where z = 21,y = z for the sake of clarity. This is the point vortex method, which

(4)

converges, though not very fast [H4],[(K7]. Its flaws can be seen by considering two nearly
“point” vortices (vorticity functions of the form :6(x — x;)). Equations (4) will cause
them to rotate around each other very fast. Such “trapping” is indeed a physical process
for isolated vortices, but the intensity of the rotation that results is unreasonable. The
“point” approximation must be smoothed. A plausible smoothing [C3],[C4] consists in
replacing r% by r;j¢ for r;; < e. A more general smoothing can be obtained [H1},[B2] by
changing K to K., where K. = K * ¢, with ¢ a smooth function of small support (i.e.,
vanishing over most of the plane except near the origin). K. is then smooth, and the result

is a smoothing of equations (4). In general, we shall pick ¢. so that

be = € 2¢(x/e), ¢ smooth,

[ pxrax =

/ Tz d(x)dx =0 fora; >0, a2>20, a1 +as <p-—1,




where p is an integer to be chosen. Recipes for choosing p and constructing ¢ will be given
below (see also [B2],[B4],[H1],[H2]). Note that changing K — K, is identical to keeping
K but changing £6(x — x;) into £¢.(x — X;), ie., to smearing vortex points into vortex
“blobs”.

It will turn out that the accuracy of the smoothed method depends on p. In the
absence of walls, we shall see that it is reasonable to choose the initial &; on a regular
grid, and choose £; to be the initial values of £(x) at these points, multiplied by a squared
mesh size. The vortex method for an inviscid plane unbounded flow is now fully described,
except for the general construction of ¢. The recipe r,-zj — r;;€ for r;; < € is quite adequate
for starting a calculation; the integration in time requires accuracy, but the system is not
stiff and Runge-Kutta will do well; most programs seem to be using fourth-order Runge-
Kutta.

There are other strategies for smoothing “point” methods. One can for example
transport points in the support of £, and assume that £ between the points is given by a
polynomial distribution on a set of polygons. New polygons can be found as the geometry
of the points changes. The integral of a polynomial times the kernel K on a polygon can
be evaluated analytically and simply, yielding a simple and accurate “smoothed” method
for transporting the points, one that can be made adaptive and is particularly efficient if
the variation of £ on its support is small [B7],[R4]. This is the “polygonal” vortex method.

What has a vortex method bought you that a simple finite difference integration of
equation (4) does not provide? Note that the Navier-Stokes equations, to be discussed

next, are formed by adding to the Euler equation higher derivatives multiplied by what is
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usually a small coefficient. The error term in finite-difference or finite-element solutions
of the Euler equations has the same form, producing numerical viscosity (and dispersion).
The error in vortex methods has a different structure, because there is no differencing of
the advection terms in space. This opens the door to a realistic analysis of the effect of a
small viscosity.

Here too a note of caution is appropriate: if a calculation does not contain enough
computational elements to represent a given phenomenon, the phenomenon will not be
seen. One cannot represent, say, twenty waves with two vortices. As the Reynolds number
is increased the complexity of the phenomena produced usually grows, especially in three
dimensions. The number of computational elements must then increase or the complexity
of the phenomena must be reduced by modelling, with a vortex method as with any other.

It is worth noting that equations (4) form a Hamiltonian system. They can be rewrit-

ten in the form

gazi_ _OH
! dt - 3y,"
g _ _OH
‘dt - 6:1:,-’

where H = -2 3. 3" i Eiéj log |x; — x;|. A simple scaling of the variables removes the
factors f,- on the left-hand side of these equations. Note that the Hamiltonian system
is rather odd: the variable dual to one coordinate of a vortex is the other coordinate
(rather than some momentum variable). If K — K., the corresponding Hamiltonian has
a smoothed interaction replacing the log. A short calculation shows that the Hamiltonian

H differs from the kinetic energy -;— J u’dx by a constant (that is infinite if € = 0).
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3. The Navier-Stokes equations in the plane.

The Navier-Stokes equations in the plane take the form

D¢ 4 o
Dt = RT*A¢, divu=0, (5)

where R is the Reynolds number (that we assume is large), and as before, £ = curl u,

u=K ¢

Note that, while in a finite difference method one calculates the change in solution
at fixed spatial points, in a vortex method one follows the motion in space of particles
that carry a fixed value of the vorticity. The problem at hand is to couple this “particle”
method to a diffusion with diffusion coefficient R~!, We shall first discuss how this can be
done in a “fractional step” method; a more general formulation will follow.

Consider a differential equation of the form
u; = Au + Bu, u(0) = uy,

where A, B are operators (for example, A = 8;, B = 8%). Its solution produces a “solution

operator”, i.e., an operator S44p such that
u(t) = Sa4+B(t)uo.
Let S4, Sp be the solution operators of the equations u; = Au, u; = Bu respectively, i.e.,
ug = Au, u(0) =up «— u(t) = Sa(t)uo,

ug = Bu, u(0)=up «— u(t) = Sp(t)uo,

12



where —— denotes an equivalence under the appropriate solvability conditions. Then,

under quite general conditions, the Trotter (“fractional step”) formula holds:

=2 () ()

i.e., one can solve the “partial” equations for short time intervals and combine the results
to obtain the solution of the full problem [C13]. The error, ie., the norm ||Sa,5(t) -
(54 (%) Sg(£))" | for finite m is typically O(n"?), unless A and B commute or special
precautions have been taken, when the error can become O(n™?2).

If one rewrites the Navier-Stokes equations as
0§ = —(u- V)¢ + RTIAE,

then the first partial equation is the Euler equation, and all one has to do is couple the
vortices to a solution of the heat equation implemented on the moving vortex grid. Various
successful ways of doing so are available [C15],[{C17],[F1]. We shall present here the random
version of such an algorithm; this was the first successful viscous vortex method [C4], and
is of some interest in statistical mechanical models. As will emerge from our analysis, this
random method is useful numerically only when R is large and a boundary is present. We
begin with a little probability theory.

The possible outcomes of an experiment (such as throwing a die) form the points in
a sample space S. A subset E of 9 is called an event. We assume that to each event is
assigned a probability P(F), a number between 0 and 1 which intuitively represents the

fraction of times an outcome in E will occur if the experiment is repeated many times.
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We assume, therefore, that P(S) = 1. Moreover, if two events F; and E; are disjoint,
i.e., By N Ey = 0, then P(E, U Ez) = P(E;) + P(E;). Two events, E; and E, are called

independent if

P(Ey N Ey) = P(E1) - P(Ey)

Intuitively, two events are independent if the occurrence of one of them has no effect on the
probability of the occurrence of the other one. (For instance, in the toss of two dice marked
#1 and #2, the events “a two on #1” and “a three or a four on #2” are independent.)

A random variable is a number attached to the outcome of an experiment. The

expectation or mean of 7 is defined by

(m) = /S ndP.

For instance, if § = {s1,...,3nx} and the probability of s; occurring is p;, then

=3 n(sm.

i=1
Suppose there is a function f on the real line such that the probability of n lying
between a and b is f: f(z)dz. Then we say that n has the probability density function f.

Clearly, f:o J(z)dz = 1. Also, one can show that

m= [ =i

-00

The variance of 7 is defined by

Var(n) = ((n — m)?) = (n*) = (n)?

14



and the standard deviation by

a(n) = +/ Var(n).

Two random variables, 7; and 72 are called independent if for any two sets A;, A5 in

the real line, the events
{s € S|m(s) € A1} and {s € S|m(s) € A3}
are independent. For independent randoein variables, one has

(mmz) = (m)(n2)

and

Var(m + 12) = Var(n) + Var(nz).

(From the definition, (71 + m2) = (n1) + (ms) is always true.,
The law of large numbers states that if n;,72,...,72 are random variables that are

independent and have the same mean and variance as 7, then

B R
(n) —-nlgrgo;;m-

Part of the theorem is that the right-hand side is a constant. This result justifies our
intuition that (n) is the average value of  when the experiment is repeated many times.
The significance of the standard deviation is illuminated by Tchebysheff’s inequality: If ¢

is the standard deviation of 7,

P({s € Slin(s) — (m)| > ko)) < o5
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for any number k£ > 0. For example, the probability that » will deviate from its mean by
more than two standazd deviations is at most 1/4.

If a random variable 5 has the probability density function

1 2 /0.2
= ~(z—a)?*/20
f(z) ok

we say that 7 is gaussian. One can check that (n) = a and Var(n) = 2. If 5; and 7, are
independent gaussian random variables, then 7, + 72 is gaussian as well.

Next we show how gaussian random variables can be used in the study of the heat
equation:

Vi = Vg, -o<zr<oo, >0

Here v represents the temperature as a function of z and ¢, and v represents the conduc-
tivity. If v is given at ¢ = 0, then the heat equation determines it for ¢ > 0. If initially
v(z,0) = 6(z), a delta function at the origin, then the solution of the heat equation is

given by

)

H(z,t) = \/Z%R_exp (Zg—t—) . (6)

This is the Green function for the heat equation (see any textbook on partial differential
equations).

