
IIIII,.°,++°+,,,,+,++lllll_
,_llnll_

IIIII"' Mg
InulIN+mnl,.--+iiiin,.--+





I

LBL-34124 Rev.

VORTEX METHODS 1

Alexandre J. Chorin

Department of Mathematics and Lawrence Berkeley Laboratory
University of California

Berkeley, CA 94720

Presented at

Les Houches Summer School of Theoretical Physics
Les ttouches, France

June 28-July 30, 1993

1 This work was supported in part by the Applied Mathematical Sciences Subprogramof the Office of Energy

Research,U.S. Department of Energy under Contract DE-AC03-76SF00098. MASTEB

D_,S'r,_.I_OI_I OF Dq2@C,_)C.:U_Et_T_ I_4,LJMFTECj



VORTEX METHODS

Alexandre J. Chorin

, Department of Mathematics and Lawrence Berkeley Laboratory
University of California

Berkeley, CA 94720, USA

Table of Contents

1. Introduction: what are vortex methods?

2. Vortex methods in the plane
3. The Navier-Stokes equations in the plane

4. Boundary conditions
5. Fast summation

6. The convergence of vortex methods
7. Vortex methods in three dimensions

8. The impulse/magnet representation
9. Statistical mechanics of vortices in the plane

10. Statistics of vortex filaments in three dimensions

11. Remarks on turbulence and superfluid vortices

1. Introduction: what are vortex methods?

Vortex methoc/3 originated from the observation that in incompressible inviscid flow

vorticity (or, more accurately, circulation) is a conserved quantity, as can be readily de-

duccd from the absence of tangential stresses. Thus, if the vorticity is known at time

t - 0, one _::_n find the flow at a later time by simply following the vorticity. In this narrow

context, a vortex method is a numericM method that follows vorticity.

However, more generally, viscous flow problems have a Lagrangian, albeit stochas-

tic, representation [C4],[G2],[L4]. Compressible flow has LagrangianrepresentationsILl].

More generally yet, in many problems there are variables such as charge, stellar or plasma

mass, helicity, impulse, chemical species, that are transported either passively or modified



by known interactions; this transport/modification can be represented by following patti-

cles, or polygons, or domain boundaries; by moving particles, or by finite elements, finite
v

differences, or boundary integrals. Lagrangian methods have a close resemblance to inte-

gral methods (see e.g. [G3]). Aspects of Lagrangian methods, such as particle creation at

walls, have found application in non-Lagrangian methods (see e.g. [H5]). Fast summation

methods, designed for particle methods, have found uses outside of computational physics.

Even more generally, the analysis of vortex methods leads, as we shall see, to problems

that are closely related to problems in quantum physics and field theory, as well as in

harmonic analysis. A broad enough definition of vortex methods ends up by encompassing

much of science. Even the purely computational aspects of vortex methods encompass a

range of ideas for which vorticity may not be the best unifying theme.

We shall restrict ourselves in these lectures to a special class of numerical vortex

methods, those that are based on a Lagrangian transport of vorticity in hydrodynamics by

smoothed particles ("blobs") and those whose analysis contributes to the understanding of

blob methods. Blob methods started in the thirties as two-dimensional "point" methods

[R3]. By the fifties, it was discovered that "point vortex" methods had drawbacks, and

a misinterpretation of the Poincar_ recurrence theorem led to the conclusion that the

drawbacks could not be remedied (for an analysis, see [K7]). In the late sixties and

early seventies, the virtues of smoothing were discovered [C3],[C4],[C12] and viscosity and

boundaries were added.

The generalization to three dimensions followed soon [C5].,[L2],[L3], and was found to

be non-unique. Arrows, filaments, dipoles, magnets, all generalize two-dimensional blobs,
4
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and we shall compare them below. All three-dimensional inviscid blob methods eventually

lose stability; the analysis of that instability requires a deeper understanding of turbulence

and contributes to the understanding of quantum fluids.

Are vortex methods good numerical methods? The answer is time-dependent and

problem dependent. Vortex methods made possible pioneering investigations of vortex

sheets [K6],[K7],[T1], high Reynolds number wakes [C2], and various three-dimensional

problems involving vortex rings, jets, and wakes (see e.g. [Ab],[K4],[M4]). As time pro-

gressed, other methods caught up with some of these applications, but then vortex meth-

ods also improved. Vortex methods (i.e., "blob" methods) are a very useful part of the

panoply of computational fluid mechanics, but do not exhaust it. An important class of

vortex methods are "hybrids", which borrow some of the devices of vortex methods and

couple them with other ideas [C17],[R4],[W1]. Good examples are the methods developed

recently by Cottet, in which a finite difference method is used near boundaries to resolve

boundary layers, while a vortex method is used far from the wall to ensure the correct

transport of vorticity. Another class of methods, first implemented by Sbe::_akov, uses

finite differences in the interior and vortices near walls; it has been recently suggested by

Bernard that in some problems such methods can obviate the need for extraordinarily fine

resolution and very small time steps near walls that bedevils finite difference methods used

alone. I shall disregard here all hybrids, but advise the numerical analyst to keep them in

mind.

I will put some emphasis on a more arcane use of vortex methods. Vortex methods for

inviscid flow lead to systems of ordinary differential equations that can be readily cast in



Hamiltonian form, both in three and two space dimensions, and they can preserve exactly a

number of invariants of the Euler equations, including topological invariants. Their viscous

versions resemble Langevin equations. As a result, they provide a very useful cartoon of

statistical hydrodynamics, i.e., of turbulence, one that can to some extent be analyzed

analytically and, more importantly, explored numerically, with important implications

also for superfluids, superconductors, and even polymers. In my view, vortex methods

provide the most promising path to the understanding of these systems.

Before launching in the description of vortex methods, I would like to say a few words

of caution. Vortex methods operate with objects, vortices, that have a clear physical

interpretation. Nature is rife with vortices, (tornadoes,. hurricanes, ...), and it is very

tempting to identify the numerical objects with physical ones. This near-physicality has

many attractions, but also some dangers. A vortex method produces easily results that

look plausible to the naked eye, or when presented on a videotape. Such results are not

necessarily accurate. People have tried to model, say, turbulent boundary layers, with a few

dozen vortex elements, while being aware that a spectral calculation would require millions

of unknowns to yield useful results in the same problem. Even the wildest proponent of

vortex methods will not suggest that a vortex method can give something useful with no

effort.

One should in particular draw a clear distinction between numerical approximation by

vortex methods (the main subject of these taiks) and physical modelling based on a vortex

representation. I shall give below some examples of the modelling mode, in the context of

vortex lattices. Modelling and approximation are different; in particular, the vortex cores



needed for accuracy are designed on the basis of an analysis of approximation kernels; they

are not normally meant to be "physical". I shall give below an example of a core designed

on the basis of physical models; it is not useless, but it is not as accurate as cores designed

by mathematical analysis. For accuracy, a physical vortex must be approximated by a

cloud of numerical vortices, or else the results will be quantitatively wrong (if occasionally

qualitatively beguiling). The confusion between vortex-based modelling and vortex-based

numerical methods is the origin of many misunderstandings.

2. Vortex methods in the plane.

We begin with a description of vortex methods for two-dimensional inviscid unbounded

_tOW.

Consider a velocity field u(x, t), u - (ul, u2), where x = (xl,x2)is the 1: ,sition vector

and t is the time. First, pick a fixed point x, and consider the points in the plane within a

distance h of x, i.e., x = x + h, h = (hi, h2), h = Ih[ = length of h, small enough so that

h _ is negligible. Then

,-,, O

_(x +a) -__,(_)+h_O_u_+ h:O_,

or

u(x+h)= u(_)+ (W)h,

where (Vu) is the matrix with entries (Vu)_j = O_uj, i = 1,2, j = 1,2. Let D =

! ((Vu)+ (Vu) _') (T denotes a transpose) be the deformation matrix. Then2

1

• (Vu)h = gradh(Dh, h ) + _ × h,



where
gradh(Dh, h) = (Cgh,(Dh, h),Oh_(Dh, h)),

= (0,o,_), _= 02u_- olu2,

h = (hi, h2,0).

(Note that _ is a three-dimensional vector pointing out of the plane of the motion.) It

is easy to see that the velocity field gradh(Dh, h ) represents a deformation, and ½_ × h

represents a rotation with angular velocity 1_. Thus the most general motion of a fluid

can be locally written as the sum of a solid body translation, a deformation, and a rotation

with angular velocity ½_; _ is the vorticity.

An ideal fluid is, by definition, a fluid which cannot support tangential forces. Rotation

can then be neither started nor stopped, and one expects _ to be a privileged variable.

Indeed, the Euler equations for an incompressible fluid can be written as

Otu + (u. V)u = -grad p (la)

div u = 0. (lb)

where p is the pressure and V the differentiation vector. Taking a curl, one obtains

0_ + (u. v)_ =0,

or

D___= 0, (2)
Dt

where D/Dt =_ Ot + u. V denotes differentiation following a particle. Vorticity is thus

conserved.



Another consequence of the equation of motion is the following: Let C be a closed

contour in the plane; let C_ be its image under the flow (i.e., the locus of points that C

reaches after a flow during the time t). Then

ou(x, 0). ds =/o u(x, t). ds;t

this invariant, the circulation along C, will be denoted by Fo. (The three-dimensional

analogue of this result also holds.) Note

c u. ds -/ze _" dE,

where E is the interior of C.

