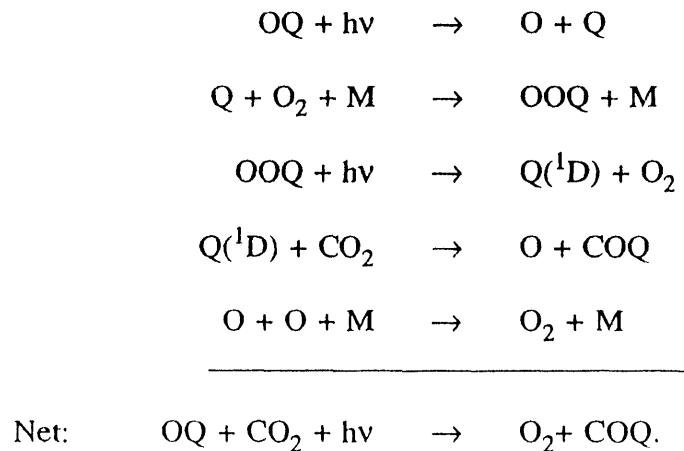


1 of 1

2
DOD/ER/6/10/0-714

Isotopically Labeled CO₂ from Stratosphere: A tracer of carbon biogeochemistry


Yuk L. Yung
Division of Geological & Planetary Sciences
California Institute of Technology

Mark H. Thiemens
Department of Chemistry
University of California, San Diego

Objective: It has been recently discovered that the stratosphere is a source of isotopically enriched CO₂; CO¹⁸O and CO¹⁷O. The cause of this isotopic enrichment is exchange between heavy O₃ and CO₂ via the excited radical O(¹D). The research effort consists of a coordinated laboratory and model studies of isotopomers of CO₂. The laboratory study yields data on the chemical kinetics of oxygen exchange between CO₂ and O₃. The modeling study uses the laboratory results as well as atmospheric measurements to model the source and sinks of CO₂ isotopomers in the stratosphere and troposphere. It is expected that this combined study will bring new insights on the exchange of CO₂ between the atmosphere and the biosphere.

The goals may be further described in detail as follows:

1. To study the kinetic pathways for isotopic exchange between O₂ and CO₂. The currently proposed scheme for isotopic exchange is via O₃:

where Q = ¹⁷O or ¹⁸O. We can write a similar scheme for the reverse process:

CHAPTER

The purpose of the laboratory experiments is to simulate atmospheric conditions and verify that this scheme is correct.

2. To study the exchange rate of isotopically labelled CO₂ between the stratosphere and the troposphere. Using the Caltech-JPL two-dimensional model we can simulate the spatial and temporal variation COQ in the troposphere. This should serve to establish our baseline tropospheric model, and quantify the sinks of COQ. The knowledge gained from the successful modeling of the COQ cycle can be used to refine that of CO₂ since the biogeochemistry of COQ and CO₂ is nearly identical.

Product: The laboratory investigation will lead to a fundamental understanding of isotopic exchange for oxygen between O₂ and CO₂. The modeling results can set constraints on the rates of exchange between atmospheric CO₂ and the biosphere and the oceans.

Approach: The experimental set up consists of a light source (Hg lamp, laser or sunlight), samples of O₂ and CO₂ of known isotopic composition, and a mass spectrometer. Of particular interest is that the experiment always measures ¹⁶O, ¹⁷O and ¹⁸O simultaneously. This three-isotope study will allow distinction between mass-dependent and mass-independent fractionation. The modeling work is based on the Caltech/JPL two dimensional model of the terrestrial atmosphere. The model has been tested by simulating the distribution of atmospheric tracers. Their dynamics has been computed self-consistently. Once the stratospheric source of COQ is specified, the model predicts the rate that this COQ is transported into the troposphere, and ultimately to the planetary surface.

Results: During the past funded year a series of experiments were performed to quantitatively determine the oxygen isotopic systematics associated with the exchange of O(¹D) and CO₂. The results have been submitted as a publication to the Journal of Geophysical Research (Wen and Thiemens, 1992). The results show that the exchange of oxygen atoms with CO₂ clearly requires that the atom be electronically excited O(¹D). It was shown that O(³P), prepared by photolysis of O₃ is incapable of undergoing isotopic exchange with CO₂. The oxygen atoms were created via ozone photolysis at several energies to determine the role of energy upon the isotopic exchange process (185, 254, 532 nm and also sunlight photolysis). The rate at which isotopic steady-state was determined from time-evolutionary laboratory studies. These results are particularly important for modeling the increasing data set and apparently complex CO₂ isotopic data from the stratosphere. Electronically excited atomic oxygen, was shown to be the species which exchanges with CO₂. The exchange, at steady state, produces a mass independent isotopic fractionation, with equal ¹⁷O, ¹⁸O depletion in the atomic oxygen. The value of the quasi-reduced partition function at steady state is -40°/∞ for both δ¹⁷O and δ¹⁸O. This represents the first determination of the position of isotopic exchange equilibrium between electronically excited and ground state species. The studies have further demonstrated the role of the CO₃* activated complex in the electronic quenching process.

In a series of experiments utilizing ozone (and consequently O(¹D) atoms resulting from its photolysis) of variable isotopic composition it was demonstrated that the position of isotopic

equilibrium attained at steady state is independent of the composition of the O(¹D). This is particularly important for future interpretations of stratospheric CO₂ and O₃ oxygen isotopic measurements. In order to fully understand the extent of interaction between stratospheric CO₂ and O₃ it is imperative that this dependency be precisely resolved. If, as may be the case, the dependence upon energy, rate and isotopic composition be known. During the past year the Thiemens group has analyzed a number of stratospheric CO₂ samples for δ¹⁷O and δ¹⁸O which have further demonstrated the link between O₃ and CO₂. There are many puzzling variations observed and future laboratory experiments and sample analysis will address these observations. Of particular interest is the question as to whether steady-state is actually attained and what the source of the isotopic variations (temporal and altitudinal) are.

An attempt was made by Yung and DeMore to explain the ¹⁸O enrichment in O₃. A careful examination of the laboratory experiments to date suggests that the only well-documented mechanism for heavy O₃ enrichment is the O₂-O bond-forming step. However, the Chapman reaction is the only known reaction for producing atmospheric O₃. After considerable search, we propose that there may be a hitherto unknown exchange reaction between O₂* and O₃, which can result in the formation of a new O₃ bond, and hence the possibility of heavy O₃ enrichment. This idea is being tested in a quantitative model of the stratosphere.

Publications

J. Wen and M. H. Thiemens, Multi-isotope study of the O(¹D) + ¹O₂ exchange and stratospheric consequences, 1992, submitted to *J. Geophys. Res.*

J. Wen, Kinetic study of non-mass-dependent oxygen isotope effects in gas phase reactions and applications for Nature, Ph.D. Thesis, Dept. Chem. 1992, U.C. San Diego.

Y. L. Yung and W. B. DeMore, Isotopically labelled species in atmospheric chemistry, 1992, manuscript in preparation.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

The image consists of three distinct rows of abstract geometric shapes. The top row features four vertical rectangles of varying widths, with the second and fourth being white and the first and third being black. The middle row contains a long, thin horizontal black rectangle on the left and a thick, diagonal black shape extending from its right side towards the bottom right corner. The bottom row is a large, solid black U-shaped area, with a white, rounded rectangular shape centered within its opening.

DATE
TIME
NUMBER

