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AN EVALUATION OF NEURAL NETWORKS FOR IDENTIFICATION
OF SYSTEM PARAMETERS IN REACTOR NOISE SIGNALS

L. F. Miller
The University of Tennessee
Knoxville, Tennessee L

ABSTRACT

Several backpropagation neural networks for identifying
fundamental mode eigenvalues were evaluated. The
networks were trained and tested on analytical data and
on results from other numerical methods. They were then
used to predict first mode break frequencies for noise

data from several sources. These predictions were, in
turn, compared with analytical values and with results
from alternative methods. Comparisons of results for

some data sets suggest that the accuracy of predictions
from neural networks are essentially equivalent to
results from conventional methods while other evaluations
indicate that either method may be superior. Experience
gained from these numerical experiments provide insight
for improving the performance of neural networks relative
to other methods for identifying parameters associated
with experimental data. Neural networks may also be used
in support of conventional algorithms by providing
starting points for nonlinear minimization algorithms.

INTRODUCTION

Mathematical models of systems and instrumentation are often used
in conjunction with numerical algorithms to identify parameters
that obtain optimal fits of models to data. These methods are
essential since they provide pertinent information on reactor
systems and instrumentation. Occasionally, however, they fail to
produce physically realistic information when the data contain
information that is not included in the model of interest.

Neural networks are recognized to be robust, and they can
approximate any continuous function to any specified accuracy‘?,
Thus, parameter identification with neural networks is feasible
since functions of interest that map data to parameters are
continuous. However, the practical realization of a network that
identifies parameters of mathematical models requires that it
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utilize an optimal number of appropriate linearly independent basis
functions and that the training data contain parametric information
over the domain of interest.

Data analyzed for results reported herein were preprocessed to
obtain inputs for several single-output backpropagation neural
networks with nine, nineteen or thirty-two inputs and three, five
or ten hidden layer nodes. These networks were trained and tested
on analytical functions and on noise data with outputs established
by alternative methods. They were then used to predict first-mode
eigenvalues which were, in turn, compared with those obtained from
a nonlinear minimization algorithm.

A substantial number of data sets have been processed with several
neural networks that utilized a variety of methods for representing

the input. A relatively small portion of these results are
presented in this paper, but the ones reported are typical of those
associated with this study. All results from neural networks

listed in this paper were trained on analytical functions.
However, better agreement between results from neural networks and
other methods can be obtained if the networks are trained with
results from the methods used for the comparisons.

RESULTS

Evaluations of the feasibility for using neural networks for
predicting first-mode break frequencies are presented for the
following: 1) laboratory data from a Rosemount pressure
transmitter, 2) a neutron power range signal, 3) reactor coolant

temperature, and 4) subcritical noise data on commercial reactor
fuel.

Laboratory Data

Power spectral density data for a typical Rosemount pressure
transmitter were obtained from a pressure loop at the University of
Tennessee. These data, along with analytical fits, are illustrated
in Figures 1 and 2. Break frequencies listed in Figure 1 were
obtained by optimizing a visual fit to the data. The first mode
break frequency shown in Figure 2 is identified by a nonlinear
minimization algorithm, and the higher modes are from the visual
fit. Note that there is little difference in the quality of the
fits. A neural network with nine inputs and five hidden layer
nodes obtained a first mode break frequency of 4.4 Hz, compared to
the 4.0 Hz for the visual fit and 4.8 Hz by the nonlinear
minimization algorithm. This fairly pleasing agreement is credited
to the relatively good quality of the data.
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Figure 1. Power spectral density and visual fit for a
Rosemount pressure transmitter.
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Figure 2. Power spectral density and nonlinear fit for a

Rosemount pressure transmitter.
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Sequoyah Plant Data

The data shown in Figures 3 through 6 are from the Sequoyah Nuclear
Power plant and were obtained from Oak Ridge National Laboratory.
Figures 3 and 4 illustrate the data from a power range instrument
and Figures 5 and 6 show data from a resistance temperature
detector on the steam generator inlet of loop 4. Fits based on
visual optimization are shown in Figures 3 and 5, whereas results
from a nonlinear minimization algorithm are shown in Figures 4 and
6. It is evident that these data do not directly correspond to the
shape of a first or second order analytical function for power
spectral density. However, they do provide an opportunity to
evaluate the robustness of alternative parameter identification
methods.