We can interpret the function (6) from a probabilistic point of view as follows: Fix

time at ¢, and place N particles at the origin. Let each of the particles “jump” by sampling

the gaussian distribution with mean zero and variance 2vt. Thus, the probability that a

particle will land between z and z + dz is

! ex —a? d
Varut P at )
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If we repeat this with a large number of particles, we find

im number of particles between  and z +dz at timet 1 ex —x?
N—sco N dzx - Vamut vt |-

Next consider the solution v(z,t) of the heat equation with given initial data v(z,0) =

g(z). The solution is

v(z,t) = /—oo H(z,z',t)g(z')dz’, (7)

where

H(z,z',t) = G m/)2> :

1
ex
varuvt P ( 4vt
This general solution has a probabilistic interpretation as well. Instead of starting N
particles at the origin, start N randomly spaced particles on the line, at positions, say z?,

i1=1,...,N, and assign to the ith particle the mass

g9(x?)
e

Let these particles perform a random walk, keeping their mass fixed. Then after enough
steps, the expected distribution of mass on the real line approximates (7).

In this process the total mass of the particles remains constant. This corresponds to
the fact that

Bt/ v(z,t)de = V/ Vaz(Z,t)dz = 0

- 00 — 00

(assuming v, — 0 as ¢ — +o00). Of course, one’s intuitive feeling that the solutions of the

heat equation decay is also correct. Indeed,

s o] [» o) [e <}
Gt/ vz(a:,t)dmzf WV dT = —-21// (ve)*dz < 0.

— 00 - 00
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The decay of [v2dz (which occurs while [v dr remains constant) is accomplished by
spreading. As time advances, the maxima of the solution decay and the variation of the
solution decreases. To see intuitively why the integral of v? decreases, consider the two

functions

_J2, -i<e<] _J1, -1<z<+1
U1 = {0, elsewhere and vz = 0, elsewhere

The function v is more “spread out” than v;. This is reflected by the calculations [ vodz =
Jvide = 1, but fvidz =2 and [vidx = 4. Note that as time unfolds, the variance of the
random walk that is used to construct the solution increases, whereas the integral of v?2,
which is related to the variance of v, decreases. The variance of the random walk increases
as the solution spreads out, whereas the integral of v* decreases because the range of values
assumed by v decreases.

We now apply this algorithmn to the Navier-Stokes equations. After each Euler step,
we have to solve the heat equation {, = R~A¢ for a time step At. This can be done by
allowing each vortex to perform a random, gaussian jump of mean 0 and variance 2At/R;
thus, random pushes redistribute the vorticity and approximate diffusion.

Does one have to repeat the calculation over and over and then average? A simple
calculation (that we omit, see [C4],[L4]) shows that the standard deviation of the value
of the velocity field u at a point x (which is one estimate of the error) is proportional to
(RN)~1/2, where N is the number of vortices. If R and N are large, this is a small quantity,
and a single realization (one calculation, one random push per particle per time step) is
enough. Note however that in two space dimensions and in the absence of boundaries, the

introduction of viscosity usually perturbs the solution only by an amount O(R™1!); thus
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there is not much point in approximating viscous effects when R is large. The random
method comes into its own when a boundary is present. Then the effect of viscosity is
O(1), while the error remains O ((RN)~%/2), i.e., small.

Suppose for a moment the Euler step is performed by an explicit Euler integration.

The equations of motion of the vortices are:
x?t = x? + uAt ++1/2/R w,

where x? = x;(nAt), At is the time step, and w is a two-component random variable,
each component being gaussian with mean 0 and variance 1. In the limit At — 0, this

equation converges to the stochastic differential equation
dx = udt + /2/R dw, (8)

where dw is “white noise”, a gaussian random function of time with two independent
components and no correlation between w(t,), w(tz), t1 # t2. This equation (or more
exactly, this set of equations, one per point in the support of £) is exactly equivalent to
the Navier-Stokes equation (5) (see [C4],[L4]). In fact, the Navier-Stokes equation is the
Fokker-Planck equation that corresponds to the stochastic differential equations (8). This
means the following: one can propagate a probability density in time either by constructing
samples and walking them at random (stochastic ordinary differential equations (8)), or by
propagating the probability density of the particles (Navier-Stokes). The vorticity £ plays
the role of probability density; one would expect £ > 0, [ &dx = 1; the second condition

can always be satisfied by an appropriate change of units (but it is not necessary to actually
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do s0), and the first can be achieved by dividing £ into a positive part £, and a negative
part {_, and imagining that one is spreading them individually.

Equations (8) can be approximated without splitting, and thus one can construct
unsplit random vortex methods, should one wish to.

In practice, all one has to do to approximate the Navier-Stokes in two dimensions in
the absence of boundaries at large R is do nothing. If boundaries are present, all one has
to do is add to the inviscid algorithm the appropriate gaussian jumpa and of course satisfy

the boundary conditions. Diffusion is particularly important near walls.

4. Boundary conditions.

Suppose the flow is bounded by solid walls. If R™! = 0, the appropriate boundary
condition (often u - n = 0, where n is a normal to the boundary) is satisfied if G above is
replaced by the Green function appropriate to the domain at hand. In practice, all one has
to do is add to u = K x ¢ a potential flow u, such that their sum satisfies the boundary
condition. u, can be found by finite differences, or panel methods, or by images, or by
conformal mapping. If R~ # 0, the condition u- 7T = V, must also be satisfied, where
‘r is tangential to the boundary and V, is the tangential velocity of a solid boundary. In
principle, all one has to do in this case is create a vortex sheet at the wall, with a strength
calculated so as to annihilate unwanted deviations of u - T from its prescribed value (A
vortex sheet is a tangential discontinuity in the velocity field; taking the curl at such a
discontinuity produces vorticity supported by a line or "sheet”). The vorticity in the sheet
diffuses into the fluid and participates in the subsequent motion; this process mimics the

physical process of vorticity generation.
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What is simple in principle is not necessarily so simple in practice. If one calculates
with a finite time step At, and if at each time step one allows the vorticity to diffuse and be
advected, the boundary condition u-7 = V; is satisfied exactly only at the beginning and at
the end of each step, with local error that is at best O(v/At) [C13]. One has to create some
device to satisfy the boundary condition continuously. In the context of a blob method,
this is done naturally by symmetry. For example, if the boundary is the z; axis, with the
fluid in the o > 0 half-plane, then one can continue the flow to the lower half-plane by the
symmetry u(zy, —z2) = 2V, — u(z;, r2), guaranteeing u;(zy,0) = V;. Unfortunately, the
Navier-Stokes equations are not invariant under this symmetry (consider what happens
to &€ = Ou; — H1uy), but the Prandtl equations & + (u - V)¢ = R™18%¢, div u = 0,
that approximate them near walls, are invariant. The Prandtl equations have a blob
representation [C5], and one can use the Prandtl blobs near walls, in a numerical boundary
layer that should be thinner than any physical boundary layer, and then use a standard
blob method in the interior.

Specifically, suppose the boundary corresponds to the x; axis, with the fluid occupying
the half-plane z3 > 0. The Prandtl boundary layer equations which approximate the

Navier-Stokes equations near walls, are

B4 + u10:1€ + up0:6 = R™103¢, (9a)
div u = 0, (9b)

ou
= -——3—5' (9¢)
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Fig. 1: A vortex sheet,

Note that the diffusion along the z; axis has disappeared, and the definition of vorticity
has been simplified. These equations are invariant under the transformations z; — i,
Ty — —T3, U3 — —Uy, Uz — —Uy, unlike the Navier-Stokes equations. The solution of
equations (9) can be represented by a sum of vortex sheets of some finite length h, locations

x;, and intensity ¢; [B5],(C5]. The boundary conditions for equations (9) are:
up=uy =0 at z2=0,

uy =U at z2=o00.

If the flow away from the boundary is inviscid, it can accept a normal boundary condition:
u - n given; u-n will be produced by the numerical boundary layer. On the other hand,
inviscid flow produces a tangential velocity at the wall as it pleases; this is the u;(z; =
0o) = U imposed on the sheets.
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To move the sheets, one needs u = (uy,uz) at their centers. This will come from the

Prandtl equations, rewritten as follows:
o )
uy(@1,25) = U — / £(o1, s,t)ds,  (from Byus = ~¢)
z2

@2
ug(zy, z3) = -—61/0 uy (1, 8,t)ds, (from divu = 0).

In discrete form at the i-th sheet:
1-
uy, =U - 5& - ;ﬁjdj,

where d; = 1 — (|z; — z;|/h), and the sum }_. is over all segments j such that y; > y
and |z; — z;| < h (so that 0 < d; < 1). The vertical velocity uz at the sheet i can then be
approximated by

ug; = —(I1 — I2)/h,

&2y

where I, I, approximate respectively [y ui(z; + h/2,8)ds and [ wi(z; ~ h/2,8)ds,

specifically
I = Uzy; —- ijdfmﬁj,
jt
I, = Uzxs; — ijd;mgj,
j..
where

d;_ =1- |:z:1,-+h/2——w1,-|/h,
d; =1- Imli——h/2—w1j|/h,

x3; = min(zz, T25),
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and the sum Zj+ is over all sl’feets j such that 0 < cl;-L <1, with ) ;- over all sheets such
that 0 < dj‘ <L

Given uj, uz at the sheets, viscous diffusion can be approximated by adding to the z;
component of the velocity the appropriate random jumps (gaussian, mean zero, variance
2At/R). This procedure will automatically obey the boundary conditions u; = U at
infinity, uz = 0 at the wall.

To impose the condition u; = 0 at the wall, we create vorticity at the walls: divide
the zi-axis into segments of length h, and suppose that at the center P of one of these
segments u; # 0. Place at P one or more vortex sheets, whose shadow is sufficient to make
u1(P) = 0. These sheets will then enter the flow by random walk and participate in the
subsequent evolution. Since one can assume u(z;, —z3) = —u(z1,x2), one can reflect any
sheet that attempts to jump across the wall back into the flow. Note that the circulation
attached to each sheet is hé;.

