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A PROCEDURE FOR ASSESSING UNCERTAINTY IN MODELS

Michael D. McKay and Richard J. Beckman

Statistics Group, MS F600
Los Alamos National Laboratory
Los Alamos, NM 87545

INTRODUCTION

This paper discusses uncertainty in the output calculation of a model due to uncer-
tainty in inputs values. Uncertainty in input values, characterized by suitable probability
distributions, propagates through the model to a probability distribution of an output. Our
objective in studying uncertainty is to identify a subset of inputs as being important in the
sense that fixing them greatly reduces the uncertainty, or variability, in the output.

The procedures we propose are demonstrated with an application of the model called
MELCOR Accident Consequence Code System (MACCS), described in Helton et al.
(1992). The purpose of MACCS is to simulate the impact of severe accidents at nuclear

power plants on the surrounding environment. In any particular application of MACCS
there are likely to be many possible inputs and outputs of interest. In this paper, attention
focuses on a single output and 36 inputs. Our objective is to determine a subset of the 36
model inputs that can be said to be dominant, or important, in the sense that they are the

principal contributors to uncertainty in the output.

OUTPUT, INPUTS AND PROBABILITY DISTRIBUTIONS

MACCS is used to calculate consequences of a reactor accident at a nuclear power sta-
tion whose characteristics and those of the surrounding environment are defined by inputs.
The output selected for examination is Early Fatalities, meaning the number of fatalities
within one year of the accident. MACCS is composed of submodels for source term,
plume rise, atmospheric transport, dry deposition, wet deposition, evacuation, food chain
transport, and dosimetry and health effects. For each of the inputs, analysts determined

plausible ranges of uncertainty for the inputs from the literature, experimental results and
submodel considerations. Because of the preliminary nature of this particular analysis,
uniform and loguniform probability distributions defined on input ranges were used. For
subsets of inputs that could not be treated reasonably as stochastically independent, joint



probability distributions or correlation coefficients were determined. For many more details
on this part of the analysis process see Helton et al. (1992).

In a discussion, it is easy to gloss over the initial step of deciding upon probability
distributions for inputs. Nevertheless, this step constitutes the basis for all inference
regarding uncertainty. The probability distribution of the output and the identification
of important input subsets depend directly on the probability distribution (form and range)
of inputs. A very reasonable last stage of uncertainty analysis would be investigation of
sensitivity of results to assumed distributions for inputs.

SOME DETAILS

The output of interest is Early Fatalities. In more precise terms, the quantity that
MACCS computes is the complementary cumulative distribution function (CCDF) of Early
Fatalities induced by treating weather conditions at the time of the accident as a random
phenomenon. Tables of weather parameters (one year of hourly readings of wind speed,
wind direction, atmospheric stability, and precipitation) are sampled repeatedly during the
MACCS run to produce, in effect, a Monte Carlo estimate of the CCDF as a function of
time. We denote this output CCDF by Y(t). Then, we have

X -- Input vector of length 36,

Z = Weather conditions,

Y (t) = Output CCDF of Early Fatalities (E F),
__ -- I_/;- Pr{ EF > _} for t C 7' a range for ,_,,

= M (X, Z), the model MACCS, (1)

fx (x) = probability distribution of X,

.f_(.7t) = probability distribution of Y(t) at

a specific but arbitrary value of t.

Strictly speaking, for each set {tl,/.2,'",/,,,}, the set {Y(tl),Y(t2),"',Y(tm)} has a
joint distribution. However, it is sufficient for our purposes to examine the distributions of

Y(I) for each t separately. In the notation we suppress the dependence of .fu on t.
We follow an ad hoc screening procedure that resembles what one might do when

selecting a subset of independent variables in a step-up regression analysis. Namely, we
iteratively run MACCS at a sample of input values and examine input and output values
to select one or more "important" inputs. Those inputs designated as important are fixed
at nominal values and the steps are repeated until variability in the output falls below a
threshold. Finally, we examine the cumulative effect of the set of important inputs over the
entire range of input values, not just at nominal values. We now discuss the two elements

of the sequential procedure, the input sampling procedure and the indication of importance.

