

DISTRIBUTION SHEET

To PFP	From Structural Assessments	Page 1 of 1				
		Date 9-23-94				
Project Title/Work Order		EDT No.				
Structural Evaluation of the 2736Z Building Seismic Loads		ECN No. 615157				
Name	MSIN	Text With All Attach.	Text Only	Attach./ Appendix Only	EDT/ECN Only	
T. J. Conrads	H5-55	x				
P. L. Davis	H5-55	x				
R. A. Giller	H5-55	x				
L. W. Bartholf	H5-53	x				
E. O. Weiner	H5-55	x				
R. M. Suyama	H5-60	x				
R. W. Szempruch	T4-18	x				
E. V. Weiss	T3-01	x				
C. L. Volkman	T4-19	x				

OST1(2) L8-07 X

COMPLETE

H

ENGINEERING CHANGE NOTICE

Page 1 of 21. ECN 615157
Proj. ECN

2. ECN Category (mark one) Supplemental Direct Revision Change ECN Temporary Standby Supersedure Cancel/Void	3. Originator's Name, Organization, MSIN, and Telephone No. R. A. Giller, Structural Assessments, H5-55, 376-2662 <u>8D440</u>			4. Date 9-23-94
	5. Project Title/No./Work Order No. <u>2736Z Analysis/E23205</u>		6. Bldg./Sys./Fac. No. <u>2736Z</u>	7. Approval Designator <u>QS</u>
	8. Document Numbers Changed by this ECN (includes sheet no. and rev.) <u>WHC-SD-CP-SA-023 Rev. 0</u>		9. Related ECN No(s). <u>NA</u>	10. Related PO No. <u>NA</u>
	11a. Modification Work [] Yes (fill out Blk. 11b) [X] No (NA Blks. 11b, 11c, 11d)	11b. Work Package No.	11c. Modification Work Complete	11d. Restored to Original Condition (Temp. or Standby ECN only)

12. Description of Change

Add Appendix B, C, & D to Table of Contents

Revise Facility Use Category, Safety Class wording, page 1 of the report.

Add reference to equipment analysis report, page 7 of the report.

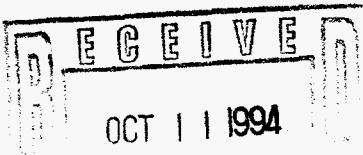
Add reference to appendix B on pages 2 and 10 of the report.

Revise wall calculations in Appendix A, pages A4-1, A4-7, A4-9, A4-11.

Add finite elements analysis calculations, Appendix B

Add column base shear discussion and position statements, Appendix C & D.

13a. Justification (mark one) As-Found	Criteria Change []	Design Improvement []	Environmental []	
	[X] Facilitate Const.	[]	Const. Error/Omission []	Design Error/Omission []


13b. Justification Details

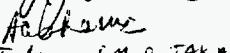
Additional calculations were performed in response to review comments.

Design verification method used was independant review by E.O. Weiner

14. Distribution (include name, MSIN, and no. of copies)

See distribution page.

RELEASE STAMP


OFFICIAL RELEASE BY WHC DATE OCT 27 1994

21

Sta. 21

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

ENGINEERING CHANGE NOTICE				Page 2 of 2	1. ECN (use no. from pg. 1) 615157
15. Design Verification Required [X] Yes [] No	16. Cost Impact ENGINEERING Additional Savings [] \$		CONSTRUCTION Additional Savings [] \$	17. Schedule Impact (days) Improvement [] Delay []	
18. Change Impact Review: Indicate the related documents (other than the engineering documents identified on Side 1) that will be affected by the change described in Block 12. Enter the affected document number in Block 19.					
SDD/DD	[] Seismic/Stress Analysis		[X]	Tank Calibration Manual []	
Functional Design Criteria	[] Stress/Design Report		[]	Health Physics Procedure []	
Operating Specification	[] Interface Control Drawing		[]	Spares Multiple Unit Listing []	
Criticality Specification	[] Calibration Procedure		[]	Test Procedures/Specification []	
Conceptual Design Report	[] Installation Procedure		[]	Component Index []	
Equipment Spec.	[] Maintenance Procedure		[]	ASME Coded Item []	
Const. Spec.	[] Engineering Procedure		[]	Human Factor Consideration []	
Procurement Spec.	[] Operating Instruction		[]	Computer Software []	
Vendor Information	[] Operating Procedure		[]	Electric Circuit Schedule []	
OM Manual	[] Operational Safety Requirement		[]	ICRS Procedure []	
FSAR/SAR	[] IEFD Drawing		[]	Process Control Manual/Plan []	
Safety Equipment List	[] Cell Arrangement Drawing		[]	Process Flow Chart []	
Radiation Work Permit	[] Essential Material Specification		[]	Purchase Requisition []	
Environmental Impact Statement	[] Fac. Proc. Samp. Schedule		[]	Tickler File []	
Environmental Report	[] Inspection Plan		[]	[]	
Environmental Permit	[] Inventory Adjustment Request		[]	[]	
19. Other Affected Documents: (NOTE: Documents listed below will not be revised by this ECN.) Signatures below indicate that the signing organization has been notified of other affected documents listed below.					
Document Number/Revision	Document Number/Revision		Document Number Revision		
20. Approvals					
<u>OPERATIONS AND ENGINEERING</u>	Signature	Date	<u>ARCHITECT-ENGINEER</u>	Signature	Date
Cog. Eng. R.A. Giller		10-5-94	PE		
Cog. Mgr. T.J. Conrads		10-5-94	QA		
QA Ak SHARMA		10/15/94	Safety		
Safety M. O. on Taken (M. O. TAKN)		10/18/94	Design		
Environ.			Environ.		
Other			Other		
Independent Reviewer		10-10-94			
<u>DEPARTMENT OF ENERGY</u>					
Signature or a Control Number that tracks the Approval Signature					
<u>ADDITIONAL</u>					

RELEASE AUTHORIZATION

Document Number: WHC-SD-CP-SA-023, Rev.1

Document Title: Structural Evaluation of the 2736Z Building for Seismic Loads

Release Date: October 26, 1994

This document was reviewed following the procedures described in WHC-CM-3-4 and is:

APPROVED FOR PUBLIC RELEASE

WHC Information Release Administration Specialist:

Angela Laugher for —
M.N. Boston

10/26/94

TRADEMARK DISCLAIMER. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

This report has been reproduced from the best available copy. Available in paper copy and microfiche. Printed in the United States of America. Available to the U.S. Department of Energy and its contractors from:

U.S. Department of Energy
Office of Scientific and Technical Information (OSTI)
P.O. Box 62
Oak Ridge, TN 37831
Telephone: (615) 576-8401

Available to the public from: U.S. Department of Commerce
National Technical Information Service (NTIS)
5285 Port Royal Road
Springfield, VA 22161
Telephone: (703) 487-4650

SUPPORTING DOCUMENT		1. Total Pages 181	
2. Title Structural Evaluation of the 2736Z Building for Seismic Loads	3. Number WHC-SD-CP-SA-023	4. Rev No. 1	
5. Key Words Seismic/Structural Analysis/2736Z	6. Author Name: R. A. Giller <i>R.A. Giller</i> 9-23-94 Signature	80440 Organization/Charge Code 23430/E23205	
7. Abstract The 2736Z building structure is evaluated for high-hazard loads. The 2736Z building is analyzed herein for normal and seismic loads and is found to successfully meet the guidelines of UCRL-15910 along with the related codes requirements.	8. PURPOSE AND USE OF DOCUMENT - This document was prepared for use within the U.S. Department of Energy and its contractors. It is to be used only to perform, direct, or integrate work under U.S. Department of Energy contracts. This document is not approved for public release until reviewed. PATENT STATUS - This document copy, since it is transmitted in advance of patent clearance, is made available in confidence solely for use in performance of work under contracts with the U.S. Department of Energy. This document is not to be published nor its contents otherwise disseminated or used for purposes other than specified above before patent approval for such release or use has been secured, upon request, from the Patent Counsel, U.S. Department of Energy Field Office, Richland, WA. DISCLAIMER - This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.		
9. Impact Level SQ	10. RELEASE STAMP		
<div style="text-align: center;"> <div style="border: 1px solid black; padding: 5px; display: inline-block;"> OFFICIAL RELEASE BY WHC DATE OCT 27 1994 <i>Sta - 21</i> </div> </div>			