The problem that remains is the correct matching of boundary blobs with standard
blobs. An easy and workable solution is to transfer circulation from one type to the
other across some line parallel to the wall, while matching the velocities parallel to the
wall. This is usually good enough ([C2],[C5)). However, as is known from experience with
matched asymptotic expansions, high accuracy requires a cleverer match. In particular,
one should note that the velocity field induced by a Prandtl blob in its own neighborhood
differs substantially from the velocity field induced by a standard blob, and the resulting
mismatch of vertical velocities can deplete or overcrowd the vorticity in the transition

zone and delay convergence. One would like an overlap between the numerical boundary
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layer and the interior, and a match of both velocity components. For an appropriate

construction, see [R2] and also [B7].

5. Fast summation.

At first glance, a time step in a blob method with N blobs requires O(NN?) operations,
a forbidding number if N is large. It turns out that the calculations can require far less
effort, typically O(N log N) operations.

The key observation, as explained by Almgren et al. [Al], is that interactions that
can be described by partial differential equations are overwhelmingly local. In particular,
interactions described by a Green function for a Laplacian place a heavy emphasis on what
happens when particles are near each other. For overall accuracy, it is enough if nearby
interactions are calculated accurately, while distant interactions are calculated in a more
global way, for example by conflating series or inverting an approximate Laplacian. Such
partitioning schemes can be relatively inexpensive. Examples of algorithms that embody
these observations are the local correction method [A1],{A2], the multipole expansion [G4],
and other partitioning schemes [B1]. To explain the idea here, we pick a construction that
is simple, elegant, and not very well known: Anderson’s Poisson integration method [A3].
It can be viewed as a reformulation of the multipole method, and uses ideas developed by
Rokhlin.

We consider the two-dimensional case (extension to three dimensions is reasonably
straightforward). Diffusion does not affect the summation. To begin with, we consider
point vortices, ¢. = §; the extension to blobs is trivial. We thus have N point vortices,

whose effect we wish to evaluate at N points. For simplicity, we shall write formulas as if
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the object were to evaluate a stream function v; formulas for the velocity can be obtained
by differentiation.

Suppose one has M vortices within a circle C of radius @ and boundary 8C, centered at
the origin for ease of notation. Remember that two stream functions that are irrotational
outside C, have the corresponding velocity fields vanish at infinity, and agree on 8C, are

identical. At a point (r,8) outside C, v is given by
Y(r,8) = klogr + —217; /ac ¥(a,8)P(r,6')d¢’,
where £ is a constant and
P(r,0) = (1 - (a/r)z) / (1 —2(a/r)cos(f — 6') + (a/r)z)

(the Poisson integration formula). The logarithmic term is written explicitly for conve-
nience, and can be incorporated in the integral by adding a constant to ¥(r,6). ¥(a,8) is
determined by the given vortices inside C. If the integral is approximated by a sum with X
terms, K < M, and one wishes to calculate the 1 due to the M vortices at points outside
C, then labor is saved. Accuracy for modest K normally requires equidistant integration
nodes on 4C.
A reminder of the derivation of the Poisson formula brings some useful insights. ¥(r, 8)
can be expanded outside C in planar harmonics,
P(r,8) = klo S () e,
) = gr+k§10k(;)e ;
on r = a, this series reduces to a Fourier series, and thus the ¢, can be found. A summation
and an interchange of summation and integration yields (7). Note:
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(i) Numerical integration mishandles high wave numbers, and thus for numerical pur-
poses the expansion in planar harmonics need only be carried up to a finite number of
terms. Summation and exchange of limits then produce a new kernel Py that is better
conditioned than P.

(ii) The error in the expansion, and thus in the use of the Poisson formula, depends
only on 9(r,6) and on r/a, and is therefore scale invariant.

One then constructs a “tree structure” to evaluate the stream function on a succession
of ever bigger circles, using circles of the preceding size to evaluate ¢ on the circles of the
next size level. Having done that, one goes down the ladder to evaluate 4 at the vortices:
direct evaluation for nearby vortices, small circles for vortices a bit further apart, etc. The
number of levels is ~ log N, and the whole algorithm costs O(N log N) operations.

For more details, see [A3]; the general tree structure of fast summation is discussed

in [K1]; parallel implementation is discussed in [S2].

6. The convergence of vortex methods (for the mathematically minded).

We now present a brief sketch of the convergence theory for vortex methods
[B4],[B5],[C29],[H1],[H2],[R1], in the simplest case: two dimensions, R™! = 0, £ of com-
pact support and no boundaries. The theory presented should be sufficient to illustrate
the following points: (i) The error in vortex methods is primarily due to the error in the
evaluation of the convolution integrals (4), and (ii) Accuracy depends on the properties
of the smoothing ¢, and can be enhanced by imposing on it certain moment conditions.

The theory here should also give some of the flavor of the extensive and elegant body
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of work that has arisen in this context. The presentation follows in the main references
[A4],(C15],[C16].

Remember that the kernel K has been smoothed in the form: K — K., K. = K * ¢,
de = €~ 2¢(x/¢), [ ¢dx = 1. Suppose ¢ is smooth enough (for precise requirements, see the
references) and in addition, satisfies [x*@(x)dx = 0, where x* = z7'z3?, |a| = a; + g,
and 0 < |a| < p—1 for some p, i.e., the moments of ¢ up to order p — 1 vanish. The vortex
method is written in the form (4): d%;/dt = V;(x), where V;(x) =3, £ K (x; — x;).

Consider N blobs initially at &, j = 1,..., N, where the a; are nodes of a regular
square mesh of mesh size h placed on the support of ¢, and let £; = ¢ (atj). Let x;(a ,t)
be the true trajectories issuing from the &;, and %X;(;,t) the computed trajectories. Let
ei(t) = z;(a, t) — Z;(ox, t), and for the sake of brevity, omit the subscript 4 from now on.
é= %f satisfies

e = x-V(x)

= em t+ed+ e,
with

em = [K(x-—x')¢(x")dx — [ K (x ~x")¢(x")dx’
eqa = [K(x—x){(x)dx' ~ 3 Ke(x ~ x; );

e = Y Kd(x—x;)b - %, Ke(%i — %;)é;.

ém is the “moment error” which arises because K — K, (the origin of the name will become
clear in a moment); eq is the discretization error which results from the replacement of
the integral by a sum; e, is the “stability error” which arises because the sum is evaluated
at the computed rather than the exact locations of the blobs. We shall now estimate
these errors, noting that any integration over x or x’' can be replaced by an integration
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over @ or &' (the Jacobian of the map & — x being 1 by incompressibility); the grid in
the integrations can thus be viewed as being regular even when the blob distribution has
ceased to be regular as a result of the motion.

Let g = g(z) be a function; we denote by §(k) its Fourier transform:
o(k) = [ **g(a)da;
then
(@)= [ ePrrg(kyak.

Note:

(the Fourier transform of a convolution is the product of the Fourier transforms);

———

(g(x/€)) = eg(ek);

(this scaling property is actually the mathematical statement of the Heisenberg uncertainty

principle of quantum mechanics); and finally,

d
(2; ) = —-27r'ik§.
We defined e,, = K * £ — K, * {; Thus
ém(kat) = (k - f{e)é,
= ‘f{(l - &E)El
= KE(4(0) - §(ek)),
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since 1 = [ ¢dx = $(0). The moment condition guarantees that the derivatives of orders
up to p~ 1 of ¢ are zero, and straightforward manipulation yields || e ||z < constant -€P.

To estimate eq, we shall first exhibit some inequalities which prove the high order
accuracy of trapezoidal rule integration for sufficiently smooth integrands. Elementary
considerations show that if i = (41,13) is a pair of integers, i = 0 if ¢; ='0, i3 = 0, and
|| i ||= max(|és], [éz]), then for L >3, 37, .4 || i |I-L< 16. Suppose g = g(z1,z2) € Cj, and
define || g |l= max(]| 8"g ||z:) (the maximum of the L' norms of all the derivatives of g

up to order r). Then, for r > 3,

g [l AT

s (2 )
(trapezoidal rule integration is very accurate). Indeed, by the Poisson summation formula

[D1],

Y g(ih) =) 4(i/h),

i i

where § is the Fourier transform of g. Therefore,

= 3" 4m) - 5(0)] = |>_ (3/h)

10

h? ih) — x)d
Zi:g( ) /g(

Also, |3 < [ lg(x)ldx, and 8g(k) = (2m)lelk>§(k), where 8% = 87837, |a| = oy + aa,
and k@ = ki k3?; thus

@ayial < [1ovoldx<lall .

Then
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and for r > 3,

Sa(i/m)| < |V S i/ 17| < s g e

i#0 10

To estimate eq4, all we need is an estimate for the derivatives of K, = K * ¢.. K. has as
many derivatives as ¢ has, and if ¢ has L derivatives, a straightforward analysis yields at

finite time T':

X
o< constant- [ =) -e.
oD%, | eq || L=< constant (e) €

We omit the analysis of e,;, which can be bounded in such a way that the over-all error is

bounded by a constant times (|| e4 || + || em ||); thus

L
|| error ||z: < constant (e” + (-’5) e) .

(Note the usefulness of a finite e¢.) If L is large enough, one can choose h/e < 1 (thus
making the blobs overlap) so that the error in the trajectories of the blobs is close to
O(hP). We omit the discussion of how one goes from trajectory error to other measures of
the error, and how one accounts for the effects of time discretization. For error estimates
in the presence of viscosity or in three dimensions, see the references.