INPUT SAMPLING

The input sampling method is a variation of Latin hypercube sampling (McKay,
Conover and Beckman, 1979) with independent replications. In an LHS of size k, the
range of each input is divided into k intervals of equal probability content. One value

is selected from each interval according to the input's conditional probability distribution.
Values across inputs are matched at random and without replacement to form k input
vectors. In the variation, the probability midpoint of each interval, rather than a sampled
value, is used. As a result, an independently replicated sample uses the same values for
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each input but matches them with different values across inputs. If we denote the number
of replicated samples by v, then the total sample size is n = r x/,'. The reason this type
of design was chosen is to accommodate estimation of the importance indicator described
in the next section.

For the MACCS study we chose arbitrarily ,r = 10 and k = 50 giving n = 500 runs.
It is very likely that we would have obtained similar results with r = 5, and, even, k = 25.

Sample size requirements were not investigated. The first column of Fig. 1 shows Y(t)
i

for the 50 runs constituting the first LHS replicate within the 500 runs. The variability i
(uncertainty) in the output as the 36 inputs vary across the input space is apparent. The 81
values of t in this study have been arbitrarily labeled i, 2, and so forth.

IMPORTANCE

Interest lies in importance of inputs relative to uncertainty in the output. Assuming a
suitable definition of importance is found, one could try to determine the importance of
each input separately, or try to identify most important subsets of inputs of size 2, 3 and
so forth. For this study, we look at the simple case of trying to find a subset of the 36
inputs which accounts for essentially all of the variability in Y.

Suppose we have a partition of inputs into two sets, X = ,_%U ,5z. Upper case S,.
means a subset of p inputs and lower case sx means the numerical values of the p inputs.

S. = -¥i,,)_i_ ,. ,.

= a subset of p inputs.

: {,,,, :':,,,,} (2)
= numerical values of the 1_inputs.

If ,5', effectively identifies important inputs, then the family of conditional distributions .l_l._::
indexed on the numerical values of the inputs in the subset .%.will be widely dissimilar.
(See, for example, the right side of Fig. 2.) On the other hand, if ,5', contains only

unimportant inputs, the family of conditional distributions ./'vl._,will be similar among
themselves and to the marginal distribution of the output, ./':v. (See, for example, the left
side of Fig. 2.) One motivation for this approach comes from the following consideration.
If Y depends only on S,, then it is stochastically independent of all the other inputs, ,q','i.In

that case, _._,q'cwould be clearly a set of "unimportant" inputs and f,;. = f:d4 for all numerical
values of the inputs in ,5'_:.Realistically, though, importance is not an either-or attribute.

The importance of S_, is related to degree of dependence, in the probabilistic sense,

between Y and the subset of inputs Sx. Although there is no universally accepted, unique
measure of dependence, one can begin by comparing the distribution ./'_ to the family of
conditional distributions fyl._ through the popular variance formula (Parzen, 1962)

V[Y] = V[E(YI ,.q'_)]+ I_'[V(YI,%)]._ . (3)

The term on the left side of Eq. 3 is a property of J':_.The inner expectations of the terms

on the right side are properties of .f.vlsx.They represent the mean (£') and variance (I,_)of
the conditional distribution fyl.,,' Finally, the outer expectations (Vand I'/) are with respect
to the probability distribution ,fs_ of ,5',.
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SCREENING

Eq. 3 can be used to form the basis of a screening process where inputs m'e identified,
individually, as potentially important. McKay et al. (1992) used the quantity

V[L;:(Y IXJ)] (4)Aj: v[Y]

as an importance indicator for input number j. An equivalent indicator

: /v[Yi-E[v(vI (5)
was used by Hora and Iman (1986) and Iman and Hora (1990).