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

STRUCTURAL EVALUATION
OF THE 2736Z BUILDING
FOR SEISMIC LOADS

Prepared by: R. A. Giller Date: 9-22-94
R. A. Giller, Senior Engineer
Structural Margin Assessments

Checked by: E. O. Weiner Date: 9-29-94
E. O. Weiner, Fellow Engineer
Structural Margin Assessments

Approved by: J. R. Wagnleitner for TJC Date: 9-29-94
T. J. Conrads, Manager
Structural Margin Assessments

WESTINGHOUSE HANFORD COMPANY
Hanford Operations and Engineering Contractor
for the U.S. Department of Energy
Richland, Washington

TABLE OF CONTENTS

- 1.0 INTRODUCTION**
- 2.0 SUMMARY**
- 3.0 STRUCTURE DESCRIPTION**
- 4.0 ANALYSIS**
 - 4.1 Codes and Standards
 - 4.2 Design Assumptions
 - 4.3 Construction Materials and In Situ Properties
 - 4.4 Analysis Methods
 - 4.5 Equivalent Static Analysis Justification
 - 4.6 Structural Component Evaluation
- 5.0 REFERENCES**

APPENDIX A

- A1.0 Load Calculation
- A2.0 Lateral Load Resistance
- A3.0 Roof Evaluation
- A4.0 Wall Panel Evaluation
- A5.0 Column Evaluation
- A6.0 Foundation Wall Evaluation
- A7.0 Footing Evaluation
- A8.0 Deflection Calculation

APPENDIX B

- Additional Calculations

APPENDIX C

- U.S. Department of Energy, Column Shear Position Statement

APPENDIX D

- Westinghouse Hanford Company, Column Shear Position Statement

1.0 INTRODUCTION

Existing structural design documents for the 2736Z Building state that the structure is adequate to resist specified earthquake loads. However, the analyses and calculations to support these statements are not retrievable. The purpose of this document is to provide the structural analysis documentation supporting the structural qualification of the 2736Z Facility to current site design criteria.

The 2736Z Building is described by Z Plant facility management as a Safety Class 3 structure that houses Safety Class 1 equipment. The "Class 3 over 1" function requires that the building be evaluated to Safety Class 1 seismic loads.

Design criteria originate from DOE Order 6430.1A, which directs the use of current design criteria, specifically, the guidelines for natural phenomena hazards evaluation found in UCRL-15910 (June 1990) and site-specific design criteria. The site-specific design criteria for the Hanford Site as approved by DOE-RL are found in SDC-4.1, Rev. 12 (DOE-RL 1993).

The structural evaluation plan, was to utilize simple conservative methods and proceed to more rigorous methods as needed. The natural phenomena seismic, wind, and ashfall loads appropriate for Safety Class 1 structures were used. For the seismic analysis simple equivalent static analysis methods were employed first, and then dynamic analysis methods could be used as needed.

2.0 SUMMARY

The 2736Z Facility consists of three main structures: 2736Z Building, 2736ZA Building, and 2736ZB Building. All of these structures are made of reinforced concrete roof slabs, walls, floors and foundations. These buildings are supported on spread footings close to the surface of the ground but below frost level.

The current design and evaluation criteria for facilities at the Hanford Site appear in UCRL-15910 and SDC-4.1, Rev. 12, and the documents referenced therein. The design code for 2736Z Building was ACI-318-63; the code used in the current evaluation is ACI-349-90.

The 2736Z Building was analyzed for both normal operating and natural phenomena loads. The design of different components of the structure are controlled by different loads, load combinations, and loading directions. The required strength of the roof slab, the in-plane bending of the wall panels and the size of four of the columns is controlled by normal dead and live loads. The size of all other components of the structure is controlled by earthquake loads.

As a result of this evaluation, all structural members of the 2736Z Building show positive margins of safety with respect to the material design strengths. Margin-of-safety is defined as

$$M.S. = \frac{\text{Allowable load}}{\text{Actual load}} - 1$$

which must be greater than 0.0. The controlling margin of safety for each type of structural member is as follows:

• <u>Roof</u> : Dead and live load (vertical bending)	M.S. = 0.009
• <u>Walls</u> : Dead and live load (vertical bending)	M.S. = 0.630
• <u>Columns</u> : Earthquake (lateral base shear)	M.S. = 0.170
• <u>Foundation Wall</u> : Earthquake (lateral shear friction)	M.S. = 0.620
• <u>Footing</u> : Dead, live, and earthquake (vertical bending)	M.S. = 0.037
• <u>Soil bearing</u> : Dead, live, and earthquake (vertical load)	M.S. = 0.017

Most reinforcing details in the structural members meet the current ACI-349-90 criteria. The one exception is the depth to which the precast wall panel reinforcement is embedded into the surrounding column and beam members. The existing embedment length is 15 cm (6-in.), which meets the ACI-318-63 design code criteria. The 15 cm (6-in.) length also meets the bond stress criteria of ACI-349-90. Fifteen centimeters (6-in.) does not meet ACI-349-90 requirements for an overall minimum length of 30.5 centimeters (12-in.).

The requirement that the minimum embedment length be greater than the bond stress length criteria was added to the code to enhance the system ductility. Because the bond stress portion of the required embedment length is met, although the ductility portion is not, the wall member is acceptable for non-plastic stress levels.

Calculations to qualify the 2736Z structure for the safety class 3/1 function are included in Appendix A. More rigorous calculations were performed in response to review comments and are included in Appendix B, which was added in Revision 1 of this report. These additional calculations do not change the results, but demonstrate even more structural capacity.

3.0 STRUCTURE DESCRIPTION

The 2736Z Building was designed as a single-story reinforced concrete structure. The walls, columns, roof, floor, and foundation were all constructed of reinforced concrete. A later construction project added concrete thickness to the three outside walls.

The 2736Z Building was built originally to construction specification HWS-8937, project number HAP-642, dated July 10, 1970. Later in the 1982/1983 time period, project number B-246A added more wall concrete. Drawing numbers H-2-26648 to H-2-26654 show the original structural design and drawings H-2-90318 and H-2-90319 show the additions by project B-246a.

The overall dimensions of the building are 20 m (65-ft 6-in.) long by 17.5 m (57-ft 2-in.) wide by 3.7 m (12-ft 2-in.) high. The roof slab is 16.5 cm (6½-in.) thick with roof beams alternating with wall top beams that run in both directions. The wall and column footings are a minimum of 84 cm (2-ft 9-in.) below grade with the east wall 1.5 m (5-ft) below grade.

The foundation elements in the 2736Z Building consist of the wall footings, column footings, foundation wall, and column pedestals. The footings are 30.5 cm (1-ft) thick by 61 cm (2-ft) wide for the walls and 1.2 m (4-ft) wide for the columns. The foundation wall was poured monolithically with the column pedestals and supported on the footing. The foundation wall is 20.3 cm (8-in.) thick, as is the building wall, but has slightly less reinforcement. The column pedestals have the same dimensions and reinforcing as the columns and are 12.7 cm (5-in.) shorter than the foundation walls.

The floor slab is supported on soil backfill with expansion joint material between the slab edges and all foundation walls. Supported on the floor slab are storage racks, storage cubicles, and the stored material.

The building walls, columns, beams, and roof slab are supported by the column pedestals. The building walls are precast wall panels that are set in place with a 6 mm (¼-in.) gap between the wall panel and the underlying foundation wall. Holding the wall in place are cast-in-place columns and wall beams, which in turn are poured monolithically with the roof slab and roof beams. Once these other cast-in-place members have stabilized the wall, the gap is grouted shut.

The roof slab system is designed and constructed as a two-way slab unit. The slab spans are nearly equal in both directions and the reinforcing is identical. Poured monolithically with the slab are very shallow roof beams that alternate with the wall lines to support the roof slab. The roof slab also acts as a shear diaphragm to distribute lateral loads evenly to the precast shear walls.