One key to accuracy (or more precisely, to local accuracy, see below) in blob methods
is to satisfy the moment conditions [ x*¢dx = 0 for a as large as possible. (An appropriate
choice of ¢ can produce “spectral” accuracy [H2] but other methods are needed for the
analysis.)

As an example, consider ¢(x) = %e"’n, where 7 = |x|. Clearly, [¢dx = 1,
fzigdx = [z2¢dx = 0, so that p = 2. If ¢(x) = e — %e"‘z/z, one can check
that p = 4 [B5]. Generally, one can construct appropriate ¢'s by picking plausible forms
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with free coefficients and picking the coefficients so as to satisfy the moment conditions.
The construction of the appropriate K, is easy: K, = (__Bgl)Ge, where G, = G * ¢,.
AG, = A(G * ¢¢) = (AG) * ¢ = ¢, where A is the Laplace operator 87 + 63,

and the rules for manipulating convolutions given in section 2 are used. If ¢ = ¢(r),

. a 3
A =714 (r£), and thus, if ¢ = 1e~ M e = Lre” v/ p 14 (r4G.) = Lye r?/e
4G, =% (e”"z/"2 - 1), K. = L;‘,,u,{%l (1 - e"ra/"); the vortex method becomes

ilait _ Z —(y;r;'z j ( 3 e—r?j/ei)

i#j

dy; -
dyt - Z( 21rr2wj) ( —€ 1‘?,/62),

where for convenience I wrote z = z1, ¥y = 23, 7;; = |X; — x;|. An expansion of the

smoothing factor (1 — e~/ ‘2) in power series shows that the singularity at r;; = 0 is

—r? 1,-r/2

cancelled out. Similarly, if ¢ =e™ - 3e ,

The analysis shows that a good choice for the x;(0), £, is one that makes the integration
in K, * ¢ accurate; the x; should be on a regular grid and the &; should be the appropriate
point values.

The error in blob method does grow in time. One factor in this exponential growth is
the growing irregularity of the blob distribution and the resulting growth in the derivatives
that enter the error in a trapezoidal rule. This growth can be remedied by periodic rezoning
(see e.g. [N4]). By construction, the “polygonal” methods mentioned above perform a

rezoning at each time step, and as a result the errors they produce often grow less rapidly.

32




Other limitations o¢n long-time accuracy will be discussed in the next few sections.

7. Vortex methods in three space dimensions.
In three space dimensions, vortex methods are a little more difficult to formu-
late, because the vorticity is now a divergence-free vector whose magnitude changes

(C5],[K3],[L2],[L3]. The Euler equations take the forms
0:& + (u- V) =~(§- V)u, (10)
divu=0;

& = curl u is the vorticity. The two-dimensional relation between & and u can be gener-
alized: div u = 0 makes it possible to write u = curl A, A = vector potential, which can

be chosen so that div A = 0. Then

§ =curl curl A = -AA, A=Zf9,?,

and

— _1__ ___L___ N U god god gt
A= 4”/ Ix-x’lg(x ydx',  dx' = dz'dzydzy

where —(47rr)~! is the Green function of the A operator, —A(4nr)™! = §(x — x'), § =

delta function. Taking the curl, one obtains

u=K=x§,
where K = — (47rlxl3)-1 x, x denoting a cross-product, and * is a convolution as before;
in other symbols,
1 [ (x=x)x &) .,
e — \ 11
u(x) 4r / |x — x/|3 dx (11)
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Fig. 2: A vortex filament.

This is the “Biot-Savart” law. The first approximation one can make is to replace £(x) by
a collection of vortex lines (lines tangent at each point to &), and concentrate the vorticity
on these lines. If £ is smooth enough, the lines will be closed. div & = 0 means that the
flux of vorticity along such lines is a constant; let the i-th line have a flux I';; then (fig. 2)

1 (x—x') x ds
u(x)--—TEZ‘:I‘,/;ll X

ong i—th line
It is easy to see that this expression typically becomes singular near the filaments, so that

one has to replace K = — (4r|x — x’ |3)—1 xx by a smoother object K., or alternatively,
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smear the lines into “filaments”. The integration along the lines can be done numerically,

so that for example

- - (% = x;) X (Xj = X;41)
x) Z Z lx leS !
where the x; are points along the ¢-th line. K. can again be obtained in the form
Ke = K * ¢ea Pe = 5—3¢(x/5)a

where [ ¢dx = 1, fm1 r3?z3’¢dx = 0for @y 2 0,a2 >0,a3 > 0,1 +0a3+a3 <p-1for
some integer p. A standard example of an appropriate ¢ is the fourth-order Beale-Majda

smoothing function (p = 4) [B4], which leads, as before, to a smoothed kernel,

Ke= (1 + (gfa - 1) e"’a) K, 7=|x|/¢

it is easy to check that the factor will cancel the singularity of K at small r = |x|. Note that
the “stretching” term on the right-hand side of equation (10) is not explicitly represented;
its effect is to stretch vortex lines when there is a velocity gradient along them; this is
automatically done by allowing the points along the filaments to move at different speeds.
The velocity field u can then be used to move the points x;. This is the “vortex filament”
method.

Tracking whole filaments may pose some bookkeeping problems. One can extract from
the filaments segments such as T;_1Z; (fig. 2) and follow their end-points without reference
to the rest of the filament. div & = 0 will be satisfied if the calculation is accurate enough
[B3],[C6]. This is the “arrow”, or “segment”, or “vorton” method. Diffusion and boundary
conditions are easy to handle in this way, but div & = 0 requires some care and possibly a
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periodic extraction of the divergence-free part of the vorticity field. (See the next section,
and the review [W5].) In both the filament and the arrow methods, additional points
must be added as the vortex lines stretch [C7],(K3]. An interesting discussion of boundary
conditions can be found in [S5].

Other variants are possible: one may for example keep track only of the mid-point
of a segment, and account for vortex stretching by updating & through an evaluation of
~(€ - V)u. An additional major variant is discussed in the next section.

An inviscid vortex method in three space dimensions can usually be run only for a
finite time, just as is the case with other inviscid methods. The physics of fluid flow bring
energy to the small scales. Sooner or later there will not be enough vortex elements to
represent the “eddies” being created, and the time step will be too small to follow the
small scale rotation. This loss of resolution usually manifests itself as excess folding of
vortex lines. Folding is a physical phenomenon (vortex lines stretch, as the stretch they
must fold or else energy will increase [C8],(C13],(C16]). Excess folding is a problem.

There are several remedies: one can stop the calculation when folding becomes ex-
cessive. One can add diffusion by non-random means, something people are loath to do;
having gone to the trouble of making an inviscid method, they do not like the idea of adding
viscosity. The final possibility is renormalization: the replacement of the unrepresented
eddies by their effect on the remaining eddies. An appropriate vortex renormalization
requires statistical ideas that will be discussed in the following section. In brief, statistical

analysis suggests that it is legitimate to filter out small vortex loops.
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It is interesting to note that vortex calculations in three dimensions, with a high
accuracy core, are usually first undone by the lack of accuracy in the time integration. This
is unusual; in other methods, it is the lack of spatial accuracy that will get you first. The
explanation seems to be as follows: the energy transfer to small scales is produced by vortex
stretching; stretching cannot be uniform in space without energy increase [C8],[C11]; as a
result, vortex activity concentrates in small very active regions (a phenomenon known as
“intermittency”). Computational vortex elements can follow this concentration, not being
tied to a grid, thus easing the problem of spatial resolution but placing an added burden
on the time integration, which must represent accurately rotations in small volumes. In
general, other methods, if only they could provide enough spatial resolution, would also
eventually stumble on the time integration problem.

Applications of three-dimensional vortex methods can be found i.a. in

[C7),[G1],[K4],[KS5],[L3].

8. The impulse/magnet representation.

At this point, the character of these lectures is changing. From the realm of reasonably
tried and true, we are jumping into the speculative and hopeful. First, we present a variant
of three-dimensional vortex methods that is not well tested but has exceptional physical
interest, and then we proceed to vortex statistics and to speculations about turbulence
and superfluids.

A short preliminary: If u is defined in a domain D, with u-n = 0 on the boundary
8D and div u = 0, and if grad ¢ is any gradient, then [yu.grad ¢ = [, ¢divu =

- sp'n =0;uand grad ¢ are orthogonal in function space. Any vector w can then
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be uniquely written as w = uy + grad ¢, where u, satisfies uy - n = 0 on 9D, div uy = 0.
The uy is the divergence-free part of w; uy can be viewed as the result of an orthogonal
projection P, ug = Pw; we have: P2 = P, P grad ¢ = 0 for any ¢, Pug = ugq. The

Navier-Stokes equations can be written in the form
u =P (~(u-V)u+ R 'Au).

This observation is the key to projection methods (see Prof, Ferziger’s course and reference
7).

It is well known that in an appropriate abstract sense Euler’s equations, in both two
and three space dimensions, form a Hamiltonian system. We have exhibited a Hamiltonian
structure in two space dimensions through the use of vortices. Hamiltonian formulations
are not unique; once one has been found others can be derived from it.

In three space dimensions, one specific Hamiltonian formulation that seems to have
been discovered independently by several investigators, has been shown by Buttke [B8] to
lead to discrete systems with remarkable properties. The starting point is the introduction
of a new variable, m, often referred to rather awkwardly as a magnetization, or vortex
magnetization, or impulse (for reasons we shall see), obtained by adding to u at some

point in time an arbitrary gradient:
m=u+gradq att=0. (12)

Obviously at t = 0, u = Pm, with the projection P defined above. It is not required that
div m = 0. We have £ = curl u = curl m. If one thinks of u as the vector potential
of €, (12) is a gauge transformation of the kind that allows one to add a gradient to the
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magnetic vector potential in electromagnetic theory without changing the physics. g is not
unique, nor is m.