The equation div u __ 01ul + 02u2 -- 0 is the statement of incompressibility. As

its consequence, there exists a function ¢, the stream function, such that ul = 0_¢,

us = -01¢. Substitution into the definition of _ yields

z_¢ -- -_, A = Laplace operator - 0_ + 0_.

Let G(x,x') = a(x- x') be the Green function for the Laplace operator; AxG = 6(x- x');

G = -1--loglx- x' I where Ixl denotes the length of the vector x. A¢ = -_ then21r

implies ¢ = _ flog ix- x'l_(x')dx', where dx - dxldX2, and then u = (02,-01)¢ =

1 (O_)log,x-x'[ ,(x')dx'.2--_f - i

Introduce the notation

/ • g = f/(x - x')g(x')dx',



f • g is the convolution of f and g. For later reference, note:

.f * g = g * .f ,

1.5 = f, 6=Diracdeltafunction,

and

D(] • g)= (Dr, g) = (f • Dg),

for any differentiation operator D and whenever the expressions make sense. Thus,

u-K,_,

(_ )_o__- _ (_,_),_-_+_where K = 2_ -01

Given any point in the fluid, located initially at o_, its subsequent motion is given by

dx

d-7=u(_,t), x(0)=a. (a)

Let supp _ denote the support of _, i.e., the set of points where _ ¢ 0. Take a point

a in supp _. The motion of that point will also follow (3), with the attached vorticity

unchanged. If one considers an infinite number of equations, one per point in supp _, one

obtains the motion of the vorticity (since _ (x(t)) = _(a) if x(O) = a, by the conservation

of vorticity); _ gives rise to u by u --- K • _, and the Euler equations are solved. To

discretize this system for computer use, one can take a finite number of initial points

al,..., aN, and solve the finite set of ordinary differential equations

_t' = *_' =K i 1,...,N,

x_(O)= a_,



where _ on the right-hand side is attached to the moving points, i.e., _ --- EN=0 _i_(x- x,),

= Dirac delta, and the _i are some appropriate constants. It is natural to require that

_ - f _(x)dx. Then

dxi
d-'--t-= E g(x,- xj)_j

(the term i = j is excluded to avoid a singularity), or

(4)
X_ -- X j) ~

vii

Where x -- xl, y = x2 for the sake of clarity. This is the point vortex method, which

converges, though not very fast [H4],[K7]. Its flaws can be seen by considering two nearly

"point" vortices (vorticity functions of the form _iS(x- xi)). Equations (4) will cause

them to rotate around each other very fast. Such "trapping" is indeed a physical process

for isolated vortices, but the intensity of the rotation that results is unreasonable. The

"point" approximation must be smoothed. A plausible smoothing [C3],[C4] consists in

2 by rije for rij < e. A more general smoothing can be obtained [H1],[B2] byreplacing rij

changing K to K_, where K_ = K, ¢_, with ¢_ a smooth function of small support (i.e.,

vanishing over most of the plane except near the origin). K_ is then smooth, and the result

is a smoothing of equations (4). In general, we shall pick ¢_ so that

¢_ = e-2¢(x/e), ¢ smooth,

¢(x)dx = 1,

/x_ lx_ 2¢(x)dx = 0 for > 0, _>0, c_1. a2 __p- 1,
51 (_2



where p is an integer to be chosen. Recipes for choosing p and constructing ¢ will be given

below (see also [B2],[B4],[H1],[H2]). Note that changing K _ K_ is identical to keeping

g but changing (6(x - xi) into _¢e(x- xi), i.e., to smearing vortex points into vortex

"blobs".

It will turn out that the accuracy of the smoothed method depends on p. In the

absence of walls, we shall see that it is reasonable to choose the initial ai on a regular

grid, and choose _i to be the initial values of _(x) at these points, multiplied by a squared

mesh size. The vortex method for an inviscid plane unbounded flow is now fully described,

except for the general construction of ¢. The recipe r_j _ rije for rij _<e is quite adequate

for starting a calculation; the integration in time requires accuracy, but the system is not

stiff and Runge-Kutta will do well; most programs seem to be using fourth-order Runge-

Kutta.

There are other strategies for smoothing "point" methods• One can for example

transport points in the support of _, and assume that _ between the points is given by a

polynomial distribution on a set of polygons. New polygons can be found as the geometry

of the points changes. The integral of a polynomial times the kernel K on a polygon can

be evaluated analytically and simply, yielding a simple and accurate "smoothed" method

for transporting the points, one that can be made adaptive and is particularly efficient if

the variation of _ on its support is small [B7],[R4]. This is the "polygonal" vortex method.

What has a vortex method bought you that a simple finite difference integration of

equation (4) does not provide? Note that the Navier-Stokes equations, to be discussed

next, are formed by adding to the Euler equation higher derivatives multiplied by what is

10



usually a small coefficient. The error term in finite-difference or finite-element solutions

of the Euler equations has the same form,producing numerical viscosity (and dispersion).

The error in vortex methods has a different structure, because there is no differencing of

the advection terms in space. This opens the door to a realistic analysis of the effect of a

small viscosity.

Here too a note of caution is appropriate: if a calculation does not contain enough

computational elements to represent a given phenomenon, the phenomenon will not be

seen. One cannot represent, say, twenty waves with two vortices. As the Reynolds number

is increased the complexity of the phenomena produced usually grows, especially in three

dimensions. The number of computational elements must then increase or the complexity

of the phenomena must be reduced by modelling, with a vortex method as with any other.

It is worth noting that equations (4) form a Hamiltonian system. They can be rewrit-

ten in the form

dxi OH

= - oy--;'
dyi OH

where H = -_ _ _j¢i _J log Ix_ - xil. A simple scaling of the variables removes the

factors _ on the left-hand side of these equations. Note that the Hamiltonian system

is rather odd: the variable dual to one coordinate of a vortex is the other coordinate

(rather than some momentum variable). If K _ K_, the corresponding Hamiltonian has

a smoothed interaction replacing the log. A short calculation shows that the Hamiltonian

H differs f_om the kinetic energy ½f u_dx by a constant (that is infinite if e = 0).

11



3. The Navier-Stokes equations in the plane.

The Navier-Stokes equations in the plane take the form

D___._= R_IA_, div u = 0, (5)Dt

where R is the Reynolds number (that we assume is large), and as before, _ = curl u,

u-K,_.

Note that, while in a finite difference method one calculates the change in solution

at fixed spatial points, in a vortex method one follows the motion in space of particles

that carry a fixed value of the vorticity. The problem at hand is to couple this "particle"

method to a diffusion with diffusion coefficient R -1. We shall first discuss how this can be

done in a "fractional step" method; a more general formulation will follow.

Consider a differential equation of the form

ut = Au + Bu, u(O) -- Uo,

where A, B are operators (for example, A = 01, B = 012). Its solution produces a "solution

operator", i.e., an operator SA+B such that

=SA+B(t) o.

Let ,,qA,SB be the solution operators of the equations ut = Au, us - Bu respectively, i.e.,

12



where _ denotes an equivalence under the appropriate solvability conditions. Then,

under quite general conditions, the Trotter ("fractional step") formula holds:

i.e., one can solve the "partial" equations for short time intervals and combine the results

to obtain the solution of the full problem [C13]. The error, i.e., the norm IISA+S(t) --

(S.4 (_) Ss (_))_ II for finite n is typically O(n-i), unless A and B commute or special

precautions have been taken, when the error can become O(n-2).

If one rewrites the Navier-Stokes equations as

then the first partial equation is the Euler equation, and all one has to do is co_ple the

vortices to a solution of the heat equation implemented on the moving vortex grid. Various

successful ways of doing so are available [C15],[C17],[F1]. We shall present here the random

version of such an algorithm; this was the first successful viscous vortex method [C4], and

is of some interest in statistical mechanical models. As will emerge from our analysis, this

random method is useful numerically only when R is large and a boundary is present. We

begin with a little probability theory.

The possible outcomes of an experiment (such as throwing a die) form the points in

a sample space S. A subset E of 5 is called an event. We assume that to each event is

assigned a probability P(E), a number between 0 and 1 which intuitively represents the

fraction of times an outcome in E will occur if the experiment is repeated many times.

13



We assume, therefore, that P(S) - 1. Moreover, if two events Ez and E_ are disjoint,

i.e., Ez N E2 = 0, then P(Ez u E2) "--P(Ez) + P(E2). Two events, Ez and E2 are called

independent if

P(Ez N E2) = P(Ez). P(E2)

Intuitively, two events are independent if the occurrence of one of them has no effect on the

probability of the occurrence of the other one. (For instance, in the toss of two dice marked

#1 and #2, the events "a two on #1" and "a three or a four on #2" are independent.)

A random variable is a number attached to the outcome of an experiment. The

expectation or mean of _7is defined by

For instance, if S = {sz,..., sN} and the probability of si occurring is p_, then

<,l>= _,(_,)p,.
5=1

Suppose there is a function ] on the real line such that the probability of 77 lying

between a and b is f: ](x)dx. Then we say that 77has the probability density function J.

Clearly, f___ f(x)dx = 1. Also, one can show that

£(_7>= xJ(x)dx.

The variance of _ is defined by

v_(,7)=((,7-(,>)">=(,_>-(,7>_

14



and the standard deviation by

a(r/) = v/Var(r/).

Two random variables, rh and r/2 are called independent if for any two sets A1, A2 in

the real line, the events

{s E Sl_?l(s ) e A1} and {s e Slrl2(s) e A2}

are independent. For independent random variables, one has
[

and

Var(nl * Y2) = Var(r/1 ) + Var(_72).

