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Introduction

In this quarter, we studied the effects of isotropic boundary vibrations
on unconfined granular materials that are compressed by gravity and dilated
by the agitation of horizontal, vibrating boundaries. Because the vibrations
are isotropic, the assemblies experience no mean motion. Consequently, the
resulting boundary value problem is simpler than the boundary value
problem that results when the vibrating surface is inclined. However, in both
cases, we confront difficulties associated the occurrence of a free surface, and
must implement recently derived boundary conditions for vibrating
boundaries. During the next quarter, we will extend this work to isotropically
vibrating inclines, and during the following quarter we will begin work on
anisotropically vibrating boundaries.

In what follows, we calculate the steady state solid fraction and
granular temperature profiles throughout assemblies of identical, smooth,
inelastic spheres that are unconfined from above and thermalized from
below by bumpy, horizontal surfaces that randomly vibrate about zero mean
velocity. The analysis is based upon a kinetic constitutive theory and
conditions that account for the effects of boundary vibrations on the
momentum and energy transferred to the spheres. In presenting the results,
we pay special attention to the thermalized states of fixed masses subjected to
varying boundary vibrations and varying masses subjected to fixed
vibrations. In the first study, we find that as the vibration of the boundary
intensifies, the assemblies of fixed mass become deeper, more dilute, and
more thermalized. In the second, we find that as the assemblies become more
massive, fixed boundary vibrations effectively thermalize decreasing fractions
of the total mass.

Bound Value Problem

We are concerned here with the steady states of dry granular assemblies
that are unconfined from above and thermalized from below by horizontal,
bumpy boundaries that vibrate isotropically with no mean velocity. The

assemblies consist of identical, smooth, inelastic spheres of diameter ¢, mass

density a, and coefficient of restitution e. Although the spheres are agitated
by the vibrating boundary, they experience no mean motion.
We establish an x,-x5-x3 Cartesian coordinate system such that the x5-

direction is perpendicular to, and the x;-x5 plane coincides with the flat part

of the bottom boundary. In this coordinate system, the material extends
infinitely without change in the X1- and x3-directions, and is constrained by

the gravitational acceleration g in the negative x,-direction. The top of the
assembly is located at the plane x,=L. Throughout the material, the mean



velocity vanishes, while the solid fraction v and measure w=(T/ og)1 /2 of the
granular temperature T vary with the dimensionless distance y=(L-x,)/c only.

In this simple agitated state, the shear stress vanishes throughout the
assembly, and the balance equations of mass and momentum in the x;- and

xz-directions are satisfied identically. If Pyj is the xy-x, component of the

pressure tensor and NEP?_Z/ aog is its dimensionless counterpart, then the Xo-
component of the balance of momentum is given by,

N'=v , ¢}

where a prime denotes differentiation with respect to y. Furthermore, if Q5 is
the xo-component of the energy flux, yis the rate of energy dissipation, and

q=Q,/ a(cg)3/ 2 and T'=y/ act/ 2g3/ 2 are their dimensionless counterparts, then
the balance of energy reduces to,

q-T=0 . @

According to equations (1) and (2), the normal pressure increases with depth
due to the weight of the material, while energy must be conducted to
compensate for the rate at which it is dissipated.

In order to complete the system of equations that determine the
variations of solid fraction and granular temperature, we employ the
constitutive theory derived by Jenkins and Richman [1985]. Under the
circumstances of interest here, the normal pressure is given by,

N = 4vGFw? @3)

where G is the product of v and the equilibrium radia! distribution function at
impact, and F=141/4G,; the energy flux is given by,

2MNw’

q= '\I;F

where M=1+9n(1+5/12G)?/32; and the rate of energy dissipation is given by,

’ (4)
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Here we take G=v/(1-v/ vm)SVm/ 2. This form of G is based on the radial

distribution function at impact proposed by Lun and Savage [1986], which has
the correct value (=1) and slope (=5/2) in the dilute limit, agrees well with

that proposed by Carnahan and Starling [1969] for all values of v up to .5, and
becomes unbounded as v approaches v, so that collisions between particles

may support high pressures at low granular temperatures. The results
presented in the next section are based on the random close packed value

v, =.65.
m
Finally, we employ constitutive relations (4) and (5) to eliminate q and
I" from equation (2). In this manner, the energy equation becomes,

r

w

w'  (-2H)N W (w’)Z _3(1-¢)
w

N w t M =0 (6)

where H is the function of solid fraction defined by,

-d[In(M/F)1/dv
dlin(vGPl/dv ’

2H (7)

that decreases monotonically from 1/2 to 0 as v increases from 0 to its
maximum value v, . Equations (1), (3), and (6) determine N, v, and w to
within three constants of integration.