4.0 ANALYSIS

4.1 CODES AND STANDARDS

Codes and standards at the Hanford Site originate from DOE Order 6430.1A, which directs the use of other design and evaluation documents. In addition to national codes and standards, the following DOE-specific guidelines and criteria documents were used:

- UCRL-15910, *Design and Evaluation Guidelines for Department of Energy Facilities Subjected to Natural Phenomena Loadings* (UCRL-15910)
- Site specific design criteria as approved by DOE-RL, SDC-4.1, Rev. 12 *Standard Architectural-Civil Design Criteria Design Loads for Facilities* (DOE-RL 1993).

UCRL-15910 provides load combinations for use with extreme wind loadings and recommends the use of ACI-349 load combinations for seismic loadings. Other UCRL-15910 recommendations for use in seismic analyses are as follows:

- UBC 1988 and 1991, special design details for reinforced concrete structures
- Moderate seismic provisions of the UBC special design details when the peak ground acceleration is less than 0.24 g
- Elastic evaluation methods and F_u of unity when the UBC special details cannot be met
- 10% damping for post-yield inelastic stress conditions
- Square-root-sum-of-the-squares methodology (SRSS) or 100-40-40 methods for combining seismic load directions
- Use of ground motion equivalent to one-half of the appropriate return period for existing buildings that cannot meet the guidelines provided in UCRL-15910, Section 4.4.5
- Use of equivalent static analysis methods for simple structures.

SDC-4.1, Rev. 12, provides basic natural phenomena and other design loads for Hanford Site buildings. These loads include seismic, wind, ashfall, dead, live, roof, soil, and snow. SDC-4.1 directs the use of national codes and standards for design and evaluation methods. For example, ANSI A58.1 (1982) is specified for wind, snow, and roof load design, UCRL-15910 for some load combinations, and ACI and UBC for reinforced concrete design.

The design for ashfall loads is found only in SDC-4.1, which becomes both the design and evaluation document for this load. The magnitude of the load, the extreme nature of the load, and how it is to be combined with other loads all are defined in SDC-4.1.

Nuclear Regulatory Guide 1.61 was used to select the proper seismic damping value. Reg. Guide 1.61 recommends the use of 7% damping for the seismic design of reinforced concrete structures to remain within elastic limits. The 2736Z Building does not meet all of the currently required ACI reinforcing details; per the UCRL-15910 recommendation it must remain within elastic stress limits.

Tank Seismic Experts Panel (TSEP) Guidelines also recommend the use of 7% damping for response level 2-type loadings. Response level 2 loadings are high loadings, but are intended to remain within the material elastic limits.

ACI-349 and ACI-318 concrete building codes provide load combinations and design methods for use in the evaluation of reinforced concrete structures. These codes also provide reinforcing details required for structures subjected to seismic loads.

The UBC provides special concrete reinforcing details for use in the evaluation of concrete structures subjected to seismic loads. However, the 2736Z structures rely on shear wall to resist lateral loads and therefore are not required to meet the UBC special detailing. The UBC also provides recommendations on mass acceleration for seismic load determinations.

4.2 DESIGN ASSUMPTIONS

The 2736Z, 2736ZA, and 2736ZB structures are being analyzed simultaneously and contain similar assumptions which are listed below.

- The 2736Z facilities house Safety Class 1 materials and shall be evaluated as Safety Class 3/1.
- These structures shall be evaluated to current site-specific natural phenomena loads and criteria, as specified in UCRL-15910 and SDC-4.1.
- Seismic loads are expected to be the controlling lateral load. These structures shall be evaluated initially for seismic loads that use equivalent static methods as allowed by UCRL-15910 and progress to more exact and rigorous methods as required.
- Equivalent static evaluations multiply the mass of the structure by a static seismic acceleration. This acceleration equals the peak of the response spectra curve times a multiple mode factor. The mode factor recommended by ASCE 4-86 is 1.0 for simple regular structures and 1.5 for complex structures. The 2736Z structures are simple regular structures, so the 1.0 mode factor will be used.

- For the 2736Z structures, 10% seismic damping and F_u factors as recommended by UCRL-15910 shall be used if all reinforcing details meet the applicable ACI and UBC requirements. When the reinforcing details do not meet these requirements, then 7% damping and F_u equal to unity shall be used so that the structure stays within the elastic stress range.
- Review of the drawings show the 2736Z structures to be reinforced concrete with the following support systems:
 - Lateral loads resisted by the concrete shear walls and rigid roof diaphragm
 - Lateral loads proportionally distributed to the shear walls by the roof slab acting as a diaphragm
 - The roof slab acting as a two-way slab (2736Z and ZA) or a one-way slab (2736ZB) to resist vertical loads.
- Material strengths used in this evaluation are original design values depicted in the construction specifications or the drawings.
- Drawings and design specifications listed in the calculations are labeled as-built and are considered to be valid design information.
- For the calculation of seismic inertial loads, only the mass of the deadweight will be included; the mass of snow or roof live load will not be included per UBC Chapter 23 interpretation.
- For overturning effects, 100% of the deadweight mass will be used to calculate the overturning moment, but only 90% for the dead load resisting moment.
- Soil bearing pressures from the original design media are as follows:
 - 2736Z = $1,860 \text{ N/m}^2$ ($4,500 \text{ lb/ft}^2$) foundation on undisturbed soil
 - 2736ZA = $2,066 \text{ N/m}^2$ ($5,000 \text{ lb/ft}^2$) design drawing
 - 2736ZB = $2,066 \text{ N/m}^2$ ($5,000 \text{ lb/ft}^2$) design specification.

The 242S Evaporator soil report provides the basis for the validation of the stated soil bearing pressures.

- Because the 2736Z structures rely on shear walls to provide the lateral seismic loads, the UBC special seismic details for frames do not apply.

4.3 CONSTRUCTION MATERIALS AND IN SITU PROPERTIES

Construction of the 2736Z Building uses reinforced concrete for the precast and cast-in-place members. The construction specification, HWS-8937 (HWS 1970), references several ACI standards, codes, and practices for the design, detailing, and placement of concrete. This specification also lists several ASTM standards to be followed for material properties and material tests:

- ASTM A615-68 Deformed Billet Steel Bars for Concrete Reinforcement
- ACI 306-66 Recommended Practice for Cold Water Concreting
- ACI 315-65 Manual of Standard Practice for Detailing Reinforced Concrete Structures
- ACI 318-63 Building Code Requirements for Reinforced Concrete
- ACI 605-59 Recommended Practice for Hot Weather Concreting.

The strengths of the concrete and reinforcing steel materials are given in the design drawings and the HWS specification. Concrete strength is listed on drawing H-2-26650 as 8.6 N/m^2 ($3,000 \text{ lb/in}^2$) at 28 days. The reinforcement steel strength is given in HWS specification 6 as ASTM A615, grade 40. The grade 40 translates to a minimum yield strength 115 N/m^2 ($40,000 \text{ lb/in}^2$).

The 2736 Facility was visited on December 21, 1993. This visit had several objectives: first, to verify the configuration of the structures as shown on the design drawings; second, to verify equipment loads on the structures; third, to inspect the structural condition of the concrete members.

The site visit resulted in the following observations.

- The structural configuration of the 2736Z Building is as shown on the drawings; see drawing list in Section 5.0.
- Wall- and ceiling-mounted equipment loads are very light, less than 16 Kg/m^3 (1 lb/ft^3). Floor-mounted storage racks and cubicles are much heavier, but are supported vertically by the floor and horizontally by the floor and wall as assumed in the analysis. See WHC-SD-CP-SA-026 for further evaluation of equipment loads on the structure.
- The condition of the structural members was very good. The concrete members had no visible cracking or spalling, aggregate voids were very small, and no patches or repair areas were found. The reinforcing obviously could not be seen, but no rust stains or spalled rebar cover was found either.

Based on these observations the conclusion is that equipment loads as assumed are reasonable. It is also reasonable to conclude that the in situ concrete and rebar properties meet those specified by the original material design properties since there were no signs of deterioration.