We now proceed in a non-intuitive fashion to find equations for the evolution of m.
The end result of our analysis should be heuristically transparent and will justify the effort.
We only consider the case of an unbounded domain D.

Consider the following equation for evolving m = (m;, m2, m3):

Dm,-

Dt = oym; + uja,-m,- = ——mja,'u,- (13)

(with summation over multiple indices, and u = Pm). The claim is that the resulting u is
identical to the solution of Euler’s equations if u(x,0) = Pm(x,0). Equation (13) is then
the gauge-invariant form of Euler’s equations. For the sake of simplicity, we assume there

are no external forces.

To check the claim, substitute m = u + grad ¢ into (13). After some elementary

manipulations, one obtains
dyu + (u- V)u = —grad (th +(u-V)g+ -;-|u(2) . (14)
Multiplication by the projection P yields
da+ P((u:Viu) =0, (15)

as promised. Conversely, one can start from equation (15), which is equivalent to Euler’s
equations, and obtain (13). Note that multiplication of (14) by (I — P) (I = identity
operator) yields an equation for the evolution of ¢, which is thus arbitrary only at ¢t = 0.
It follows from (12) that m and u always differ by a gradient.
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We now have an equation for the evolution of u plus an initially arbitrary gradient.

We shall put this gradient to good use.

Suppose & = curl u has support within a ball B of finite radius p. In three space
dimension, the exterior of a sphere is simply connected, and thus outside B one can write
u = —grad §. put ¢ = ¢ in (12). The resulting m has support in B. m can thus be
“localized”, and this localization persists in time.

Suppose & has support in a small sphere Be; calculate the resulting m so that m also

has support in B,

m = M¢.(x - x;);

x; is a point in B, M is a vector coefficient, and ¢.(x -x;) is, as before, a smooth function,

with supp ¢ in B, [ ¢e(x)dx = 1. The resulting u differs from M¢.(x —x;) by a gradient:
u — M¢. = K * (curl M¢,) — M@, = grad q,

and thus div M¢. = —Agq, A = Laplace operator. Some manipulation of vector identities

yields ¢ and then

U; = Mi¢e(x - xi) - Mjajaiwﬂ (16)

where 1. = Y.(x — x;) satisfies AY, = ¢..
Consider an arbitrary magnetization field m and write it as a sum of N function of

small support (“magnets”) of the type we have just described:

N
m = Z MO, (x — x;).

i=1
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The motion of the “centers” x; of these functions is of course given by

d"' = u(x;) = Zu(’) (17)

where u(?) is the velocity (16) due to the j-th “magnet”. The coefficients M(*) are not

constants; from equation (13) one finds

dM®)

= ~MM0u;(xr), (18)

where there is summation over repeated indices and the u; are the components of u =
Y ulk),
One can now check that the flow of these “magnets” is Hamiltonian, with
H =3}%, MO . u(x;)

= 50501 Tity MO MOge(x; - x;) + (MO - V) (MO - V;)be(x; — x)]

» (19)

where V; = (0z;,,0,5,0z;5), X5 = (j1,%j2, Zj3), and Agpe = ¢e. If at £ = 0 the x; are

distributed so that the sum in (19) approximates an integral,
1 1 1 [,
H~—2- m-udx=§ (u+gradq)-udx=§ u“dx,

i.e., the kinetic energy is indeed a Hamiltonian for the flow if one uses the appropriate
variables.

One can check that the equations

drj,  OH dM(J) _ aH
dt oM’ dt T Bz’

(% = (%51, Tj2, T53)) »

are exactly equation (17) and (18).
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The “magnets” Mg, have a simple interpretation. One can check, by a painful but
elementary calculation, that the velocity field (16) is the velocity field induced by a small
vorticity loop with M perpendicular to the plane of the loop, and |M| = I'4, where A is
the area of the loop and I is the circulation. We have thus approximated £ by a sum of
small vortex loops.

There is an analogy between magnetostatics and fluid dynamics, in which the current
corresponds to vorticity and the magnetic induction corresponds to velocity; the magne-
tostatic variables are related by the Biot-Savart law just like the fluid variables. In this
analogy, our m corresponds to the magnetization, hence the name.

The loop interpretation shows how to convert a vortex representation to a loop rep-
resentation. Consider a large vortex loop C of circulation I'. Construct a surface ¥ that
spans C. The non-uniqueness of ¥ corresponds to the non-uniqueness of ¢ and m Let
(s1,82) be orthogonal coordinates on ¥. Construct a small rectangle R with vertices
(s1,82), (81 + 881,82), (81,82 + 8382), (81 + 831,82 + 082); at its center construct a small
magnet of strength I'6s16s2, oriented in a direction orthogonal to ¥ chosen consistently.
The sum of these loops adds up to the original loop.

It is easy to check that m remains orthogonal to ¥ as both are evolved by the flow map.
This construction points out a problem with the m representation: A vortex loop will eject
fluid to its rear and thus ¥ will balloon; as its area increases so does ) |M;|; as a result the
time steps may become small and the calculation expensive. Appropriate remaps to remedy

this problem have been considered by Cortez [C14]. The magnetization representation has
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not yet been tested as a sufficient number of examples for firm conclusions about its

usefulness to be drawn.

The magnet/impulse representation is “local” like the “arrow” representation; div
& = 0 automatically; diffusion is easy to add; smoothness has been built in from the
beginning (it was necessary to keep all quantities bounded). This representation is a key
component of some theoretical treatments of turbulence [C11].

Note that for thin closed vortex filaments lying in a plane,
r / x X ds = 2AT,
where A is the area surrounded by the filament. Thus

/xx&dx=2/mdx

and 2m is an “impulse density”; note that impulse density is thus non-unique. It follows

that [ mdx is a constant of the motion; one can indeed check that M(* is a constant of

the motion for the system (17)—(18), as is the sum
Zxk x M(*)

which is analogous to an angular momentum.

43




9. Statistical mechanics of vortices in the plane.

We start the statistical analysis by considering IV vortices in a bounded region D
in two dimensions. The entropy S of the system is the logarithm of the density of its
states (the Boltzmann constant can be set equal to 1 by using appropriate units). The
temperature T is defined by T~! = dS/d(E), where (E) is the average of the energy E. If
the system has states labelled by a parameter s, then § = —~ )" _ P, log P,, where P, is the
probability of the state s and the sum is to be interpreted as an integral when the states
form a continuum. In the canonical ensemble, P, = Z~!exp(—E/T), where E = E(s)
is the energy of the state labelled by s and Z is a normalizing constant, the “partition
function” Z = Y P,.

One is used to having T > 0, but this inequality is not a law of nature. One can
perfectly well imagine systems such that for (E) moderate there are many ways of arranging
their components so that the energy adds up to (E) but for (E) large there are only a few
ways of doing so. Then the derivative dS/d(E) is negative for (F) large enough and T is
negative. This situation will indeed occur for vortex systems. If T > 0 low energy states
have a high probability, and if T' < 0 high energy states have a high probability.

Suppose one takes two systems, each separately in equilibrium, one with energy E,
(we drop the brackets) and entropy S1, the other with energy E, and entropy S2. Suppose
one joins them; the resulting union has energy E; + E; and is not necessarily in equilibrium.

Its entropy, initially S = Sy + S2, will increase in time ¢t. Then

dS _dS,  dS, _dSi dE,  dS; dE,

G dt T dt CdB, dt T dB, @t

44



while energy is conserved:

Therefore

dS _(dSy dS;\dEy (1 1\dE
dt ~ \dB, dE;) dt \T\ T,) dt’

Suppose T2 > Ty, both positive; then 5’5‘% > 0, i.e., energy moves from the hotter body
to the colder body. Now suppose T < 0. It still follows that %%* > 0, i.e. a body
with negative temperature is “hotter” than a body with positive temperature. Negative
temperatures are above T' = oo, rather than below absolute zero. Further, the canonical
formula shows that T' = —oo0 is indistinguishable from T' = +o00; |T'| = oo is the boundary
between T < 0 and T > 0. In terms of 8 = T7!, temperature increases as [ varies
from infinity to zero through positive values, and then from zero to minus infinity through
negative values.

Consider a collection of NV vortices of small support occupying a finite portion D of
the plane, of area A = |D| (see [El]). The area can be made finite by surrounding it
with rigid boundaries, in which case the vortex Hamiltonian must be modified through
the addition of immaterial smooth terms; alternatively, one can confine the vortices to a
finite area initially and conclude that they will remain in a finite area, because the center
of vorticity X = Eéix; / Y¢;, x; = positions of the vortices, and the angular momentum
TE?|x; — X|?, are invariant. For the moment, consider inviscid flow with all the {; = 1.

The entropy of this system is

= “/;)N f(xl""7xN)logf(x1"'"xN)dX]_de---de’
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where f is the probability that the first vortex is in a small neighborhood of x;, the second
in a small neighborhood of x3, etc. The energy of this system is E = H + B, where H is
the two-dimensional vortex Hamiltonian and B is an appropriate constant. The entropy

is maximum when

f = constant = A=V,

The corresponding energy is
1
(E) = (E.) = —Z;N(N—— 1)/1;dx‘/pdx'log|x-—x'i + B.