At the top of the assembly, y is equal to 0, and both the normal pressure
and energy flux vanish; that is,

N@O) =0 and w(0)=0 . (8)

At the vibrating base, y is equal to f=L/0o, and the energy flux is determined by
the competition between the rate S per unit area at which energy is supplied
to the assembly by vibrations of the boundary and the corresponding rate D at
which it is absorbed from the flow due to dissipative collisions with the

boundary. If S=S/ a(cg)s/ 2 and D=D/ a(og)B/ 2 are the dimensionless transfer

rates corresponding to S and D, then the balance of energy at the vibrating
base requires that,



S-D=gq . ©)

A term corresponding to the slip work done at the boundary does not appear
in energy balance (9) because, in the simple thermalized state of interest here,
both the slip velocity and the shear stress vanish. For steady states to be
maintained, the rate S must exceed D to compensate exactly for the
dissipation from inelastic collisions throughout the entire assembly.
Expressions for the transfer rates S and D depend, in general, on the
geometry, and dissipative character of the boundary. Here we are concerned
with flat surfaces to which smooth hemispherical particles of diameter d are
randomly attached at an average distance s apart, constructed to prevent flow
particles from colliding with the flat surfaces. A convenient measure of the

bumpiness of the boundaries is the angle @ defined by the relation

sin®=(d+s)/(d+c). As 0 increases from 0 to n/2, the boundaries evolve from
perfectly flat to extremely bumpy. Collisions between boundary particles and
assembly particles are nearly elastic and the coefficient of restitution between

them is ey

The transfer rates also depend on the vibratory motion of the
boundary. Here we focus on randomly vibrating bases whose velocities are
governed by Gaussian distributions with root mean square fluctuation speeds

V that are fixed by the dimensionless measure v=V/ (Gg)l/ 2. At these
boundaries and in the thermalized states of concern here, the expressions for
S and D obtained by Richman [1992] reduce to:

S = (—i—)l/zwz(wz + v2)’1 / 2N(l-cos(-))cscze ; (10)

and

1/2
D= (-nz——) / 2(1-ew)(w2 + v2)1/ 2N(1-cose)csc29 . (11)

As expected, S vanishes when v=0, and D vanishes when e, =1.

Finally, we employ equations (10), (11), and (4) to eliminate S, D, and q
from energy balance (9), and obtain a second boundary condition on w and its
gradient:



- ‘\[EF(l-COSG)CSCZO [2V2 ) (1-ew)(W2fV2)] ’ . (12)

Mw \j w2+v2

in which all functions of y are evaluated at y=B. The first and second terms
on the right-hand-side of equation (12) are measures of the energy supplied to
the assembly by the fluctuations of the boundary and energy absorbed in
dissipative collisions with the boundary.

Equations (1), (3), and (6) determine N(y), v(y), and w(y) to within three
constants of integration. These constants and the dimensionless depth B are
determine by conditions (8) at y=0, condition (12) at y=B, and a fixed mass
hold-up m, calculated as the integral,

2|3

B
my= [vdy . (13)
0

In principle, the solution procedure is as follows. For fixed values of e, e,,,

and 0, we prescribe the mass hold-up m, and the fluctuation speed v of the
boundary, guess at the granular temperature w(0) at the top of the assembly,
and numerically integrate equations (1), (3), and (6) from y=0 (where both N

and w’ vanish) to the depth at which the mass hold-up assumes its prescribed

value. Condition (12), which may be written as a quadratic equation for v,

then determines the value of v that sustains that thermalized siate. Finally,
we iterate on the guess for w(0) until the value of v calculated in this manner
agrees with its prescribed value. The distance B is the depth of the assembly
in the final iteration.

In practice, the solution procedure is somewhat less straightforward. In
order for the normal pressure to vanish at y=0, the solid fraction must equal
zero there because the granular temperature does not. Consequently, not

only does w’ vanish at y=0, but, according to equations (1), (3), (6), so too do
N’,v’, and w". Integrations initiated from y=0 therefore yield no spatial
variations in N, v, and w. According to the theory, then, the exact solutions

for N, v, and w approach their values at y=0 asymptotically and infinitely far
from the vibrating base. In order to overcome this difficulty, we follow
Oyediran et. al. [1992], who relaxed very slightly the normal stress condition
(8) by allowing v(0) to assume a very small nonzero value. In this manner,
integrations may be initiated from y=0, and yield solid fraction and granular

temperature profiles that are insensitive to values of v(0) less than 1072,



Resul i ion
In all that follows, we set the coefficients of restitution e and e,,, equal

to .9 and the boundary parameter 6 equal to n/6, unless otherwise indicated.

This value of 0 includes the special case of equal particle diameters (6=d) and
no boundary particle spacing (s=0). In order to present the results compactly,
we introduce the normalized function of y,

1 B
I(y)sm—-t jvdy , (14)
y

which gives the fraction of the total mass m; below any location y, and varies

from 0 (when y=B) at the base to 1 (when y=0) at the top of the assembly.
In presenting our results, we first study the effects of vibrational speed
v on the thermalized states throughout assemblies of fixed mass hold-ups m,.