Three networks were evaluated with this data, and all were trained
on the first mode break frequency with the inputs determined from
analytical functions. One used nine inputs with five hidden layer
nodes, another used nineteen inputs with five hidden layer nodes,
and the third used nineteen inputs with three hidden layer nodes.
These respective networks obtained 0.44, 0.05 and 0.1 Hz for the
power range data, and they obtained 0.51, 0.001 and 0.005 Hz for
the temperature data. The first and second mode results from the
nonlinear minimization algorithm were (0.187,0.188), and
(0.039,0.438). None of these results are accurate, but they
illustrate difficulties encountered when trying to fit models to
data that contain information that is inconsistent with the model
used for the fit.

Subcritical Noise Data

A group of twenty-six data sets from measurements on subcritical
assemblies were analyzed with several neural networks and with a
nonlinear minimiza%ion algorithm. A comparison of these results
for two neural networks is shown in Table 1. About one-half of
these data sets are of relatively poor quality, and both the neural
network and the nonlinear minimization fail to produce accurate
results in several cases. Data set number seven is of very poor
quality, and both methods failed. In addition, the nonlinear
minimization algorithm erroneously identified low-frequency modes
in data sets twenty-one through twenty-seven whereas the neural
network identified them accurately.

Results from a network with nine inputs, five hidden layer nodes
and one output performed very well on several data sets, but it did
not generalize as well as networks with more inputs and fewer
hidden layer nodes. Analyses of neural network results from data
evaluated for this paper, and other data, indicate that one should
keep the number of hidden layer nodes to a minimum for parameter
identification. However, there should be no fewer nodes than the

number of linearly independent functions known to exist in the
data.
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Figure 5. Power spectral density and visual fit for a
Sequoyah hot leg temperature.
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Figure 6. Power spectral density and nonlinear fit for a
Sequoyah hot leg temperature.
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Table 1. Break frequencies (BF) obtained from neural networks
and from nonlinear minimization. Superscripts (a and
b) denote networks with 19x5x1 and 19x3x1 input, hidden
and output nodes. BF-1 and BF-2 designate first and
second mode break frequencies.

Neural Network Nonlinear Minimization
File BF-1° BF-1° BF-1 BF-2
1 44 .74 46.24 47 .31 521.43
2 40.02 44.58 50.57 651.17
3 39.52 41.74 46.89 521.43
4 25.36 29.72 46.48 622.87
5 43.86 46.65 71.52 88.14
6 42.65 47.93 78.87 82.46
7 385.10 328.62 34.66 183.50
8 45.27 49.96 73.46 83.93
9 35.64 40.08 ' 58.82 1031.69
10 49.30 54.55 62.04 1213.10
11 49.22 51.40 60.14 1109.93
12 55.61 60.45 72.81 1386.11
13 73.38 71.77 72.81 1386.11
14 59.25 59.72 71.21 1325.86
15 62.23 62.64 70.89 1325.86
16 68.95 68.54 71.52 1325.86
17 69.25 70.34 70.89 1325.86
18 64.04 64.76 70.58 1325.86
19 67.86 68.60 69.95 1268.22
20 69.78 68.82 70.26 1325.86
21 93.70 91.98 6.86 96.76
22 97.05 92.14 6.80 96.76
23 90.22 93.74 7.01 92.56
24 88.42 91.92 6.99 93.38
25 117.96 112.13 6.87 96.33
26 88.82 89.90 6.91 97.19
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CONCLUSIONS

It is concluded that neural networks may be, in some cases, more
robust for identifying parameters than conventional methods and
that equivalent accuracies can be obtained from neural networks and
from conventional methods. It may also be computationally
efficient to use neural networks to provide initial parameter
estimates for conventional parameter identification methods.