Clearly, one can produce a larger (E) by bunching vortices together, and thus T-! =
dS/dE < 0 for E > (E.). This is Onsager's observation. If T > 0, the Gibbs factor
exp(—E/T) gives a high probability to low energy states, and if T' < 0, high energy states
are favored; the latter are produced by bunching together vortices, forming large, concen-
trated vortex structures. The f = constant state is the |T'| = co boundary between T < 0.
and 7 > 0. The T introduced here has no connection whatsoever with the molecular tem-
perature of the underlying fluid; in incompressible flow, the molecular degrees of freedom
and the vortex variables are insulated from each other.

To give this argument a more quantitative form, we turn to the elementary combina-
torial method [J1]. We assume there are IV vortices. N* vortices have strength E=1,N"
have { = —1, N* + N~ = N. We divide D into M boxes of area h?, with n;*‘ positive and

n; negative vortices in each. The corresponding probability (= multiplicity) W is
W::( NI )( N™I )th.
nfl...onf!) \ny!.. .npy!
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To a good approximation, the entropy is S = log W (for the conditions under which this
is true, see e.g. [E1],[C11]). To obtain an equilibrium, § is to be maximized subject to the
constraints £n} = N*, En; = N~, and
E=-=x }: Y (nf = n7)Gyj(n} - nj) = constant,
i j#1
where Gij = —3 log|x; — x;| + B, x; is in the i-th box, x; is in the j-th box, and B is
a constant. This E approximates the energy of a vortex system. The maximization of S
produces a thermal equilibrium and leads to the equations
lognf +a*t +8Y%,; Gij(nf -ny) = 0,
(20)
logn; —at + 8, Giyi(nf —n;) = 0,
where at,a™, 3 are Lagrange multipliers. A little algebra yields
F-n7 = exp (—-a+ - BY; Gij(n} —n;‘))
- exp (——a“ +BY,Gij(nf - n;)) ,

n

fori=1,...,M. Let h — 0 so that n} —n] — &(x)h? = £(x)dx, (exp(—a™))/h* - d~,
and £Gy(nf —n7) — [ G(x—x')¢(x')dx’, where G(x) = — 5- log |x|+ B. Equations (20)

converge to
§(x) = dy exp(+5 / G(x — x')§(x')dx") + d_. exp(-f / G(x - x")¢(x")dx’)

where d_,d_ are appropriate normalization coefficients.
Let ¢ be the stream function, uy = —8;%, uz = 01%; an easy calculation gives
At = —¢, A = Laplace operator and ¢ = — [ G(x — x'){(x')dx’. Thus,
~AY = €(x) = dye PV —d_ePY. (21)
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This is the Joyce-Montgomery equation, which describes the vortex version of thermal
equilibrium. In a periodic domain one can set i = 0 on the boundary of a period; Nt =

N-=N/2,d;. =d_ =d. Then
_N_
[ dxePs’

—Ay(x) = {(x) = dsinh fy(x).

2d =

If Nt = N, N~ =0, thend.. =0,d* = N/Z, Z = [,e PYdx, and
N
~ b = £(x) = 2 exp (BY(x)).

In either case, £ is a function of /. The Euler equation is

€ = —u10:1€ —u05¢
= (029)(61€) — (019)(02€) = J(, §),

where J = Jacobian of £, which is zero when § = £(). The resulting average flow is
a stationary (time-independent) solution of the Euler equation, with macroscopic motion,
as expected when B < 0. Appropriate variants of equation (21) can be derived, in which
the limit N — oo can be easily taken [E1],[K2],[M2].

It should be emphasized that the £ we have calculated is not only a specific solution of
Euler’s equation, but more importantly it is the stationary average density of the vorticity.
Specific flows may depart from this average, but one expects the departure to be small.

For B > 0 and for —87N < < 0 equation (21) can be shown to have solutions. In the
latter case the solutions are non-unique; the solutions have multiple peaks; the solution
that maximizes the entropy has a single sharp but smooth peak. For 8 < —8nN (i.e.,
“hotter” than T' = —1/87N), the Joyce-Montgomery equation with £ > 0 has no classical
solution and in fact does not describe reasonable physics. |
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Statistical equilibria are of interest only if they are reached from most initial data.
There is strong evidence, mainly numerical, that the two-dimensional equilibria constructed
above are in fact reached. Some general statements can be made about the relaxation to
equilibrium, and some equations remain open.

Suppose one starts from initial data that consist of two patches of vorticity, say £ = 1
in sets Cy, C3, both bounded, C;, C; disjoint, and & = 0 elsewhere. Since vorticity is merely
transported by the fluid motion, one has to imagine a process by which the vorticity in the
patches is redistributed so as to match £, the solution of the one-sign Joyce-Montgomery
equation (21). One can imagine that the boundaries of Ci, C; sprout filaments, as in the
convergence of subsets of the constant energy surface to the microcanonical ensemble; the
resulting ﬁlaments could reorganize 8o as to approximate £ on a sufficiently crude scale.

The filamentation of the boundary should lower the energy. Indeed, if a small vortex
patch is broken into two halves that are pulled apart, the energy goes down; two vortices of
strength € = 1 each, near each other, act as one vortex of strength 2, whose energy is four
times that of one of them; two vortices of strength 1 far from each other have an energy that
is the sum of their individual energies. To make up for the loss of energy in filamentation
the two patches have to approach each other. This process of simultaneous filamentation
and consolidation is well documented numerically. Similarly, one expects a non-circular
patch to become nearly circular with a halo of filaments, the whole approximating {, on a
rough scale. Even a circular patch with non-constant £, increasing from its center outward,
can reorganize its vorticity so that filaments shoot off while energy is being conserved. On

the other hand, a patch with ¢ decreasing as one moves away from the center is stable,
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and belongs to the set of initial data that do not approach £ such a patch of course does
in itself constitute a rough version of .

This process of simultaneous filamentation and consolidation can be deduced from
the invariance of the energy and the enstrophy in spectral form: [ E(k)dk = constant,
[ k2E(k)dk = constant, where E(k) is the energy spectrum. If some energy moves towards
the large k’s (small scales), then even more energy must move towards the small ks (large
scales). On the whole, there is an energy “cascade” toward the small k's.

If the initial £ is complicated, and has many maxima and minima, one can imagine,
and indeed see on the computer, a process of progressive curdling, in which nearly circular
patches that look locally like {., first form on small scales, then slowly migrate towards
each other and consolidate if viewed on a crude enough scale. The curdles can never truly
merge, since the flow map is one-to-one. At each stage of this curdling the nearly circular
patches are nearly independent, with whatever correlations their locations have manifesting
itself only on large scales. The flow can then be approximated as Ln€oo(x — xi), 7 =
random coefficients. The energy spectrum is approximately proportional to Ikl"’lfao (k) /3,
where £ is the Fourier transform of £oo(x), and is a property of each curd individually.
One then has local equilibria slowly consolidating into larger equilibria.

This successive curdling picture provides a suggestion as to what happens in the
presence of shear or in complex geometries. In three space dimensions the “universal”
aspects of turbulence appear on small scales, and one can readily imagine that arbitrary
large scale structures have “universal” small scale features. Here, in two dimensions, the

universal structures grow to large scales, and an imposed shear or an imposed boundary
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mass interferes with them. It is readily imagined however that the curdling process will
simply stop when it ceases'to be compatible with the conditions imposed on the problem.

Note that if ¢, in the two-dimensjonal vortex method is identified with £, then the
vortex method can be reinterpreted as a model of two-dimensional turbulence, in which
the smallest scales have reached equilibrium. Indeed, this is how the ¢, in [C3],[C4] was
chosen.

One can wonder about the effect of a small viscosity v on the processes just described.
To the extent that the effect of viscosity is to smear the small scales, and as long as the
time it takes to reach equilibrium is small compared to the time scale of viscous decay,
the picture above should be unaffected. One could say a little more: suppose the effect of
viscosity is approximated by Brownian motion (equation (8)). The Brownian motion can
be thought of as being generated by the bombardment of the vortices by the molecules of
an ambient fluid at a temperature v. The effect of the bombardment that has just been
imagined is to couple weakly the “fluid” at the temperature v with the vortex system, and
if v < T = vortex temperature, to reduce the latter. If T < 0, the cooling of the vortex
system brings one closer to the |T'| = co equidistribution solution, in agreement with the
intuitive idea that random pushes should interfere with the formation of concentrated

vortices. After a long enough time one may end up with { = constant.

10. Statistics of vortex filaments in three dimensions.
We now turn to the three-dimensional analogues of the constructions of the previous
section. In three dimensions, vortex filaments are extended objects, more like polymers

than like particles; vortex stretching is important, and only a statistically steady state can
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be expected as the time ¢ — oo. To make the presentation easy, we consider a single vortex
filament (a tight bunch of integral lines of the vorticity field) in a dilute “suspension” of
such filaments; more general situations are considered in [C9],[C11].

Suppose our filament can be covered by N nearly circular cylinders, each of length

h > 0. Endow the filament with an energy
I? t; - t;
E=2=Y > =2 (22)
where t; is a vector of length % originating at the center of the i-th cylinder, |z — j| is

the distance between the i-th and j-th cylinders, and I' is the circulation of the vortex.

Equation (22) is the discrete analogue of the Lamb expression for the energy [L1]:

E=—1—/u2dx=§1;r-/dx/dx'€~(£)—'-§—(}—’z.

2 |x — x/|

The vortex is self avoiding: |x — x| # 0 for x € the i-th cylinder, x' € the j-th cylinder.