(From the definition, <r/1+ TI2> -- @/I> -_ <T/2> is always true.

The law of large numbers states that if r/i, r/2,..., 772are random variables that are

independent and have the same mean and variance as r/, then

n

(_)= lira1_- _7i.
n-., oo n

i=1

Part of the theorem is that the right-hand side is a constant. This result justifies our

intuition that (rl>is the average value of r/when the experiment is repeated many times.

The significance of the standard deviation is illuminated by Tchebysheff's inequality: If cr

is the standard deviation of _7,

1

P({s e S]]_7(s)- <rl>l>_ka}) _<_'5

15



for any number k > 0. For example, the probability that 77will deviate from its mean by

more than two standa:d deviations is at most 1/4.

If a random variable 77has the probability density function

1 e_(__a)2/_a2
f(x) -

we say that 7 is gaussian. One can check that (7) = a and Var(rl) = cr2. If 7z and 72 are

independent gaussian random variables, then 71 + 72 is gaussian as well.

Next we show how gaussian random variables can be used in the study of the heat

equation:

Here v represents the temperature as a function of x and t, and v represents the conduc-

tivity. If v is given at t -- 0, then the heat equation determines it for t > 0. If initially

v(x, O) = _(x), a delta function at the origin, then the solution of the heat equation is

given by

H(x,t) = _exp -_- . (6)

This is the Green function for the heat equation (see any textbook on partial differential

equations).

We can interpret the function (6) from a probabilistic point of view as follows: Fix

time at t, and place N particles at the origin. Let each of the particles "jump" by sampling

the gaussian distribution with mean zero and variance 2yr. Thus, the probability that a

particle will land between x and x + dx is

_exp _ dx.

16



If we repeat this with a large number of particles, we find

• lJm number°fP articlesbetweenxandx+dxattimet 1 (-x2)N--.,c_ N dx = _exp -4"-_- "

Next consider the solution v(x, t) of the heat equation with given initial data v(x, O) =

g(x). The solution is

/?v(x,t) -- H(x,x',t)g(x')dx', (7)
oo

where

_exp 4ut "

This general solution has a probabilistic interpretation as well. Instead of starting N

particles at the origin, start N randomly spaced particles on the line, at positions, say x/°,

i = 1,..., N, and assign to the ith particle the mass

N "

Let these particles perform a random walk, keeping their mass fixed. Then after enough

steps, the expected distribution of mass on the real line approximates (7).

In this process the total mass of the particles remains constant. This corresponds to

the fact that

/? ?Ot v(x, t)dx = v v_z(x, t)dz = o
oo oo

(assuming v_ _ 0 as x _ -t-co). Of course, one's intuitive feeling that the solutions of the

heat equation decay is also correct. Indeed,

/? ? ?Ot v2(x,t)dx = 2_vv_xdx = -2v (v_)2dx < O.
oo co oo

17



The decay of f v_dx (which occurs while f v dx remains constant) is accomplished by

spreading. As time advances, the maxima of the solution decay and the variation of the

solution decreases. To see intuitively why the integral of v2 decreases, consider the two

functions

{2 1,_X_ 1 {1, -l<x<+l
-_- - 2 and v_= - -

vl = 0, elsewhere 0, elsewhere

The function v2 is more "spread out" than vx. This is reflected by the calculations f v2dx =

] vxdx = 1, but f v_dx = 2 and f v_dx = 4. Note that as time unfolds, the variance of the

random walk that is used to construct the solution increases, whereas the integral of v _,

which is related to the variance of v, decreases. The variance of the random walk increases

as the solution spreads out, whereas the integral of v2 decreases because the range of values

assumed by v decreases.

We now apply this algorithm to the Navier-Stokes equations. After each Euler step,

we have to solve the heat equation ft = R -xAf for a time step At. This can be done by

allowing each vortex to perform a random_ gaussian jump of mean 0 and variance 2At/R;

thus, random pushes redistribute the vorticity and approximate diffusion.

Does one have to repeat the calculation over and over and then average? A simple

calculation (that we omit, see [C4],[L4]) shows that the standard deviation of the value

of the velocity field u at a point x (which is one estimate of the error) is proportional to

(RN) -x/2, where N is the number of vortices. If R and N are large, this is a small quantity,

and a single realization (one calculation, one random push per particle per time step) is

enough. Note however that in two space dimensions and in the absence of boundaries, the

introduction of viscosity usually perturbs the solution only by an amount O(R-X); thus

18



there is not much point in approximating viscous effects when R is large. The random

method comes into its own when a boundary is present. Then the effect of viscosity is

O(1), while the error remains O ((RN)-I/2), i.e., small.

Suppose for a moment the Euler step is performed by an explicit Euler integration.

The equations of motion of the vortices are:

X_+I _ n- xl + uAt + X/2X/_ w,

where x_ _ x_(nAt), At is the time step, and w is a two-component random variable,

each component being gaussian with mean 0 and variance 1. In the limit At _ 0, this

equation converges to the stochastic differential equation

dx = udt + _ dw, (8)

where dw is "white noise", a gaussian random function of time with two independent

components and no correlation between W(tl),w(t2), tl _ t2. This equation (or more

exactly, this set of equations, one per point in the support of _) is exactly equivalent to

the Navier-Stokes equation (5) (see [C4],[L4]). In fact, the Navier-Stokes equation is the

Fokker-Planck equation that corresponds to the stochastic differential equations (8). This

means the following: one can propagate a probability density in time either by constructing

samples and walking them at random (stochastic ordinary differential equations (8)), or by

propagating the probability density of the particles (Navier-Stokes). The vorticity _ plays

the role of probability density; one would expect _ >_0, f _dx = 1; the second condition

can always be satisfied by an appropriate change of units (but it is not necessary to actually

19



do so), and the first can be achieved by dividing _ into a positive part _+ and a negative

part __, and imagining that one is spreading them individually.

Equations (8) can be approximated without splitting, and thus one can construct

unsplit random vortex methods, should one wish to.

In practice, all one has to do to approximate the Navier-Stokes in two dimensions in

the absence of boundaries at large R is do nothing. If boundaries are present, all one has

to do is add to the inviscid algorithm the appropriate gaussian juml_s and of course satisfy

tlhe boundary conditions. Diffusion is particularly important near walls.

4.. Boundary conditions.

Suppose the flow is bounded by solid walls. If R -1 = 0, the appropriate boundary

condition (often u. n = 0, where n is a normal to the boundary) is satisfied if G above is

replaced by the Green function appropriate to the domain at hand. In practice, all one has

to do is add to u = K, _ a potential flow up such that their sum satisfies the boundary

condition, up can be found by finite differences, or panel methods, or by images, or by

conformal mapping. If R -1 # 0, the condition u. 7" = V_ must also be satisfied, where

7- is tangential to the boundary and V_ is the tangential velocity of a solid boundary. In

principle, all one has to do in this case is create a vortex sheet at the wall, with a strength

calculated so as to annihilate unwanted deviations of u. 7" from its prescribed value (A

vortex sheet is a tangential discontinuity in the velocity field; taking the curl at such a

discontinuity produces vorticity supported by a line or "sheet"). The vorticity in the sheet

diffuses into the fluid and participates in the subsequent motion; this process mimics the

physical process of vorticity generation.

20



What is simple in principle is not necessarily so simple in practice. If one calculates

with a finite time step At, and if at each time step one allows the vorticity to diffuse and be

advected, the boundary condition u.7" = V_ is satisfied exactly only at the beginning and at

the end of each step, with local error that is at best O(v/'_t) [C13]. One has to create some

device to satisfy the boundary condition continuously. In the context of a blob method,

this is done naturally by symmetry. For example, if the boundary is the xl axis, with the

fluid in the x_. > 0 half-plane, then one can continue the flow to the lower half-plane by the

symmetry u(xl,-x_.) = 2V_- u(xl,x2), guaranteeing ul(xl,0) = Vr. Unfortunately, the

Navier-Stokes equations are not invariant under this symmetry (consider what happens

to _ - i)2ul - 01u2), but the Prandtl equations _ + (u. V)_ = R-10_, div u - 0,

that approximate them near walls, are invariant. The Prandtl equations have a blob

representation [C5], and one can use the Prandtl blobs near walls, in a numerical boundary

layer that should be thinner than any physical boundary layer, and then use a standard

blob method in the interior.

Specifically, suppose the boundary corresponds to the xl axis, with the fluid occupying

the half-plane x2 >_ 0. The Prandtl boundary layer equations which approximate the

Navier-Stokes equations near walls, are

Ot_ + ulc91_ + u2i)2_ = R-1i)_, (9a)

div u = 0, (9b)

_qU

ya

21



U1

y

L _ - III I I I -

(X i , Yi)

XBL 937-4068

Fig. I' A vortex sheet,

Note that the diffusion along the zl axis has disappeared, and the definition of vorticity

has been simplified. These equations are invariant under the transformations zl _ zx,

x2 --, -x2, ul --, -ul, u2 _ -u2, unlike the Navier-Stokes equations. The solution of

equations (9) can be represented by a sum of vortex sheets of some finite length h, locations

xi, and intensity _i [B5],[C5]. The boundary conditions for equations (9) are:

Ul=Uz=0 at x2=O,

uI=U at x2=oo.