Because of the sampling design used, Aj can be estimated in a straight forward manner.
Each input Xj is represented in the sample by k distinct values repeated r times. For each
input Xj, we can label the n output values by Pat with s = 1,2,...,k corresponding to
the k distinct values of Xj, and v = 1,2,..., 7' corresponding to the r times each value is
repeated. Now, we write the common analysis of variance sum of squares partition

k r k k r

S=I U=I a'-'l s=l u=l (6)

SST = SSB + SSW

where
1 r i k

7;,:-y:,,,.,..
u=l s=i

In the usual manner, V[Y] is estimated by the sum of squares total (SST) divided by
7. x k - 1, and V[E(Y IXj)] is estimated by the sum of squares between (SSB) divided
by k - 1. Thus, we see that the usual

132 = SSB / SST. (8)

is proportional to a ratio of estimators of the two components of variance. That is, the
importance indicator can be estimated by

k- 1 ' (9)

Eq. 9 shows that one can use R2 from sample data as an indicator of importance in place of
Aj. The probability distribution of R_ depends on the true distribution of Y. However, if Y

is approximately normally distributed and independent of Xj, then R2 has, approximately, a
beta distribution that depends on r and k. Thus, percentage points from the beta distribution

might be used for guidance in evaluating the observed size of R_. An interpretation of
R.:_ as a measure of degree of stoc?msfic dependence needs to be researched. For now,

we point out the obvious: if Y depends exclusively of X j, then R2 attains its maximum
value of 1. Also, R :_can be used as an indicator for importance for both individual inputs
and subsets of inputs.

We calculate R'2 with both original and rank transformed output values. The rank
transformation seems to have advantages for screening when some of the output values
appear as outliers.
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A SEQUENTIAL PROCEDURE

From many possibilities, we present here a simple, sequential procedure fox"building
,q'xwhich can be used to display the effect of inputs progressively. In a sequence of steps,
the output is computed for a sample of input values where the number of inputs fixed
becomes progressively larger. For the first step, no inputs are fixed, all 36 inputs vary, to
produce representative output traces Y(/.) and l_e(t.) for each input in the first column of
Fig. 1. For the second column of Fig. 1, 9 of the inputs are fixed at their nominal values
and the remaining 27 assume the same sample values as in step 1. The spread in output

values is noticeably reduced by fixing those 9 inputs. For the final column of Fig. 1, 16
of the 36 inputs are held fixed at their nominal values. At each step, additional inputs to
fix are selected according to values of 1__,

Figure I. Representative Y(t) and It_(l) for three steps

VALIDATION

Figure 1 indicates that fixing the 16 inputs in S:. at their nominal values greatly reduces
variability in the output. To understand more fully the effects of the inputs in .% and of

the 20 unimportant inputs in ,5'_, we display two sets of px'obability distributions in Fig. 2
fox'Y(t : 1), It is important to note the difference in vertical scales in the figure. The left

side gives 50 conditional density functions .f:/I.<,where the unimportant inputs take on 50
representative, fixed values. The similarity among these densities indicates how little the
unimportant subset affects the distribution of )'(/- I). On the right side of Fig. 2, the



large dissimilarity among the conditional density functions ./ul._:'which correspond to 50
representative values of the important inputs, indicates the effects of the important subset.

!+ +
0,0 0.2 0,4 0.6 0.8 1.0 0.0 0,2 0.4 0,6 0.8 1.0

Y(t = I) Y(t = I)

Figure 2. 50 representativeconditionaldensityfunctionswhenunimportantinputs are fixed,on the
left, and when important inputsare fixed,on the right,

SUMMARY

A subset of 16 of the 36 inputs that accounts for essentially all of the variability in
the output was identified via a sequential procedure that sampled with replicated, modified
LHS and screened with the scaled variance-ratio importance indicator /_2. Conditional
distributions were examined to validate the important inputs selected.
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