The number of hidden layer nodes should be minimized for parameter
identification applications, and it is expected that networks with
a variety of linearly independent transfer functions will be more
useful for parameter identification than those with only sigmoidal
functions.
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ABSTRACT

Application of neural networks to t
power plants is being investigated unde
of Energy sponsored program at University of
Tennessee.[1] Projects include the feasibility of using neural
networks for the following tasks: (a) diaghpsing specific
‘abnormal conditions, (b) detection of the change of mode of
operation, (c) signal validation, (d) monitoridg of check
vaives, (e) plant-wide monitoring using autoassociatjve neural
networks, (f) modeling of the plant thermodynaki
emulation of core reload calculations, (h) analysis of t
sequences in NRC’s "licensee event reports,” (i) anal
plant vibrations. Each of these projects and its status\ are
described briefly in this article. The objective of each\o
these projects is to enhance the safety and performance
nuclear plants through the use of neural networks.

INTRODUCTION

operation of nuclear
U.S. Department

Monitoring and decision making in the operation/of a
nuclear power plant involves the handling of great quaatities
of numeric, symbolic, and quantitative information by plant
personnel, even during routine operation. The large/number
of process parameters and systems interactioffs poses
-difficulties for the operators, particularly during/abnormal
" operation or emergencies. During such situations, Andividuals
are sometimes affected by stress and emotion that may have
varying degrees of influence on their performaace. Taking
some of the uncertainty out of their decisiony by providing
real-time diagnostics has the potential to Ancrease plant
availability, reliability and safety by avoiding/errors that lead
to trips or endanger the safety of the plant/ The emerging
technology of neural networks offery a method of
implementing real-time monitoring and/diagnostics in a
nuclear power plant.

NEURAL NETWQRKS

A network of artificial neurons (usually called a neural
network) is a data processing system Coasisting of a number
of simple, highly interconnected processing elements in an
architecture inspired by the structure of the -erebral cortex
portion of the brain. Hence, neural networks are often
capable of doing things which humans or animals do well but
which conventional computers often do poorly. Neural
networks exhibit characteristics and capabilities not provided
by any other technology.

_ Neural networks may be designed so as to classify an
input pattern as one of several predefined types (e.g., the
- various fault or transient states of a power plant) or to create,

/ - e e
‘as needgd, categories or classes of system states which can be
.interpréted by a human operator. Neural networks have the
ability to respond in real-time to the changing system state
'descriptions provided by continuous sensor inputs.  For
icomplex systems involving many sensors and possible fault
.types (such as nuclear power plants), real-time response is a
fficult challenge to both human operators and expert
ystems. However, once a neural network has been trained
/to recognize the various conditions or states of a complex
‘system, it only takes one cycle of the neural network to detect
a specific condition or state.

Neural networks have the ability to recognize patterns,
even when the information comprising these patterns is noisy,
sparse, or incomplete. Unlike most computer programs,
,neural network implementations in hardware are very fault
(tolerant; i.e., neural network systems can operate even when
several individual nodes in the network are damaged. The
reduction in system performance is about proportional to the
aqount of the network that is damaged. Thus, systems of
artifjcial neural networks show great promise for use in
envirbgments in which robust, fault tolerant pattern
i recognitiQn is necessary in a real-time mode, and in which the
“incoming tata may be distorted or noisy.

power plant is operating properly, the
readings of the hundreds, or even thousands, of instruments
jin a typical control room form a pattern (or unique set) of
‘readings that represent a "hormal” state of the plant. When
:a disturbance occurs, the Instrument readings undergo a
‘ transition to a different pattern Mat represents a different state
that may be normal or abnormalj\depending upon the nature
|of the disturbance. The fact that'the pattern of instrument
i readings undergo a transition to a new state that is different
! for every given condition is sufficient to provide a basis for
fidentifying the state of the plant at any given time. Such
! ication requires a rapid (real-time), efficient method of

identi
| "pattern recognition,” such as neural networks, to implement
: a diagnostic tool based on this phenomencn.

Steam Generator Transients. Identification of transients
in a U-tube steam generator (UTSG) has demonstrated the
ability of a neural network to diagnose specific abnormal

_conditions in a nuclear power plant.[2] Six transient
. conditions were introduced into the operating conditions of a
simuiated UTSG, and ten samples of each of the traces of
four variables were used as the 4C inputs to the neural
network. The output of the neural network was a three-bit
binary representation to identify each of the six transieats.
The hidden layer contained twe?ve artificial neurons.

i
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