If the flow away from the boundary is inviscid, it can accept a normal boundary condition:

u. n given; u. n will be produced by the numerical boundary layer. On the other hand,

inviscidflowproducesa tangentialvelocityat thewallasitpleases;thisistheu1(x_ =

oo)= U imposedon thesheets.
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To move the sheets, one needs u = (ul, us) at their centers. This will come from the

Prandtl equations, rewritten as follows:

00

ul(xl,X2) = U- _(Xl, S,t)ds, (from c_2_I -- --_)

fo°'u2(xl,x2) = -01 ul(xl,s,t)ds, (from divu = 0).

In discrete form at the i-th sheet:

J

where dj = 1 - (Ixi - xjl/h), and the sum )"]_j is over all segments j such that yj > yi

and Ixi - xjl < h (so that 0 < dj < 1). The vertical velocity u2 at the sheet i can then be

approximated by

u2_= -( r._- X2)/h,

where II,I_ approximate respectively fo 2' ul(x, + h/2, s)ds and fo 2' ul(x, - h/2, s)ds,

specifically

11-- Ugg2i- _-_jd_T,_j,

j+

12 Ux2i _" - *
j-

where

a_=1-I_, +h/2- _xjl/h,

d_ = 1 -[z, li- h/2 - xljl/h,

x_j = min(x2i, xzj),
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and the sum _j+ is over an s_eets j such that 0 < d_ __ 1, with _-_j_ over all sheets such

that 0 1.

Given ul, u2 at the sheets, viscous dh_usioI_ can be approximated by adding to the x2

component of the velocity the appropriate random jumps (gaussian, mean zero, variance

2AtR). This procedure will automatically obey the boundary conditions ul = U at

infinity, u2 = 0 at the wall.

To impose the condition ul = 0 at the wall, we create vorticity at the walls: divide

the xl-axis into segments of length h, and suppose that at the center P of one of these

segments ul _ 0. Place at P one or more vortex sheets, whose shadow is sufficient to make

ul(P) = O. These sheets will then enter the flow by random walk and participate in the

subsequent evolution. Since one can assume u(xl,-x2) -- -u(xl,x2), one can reflect any

sheet that attempts to jump across the wall back into the flow. Note that the circulation

attached to each sheet is h_i.

The problem that remains is the correct matching of boundary blobs with standard

blobs. An easy and workable solution is to transfer circulation from one type to the

other across some line parallel to the wall, while matching the velocities parallel to the

wall. This is usually good enough ([C2],[C5]). However, as is known from experience with

matched asymptotic expansions, high accuracy requires a cleverer match. In particular,

one should note that the velocity field induced by a Prandtl blob in its own neighborhood

differs substantially from the velocity field induced by a standard blob, and the resulting

mismatch of vertical velocities can deplete or overcrowd the vorticity in the transition

zone and delay convergence. One would like an overlap between the numerical boundary
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layer and the interior, and a match of both velocity components. For an appropriate

construction, see [R2] and also [B7].

5. Fast summatiow.

At first glance, a time step in a blob method with N blobs requires O(N 2) operations,

a forbidding number if N is large. It turns out that the calculations can require far less

effort, typically O(N log N) operations.

The key observation, as explained by Almgren et al. [A1], is that interactions that

can be described by partial differential equations are overwhelmingly local. In particular,

interactions described by a Green function for a Laplacian place a heavy emphasis on what

happens when particles are near each other. For overall accuracy, it is enough if nearby

interactions are calculated accurately, while distant interactions are calculated in a more

global way, for example by conflating series or inverting an approximate Laplacian. Such

partitioning schemes can be relatively inexpensive. Examples of algorithms that embody

these observations are the local correction method [A1],[A2], the multipole expansion [G4],

and other partitioning schemes [B1]. To explain the idea here, we pick a construction that

is simple, elegant, and not very well known: Anderson's Poisson integration method [A3].

It can be viewed as a reformulation of the multipole method, and uses ideas developed by

Rokhlin.

We consider the two-dimensional case (extension to three dimensions is reasonably

straightforward). Diffusion does not affect the summation. To begin with, we consider

point vortices, ¢_ -- 6; the extension to blobs is trivial. We thus have N point vortices,

whose effect we wish to evaluate at N points. For simplicity, we shall write formulas as if
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the object were to evaluate a stream function ¢; formulas for the velocity can be obtained

by differentiation.

Suppose one has M vortices within a circle C of radius a and boundary OC, centered at

the origin for ease of notation. Remember that two stream functions that are irrotational

outside C, have the corresponding velocity fields vanish at infinity, and agree on OC, are

identical. At a point (r, 0) outside C, ¢ is given by

1 _o ¢(a,8)P(r,6')d8'¢(_,0)=_log_+ _ c

where _ is a constant and

P(r, 0) = (1 - (air) 2) / (1 - 2(alr)cos(0 - 0') + (air) _)

(the Poisson integration formula). The logarithmic term is written explicitly for conve-

nience, and can be incorporated in the integral by adding a constant to ¢(r, 0). ¢(a, 0) is

determined by the given vortices inside C. If the integral is approximated by a sum with K

terms, K << M, and one wishes to calculate the ¢ due to the M vortices at points outside

C, then labor is saved. Accuracy for modest K normally requires equidistant integration

nodes on OC.

A reminder of the derivation of the Poisson formula brings some useful insights. ¢(r, 0)

can be expanded outside C in planar harmonics,

OO

¢(r, 0)= _logr + _ Ck e_k°',
k--1

on r = a, this series reduces to a Fourier series, and thus the ck can be found. A summation

and an interchange of summation and integration yields (7). Note:
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(i) Numerical integration mishandles high wave numbers, and thus for numerical par-

poses the expansion in planar harmonics need only be carried up to a finite number of

terms. Summation and exchange of limits then produce a new kernel PK that is better

conditioned than P.

(ii) The error in the expansion, and thus in the use of the Poisson formula, depends

only on ¢(r, 8) and on r/a, and is therefore scale invariant.

One then constructs a "tree structure" to evaluate the stream function on a succession

of ever bigger circles, using circles of the preceding size to evaluate ¢ on the circles of the

next size level. Having done that, one goes down the ladder to evaluate ¢ at the vortices:

direct evaluation for nearby vortices, small circles for vortices a bit further apart, etc. The

number of levels is _.. log N, and the whole algorithm costs O(N log N) operations.

For more details, see [A3]; the general tree structure of fast summation is discussed

in [K1]; parallel implementation is discussed in IS2].

6. The convergence of vortex methods (for the mathematically minded).

We now present a brief sketch of the convergence theory for vortex methods

[B4],[B5],[C29],[H1],[H2],[R1], in the simplest case: two dimensions, n -1 = 0, _ of com-

pact support and no boundaries. The theory presented should be sufficient to illustrate

the following points: (i) The error in vortex methods is primarily due to the error in the

evaluation of the convolution integrals (4), and (ii) Accuracy depends on the properties

of the smoothing ¢, and can be enhanced by imposing on it certain moment conditions.

The theory here should also give some of the flavor of the extensive and elegant body
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of work that has arisen in this context. The presentation follows in the main references

Remember that the kernel K has been smoothed in the form: K _ K_, Ke = K, ¢_,

¢_ -- e-_¢(x/e), f Cdx = 1. Suppose ¢ is smooth enough (for precise requirements, see the

references) and in addition, satisfies f x_¢(x)dx = 0, where x _ - x_*x_ 2, ]_1- a, + _2,

and 0 < lal < p- 1 for some p, i.e., the moments of ¢ up to order p- 1 vanish. The vortex

method is written in the form (4)' d_i/dt = Vi(_), where I_(x) - _j _jg_(x,- xj).

Consider N blobs initially at aj, j = 1,.°., N, where the aj are nodes of a regular

square mesh of mesh size h placed on the support of _, and let _j = _(_j). Let xj(aj,t)

be the true trajectories issuing from the _j, and ij(aj, t) the computed trajectories. Let

e_(t) = x_(_, t) - _i(a, t), and for the sake of brevity, omit the subscript i from now on.

4"-" de satisfies

-- em "t- ed -t- es ,

with

ern = f K(x - x')_(x')dx'- f K_(x - x')_(x')dx'

ed -- f K_(x - x')_(x')dx'- _j Ke(x - xj)_j

= Zj K,(. - - - sj) j.

em is the "moment error" which arises because K _ Ke (the origin of the name will become

clear in a moment); ed is the discretization error which results from the replacement of

the integral by a sum; e_ is the "stability error" which arises because the sum is evaluated

at the computed rather than the exact locations of the blobs. We shall now estimate

these errors, noting that any integration over x or x _ can be replaced by an integration
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over o_ or _1 (the Jacobian of the map a --* x being 1 by incompressibility); the grid in

the integrations can thus be viewed as being regular even when the blob distribution has

ceased to be regular as a result of the motion.

Let g = g(x) be a function; we denote by _(k) its Fourier transform:

_(k) - / ei2'_k_g(x)dx;

then

g(x) -- / e-_'rk_(k)dk.

Note:

0(0) = / g(x)dx;

I • g =fO;

(the Fourier transform of a convolution is the product of the Fourier transforms);

(g(=/,))= ,_(,k);

(this scaling property is actually the mathematical statement of the Heisenberg uncertainty

principle of quantum mechanics); and finally,

a

(d)-_xg = - 2_rik_.

We defined em= K * _ - K_ * _; Thus

_(k, t) = (_- _)_,

= k(_ - _)_,
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since 1 = f Cdx = ¢(0). The moment condition guarantees that the derivatives of orders

up to p- 1 of ¢ are zero, and straightforward manipulation yields [[ e,_ I1_1< constant .@.