Assume that each configuration C of the vortex has probability P(C) =
Z-lexp(~E/T), where Z = Y, P(C). T can be positive or negative; “increasing T”
is defined as in the previous section. The average energy (E) = > o FE(C)P(C) is an
increasing function of both T and vortex length L = Nh.

Define

u _ log(TN>
NT ™ g N

where 7 is the end-to-end length of the vortex measured by a straight ruler. As N — oo,

pn,T tends to a limit pup; 1/pur is the fractal dimension of the resulting limiting object

[C13],[C16].
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For fixed, finite N, 9—%;—,*1 < 0; i.e., as T decreases, the vortex becomes an increasingly
folded object. In the limit N — oo, upr =1 for T < 0, ppr = 1/3 for T > 0, pup =2 .59 for
|T| = oo. Note that |T'| = oo is the maximum entropy state.

Suppose now that the “vortex” is imbedded in an Euler flow. Its length will increase,
by stretching and by fractalization; %1{- < 0. The average energy is an increasing function
of both T and of the vortex length L. If energy is conserved, it follows that 5‘%— < 0 and
the temperature decreases. Also, i’id‘%'—"- < 0 and the vortices fold, as described at the end
of section 5. If the vortex is initially smooth, T'(¢ = 0) < 0, and the temperature decreases
to |T| = oo. The point |T| = oo is an attracting fixed point for Euler dynamics; that is
where the vortices will end up and generate a Kolmogorov spectrum [C11]. |T'| = oo is an
uncrossable barrier for Euler dynamics. Asymptotic vortex structures are poised at the
boundary between T" > 0 and T < 0.

Note that as long as IV is finite, strong, organized, coherent structures contribute less
to the energy dissipation than weaker, incoherent vortices. Indeed, contrast two vortex
filaments with the same finite N but different circulations I'y,I's, say I'y > I's. The energy
integral being proportional to I'2, the Gibbs weights attached to the two filaments are
Z lexp(—PI'?E), Z 'exp(-PBTiE), where E is the energy that results from I' = 1. The-e
weights are the same as those one would obtain with I' = 1 and T} = T/I'? in the first
case, Ty = T/T2 in the second. If one thinks of D = 1/un T as an approximate fractal
dimension, the vortex with larger I" has a smaller |T'|, and if T < 0 (which is the physically

relevant case), then the vortex with larger I' has a smaller dimension and appears smoother.
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Strong vortices are less folded. The more folded vortex has a broader spectrum and thus
contributes more to dissipation relative to its energy.

In a numerical calculation, N remains finite, and the |T| = co barrier can be crossed.
If it is, excess folding and stretching may follow, as is indeed observed. One can reduce
this excess by a systematic removal of folds (“hairpins”) which can be justified as a renor-
malization [C10]. Hairpin removal is a very useful tool in vortex methods.

The justification of the removal goes like this: suppose T' > 0. The probability of
a state with energy E is ~ e~F/T. If a large loop is given, the smaller loops will, as
a consequence, arrange themselves so as to reduce the energy. If the smaller loops are
removed, the energy of the system must be increased to make up for the loss. On the other
hand, if T < 0, large energy states are more likely, a given loop tends to align smaller
loops so as to increase the energy, and this must be allowed for if small loops are removed.
At |T| = oo the effect of small loops on large loops is, on the average, zero. Thus the
small loops can be removed, sometimes removing energy from the system, and sometimes
adding energy to the system, with a balance being reached for a large enough system. It
only remains to notice that a large loop with a fold can be viewed as the sum of a large
loop and a small loop.

There may however be simpler ways to arrest the crossing of the |T'| = oo barrier. A
key observation in this respect is Qi’s observation [Q1] that the crossing is most likely to
happen where the vortex torsion is zero; such points are readily identifiable before disaster

strikes.
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11. Remarks on turbulence and on superfluid vortices.

In the previous section we developed a theory of thermal equilibria of vortex filaments
and used it to explain the folding instability of computational vortex filaments. The theory
can also be applied directly to physical vortices.

In a classical (i.e., non quantum) fluid in turbulent motion vortex filaments typically
form a dense suspension; their cross-sections vary rapidly and play a role in the dynamics.
The equilibrium theory of filaments is a plausible cartoon of the equilibrium states of vortex
filaments in this context, and reveals important features of the motion; it must however
be interpreted with some care [C11].

A major conceptual leap that must be made in order to apply the model to turbulence
concerns the idea that the inertial range of turbulence can be described by an equilibrium
model. In the usual presentation of the Kolmogorov theory, inertial scales do little besides
transfer energy from large to small scales, in an irreversible waterfall-like cascade that
cannot be assimilated to a thermal equilibrium. However, there is overwhelming experi-
mental [M5] and numerical [C11] evidence that energy goes both up and down the ladder
of scales; in other problems, even in Burgers’ equation, equilibrium and a power law spec-
trum appear together. An equilibrium with a wide spectrum may enhance dissipation,
but not necessarily be dominated by it. This argument is laid out in detail in [C11]. In
superfluid (quantum) turbulence these arguments are easier to visualize. In a superfluid,
vortices exist as physical entities; their cores are well defined. The dissipation mechanisms
(e.g., the Hall-Vinen friction [H3]) do not concentrate at the smallest scales and the simple

cascade ideas are not as attractive. Indeed, “fractal” vortex equilibria similar to the ones
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described above do occur, for example, near the T transition to superfluidity [S3],[W2] or
in the related problem of “vortex glasses” in “high temperature” superconductors [H6].

However, some paradoxes appear as soon as one considers turbulence in superfluids
more closely. In many important respects, quantum and classical turbulence are very
different. Quantum vortices generally look smoother than classical vortices. The rate at
which quantum vortex length per unit volume L is generated appears to be proportional
to L3/2w, where w is a quantum “counterflow” velocity that vanishes in a non-superfluid.
By contrast, the rate of change of L in classical turbulence is proportional to L [C11].
Thus vortex stretching appears to be much more important in classical than in quantum
turbulence.

A qualitative explanation of these differences is contained in the theory of the last
section. The rate of change of L was connected with the rate of change of the temperature
T. A classical fluid has a self-adjusting temperature T such that |T| — oo, and there
are no bounds on L. In a quantum fluid (and maybe also in compressible turbulence)
wave/vortex interactions control 7' and then L may be bounded. Deeper explanations
remain to be explored; the relations of quantum to fluid vortex motion are discussed in
[C9],[C11]. Vortex methods appear as the natural tools for analyzing these relations and
the structure of turbulence in general.

This may be the place to dwell on a numerical mystery. If vortex stretching and folding
are inhibited in quantum turbulence, vortex motion in quantum and classical fluids should
be very different. In a partial recognition of this fact, superfluid physicists often replace the

Biot-Savart law (9) by a different velocity fluid that depends only on a local curvature of
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the vortex filament. The equations obtained from this approximation, the “local induction
approximation” (LIA) have a very different character from the Euler equations, and in
particular they preserve vortex length [B6],[C6]. It is however persistently claimed in the
superfluidity literature that the LIA and the Biot-Savart law can be used interchangeably.

In one case, examined by Buttke [B6], it turns out that the resemblance between
the LIA and the Euler results claimed in earlier work is an artifact of the numerics; a
sufficient refinement of the mesh in the LIA destroys this resemblance. There are however
more subtle problems. For example, according to recent work [S1], waves propagate on
vortex filaments with only a “confined chaos” and no breakdown of the vortex. A crude
enough solution of the Euler equations in this case reproduces the results of the LIA to a
good approximation. A more resolved calculation is at sharp variance with the LIA, but
an even more refined calculation produces again results that have a qualitative (but not
quantitative) similarity to the results obtained by the LIA [Q1]. A deeper understanding

of this situation is not yet available.

12. Acknowledgment
This work was supported in part by the Applied Mathematical Sciences Subprogram
of the Office of Energy Research, U.S. Department of Energy under Contract DE-AC03-

76SF00098.

57



References
The literature on vortex methods has become very large; references [A5],
[C1],|C11],|G4],[M1],[M2],[M3],[R1] and [P1] contain extensive bibliographies. I have listed
below only those references that are used in the text. I apologize to all the authors whose
work is omitted and assure them that no value judgement is implied.
[A1] A. Almgren, T. Buttke and P. Colella, A fast vortex method in three dimensions,
J. Comp. Phys., 1993, in press.
[A2] A. Anderson, A method of local corrections for computing the velocity field due
to a distribution of vortex blobs, J. Comput. Phys., 61, 111-123 (1985).
[A3] C. Anderson, An implementation of the fast multipole method without multipoles,
SIAM J. Sc. Stat. Comp.; 13, 923-947 (1992).
[A4] C. Anderson and C. Greengard, On vortex methods, SIAM J. Sc. Stat. Comp.,
22, 413-440 (1985).
[A5]) C. Anderson and C. Greengard, Vortex methods, Lecture notes in mathematics,
Springer, vol. 1360, 1988.
[B1] J. Barnes and P. Hut, A hierarchical O(NN log N) force calculation algorithm, Na-
ture, 324, 446-449 (1986).
[B2] J.T. Beale and A. Majda, Vortex methods I: Convergence in. three dimensions,
Math. Comp.,39,1-27 (1982).
[B3] J.T. Beale and A. Majda, Vortex methods II: Higher order accuracy in two and

three space dimensions, Math. Comp., 32, 29-52 (1982).

58



[B4] J.T. Beale and A. Majda, High order accurate vortex methods with explicit ve-
locity kernels, J. Comp. Phys.., 58, 188-208 (1985).

[B5] G. Benfatto and M. Pulvirenti, A diffusion process associated with the Prandtl
equation, J. Funct. Anal., 52, 330-343 (1983).