4.4 ANALYSIS METHOD

The UCRL-15910 recommends that high-hazard facilities (Safety Class 1) normally be analyzed with dynamic methods. UCRL-15910 Appendix A also states that equivalent static methods are an acceptable alternative for simple high-hazard structures. The 2736Z Building is a simple structure with a regular floor plan that fits the UCRL-15910 description; thus equivalent static methods were employed.

To analyze the 2736Z Building, static load hand-calculation methods were employed. The normal dead and live loads were combined with the natural phenomena seismic, wind, or ashfall loads to produce equivalent static total loads on the structure. Dead and live loads are normal static loads, ashfall is an extreme static load, and seismic and wind are extreme dynamic loads.

To convert dynamic seismic loads into static loads, the methods recommended in ASCE 4-86 were employed. Site-specific response spectra peak accelerations were multiplied by the mass of the structure to simulate dynamic earthquake effects. This method is acceptable only for simple regular structures such as the 2736Z Building.

Dynamic wind loads are calculated from the ANSI A58.1 standard (ANSI 1982). This standard provides a simple formula for calculating a static wind load given a dynamic wind speed value that is multiplied by gust response factors.

4.5 EQUIVALENT STATIC ANALYSIS JUSTIFICATION

The "Equivalent Static Analysis Method" is a solution to a single-degree-of-freedom model where the response spectrum represents an exact dynamic analysis. Structures that have a single degree of freedom or nearly so can be dynamically analyzed by this method. The justification and use of the equivalent static analysis method for simple regular structures is discussed in the following documents: UCRL 15910 Appendix A, ASCE 4-86 Section 3.2.5, and UBC 1991 Section 2333.

These documents agree that the equivalent static method should be used only on simple regular structures that have uniform mass and stiffness distributions. The ASCE document further defines simple and regular to mean cantilever or simple multi-degree-of-freedom structures. The UBC document provides quantifiable measures of what regular, uniform mass, and uniform stiffness mean.

UBC Tables 23-M and 23-N define what constitutes irregularities in dimensions, mass, and stiffness. The vertical irregularities of Table 23-M are for multi-story buildings only and thus are not applicable to the 2736Z facilities. The plan irregularities of Table 23-N are applicable and shall be addressed item by item as follows.

- A. Torsional Irregularities must be limited to about 10% total eccentricity based on displacements at the ends of the buildings. The 2736Z facilities all have less than 5% eccentricity.

- B. Re-entrant corners between floor levels must be limited to 15% of the total building dimension. The 2736Z facilities are all single-story structures.
- C. Diaphragms in regular buildings must not have abrupt variations in stiffness, openings greater than 50% of the gross area, or greater than 50% stiffness variation between floor levels. The 2736Z facilities diaphragms meet these criteria.
- D. Regular building shall not have discontinuities in lateral load path including out-of-plane members. The 2736Z facilities use shear wall diaphragms for lateral load resistance, and all lateral load members are in-line with these diaphragms.
- E. Regular buildings shall not have nonparallel lateral load systems. The 2736Z facilities all have parallel lateral load systems.

Based on the preceding discussions and reference documents, the conclusion is that the 2736Z facilities meet the description of simple, regular structures. Therefore, use of the equivalent static method of analysis is justified.

4.6 STRUCTURAL COMPONENT EVALUATION

Below is a list of the structural components analyzed in the course of this evaluation. The analysis items checked are listed for each component.

APPENDIX A

LOAD CALCULATION:

LATERAL LOAD RESISTANCE:

ROOF:

- Design loads and load combinations
- Two-way slab strength analysis
- Shear-diaphragm strength analysis
- Wall-beam strength analysis
- Reinforcing detail check

WALL PANELS:

- Design loads and load combinations
- Shear-diaphragm strength analysis
- Reinforcing detail check

COLUMNS:

- Design loads and load combinations
- Compressive strength analysis
- Shear strength analysis
- Combined direction analysis
- Reinforcing detail check

FOUNDATION WALLS:

- Design loads and load combinations
- Compressive strength analysis
- Shear strength analysis
- Reinforcing detail check

FOOTING:

- Design loads and load combinations
- Bending and shear strength analysis
- Overturning and sliding resistance

DEFLECTIONS:

- Shear wall deflection
- Out-of-plane deflection
- Soil-spring deflection

APPENDIX B

COLUMN-SHEAR WALL:

- Column-Foundation Detail & Capacity Check
- Shear-Wall Unit computer model by RA Giller
- Shear-Wall Unit computer model by EO Weiner

5.0 REFERENCES

ACI, 1990, *Code Requirements for Nuclear Safety Related Concrete Structures*, ACI-349, American Concrete Institute, Detroit, Michigan.

ACI, 1989, *Building Code Requirements for Reinforced Concrete*, ACI-318, American Concrete Institute, Detroit, Michigan.

ACI, 1963, *Building Code Requirements for Reinforced Concrete*, ACI-318, American Concrete Institute, Detroit, Michigan.

ANSI, 1982, *American nation Standard Minimum Design Loads for Buildings and Other Structures*, ANSI-A58.1, American National Standard Institute, New York, New York.

ASCE, 1986, *Seismic Analysis of Safety-Related Nuclear Structures*, ASCE 4-86, American Society of Civil Engineering, New York, New York.

DOE-RL, 1993, *Standard Architectural-Civil Design Criteria, Design Loads for Facilities*, Hanford Plant Standards, SDC-4.1, Rev. 12, U. S. Department of Energy, Richland Operations Office, Richland, Washington.

HWS, 1970, *Specifications For Plutonium Storage Vault Building 2736-Z Project HAP-642*, Hanford Work Specification, HWS-8937, Vitro Corporation, Richland, Washington.

Shannon, 1971, *Foundation Investigation Proposed Evaporator Facility Hanford Atomic Energy Reservation*, 242S Building, Shannon & Wilson Inc., October 1971, Burlingame, California.

UBC, 1991, *Uniform Building Code*, UBC, International Conference of Building Officials, Whittier, California.

UCRL, 1990, *Design and Evaluation Guidelines for Department of Energy Facilities Subjected to Natural Phenomena Hazards*, UCRL-15910, Livermore, California.