To estimate ed, we shall first exhibit some inequalities which prove the high order

accuracy of trapezoidal rule integration for sufficiently smooth integrands. Elementary

considerations show that if i = (i1,i2) is a pair of integers, i = 0 if il = 0, i2 = 0, and

[[i [[= max(jill, [i2[), then for L _>3, _l_o Jill[ -L-< 16. Suppose g = g(xl,x2) e C_, and

define [[ g [[_= max([[ O"g ILL1)(the maximum of the L 1 norms of all the derivatives of g

up to order r). Then, for r _ 3,

[ 12 h_E g(ih)- g(xldx_ (2_r)"IIg II,-1

(trapezoidal rule integration is very accurate). Indeed, by the Poisson summation formula

[D1],

h__ g(ih)= _ _0/h),
1 i

where _ is the Fourier transform of g. Therefore,

Al_o,I_1<_f [g(x)[dx, and O_"-g(k)= (2ri)l_lk'_(k), where 0 '_ = _,_'_=, I_l= _ + _=,

and k '_ = k_ lk_2; thus

1(2_rl"k"OI_</IO"gldx_<11g I1,..

Then

]Ig II, I
It(k)i_<(2_)_IIk I1"'
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and for r > 3,

_-_(i/h) < I)g ])r 16 hr .

To estimate eg, all we need is an estimate for the derivatives of K, = K • ¢,. K, has as

many derivatives as ¢ has, and if ¢ has L derivatives, a straightforward analysis yields at

finite time T:
L

o<t<T

We omit the analysis of es, which can be bounded in such a way that the over-all error is

bounded by a constant times (11ed II + Nem II); thus

II error ILL1_<constant ep + e .

(Note the usefulness of a finite e.) If L is large enough, one can choose h/e < 1 (thus

making the blobs overlap) so that the error in the trajectories of the blobs is close to

O(hP). We omit the discussion of how one goes from trajectory error to other measures of

the error, and how one accounts for the effects of time discretization. For error estimates

in the presence of viscosity or in three dimensions, see the references.

One key to accuracy (or more precisely, to local accuracy, see below) in blob methods

is to satisfy the moment conditions f x _¢dx = 0 for a as large as possible. (An appropriate

choice of ¢ can produce "spectral" accuracy [H2] but other methods are needed for the

analysis.)

As an example, consider ¢(x) = _e -r_, where r = Ixl. Clearly, f_bdx = 1,

fxlCdx = fx2¢dx = 0, so that p = 2. If ¢(x) = e -r2 - ½e-r2/2, one can check

that p = 4 [B5]. Generally, one can construct appropriate ¢'s by picking plausible forms
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with free coefficients and picking the coefficients so as to satisfy the moment conditions.

The construction of the appropriate /_ is easy: g_ = (..°$,)G_, where G_ = G • ¢_.

AG_ = _(G.¢_) = (AG),¢_ = ¢_, where A is the Laplace operator 012+ 0_,

and the rules for manipulating convolutions given in section 2 are used. If ¢ = ¢(r),

A r -ld(r d) and thus, if¢= le-_ 2 ¢_ = 1 _-_/_ r-1= , . = ,__o-.'/,'

riG. = _' (e-"/"-1), K. = _- " (1- e-"/"); the vortex method becomes

d-T= . . 21rr_j l-e-% ,

where for convenience I wrote x = xl, y = x2, rij = Ixi- xjl. An expansion of the

( -r?/_) in power series shows that the singularity at rij 0issmoothing factor 1- e ,_ =

cancelled out. Similarly, if ¢ = e-'2 - ½e-_/2,

K_--(-y,x) (1- 2e-_/_2 -_-e-r_/2_2) .21rr2

The analysis shows that a good choice for the xi(0), _i, is one that makes the integration

in K_ • _ accurate; the xi should be on a regular grid and the _i should be the appropriate

point values.

The error in blob method does grow in time. One factor in this exponential growth is

the growing irregularity of the blob distribution and the resulting growth in the derivatives

that enter the error in a trapezoidal rule. This growth can be remedied by periodic rezoning

(see e.g. IN4]). By construction, the "polygonal" methods mentioned above perform a

rezoning at each time step, and as a result the errors they produce often grow less rapidly.
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Other limitations on long-time accuracy will be discussed in the next few sections.

7. Vortex methods in three space dimensions.

In three space dimensions, vortex methods are a little more difficult to formu-

late, because the vorticity is now a divergence-free vector whose magnitude changes

[C5],[K3],[L2],[L3]. The Euler equations take the forms

o,_+ (.. v)_ - -(_. v)., (10)

div u = 0;

= curl u is the vorticity. The two-dimensional relation between _ and u can be gener-

alized: div u = 0 makes it possible to write u = curl A, A = vector potential, which can

be chosen so that div A = 0. Then

= curl curl A = -AA, A -- E 02,

and

41rl/ Ix _1 =A = x,l_(x')dx', dx' dx 1'dx2dx3' '

where -(47rr) -t is the Green function of the A operator, -A(41rr) -1 = 6(x- x_), _ =

delta function. Taking the curl, one obtains

u=K*_,

where K - - (41rlx13) -1 x, x denoting a cross-product, and , is a convolution as before;

in other symbols,

1 f (x - x') x _(x') dx'
u(x)- - 4--;j Ix- x'l3 ' (11)
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Fig. 2: A vortex filament,

This is the "Biot-Savart" law. The first approximation one can make is to replace _(x) by

a collection of vortex lines (lines tangent at each point to _), and concentrate the vorticity

on these lines. If _ is smooth enough, the lines will be closed, div _ -- 0 means that the

flux of vorticity along such lines is a constant; let the i-th line have a flux ri; then (fig. 2)

1 r (x- x') x as
,(x) - - 4-__ r, 2., Ix- _'1_ 'i ong i-th line

It is easy to see that this expression typically becomes singular near the filaments, so that

one has to replace K = - (47fix - x_la) -1 xx by a smoother object K_, or alternatively,
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smear the lines into "filaments". The integration along the lines can be done numerically,

so that for example

1 (x- X_)Y (x_--x_+1)
u(_)- -_ _ r, _ ..........Ix- xjl_- 'i j

where the xj are points along the i-th line. K_ can again be obtained in the form

If, = K * ¢,, ¢, = e-Z¢(x/e),

where f Cdx = 1, f x? 1x_ 2x_ 3Cdx = 0 for c_1_>0, as _ 0, a3 _>0, al + a2 + aa _<p - 1 for

some integer p. A standard example of an appropriate ¢ is the fourth-order Beaie-Majda

smoothing function (p = 4) [B4], which leads, as before, to a smoothed kernel,

Ke= 1+ _ -1 e K, _---Ixl/e;

it is easy to check that the factor will cancel the singularity of K at small r - Ix[. Note that

the "stretching" term on the right-hand side of equation (10) is not explicitly represented;

its effect is to stretch vortex lines when there is a velocity gradient along them; this is

automatically done by allowing the points along the filaments to move at different speeds.

The velocity field u can then be used to move the points x_. This is the "vortex filament"

method.

Tracking whole filaments may pose some bookkeeping problems. One can extract from

the filaments segments such as xj_ lxj (fig. 2) and follow their end-points without reference

to the rest of the filament, div _ = 0 will be satisfied if the calculation is accurate enough

[B3],[C6]. This is the "arrow", or "segment", or "vorton" method. Diffusion and boundary

conditions are easy to handle in this way, but div _ = 0 requires some care and possibly a
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periodic extraction of the divergence.free part of the vorticity field. (See the next section,

and the review [WS].) In both the filament and the arrow methods, additional points

must be added as the vortex lines stretch [C7],[K3]. An interesting discussion of boundary

conditions can be found in [S5].

Other variants are possible: one may for example keep track only of the mid-point

of a segment, and account for vortex stretching by updating _ through an evaluation of

-(_. V)u. An additional major variant is discussed in the next section.

An inviscid vortex method in three space dimensions can usually be run only for a

finite time, just as is the case with other inviscid methods. The physics of fluid flow bring

energy to the small scales. Sooner or later there will not be enough vortex elements to

represent the "eddies" being created, and the time step will be too small to follow the

small scale rotation. This loss of resolution usually manifests itself as excess folding of

vortex lines. Folding is a physical phenomenon (vortex lines stretch, as the stretch they

must fold or else energy win increase[C8],[C13],[C16]). Excess folding is a problem.

There are several remedies: one can stop the calculation when folding becomes ex-

cessive. One can add diffusion by non-random means, something people are loath to do;

having gone to the trouble of making an inviscid method, they do not like the idea of adding

viscosity. The final possibility is renormalization: the replacement of the unrepresented

eddies by their effect on the remaining eddies. An appropriate vortex renormalization

requires statistical ideas that will be discussed in the following section. In brief, statistical

analysis suggests that it is legitimate to filter out small vortex loops.
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It is interesting to note that vortex calculations in three dimensions, with a high

accuracy core, are usually first undone by the lack of accuracy in the time integration. This

is unusual; in other methods, it is the lack of spatial accuracy that will get you first. The

explanation seems to be as follows: the energy transfer to sman scales is produced by vortex

stretching; stretching cannot be uniform in space without energy increase [C8],[Cll]; as a

result, vortex activity concentrates in small very active regions (a phenomenon known as

"intermittency"). Computational vortex elements can follow this concentration, not being

tied to a grid, thus easing the problem of spatial resolution but placing an added burden

on the time integration, which must represent accurately rotations in small volumes. In

general, other methods, if only they could provide enough spatial resolution, would also

eventually stumble on the time integration problem.