[B6] T. Buttke, Numerical study of superfluid turbulence in the self- induction approx-
imation, J. Comp. Phys., 76, 301-326 (1988).

[B7] T. Buttke, A fast adaptive vortex method for patches of constant vorticity in two
dimensions, J. Comp. Phys., 89, 161-186 (1990).

[B8] T. Buttke, Lagrangian numerical methods which preserve the Hamiltonian struc-
ture of incompressible fluid flow, Comm. Pure Appl. Math., 1993, in press.

[C1] R. Caflisch, Mathematical analysis of vortex dynamics, SIAM, Philadelphia, 1988.

[C2] A. Cheer, Unsteady separated wake behind an impulsively started cylinder, J.
Fluid Mech., 201, 485-505 (1989).

[C3]) A.J. Chorin, Vortex methods for rapid flow, Proc. 2d Int. Cong. Num. Meth. Fluid
Mech., Springer, 1972,

(C4] A.J. Chorin, Numerical study of slightly viscous flow, J. Fluid Mech., 57, 785-796
(1973).

[C5] A.J. Chorin, Vortex models and boundary layer instability, SIAM J. Sc. Stat.
Comp., 1, 1-21 (1980).

[C6] A.J. Chorin, The evolution of a turbulent vortex, Comm. Math. Phys., 83, 517-535
(1982).

[C7] A.J. Chorin, Computational fluid mechanics, selected papers, Academic, 1989.

59




[C8] A.J. Chorin, Statistical mechanics and vortex motion, AMS lectures in applied
mathematics, 28, 85-101 (1991).
[C9] A.J. Chorin, A vortex model with turbulent and superfluid percolation, J. Stat.
Phys., 69, 67-78 (1992).
[C10] A.J. Chorin, Hairpin removal in vortex interactions II, J. Comput. Phys., 107, 1-9
(1993)
[C11] A.J. Chorin, Vorticity and Turbulence, Springer, 1993.
[C12] A.J. Chorin and P. Bernard, discretization of a vortex sheet with an example of
roll-up, J. Comp. Phys., 13, 423-429 (1973).
[C13] A.J. Chorin and J. Marsden, A mathematical introduction to fluid mechanics,
Springer, 1979, 1990.
[C14] R. Cortez, The geometry of impulse flow, Manuscript, Math. Dept, UC Berkeley,
1993.
[C15) G.H. Cottet, Methodes particulaires pour I’equation d’Euler dans le plan, These
de 3ieme cycle, Univ. P. and M. Curie, Paris, 1982.
[C16] G.H. Cottet, A new approach to the analysis of vortex methods in two and three
space dimensions, Ann. Inst. H. Poincare, Anal. Non Lin., 5, 227-285 (1988).
[C17] G.H. Cottet, Large time behavior for deterministic particle approximations to the
Navier-Stokes equations, Math. Comp., 56, 45-60 (1991).

[D1] H. Dym and H. McKean, Fourier series and integrals, Academic, 1972.

60



[E1] G.L. Eyink and H. Spohn, Negative temperature states and equivalence of en-
sembles for the vortex model of a two-dimensional ideal fluid, J. Stat. Phys., 70,
833-886 (1993).

[F1] D. Fishelov, A new vortex scheme for viscous flow, J. Comput. Phys., 86, 211-224
(1990).

[G1] A.F. Ghoniem and G. Heidarinejad, Numerical study of scalar mixing and product
formation in a shear layer, Combust. Sci. Tech., 72, 79-99 (1990).

[G2] J. Goodman, The convergence of random vortex methods, Comm. Pure Appl.
Math., 40, 189-220 (1987).

[G3] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput.
Phys., 73, 325-348 (1988).

[G4] K. Gustafson and J. Sethian, Vortex methods and vortex flows, SIAM, 1991.

[H1] O.H. Hald, Convergence of vortex methods II, SIAM J. Sc. Stat. Comp., 16, 726-
755 (1979).

[H2] O.H. Hald, Convergence of vortex methods for Euler’s equations III, SIAM J.
Num. Anal., 24, 538-582 (1987).

[H3] H. Hall and W. Vinen, The rotation of liquid Helium II: The theory of mutual
friction, Proc. Roy. Soc. London, A 238, 215-233 (1956).

[H4] T.Y. Hou and J. Lowengrub, Convergence of a point vortex method for the 3D
Euler equations, Comm. Pure Appl. Math., 43, 965-981 (1990).

[H5] T.Y.Hou and B. Wetton, Convergence of a finite difference scheme for the Navier-

Stokes equations using vorticity boundary conditions, SINUM 29, 615-639 (1992).

61



[H6] D. Huse, M. Fisher and D. Fisher, Are superconductors really superconducting?
Nature, 358, 553-559 (1992).

[J1] G. Joyce and D. Montgomery, Negative temperature states for the two-dimensional
guiding center plasma, J. Plasma Physics, 10, 107-121 (1973).

[K1] J. Katzenelson, Computational structure of the N-body problem, SIAM J. Sc.
Stat. Comp., 10, 787-815 (1989).

[K2] M. Kiessling, Statistical mechanics of classical particles with logarithmic interac-
tions, Comm. Pure Appl. Math., 1993, in press.

[K3] O. Knio and A. Ghoniem, Three dimensional vortex methods, J. Comp. Phys., 86,
75-106 (1990).

[K4] O.M. Knio, and A.F. Ghoniem, Three-dimensional vortex simulation of the rollup
and entrainment in a periodic shear layer, J. Comput. Phys., 97, 172-223 (1991).

[K5] O.M. Knio and A.F. Ghoniem, The three-dimensional structure of periodic vor-
ticity layers under non-symmetric conditions, J. Fluid Mechanics, 243, 353-392
(1992).

[K6] R. Krasny, Desingularization of periodic vortex sheet roll-up, J. Comput. Phys.,
65, 292-289 (1986).

[K7] R. K'rasny, A study of singularity formation in a vortex sheet by the point vortex
approximation, J. Fluid Mech., 167, 65-93 (1986).

[L1] H. Lamb, Hydrodynamics, Dover, NY, 1932,

[L2] A. Leonard, Numerical simulation of interacting three-dimensional vortex fila-

ments, Proc. 4th Int. Conf. Num. Meth. Fluids, Springer, 1975.

62



[L3] A. Leonard, Computing three dimensional vortex flows with vortex filaments, Ann.
Rev. Fluid Mech., 17, 523-559 (1985).

[L4] D.G. Long, Convergence of the random vortex method in two dimensions, J. Am.
Math. Soc., 1, 779-804 (1988).

[M1] A. Majda, Vorticity and the mathematical theory of incompressible fluid flow,
Comm. Pure Appl. Math,, 39, S187-5179 (1986).

[M2] A. Majda, Vorticity, turbulence and acoustics in fluid flow, SIAM Review, 33,
349-388 (1991).

[M3] C. Marchioro and M. Pulvirenti, Vortex methods in two- dimensional fluid me-
chanics, Springer, NY, 1984.

[M4] L.-F. Martins and A.F. Ghoniem, Vortex simulation of the flow field in a planar
piston-chamber arrangement with an intake, Int. J. for Num. Meth. Fluids., 12,
237-260 (1991).

[M5] C. Meneveau, Dual spectra and mixed energy cascade of turbulence in the wavelet
representation, Phys. Rev. Lett., 66, 1450-1453 (1991).

[P1] E.G. Puckett, A review of vortex methods, in “Incompressible computational fluid
mechanics”, R. Nicolaides and M. Ginzburger (eds.), Cambridge, 1992.

[Q1] A. Qi, Three dimensional vortex methods for the analysis of propagation on vortex
filaments, Ph.D. thesis, Math. Dept., UC Berkeley, 1991.

[R1] P. Raviart, An analysis of particle methods, Num. Meth. Fluid Mech., F. Brezzi

(ed.), Springer, 1985.

63




[R2] M. Reider, Development of higher order numerical methods for two-dimensional
incompressible flow with applications to low around circular cylinders and airfoils,
Ph.D. thesis, Math. Dept., UCLA, 1992.

[R3] L. Rosenhead, The formation of vortices from a surface of discontinuity, Proc. Roy.
Soc. London, A 134, 170~192 (1931).

[R4] G. Russo and J. Strain, Fast triangulated vortex methods for the 2D Euler equa-
tions, J. Comput. Phys., 1993, in press.

[S1] D. Samuels, and R. Donnelly, Sideband instability and recurrence of Kelvin waves
on vortex cores, Phys. Rev. Lett., 64, 1385-1388 (1990).

[S2] J. Sethian, J.P. Brunet, A. Greenberg and J. Mesirov, Two dimensional viscous
incompressible flow in complex geometry on a massively parallel processor, J.
Comput. Phys., 101, 185-206 (1992).

[S3] S.R. Shenoy, Vortex loop scaling in the three-dimensional XY ferromagnet, Phys.
Rev. B, 40, 5056-5068 (1989).

(S4] D. Summers, A random vortex simulation of Falkner-Skan boundary layer flow, J.
Comput. Phys., 85, 86-103 (1989).

[S5] D. Summers, An algorithm for vortex loop generation, LBL report, Lawrence
Berkeley Lab., 1992.

[W1] G. Winckelmans and A. Leonard, Contributions to vortex particle methods for
the computation of three-dimensional incompressible unsteady flow, J. Comput,.

Phys., 1993, in press.

64




(W2] G. Williams, Vortex ring model of the superfluid lambda transition, Phys. Rev.

Lett., 59, 1926-1929 (1987).

65