In Figure 1, for example, we show the variations of w(l) with v for I=0, .05, .1,
25, .5, .75, and 1 when mt=2.5, 5, 10, and 20. As expected, the granular

temperatures, which are induced entirely by basal vibrations, increase from
zero as v increases from zero. For any pair of v and m,, the temperature

decreases monotonically from the base (I=0) to the top of the assembly (I=1).
This is because energy must be conducted into the mass above any location y
to balance the collisional dissipation that occurs within that mass.
Furthermore, because the energy flux at the top of the assembly
vanishes, the energy flux at the boundary must balance the total dissipation
in the assembly. Consequently, the granular temperature typically varies far
more widely throughout the lower half of the mass than it does in the upper
half, and hardly varies at all through the upper quarter of the mass. These
observations become even more striking as the mass hold-up increases.
According to third and fourth panels of Figure 1, the measure w of granular
temperature is less than .01 in the upper portions of the assemblies for values
of v less than .81 when m=10 and for all values of v (between 0 and 5) when

m,=20. Under these circumstances, the energy supplied by the vibrating

boundary is, in effect, insufficient to thermalize the entire assembly. In fact,
for m=20 and all values of v shown in the fourth panel of Figure 1, the

measure w of thermalization is less than .01 throughout more than half the
total mass.

In Figure 2, we show the variations of w and v with dimensionless
distance Y=B-y from the base for v=.25,2, and 5 when mt=5. The solid dots on

the profiles indicate the heights at which I=.99. These profiles are typical. As
the fluctuation speed of the boundary increases, the assembly becomes deeper,



more dilute, and more thermalized. The granular temperature increases
monotonically from the top to the bottom of the assembly, whereas the solid
fraction increases from zero at the top to its maximum at an intermediate

location and then decreases to a smaller value at the base. In fact, N’ and w’
are positive everywhere; but according to constitutive relation (3), v’ is

positive only where N’/N is greater than 2w’/w.
Next, we study the effects of varying the mass hold-vp m; on the

thermalized states induced by boundaries whose vibrational speeds v are
fixed. In Figure 3, for example, we plot the variations of w(I) with m, for

I=0, .05, .1, .25, .5, .75, and 1 when v=.25, 2, and 5. As expected, for fixed values
of vibrational speed v and mass fraction I, the granular temperature typically
decreases as the total mass hold-up m, increases. Interestingly, this effect on

w(I) diminishes as I decreases, until at the base (I=0) the granular temperature
is virtually insensitive to mass hold-ups m; beyond about 2.5. Figure 3 also

demonstrates that as vibrational speed increases, so too does the mass that
can be effectively thermalized. As v varies from .25 to 2.5 to 5, for example,
the maximum value of m, for which w is everywhere greater than .01

increases from 8.20 to 11.10 to 11.95.
In Figure 4 we show the variations of w and v with Y=B-y for m;=2.5, 5,

10, and 20 when v=2. Again the solid dots indicate the locations at which
I1=.99. Although the effect of increasing the mass of the assembly from m=2.5

to 20 is to decrease the granular temperatures everywhere, the decrease is far
more pronounced near the top of the assembly than at the base. At the two
lower values (mt=2.5 and 5) of mass hold-up, the boundary vibrations are

sufficient to fully thermalize the assemblies and to disperse them at solid
fractions that are everywhere significantly less than the random close packed
value. However, at the two higher values (mt=10 and 20), the assemblies are,

in effect, only partially thermalized. These more massive assemblies consist
of an upper nearly passive region, in which the solid fraction is essentially
constant and nearly equal to its maximum value, supported by a more dilute
thermalized region that extends approximately 11 particle diameters above
the base.

Finally, in Figure 5, we study the effects of boundary bumpiness on the

induced thermalized states by plotting the profiles of w(Y) and v(Y) for 6=0,
/3, and /2 when v=2 and m,=5. The effects demonstrated here, as the

boundary evolves from perfectly flat (6=0) to extremely bumpy (6=%r/2), are

typical. As 0 increases from zero, so too does the energy imparted to the
assembly by the tangential components of the isotropic bounday vibrations.
For this reason, as the boundary becomes bumpier, the granular temperatures
increase and the solid fractions decrease throughout the assembly. However
these effects are moderated by the fact that the energy imparted to the




assembly by the normal component of the boundary vibrations actually
decreases as the boundary becomes bumpier and experiences fewer normal
and more oblique impacts with the assembly. Consequently, as the boundary
becomes bumpier it becomes only moderately more effective at transferring
energy to the assembly. The effect of varying @ on the resulting thermalized
states is therefore relatively minor.
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Fi Capti

Figure 1: The variations of w(I) with v for m=2.5 (first panel), 5 (second
panel), 10 (third panel), and 20 (fourth panel), when 1=0, .05, .1, .25,
.5,.75,and 1, 0=n/3, and e=ey,=.9.

Figure 2: The variations of w and v with Y=B-y for v=.25,2, and 5 when
m;=5, 0=n/3, and e=e  =.9.

Figure 3: The variations of w(I) with m, for v=.25 (first panel), 2 (second
panel), and 5 (third panel), when I=0, .05, .1, .25, .5, .75, and 1,
8=n/3, and e=e , =9.

Figure 4: The variations of w and v with Y=B-y for mt=2.5, 5, 10, and 20,
when v=2, =n/3, and e=e,,=9.

Figure 5: The variations of w and v with Y=B-y for 6=0, n/3, and =n/2,
when ©=2, m;=5, ane e=e , =.9.
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