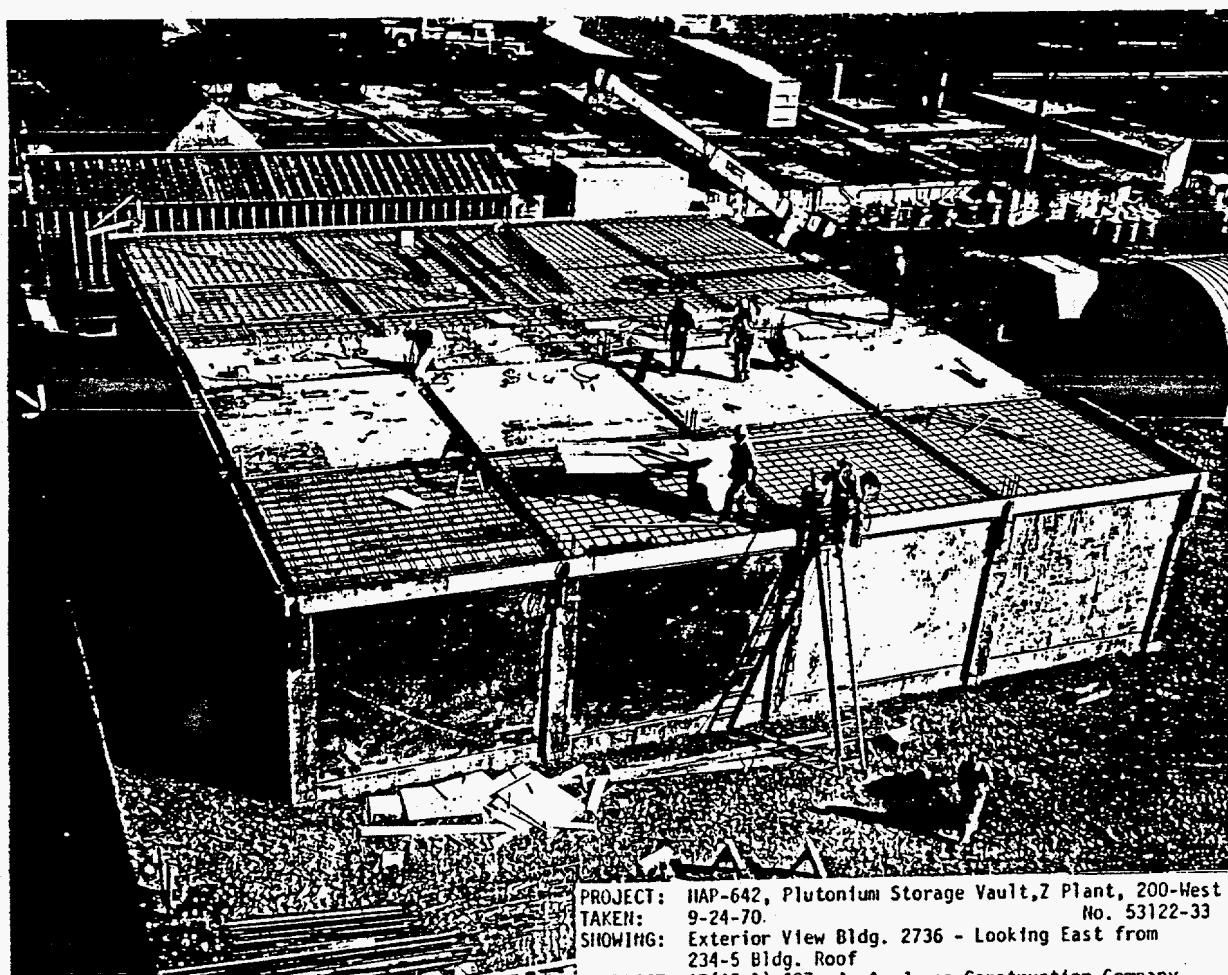
VITRO, 1970, *Plutonium Storage Vault*, initial issue 1970, drawings H-2-26648, H-2-26649, H-2-26650, H-2-26651, H-2-26652 H-2-26653, H-2-26654, H-2-90318, H-2-90319, VITRO Corporation, Richland, Washington.

VITRO, 1972, *Seismic and Tornado Analysis of Buildings 224T and 2736Z*, VITRO-R-161, Vitro Corporation, Richland, Washington.

WHC, 1991, *Evaluation of Existing Seismic Analyses*, WHC-SD-CP-DA-066, Westinghouse Hanford Company, Richland, Washington.

**STRUCTURAL EVALUATION OF THE
2736Z BUILDING FOR SEISMIC LOADS**

**APPENDIX A
CALCULATIONS**


TABLE OF CONTENTS

- A1.0 LOAD CALCULATION**
- A2.0 LATERAL LOAD RESISTANCE**
- A3.0 ROOF EVALUATION**
- A4.0 WALL PANEL EVALUATION**
- A5.0 COLUMN EVALUATION**
- A6.0 FOUNDATION WALL EVALUATION**
- A7.0 FOOTING EVALUATION**
- A8.0 DEFLECTION CALCULATION**

WHC-SD-CP-SA-023
REVISION 6

CONSTRUCTION PHOTO

2736Z BUILDING

PROJECT: IIAP-642, Plutonium Storage Vault, Z Plant, 200-West
TAKEN: 9-24-70. No. 53122-33
SHOWING: Exterior View Bldg. 2736 - Looking East from
234-5 Bldg. Roof
CONTRACT: AT(45-1)-687, J. A. Jones Construction Company

A2

DESIGN VERIFICATION METHOD

The need for design verification has been reviewed with the method selected as indicated below:

Independent Review
 Alternate Calculations
 Qualification Testing
 Formal Design Review

T. J. Conrads
Cognizant/Project/Design Manager

SD # WHC-SD-CP-SA-023 RI

ECN # 615157

DWG(S) # N/A

CHECKLIST FOR INDEPENDENT REVIEW

Document Structural Evaluation of the 2736Z Building For Seismic Loads

Author R. A. Giller

Yes No N/A

[] [] Problem completely defined.

[] [] Necessary assumptions explicitly stated and supported.

[] [] Computer codes and data files documented.

[] [] Data used in calculations explicitly stated in document.

[] [] Data checked for consistency with original source information as applicable.

[] [] Mathematical derivations checked including dimensional consistency of results.

[] [] Models appropriate and used within range of validity or use outside range of established validity justified.

[] [] Hand calculations checked for errors.

[] [] Code run streams correct and consistent with analysis documentation.

[] [] Code output consistent with input and with results reported in analysis documentation.

[] [] Acceptability limits on analytical results applicable and supported. Limits checked against sources.

[] [] Safety margins consistent with good engineering practices.

[] [] Conclusions consistent with analytical results and applicable limits.

[] [] Results and conclusions address all points required in the problem statement.

MANDATORY

Software QA Log Number None

E.O. Wenz
Reviewer

2-8-94
Date

A1.0 LOAD CALCULATION

Orig R.A. Miller

Checker EO Weener

WHC-SD-CP-SA-023
Rev. 01
Page A1-1

DEAD LOADS

Roof:

Concrete roof 6.5" slab =	81.25 psf
Roofing, 3 ply felt and gravel =	5.5 psf
Load = $(81.25 + 5.5) \times 65.5' \times 57.16' =$	325 kips

Roof Beams:

Concrete beam 2.5" deep, 12" wide, 13.3' long	
Load = $2.5" \times 12" \times 13.3' \times 16 \text{ beams} \times 150 \text{ pcf} / 144 \text{ si} =$	7 kips

Walls beams:

Concrete beams

8" X 12.5" X 57' long X 2 beams X 150 pcf / 144 si =	12 kips
3.5" X 11" X 57' long X 2 beams X 150 pcf / 144 si =	5 kips
8" X 8" X 30' long X 2 beams X 150 pcf / 144 si =	4 kips
8" X 11" X 65.5' long X 2 beams X 150 pcf / 144 si =	12 kips

Total load for wall beams = 33 kips

Interior Walls:

Concrete wall 8" thick

8" X 10.5' X 13.16' X 12 walls X 150 pcf / 12 in. =	166 kips
---	----------

Exterior Walls:

Concrete wall 8" thick

8" X 10.5' X 13.16' X 16 walls X 150 pcf / 12 in. =	221 kips
8" X 10.5' X 7' X 2 walls X 150 pcf / 12 in. =	15 kips

Total load for Exterior walls = 236 kips

Orig R. A. Miller

Checker EO Werner

WHC-SD-CP-SA-023

Rev. 01

Page A1-2

6" Add-on Walls:

Concrete wall 6" thick

0.5' X 11.25' X 181' X 150 pcf = 153 kips

Columns:

Columns 10.416' high

8" X 12" X 10.416' X 6 columns X 150 pcf / 144 si = 6 kips

11" X 12" X 10.416' X 12 columns X 150 pcf / 144 si = 17 kips

13" X 13" X 10.416' X 4 columns X 150 pcf / 144 si = 7 kips

12" X 13" X 10.416' X 8 columns X 150 pcf / 144 si = 14 kips

Total load for columns = 44 kips

Floor Slab:

Floor Slab 6" thick

0.5' X 7'wide X 55.4'long X 150 pcf = 29 kips

0.5' X 27.67'wide X 27.3'long X 4 slabs X 150 pcf = 227 kips

Total load for floor slab = 256 kips

Foundation Walls:

Foundation Wall 8" thick

0.67' X 1.9'high X 340'long X 150 pcf = 65 kips

0.67' X 4.16'high X 84'long X 150 pcf = 35 kips

Foundation Wall 6" thick

0.5' X 1.9'high X 123'long X 150 pcf = 18 kips

0.5' X 4.16'high X 57'long X 150 pcf = 18 kips

Total load for foundation walls = 136 kips

Orig RA. Miller

Checker EO Weiner

WHC-SD-CP-SA-023

Rev. 01

Page A1-3

Column Pedestal:

Column Pedistal 1.6' or 0.75' high

14" X 14" X 1.6'high X 12 col. X 150 pcf / 144 si = 4 kips

11" X 14" X 1.6'high X 12 col. X 150 pcf / 144 si = 3 kips

8" X 12" X 0.75'high X 6 col. X 150 pcf / 144 si = 1 kip

Total load for Column Pedistals = 8 kips

Footings:

Column Footings 1' thick

4' X 11.67' X 1'thick X 3 footings X 150 pcf = 21 kips

4' X 4' X 1'thick X 24 footings X 150 pcf = 58 kips

Wall Footing 1' thick

2' X 10' X 1'thick X 30 footings X 150 pcf = 90 kips

Total load for footings = 169 kips

Dead Load Summary:

Roof =	325 kips
Roof Beams =	7 kips
Wall Beams =	33 kips
Interior Walls =	166 kips
Exterior Walls =	236 kips
6" Add-on Walls =	153 kips
Columns =	44 kips
Floor Slab =	256 kips
Foundation Walls =	136 kips
Column Pedistal =	8 kips
Footings =	169 kips
Total	1533 kips

LIVE LOADS

(SDC-4.1 and ANSI-A58.1)

Roof:

Roof live load = 20 psf X 65.5' X 57.16' = 75 kips

Roof snow load = 20 psf X 65.5' X 57.16' = 75 kips

use either roof live load or snow load but not both

Total load = 75 kips

WIND LOADS

(SDC-4.1 and ANSI A58.1)

Straight wind pressure

$$q_z = 0.00256 K_z (IV)^2$$

$$K_z = 0.8 \quad \text{for heights upto 15' and exposure category C}$$

$$I = 1.0$$

$$V = 90 \text{ mph}$$

$$q_z = 16.6 \text{ psf}$$

Building wind pressure

$$p = q_z (GhCp - GCpi)$$

$$p \text{ (windward wall)} = 16.6 \text{ psf } (1.32 \times 0.8 + 0.25) = + 21.7 \text{ psf}$$

$$p \text{ (leeward wall)} = 16.6 \text{ psf } (1.32 \times -0.5 + 0.25) = - 6.8 \text{ psf}$$

$$\text{Total lateral pressure} = 21.7 + 6.8 = 28.5 \text{ psf}$$

$$\text{Total lateral force} = 28.5 \text{ psf} \times 12' \times 65.5' = 22 \text{ kips}$$

$$p \text{ (Roof)} = 16.6 \text{ psf } (-0.7) = - 11.6 \text{ psf}$$

$$\text{Total Upward force} = 11.6 \text{ psf} \times 65.5' \times 57.16' = 43 \text{ kips}$$

Orig RA. Hill

Checker EO Werner

WHC-SD-CP-SA-023

Rev. 01
Page A1-S

SEISMIC LOADS

(SDC-4.1 and UCRL-15910)

Vertical Seismic Loads:

$2/3 X (7\% \text{ damped, } 0.2g \text{ spectra peak}) X \text{ Dead Weight D}$

$2/3 X (0.38g) W = \quad 0.25D \quad *$

Horizontal Seismic Load:

$(7\% \text{ damped, } 0.2g \text{ spectra peak}) X \text{ Dead Weight D}$

$(0.38g) W = \quad 0.38D \quad *$

ASH LOADS

(SDC-4.1)

Ash Load: (24 psf extreme load similar to wind and earthquake)

$24 \text{ psf} X 65.5' X 57.16' = \quad 90 \text{ kips}$

* See SDC-4.1 ~~see~~ Table 3 for spectra peak and frequency values.

A2.0 LATERAL LOAD RESISTANCE

Orig R.A. Hilla

Checker ED Weiner 2-8-94

WHC-SD-CP-SA-023

Rev. 01

Page A2-1

Lateral loads are resisted by wall shear, 4 - 56' long walls in the NS direction, and 6 - 28' long walls in the EW direction.

The roof slab acts in diaphragm shear as a rigid plate to distribute lateral forces evenly between the shear walls.

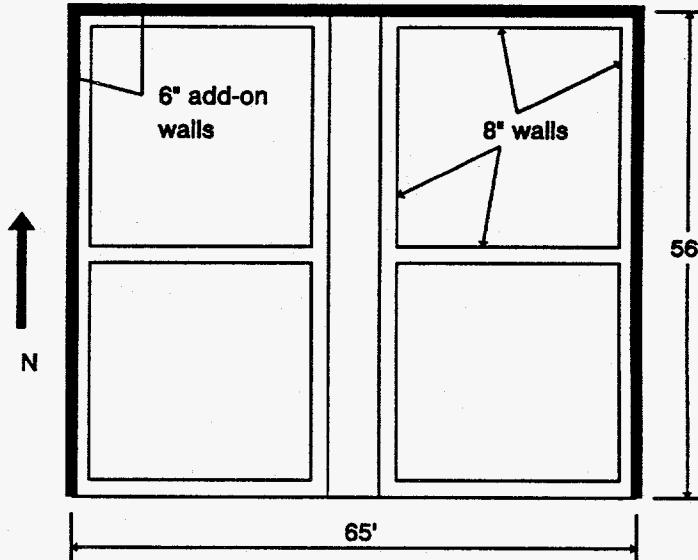
UBC requires that accidental torsion be accounted for in the design of the lateral force resisting system. This torsion is derived from an offset of the lateral seismic force. The amount of the offset is 5% of the building dimension in each direction.

$$5\% \text{ of } 56' = 2.8'$$

$$5\% \text{ of } 64' = 3.3'$$

The EW direction has a designed offset from the 6" add-on walls. The designed offset is as follows;

$$\text{total lateral load} = 583^k$$


lateral load for the 6" wall (north side only)

$$0.5' \times 11.25' \times 67' \times 0.150 \text{ ksf} \times 0.38g = 21.5^k$$

$$\text{Offset} = \frac{(583 - 22)(56'/2) + 22(56')}{583} - \frac{56'}{2} = 1.1'$$

$$\text{Total NS offset} = 2.8' + 1.1' = 3.9'$$

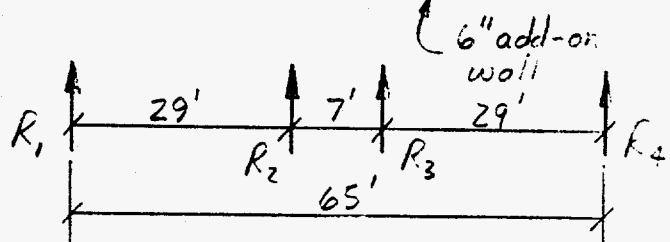
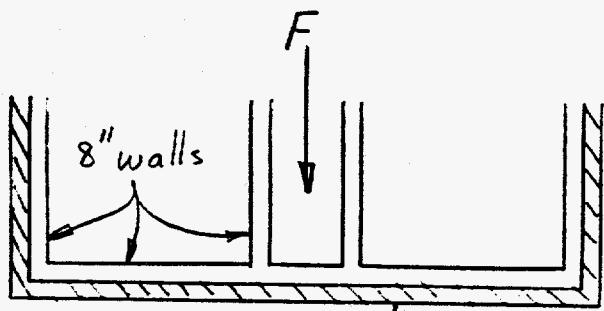
$$\text{Total EW offset} = 3.3'$$

DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 01

(1) Drawing _____ (2) Doc. No. _____ (3) Page A2-2 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator R.A. Miller Date 2-8-94
 (9) Checker EO Werner Date 2-8-94

(10) Lateral Resistance N.S. Direction



Lateral Force, F

E.W. offset of

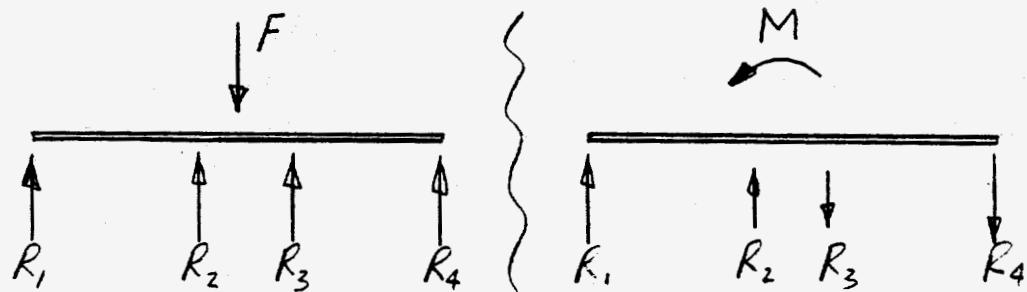
N.S. Load = 3.3'

Placemark A1

$$= 3.3(F)$$

Walls at R_2 & R_3 have 2 door openings each. Subtracting the door widths from the overall wall length yields an effective wall length = $56' - 4.3' - 4.3' = 47.4'$ Based on effective wall lengths, relative resistances can be determined. $R_2 = R_3 = \frac{47.4'}{56'} R_1 = .85 R_1$

The 6" add-on walls are considered to add mass but no stiffness or strength to the structure.


the case where the 6" wall does add stiffness and strength to the structure is discussed on page A2-7.

DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 01

(1) Drawing _____ (2) Doc. No. _____ (3) Page A2-3 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator R A Hille Date 2-8-94
 (9) Checker EO Weaver Date 2-8-94

(10)

$$R_2 = R_3 = .85R_1 = .85R_4$$

$$1.85(R_1 + R_4) = F$$

$$3.7R_1 = F$$

$$R_1 = F/3.7$$

$$R_2 = .85F/3.7 = F/4.35$$

$$R_1 = R_4 \quad R_2 = R_3$$

$$R_1 = \frac{65'}{7'} R_2 = 9.3 R_2$$

$$M = R_1(65') + R_2(7')$$

$$M = 611R_2 = 65.7R_1$$

Total Reactions

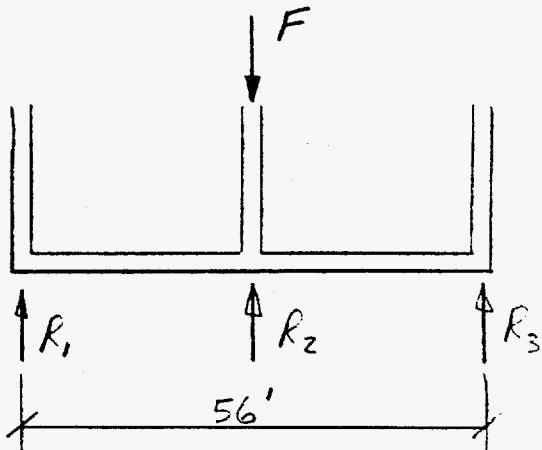
$$R_1 = \frac{F}{3.7} + \frac{M}{65.7} = \frac{F}{3.7} + \frac{3.3F}{65.7} = .32 F$$

$$R_2 = \frac{F}{4.35} + \frac{M}{611} = \frac{F}{4.35} + \frac{3.3F}{611} = .235 F$$

$$R_4 = \frac{F}{3.7} - \frac{3.3F}{65.7} = .22 F$$

$$R_3 = \frac{F}{4.35} - \frac{3.3F}{611} = .225 F$$

DESIGN CALCULATION

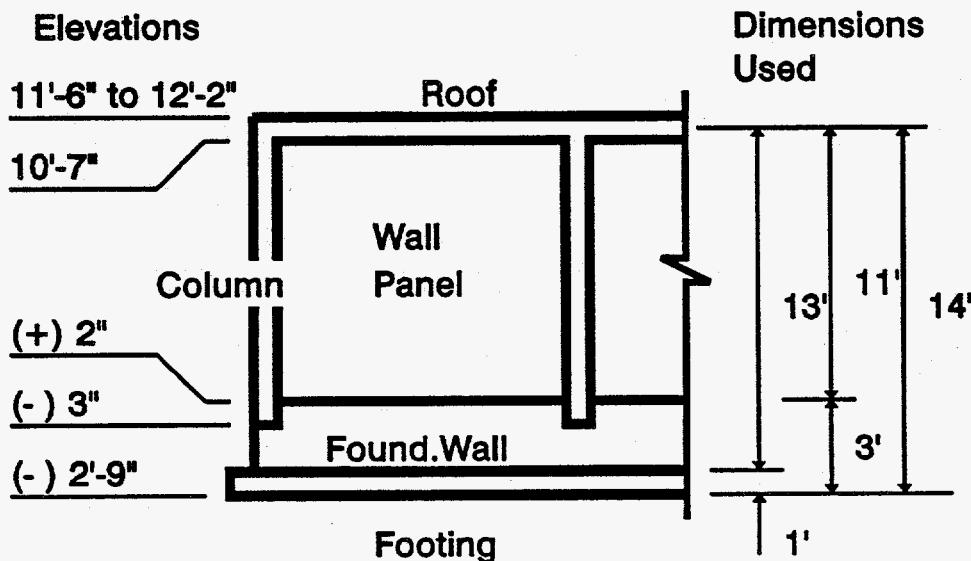

WHC-SD-CP-SA-023 Rev. 01

(1) Drawing _____ (2) Doc. No. _____ (3) Page A2-4 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator R.A. Hille Date 2-8-94
 (9) Checker Ed Werner Date 2-8-94

(10) Lateral Resistance EW direction:Lateral Load = F

N.S. offset of EW load
 = 3.9'

Moment = M_z
 = 3.9 F



$$R_1 = \frac{F}{3} + \frac{M_z}{56'} = \frac{F}{3} + \frac{3.9F}{56} = .403 F$$

$$R_2 = \frac{F}{3} = .333 F$$

$$R_3 = \frac{F}{3} - \frac{M_z}{56'} = .263 F$$

Vertical Distribution Of Lateral Loads:

Typical Wall Section

The lateral loads are distributed as follows;

- Roof, Roof Beams, Wall beams, + 1/2 [Columns and Walls] are placed at the roof level; 14' above the base and 11' above the foundation.
- 1/2 [Columns and Walls] + Foundation and Floor are placed at the Wall-Foundation interface; 3' above the base.

A2-6

Actual lateral Loads:

@ Roof level

$$F = [(325 + 7 + 33) + 1/2(166 + 236 + 153 + 44)] 0.38 = 253 \text{ kips}$$

@ Wall bottom level

$$F = [1/2(166 + 236 + 153 + 44)] 0.38 + 253 = 367 \text{ kips}$$

@ Foundation wall top

$$F = (256 + 136 + 8) 0.38 + 367 = 519 \text{ kips}$$

@ Base level

$$F = (169) 0.38 + 519 \text{ kips} = 583 \text{ kips}$$

<u>@ Roof Level</u>							
	R ₁	R ₂	R ₃	R ₄			
NS	81	+	59	+	57	+	56 = 253 kips
EW	102	+	84	+	67	-	= 253 kips
<u>@ Wall Bottom</u>							
	R ₁	R ₂	R ₃	R ₄			
NS	117	+	86	+	83	+	81 = 367 kips
EW	148	+	122	+	97	-	= 367 kips
<u>@ Foundation Wall Top</u>							
	R ₁	R ₂	R ₃	R ₄			
NS	166	+	122	+	117	+	114 = 519 kips
EW	210	+	173	+	136	-	= 519 kips
<u>@ Base</u>							
	R ₁	R ₂	R ₃	R ₄			
NS	187	+	137	+	131	+	128 = 583 kips
EW	235	+	194	+	154	+	- = 583 kips

Orig R.A. Hille

2-8-94 Checker EO Werner 2-8-94

WHC-SD-CP-SA-023

Rev. 01 A2-7

If the connection between the 6" add-on walls and the 8" precast walls is adequate to transfer all lateral loads, then the overall strength and stiffness will be affected.