Applications of three-dimensional vortex methods can be found i.a. in

[C7],[Gll,[K4],[K5],[L3].

8. The impulse/magnet representation.

At this point, the character of these lectures is changing. From the realm of reasonably

tried and true, we are jumping into the speculative and hopeful. First, we present a variant

of three-dimensional vortex methods that is not well tested but has exceptional physical

interest, and then we proceed to vortex statistics and to speculations about turbulence

and superfluids.

A short preliminary: If u is defined in a domain T), with u. n = 0 on the boundary

0D and div u = 0, and if grad ¢ is any gradient, then ]_ u. grad ¢ = f_¢div u =

- fa_ u. n = 0; u and grad ¢ are orthogonal in function space. Any vector w can then
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be uniquely written as w = ua + grad _, where ua satisfies ua. n = 0 on 0_), div ua = 0.

The ua is the divergence-free part of w; ua can be viewed as the result of an orthogonal

projection P, ua- Pw; we have: p2 = p, p grad_ = 0 for any _, Pua = ua. The

Navier-Stokes equations can be written in the form

u,-- v (-(u. +a

This observation is the key to projection methods (see Prof. Ferziger's course and reference

[c7]).

It is well known that in an appropriate abstract sense Euler's equations, in both two

and three space dimensions, form a Hamiltonian system. We have exhibited a Hamiltonian

structure in two space dimensions through the use of vortices. Hamiltonian formulations

are not unique; once one has been found others can be derived from it.

In three space dimensions, one specific Hamiltonian formulation that seems to have

been discovered independently by several investigators, has been shown by Buttke [B8] to

lead to discrete systems with remarkable properties. The starting point is the introduction

of a new variable, m, often referred to rather awkwardly as a magnetization, or vortex

magnetization, or impulse (for reasons we shall see), obtained by adding to u at some

point in time an arbitrary gradient:

m-u+gradq att=0. (12)

Obviously at _ - 0, u = Pro, with the projection P defined above. It is not required that

div m = 0. We have _ - curl u = curl m. If one thinks of u as the vector potential

of _, (12) is a gauge transformation of the kind that allows one to add a gradient to the
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magnetic vector potential in electromagnetic theory without changing the physics, q is not

unique, nor is m.

We now proceed in a non-intuitive fashion to find equations for the evolution of m.

The end result of our analysis should be heuristically transparent and will justify the effort.

We only consider the case of an unbounded domain _.

Consider the following equation for evolving m = (ml,m2, m3):

O_7,i
: Otmi + ujOjmi = -mjOiuj (13)Dt

(with summation over multiple indices, and u = Pro). The claim is that the resulting u is

identical to the solution of Euler's equations if u(x, 0) = Pro(x, 0). Equation (13) is then

the gauge-invariant form of Euler's equations. For the sake of simplicity, we assume there

are no external forces.

To check the claim, substitute m = u + grad q into (13). After some elementary

manipulations, one obtains

( 1 )Otu+(u.V)u=-grad Otq+(u'W)q+_lul 2 . (14)

Multiplication by the projection P yields

Otu + P ((u. W)u) = 0, (15)

as promised. Conversely, one can start from equation (15), which is equivalent to Euler's

equations, and obtain (13). Note that multiplication of (14) by (I- P) (I = identity

operator) yields an equation for the evolution of q, which is thus arbitrary only at t = 0.

It follows from (12) that m and u always differ by a gradient.
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We now have an equation for the evolution of u plus an initially arbitrary gradient.

We shall put this gradient to good use.

Suppose _ = curl u has support within a ball B of finite radius p. In three space

dimension, the exterior of a sphere is simply connected, and thus outside B one can write

u = -grad _. put q = _in (12). The resulting m has support in B. mcan thus be

"localized", and this localization persists in time.

Suppose _ has support in a small sphere Be; calculate the resulting rn so that m also

has support in Be,

m = MCe(x- xi);

xl is a point in Be, M is a vector coefficient,and Ce(x -x_) is, as before, a smooth function,

with supp Ce in Be, f C,(x)dx = 1. The resulting u differs from MCe(x-x_) by a gradient"

u - MCe = K • (curl MCe) - MCe = grad q,

and thus div MCe = -Aq, _ -- Laplace operator. Some manipulation of vector identities

yields q and then

ui = MiCe(x - x,) - MjOji)iCe, (16)

where Ce = ¢_(x- x_) satisfies ACe = Ce.

Consider an arbitrary magnetization field m and write it as a sum of N function of

small support ("magnets") of the type we have just described:

N

i--1
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The motion of the "centers" xi of these functions is of course given by

N

dx_____/_ u(xi) : _ u(J)(xi) (17)dt '
./=1

where uO) is the velocity (16) due to the j-th "magnet". The coefficients M (i) are not
i

constants; from equation (13) one finds

dM(k) = -M(k)Oiuj(x_ ), (18)dt

where there is summation over repeated indices and the uj are the components of u =

_ u(k).

One can now check that the flow of these "magnets" is Hamiltonian, with

-- ½Ej M(J).u(xj)
, (19)

= ½E_=I E_--1 [Me/). MCi)¢_(xi- xj) + (MC0. V,)(i(i). Vj)¢_(x, - xj)]

where Vj = (cOx;_,0_j2,0xj3), x_ = (xjl,xj2,Igj3), and ACe = ¢_. If at t = 0 the xj are

distributed so that the sum in (19) approximates an integral,

1/ 1/ IfH _ _ rn. udx = _ (u + grad q). udx = _ u2dx,

i.e., the kinetic energy is indeed a Hamiltonian for the flow if one uses the appropriate

variables.

One can check that the equations

dxj__...A_--- OH dM 0) OH (Xj @gjl,_j2 Xj3)).__ ..- , ,

dt OM(J) ' dt Oxjk '

are exactly equation (17) and (18).
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The "magnets" M¢_ have a simple interpretation. One can check, by a painful but

elementary calculation, that the velocity field (16) is the velocity field induced by a small

vorticity loop with M perpendicular to the plane of the loop, and ]M I = FA, where A is

the area of the loop and F is the circulation. We have thus approximated _ by a sum of

small vortex loops.

There is an analogy between magnetostatics and fluid dynamics, in which the current

corresponds to vorticity and the magnetic induction corresponds to velocity; the magne-

tostatic variables are related by the Biot-Savart law just like the fluid variables. In this

analogy, our m corresponds to the magnetization, hence the name.

The loop interpretation shows how to convert a vortex representation to a loop rep-

resentation. Consider a large vortex loop C of circulation F. Construct a surface E that

spans C. The non-uniqueness of E corresponds to the non-uniqueness of q and m. Let

(sl, s2) be orthogonal coordinates on E. Construct a small rectangle 7_ with vertices

(81,82), (81 Jr" _81,82), (81,82 _t_ _82), (81 -_" _81,82 _" {_82); at its center construct a small

magnet of strength FSSlSS2, oriented in a direction orthogonal to E chosen consistently.

The sum of these loops adds up to the original loop.

It is easy to check that m remains orthogonal to E as both are evolved by the flow map.

This construction points out a problem with the m representation: A vortex loop will eject

fluid to its rear and thus E will balloon; as its area increases so does _ IMjl; as a result the

time steps may become small and the calculation expensive. Appropriate remaps to remedy

this problem have been considered by Cortez [C14]. The magnetization representation has
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not yet been tested as a sufficient number of examples for firm conclusions about its
,

usefulness to be drawn.

The magnet/impulse representation is "local" like the "arrow" representation; div

= 0 automatically; diffusion is easy to add; smoothness has been built in from the

beginning (it was necessary to keep all quantities bounded). This representation is a key

component of some theoretical treatments of turbulence [Cll].

Note that for thin closed vortex filaments lying in a plane,

Fix × ds = 2AF,

where A is the area surrounded by the filament. Thus

/ x × , dx = 2 / mdx

and 2m is an "impulse density"; note that impulse density is thus non-unique. It follows

that f mdx is a constant of the motion; one can indeed check that _M (k) is a constant of

the motion for the system (17)-(18), as is the sum

xk × M (k),

which is analogous to an angular momentum.
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9. Statistical mechanics of vortices in the plane.

We start the statistical analysis by considering N vortices in a bounded region Z_

in two dimensions. The entropy S of the system is the logarithm of the density of its

states (the Boltzmann constant can be set equal to 1 by using appropriate units). The

temperature T is defined by T -1 = dS/d(E), where (E) is the average of the energy E. If

the system has states labelled by a parameter s, then S = - _a Pa log P_, where P, is the

probability of the state s and the sum is to be interpreted as an integral when the states

form a continuum. In the canonical ensemble, P, = Z -1 exp(-E/T), where E = E(s)

is the energy of the state labelled by s and Z is a normalizing constant, the "partition

function" Z = _ P_.

One is used to having T > 0, but this inequality is not a law of nature. One can

perfectly well imagine systems such that for (El moderate there are many ways of arranging

their components so that the energy adds up to (E) but for {E) large there are only a few

ways of doing so. Then the derivative dS/d(E I is negative for (E / large enough and T is

negative. This situation will indeed occur for vortex systems. If T :> 0 low energy states

have a high probability, and if T < 0 high energy states have a high probability.

Suppose one takes two systems, each separately in equilibrium, one with energy E1

(we drop the brackets) and entropy 5'1, the other with energy E2 and entropy $2. Suppose

one joins them; the resulting union has energy E1 . E2 and is not necessarily in equilibrium.

Its entropy, initially S = $1 . $2, will increase in time t. Then

dS dS1 dS2 dS1 dE1 dS2 dE2

d-'-_= dt _ dt = dE1 dt + dE2 dt >0'
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while energy is conserved:

dE1 + dE2 O.
dt dt

Therefore

__dS= ( dS1 dS2 ) dEl__= (1 1) dE1.dt dE1 dE2 dt T1 7'2

Suppose 7'2 > 7'1, both positive; then _ > 0, i.e., energy moves from the hotter body

to the colder body. Now suppose T2 < 0. It still follows that _ > 0, i.e. a body

with negative temperature is "hotter" than a body with positive temperature. Negative

temperatures are above T = co, rather than below absolute zero. Further, the canonical

formula shows that T = -c_ is indistinguishable from T = +c_; ITI = _ is the boundary

between T < 0 and T > 0. In terms of f_ = T -1, temperature increases as f_ varies

from infinity to zero through positive values, and then from zero to minus infinity through

negative values.

Consider a collection of N vortices of small support occupying a finite portion 7) of

the plane, of area A --- IDI (see [Eli). The area can be made finite by surrounding it

with rigid boundaries, in which case the vortex Hamiltonian must be modified through

the addition of immaterial smooth terms; alternatively, one can confine the vortices to a

finite area initially and conclude that they will remain in a finite area, because the center

of vorticity X = E_x_/E_, xi = positions of the vortices, and the angular momentum

E_21x_ - Xl 2, are invariant. For the moment, consider inviscid flow with all the _i = 1.

The entropy of this system is

S = -/z_' f(Xl,...,XN)lOgf(xl,...,xN)dxldx2...dxN,
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where f is the probability that the first vortex is in a small neighborhood of xl, the second

in a small neighborhood of x2, etc. The energy of this system is E = H + B, where H is

the two-dimensional vortex Hamiltonian and B is an appropriate constant. The entropy

is maximum when

f - constant = A -N.

The corresponding energy is

<EI = IEcI = 41rN(N -1) / dx / dx' log lx - x_l . B.

Clearly, one can produce a larger <E / by bunching vortices together, and thus T -1 =

dS/dE < 0 for E > (Ec). This is Onsager's observation. If T > 0, the Gibbs factor

exp(-E/T) gives a high probability to low energy states, and if T < 0, high energy states

are favored; the latter are produced by bunching together vortices, forming large, concen-

trated vortex structures. The f = constant state is the IT I = c_ boundary between T < 0.

and T > 0. The T introduced here has no connection whatsoever with the molecular tern-

perature of the underlying fluid; in incompressible flow, the molecular degrees of freedom

and the vortex variables are insulated from each other.

To give this argument a more quantitative form, we turn to the elementary combina-

torial method [J1]. We assume there are N vortices. N + vortices have strength _ = 1, N-

have _ = -1, N + + N- = N. We divide T_ into M boxes of area h 2, with n + positive and

n_ negative vortices in each. The corresponding probability (= multiplicity) W is

W = (n+ N+! N-!i::_n+,) (n_,:::-nM,) h''v"
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To a good approximation, the entropy is S --- log W (for the conditions under which this
!
i

is truc, see e.g. [E1],[Cll]). To obtain an equilibrium, S is to be maximized subject to the

constraints En + = N +, End- = N-, and

1

E = _ E E (n+ - n[)Gij(n+ - nS) = constant,

where Gij - -_ log [xi - xj[ + B, x_ is in the i-th box, x3 is in the j-th box and B is-- 2n

a constant. This E approximates the energy of a vortex system. The maximization of S

produces a thermal equilibrium and leads to the equations

log_.+,+ ,_++ZEj a,_(n+- n-;) = o,
(20)

log,_-- _++_Z_a,j(,_+- n-;) = o,

where a+,a-,/3 are Lagrange multipliers. A little algebra yields

for i = 1,.,.,M. Let h _ 0 so that n + --n_- _ _(x)h 2 = _(x)dx, (exp(-a- )) /h 2 --, d-,

1 log {xl+ B. Equations (20)and IgVij(n + -n:() _ f G(x- x')_(x')dx', where G(x) = -_

converge to

_(x) d+ exp(+/3

where d+, d_ are appropriate normalization coefficients.

Let ¢ be the stream function, ul = -0_¢, u_ = 01¢; an easy calculation gives

' _¢ = -_, A = Laplace operator and ¢ = - f ff(x - x')_(x_)dx _. Thus,

-A¢ = _(x)= d+e -_q' -d_e _¢. (21)
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This is the Joyce-Montgomery equation, which describes the vortex version of thermal

equilibrium. In a periodic domain one can set ¢ = 0 on the boundary of a period; N + =

N- -- N/2, d+ = d_ - d. Then

N
2d =

f dxe'

-_¢(x) = _(x) --- dsinh_8'C,(x).

If N + = N, N- = 0, then d_ = 0, d + = N/Z, g = f9 e-_¢dx, and

N

-A_b = _(x) = _ exp (fie(x)).

In either case, _ is a flmction of ¢. The Euler equation is

Ot_ = -ulOl_ - u202_

= =JC¢,

where J = Jacobian of _, ¢ which is zero when ¢ = _(¢). The resulting average flow is

a stationary (time-independent) solution of the Euler equation, with macroscopic motion,

as expected when _ < 0. Appropriate variants of equation (21) can be derived, in which

the limit N ---, c_ can be easily taken [E1],[K2],[M2].

It should be emphasized that the _ we have calculated is not only a specific solution of

Euler's equation, but more importantly it is the stationary average density of the vorticity.

Specific flows may depart from this average, but one expects the departure to be small.

For fl _>0 and for -8_rN < fl < 0 equation (21) can be shown to have solutions. In the

latter case the solutions are non-unique; the solutions have multiple peaks; the solution

that maximizes the entropy has a single sharp but smooth peak. For B < -81rN (i.e.,

"hotter" than T = -1/8_N), the Joyce-Montgomery equation with _ > 0 has no classical

solution and in fact does not describe reasonable physics.
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Statistical equilibria are of interest only if they are reached from most initial data.

There is strong evidence, mainly numerical, that the two-dimensional equilibria constructed

above are in fact reached. Some general statements can be made about the relaxation to

equilibrium, and some equations remain open.

Suppose one starts from initial data that consist of two patches of vorticity, say _ = 1

in sets Ci, C_, both bounded, C1, C2 disjoint, and _ = 0 elsewhere. Since vorticity is merely

transported by the fluid motion, one has to imagine a process by which the vorticity in the

patches is redistributed so as to match _oo, the solution of the one-sign Joyce-Montgomery

equation (21). One can imagine that the boundaries of C1, C2 sprout filaments, as in the

convergence of subsets of the constant energy surface to the microcanonical ensemble; the

resulting filaments could reorganize so as to approximate _oo on a sufficiently crude scale.

The filamentation of the boundary should lower the energy. Indeed, if a small vortex

patch is broken into two halves that are pulled apart, the energy goes down; two vortices of

strength _ = 1 each, near each other, act as one vortex of strength 2, whose energy is four

times that of one of them; two vortices of strength 1 far from each other have an energy that

is the sum of their individual energies. To make up for the loss of energy in filamentation

the two patches have to approach each other. This process of simultaneous filamentation

and consolidation is well documented numerically. Similarly, one expects a non-circular

patch to become nearly circular with a halo of filaments, the whole approximating _oo on a

rough scale. Even a circular patch with non-constant _, increasing from its center outward,

can reorganize its vorticity so that filaments shoot off while energy is being conserved. On

the other hand, a patch with _ decreasing as one moves away from the center is stable,
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and belongs to the set of initial data that do not approach _o_; such a patch of course does

in itself constitute a rough version of _oo.

This process of simultaneous fllamentation and consolidation can be deduced from

the invariance of the energy and the enstrophy in spectral form: f E(k)dk = constant,

f k2E(k)dk = constant, where E(k) is the energy spectrum. If some energy moves towards

the large k's (small scales), then even more energy must move towards the small k's (large

scales). On the whole, there is an energy "cascade" toward the small k's.

If the initial _ is complicated, and has many maxima and minima, one can imagine,

and indeed see on the computer, a process of progressive curdling, in which nearly circular

patches that look locally like _¢¢ first form on small scales, then slowly migrate towards

each other and consolidate if viewed on a crude enough scale. The curdles can never truly

merge, since the flow map is one-to-one. At each stage of this curdling the nearly circular

patches are nearly independent, with whatever correlations their locations have manifesting

itself only on large scales. The flow can then be approximated as _i_(x- xi), 77i=

random coefficients. The energy spectrum is approximately proportional to [k[2[_(k)l 2,

where _¢¢ is the Fourier transform of _(x), and is a property of each curd individually.

One then has local equilibria slowly consolidating into larger equilibria.

This successive curdling picture provides a suggestion as to what happens in the

presence of shear or in complex geometries. In three space dimensions the "universal"

aspects of turbulence appear on small scales, and one can readily imagine that arbitrary

large scale structures have "universal" small scale features. Here, in two dimensions, the

universal structures grow to large scales, and an imposed shear or an imposed boundary
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mass interferes with them. It is readily imagined however that the curdling process will

simply stop when it ceases'to be compatible with the conditions imposed on the problem.

Note that if ¢, in the two-dimensional vortex method is identified with _oo, then the

vortex method can be reinterpreted as a model of two-dirnensional turbulence, in which

the smallest scales have reached equilibrium. Indeed, this is how the ¢, in [C3],[C4] was

chosen.

One can wonder about the effect of a small viscosity v on the processes just described.

To the extent that the effect of viscosity is to smear the small scales, and as long as the

time it takes to reach equilibrium is small compared to the time scale of viscous decay,

the picture above should be unaffected. One could say a little more: suppose the effect of

viscosity is approximated by Brownian motion (equation (8)). The Brownian motion can

be thought of as being generated by the bombardment of the vortices by the molecules of

an ambient fluid at a temperature v. The effect of the bombardment that has just been

imagined is to couple weakly the "fluid" at the temperature v with the vortex system, and

if z/< T = vortex temperature, to reduce the latter. If T < 0, the cooling of the vortex

system brings one closer to the ITI = c¢ equidistribution solution, in agreement with the

intuitive idea that random pushes should interfere with the formation of concentrated
i

vortices. After a long enough time one may end up with _ = constant.

10. Statistics of vortex filaments in three dimensions.

We now turn to the three-dimensional analogues of the constructions of the previous

section. In three dimensions, vortex filaments are extended objects, more like polymers

than like particles; vortex stretching is important, and only a statistically steady state can
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be expected as the time t _ c¢. To make the presentation easy, we consider a single vortex

filament (a tight bunch of integral lines of the vorticity field) in a dilute "suspension" of

such filaments; more general situations are considered in [C9],[Cll].

Suppose our filament can be covered by N nearly circular cylinders, each of length

h > 0, Endow the filament with an energy

F2_. _ ti.tj (22)

where ti is a vector of length h originating at the center of the i-th cylinder, li - Jl is

the distance between the i-th and j-th cylinders, and F is the circulation of the vortex.

Equation (22) is the discrete analogue of the Lamb expression for the energy ILl]:

E = u2dx= Ix "

The vortex is self avoiding: Ix- x_l # 0 for x E the i-th cylinder, x' E the j-th cylinder.

Assume that each configuration C of the vortex has probability P(C) =

Z -1 exp(-E/T), where Z = _c P(C). T can be positive or negative; "increasing T"

is defined as in the previous section. The average energy (E) = _cE(C)P(C) is an

increasing function of both T and vortex length L = Nh.

Define

log(rN)
#_¢'Y= logN '

where r_r is the end-to-end length of the vortex measured by a straight ruler. As/V _ c_,

#N,T tends to a limit /_T; 1/#T is the fractal dimension of the resulting limiting object

[C13],[C16].
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For fixed, finite N, _ < 0; i.e., as T decreases, the vortex becomes an increasinglyOT

folded object. In the limit N _ oo, lZT = 1 for T < 0, #T = 1/3 for T > 0, /_T _- .59 for

IT[ = oo. Note that IT[ = c_ is the maximum entropy state.

Suppose now that the "vortex" is imbedded in an Euler flow. Its length will increase,

by stretching and by fractalization; _ < 0. The average energy is an increasing function

of both T and of the vortex length L. If energy is conserved, it follows that dlV--£- < 0 and

the temperature decreases. Also, _ < 0 and the vortices fold, as described at the enddt

of section 5. If the vortex is initially smooth, T(t = 0) < 0, and the temperature decreases

to [T I = oo. The point ITI = oo is an attracting fixed point for Euler dynamics; that is

where the vortices will end up and generate a Kolmogorov spectrum [Cll]. IT[ = oo is an

uncrossable barrier for Euler dynamics. Asymptotic vortex structures are poised at the

boundary between T > 0 and T < 0.

Note that as long as N iv finite, strong, organized, coherent structures contribute less

to the energy dissipation than weaker, incoherent vortices. Indeed, contrast two vortex

filaments with the same finite N but different circulations F1,F2, say F1 > F2. The energy

integral being proportional to F2, the Gibbs weights attached to the two filaments are

Z-lexp(-_F_E), Z-lexp(-_r22E), where E is the energy that results from F --- 1. The.'e

weights are the same as those one would obtain with F = 1 and T1 = T/F_ in the first

case, T2 = T/F_ in the second. If one thinks of D = 1/_N,T as an approximate fractal

dimension, the vortex with larger F has a smaller [T[, and if T < 0 (which is the physically

relevant case), then the vortex with larger F has a smaller dimension and appears smoother.
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Strong vortices are less folded. The more folded vortex has a broader spectrum and thus

contributes more to dissipation relative to its energy.

In a numerical calculation, N remains finite, and the IT] = co barrier can be crossed.

If it is, excess folding and stretching may follow, as is indeed observed. One can reduce

this excess by a systematic removal of folds ("hairpins") which can be justified as a renor-

malization [C10]. Hairpin removal is a very useful tool in vortex methods.

The justification of the removal goes like this: suppose T > 0. The probability of

a state with energy E is _ e -E/T. If a large loop is given, the smaller loops will, as

a consequence, arrange themselves so as to reduce the energy. If the smaller loops are

removed, the energy of the system must be increased to make up for the loss. On the other

hand, if T < 0, large energy states are more likely, a given loop tends to align smaller

loops so as to increase the energy, and this must be allowed for if small loops are removed.

At IT] = cx) the effect of small loops on large loops is, on the average, zero. Thus the

small loops can be removed, sometimes removing energy from the system, and sometimes

adding energy to the system, with a balance being reached for a large enough system. It

only remains to notice that a large loop with a fold can be viewed as the sum of a large

loop and a small loop.

There may however be simpler ways to arrest the crossing of the IT] = oo barrier. A

key observation in this respect is Qi's observation [Q1] that the crossing is most likely to

happen where the vortex torsion is zero; such points are readily identifiable before disaster

strikes.
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11. Remarks on turbulence and on superfluid vortices.

In the previous section we developed a theory of thermal equilibria of vortex filaments

and used it to explain the folding instability of computational vortex filaments. The theory

can also be applied directly to physical vortices.

In a classical (i.e., non quantum) fluid in turbulent motion vortex filaments typically

form a dense suspension; their cross-sections vary rapidly and play a role in the dynamics.

The equilibrium theory of filaments is a plausible cartoon of the equilibrium states of vortex

filaments in this context, and reveals important features of the motion; it must however

be interpreted with some care [Cll].

A major conceptual leap that must be made in order to apply the model to turbulence

concerns the idea that the inertial range of turbulence can be described by an equilibrium

model. In the usual presentation of the Kolmogorov theory, inertial scales do little besides

transfer energy from large to small scales, in an irreversible waterfall-like cascade that

cannot be assimilated to a thermal equilibrium. However, there is overwhelming experi-
i

mental [M5] and numerical [Cll] evidence that energy goes both up and down the ladder

of scales; in other problems, even in Burgers' equation, equilibrium and a power law spec-

trum appear together. An equilibrium with a wide spectrum may enhance dissipation,

but not necessarily be dominated by it. This argument is laid out in detail in [Cll]. In

superfluid (quantum) turbulence these arguments are easier to visualize. In a superfluid,

vortices exist as physical entities; their cores are well defined. The dissipation mechanisms

(e.g., the Hall-Vinen friction [I-I3])do not concentrate at the smallest scales and the simple

cascade ideas are not as attractive. Indeed, "fractal" vortex equilibria similar to the ones
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described above do occur, for example, near the T_ transition to superfluidity [$3],[W2] or

in the related problem of "vortex glasses" in "high temperature" superconductors [H6].

However, some paradoxes appear as soon as one considers turbulence in superfluids

more closely. In many important respects, quantum and classical turbulence are very

different. Quantum vortices generally look smoother than classical vortices. The rate at

which quantum vortex length per unit volume L is generated appears to be proportional

to L3/2w, where w is a quantum "counterflow" velocity that vanishes in a non-superfluid.

By contrast, the rate of change of L in classical turbulence is proportional to L [Cll].

Thus vortex stretching appears to be much more important in classical than in quantum

turbulence.

A qualitative explanation of these differences is contained in the theory of the last

section. The rate of change of L was connected with the rate of change of the temperature

T. A classical fluid has a self-adjusting temperature T such that ITI _ c_, and there

are no bounds on L. In a quantum fluid (and maybe also in compressible turbulence)

wave/vortex interactions control T and then L may be bounded. Deeper explanations

remain to be explored; the relations of quantum to fluid vortex motion are discussed in

[C9],[Cll]. Vortex methods appear as the natural tools for analyzing these relations and

the structure of turbulence in general.

This may be the place to dwell on a numerical mystery. If vortex stretching and folding

are inhibited in quantum turbulence, vortex motion in quantum and classical fluids should

be very different. In a partial recognition of this fact, superfluid physicists often replace the

Biot-Savart law (9) by a different velocity fluid that depends only on a local curvature of
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the vortex filament. The equations obtained from this approximation, the "local induction

approximation" (LIA) have a very different character from the Euler equations, and in

particular they preserve vortex length [B6],[C6]. It is however persistently claimed in the

superfluidity literature that the LIA and the Biot-Savart law can be used interchangeably.

In one case, examined by Buttke [B6], it turns out that the resemblance between

the LIA and the Euler results claimed in earlier work is an artifact of the numerics; a

sufficient refinement of the mesh in the LIA destroys this resemblance. There are however

more subtle problems. For example, according to recent work [$1], waves propagate on

vortex filaments with only a "confined chaos" and no breakdown of the vortex. A crude

enough solution of the Euler equations in this case reproduces the results of the LIA to a

good approximation. A more resolved calculation is at sharp variance with the LIA, but

an even more refined calculation produces again results that have a qualitative (but not

quantitative) similarity to the results obtained by the LIA [Q1]. A deeper understanding

of this situation is not yet available.
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