Wall stiffness is based on wall area, thickness X length. For the case where the 6" wall has no stiffness the wall stiffness distribution is as follows;

$$\text{outside wall} = 8" \times 56" \times 12" = 5376 \text{ si}$$

$$\text{inside wall} = 8" \times 47.4' \times 12" = 4550 \text{ si}$$

$$\text{Relative stiff. for outside wall} = 5376 / (5376 + 4550) = 54\%$$

$$\text{Relative stiff. for inside wall} = 46\%$$

For the case where the 6" wall has stiffness the total stiffness distribution is as follows;

$$\text{outside wall} = 14" \times 56' \times 12" = 9408 \text{ si}$$

$$\text{inside wall} = 8" \times 47.4' \times 12" = 4550 \text{ si}$$

$$\text{Rel. stiff. outside wall} = 9408R / (9408R + 4550R) = 67\%$$

$$\text{Rel. stiff. inside wall} = 33\%$$

Stiffness increase;

$$67 / 54 = 1.24 = 24\% \text{ increase.}$$

As the stiffness increases so do the loads, a stiffness increase of 24% equals a load increase of 24%. However, the wall thickness increases from 8" to 14" or an increase of $14 / 8 = 1.75$ (75% increase) which increases the wall strength by 75%.

In conclusion, the thicker stiffer wall increases the loads 24% and the wall strength 75% which is a less severe condition than neglecting the stiffness and strength contributions of the 6" add on wall.

A3.0 ROOF EVALUATION

Orig RA Hille

2-8-94

Checker EO Werner 2-8-94

WHC-SD-CP-SA-023

Rev. 01

Page A3-1

The 2736Z building roof slab is a reinforced concrete slab, poured monolithic with the roof beams and columns and anchored by dowel action to the precast wall panels. Construction details indicate that the slab was designed as a Two-Way slab. The slab also serves as a lateral load diaphragm that ties together the building shear walls for lateral loading.

- DESIGN LOADS AND LOAD COMBINATIONS

rev 12.

Design loads are specified in SDC-4.1 ~~rev.11~~, UCRL-15910 and ANSI A58.1. Load combinations are listed in UCRL-15910 and ACI-349.

- TWO-WAY SLAB BENDING AND SHEAR STRENGTH ANALYSIS

Two-way slab design for vertical loads follows the methods of ACI-349 chapter 13.

- SHEAR DIAPHRAGM STRENGTH ANALYSIS

The roof slab diaphragm action for lateral loads follows ACI-349 chapter 11 shear strength methods.

- WALL BEAM COMPRESSIVE STRENGTH ANALYSIS

Compression is developed in the slab edge wall beams as lateral loads are transferred from the roof slab to the wall panels. ACI-349 chapter 10 provides compressive strength evaluation methods.

- REINFORCING DETAIL CHECK

Reinforcing details are found in several ACI-349 chapters. Minimum reinforcing is specified in chapter 7, rebar anchorage in chapter 12, flexure and shear strengths are found in chapters 10 and 11, and two-way slab details in chapter 13.

Orig R.A. Miller 2-8-94 Checker EO Werner 2-8-94

WHC-SD-CP-SA-023

Rev. 01

A3-2

DESIGN LOADS

Vertical Loads:

Dead Loads

roof self weight = 81.25 psf X 3744 sf = 304 kips
3 ply roofing weight = 5.5 psf X 3744 sf = 21 kips

Live Load

roof live load = 20 psf X 3744 sf = 75 kips
snow load = 20 psf X 3744 sf = 75 kips

Ash Load

ash load = 24 psf X 3744 sf = 90 kips

Wind Load

wind load = - 12 psf X 3744 sf = - 45 kips

Earthquake Load

earthquake load = $\pm 0.25 \times (81.25 + 5.5) = 22 \text{ psf}$
 $\pm 22 \text{ psf} \times 3744 \text{ sf} = \pm 82 \text{ kips}$

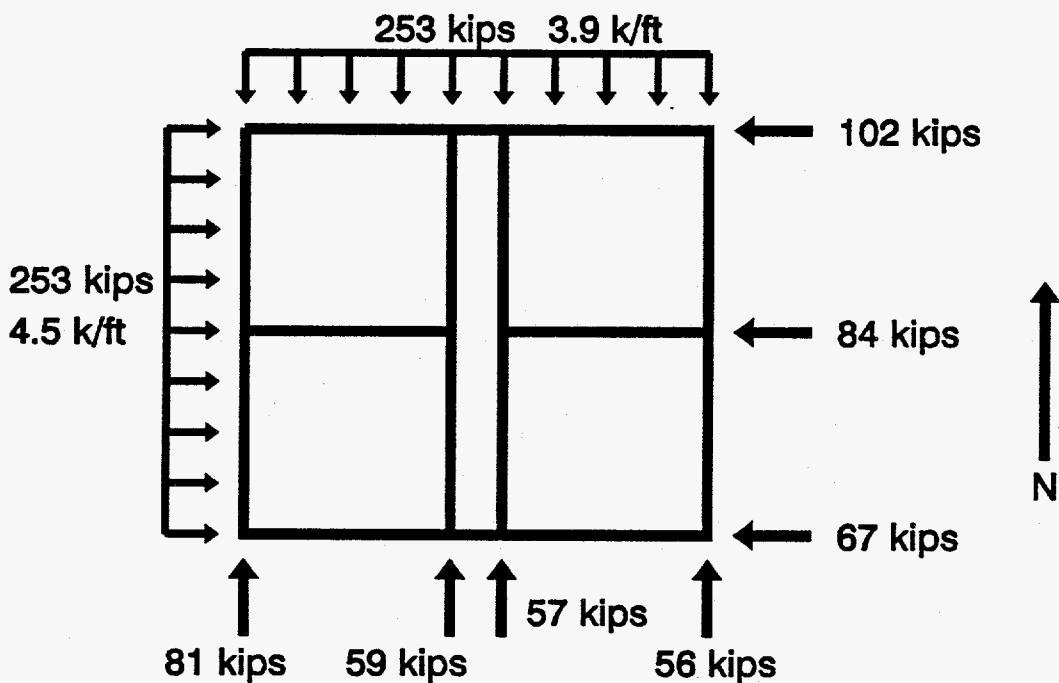
Orig RA Hille

2-8-94 Checker ED Werner 2-8-94

WHC-SD-CP-SA-023

Rev. 01

A3-3


Horizontal Earthquake Loads:

From the "Lateral Load Resistance" section the total lateral load at the roof level is;

253 kips

The following diagram shows; Lateral loads at the roof level,

Shear wall reactions due to a lateral loads and due to accidental offset of the lateral loads.

Building Plan

Orig RA Hille 2-8-94 Checker EO Weiner 2-8-94

WHC-SD-CP-SA-023

Rev. 01

A3-4

LOAD COMBINATIONS (ACI-349 and UCRL:-15910)

Per ASCE 7-88 (ANSI-A58.1), roof live or snow loads may be used but not both.

Per SDC-4.1, ash, wind and earthquake loads are extreme loads and are not used at the same time.

Vertical Loads:

ACI-349 Section 9.2:

1.) $1.4D + 1.7(L_r \text{ or } S)$

$$1.4(86.75) + 1.7(20) = 156 \text{ psf}$$

4.) $D + (L_r \text{ or } S) + E$

$$86.75 + 20 + 22 = 129 \text{ psf}$$

4.) $0.9D - E$

$$0.9(86.75) - 22 = 56 \text{ psf}$$

4.) $D + (L_r \text{ or } S) + A$

$$86.75 + 20 + 24 = 131 \text{ psf}$$

5.) $0.9D - W$

$$0.9(86.75) - 12 = 66 \text{ psf}$$

UCRL-15910 Section 5.2.3:

5.4(a) $D + 1.3W$

$$86.75 + 1.3(-12) = 71 \text{ psf}$$

5.4(b) $1.1D + 0.5L + 1.2W$

$$1.1(86.75) + 0.5(20) + 1.2(-12) = 91 \text{ psf}$$

Horizontal Loads:

ACI-349, 4.) $E = 253 \text{ kips}$ 253 kips

ACI-349, 5.) $W = \frac{(29\text{psf})(12' \times 64')}{1000} = 22 \text{ kips}$

UCRL-15910, 5.4(a) $1.3W = \frac{1.3(29\text{psf})(12' \times 64')}{1000} = 29 \text{ kips}$

TWO-WAY SLAB BENDING & SHEAR: (Vertical Loads)

The roof slab is designed and constructed as a Two-Way slab system and shall be analyzed as such, according to ACI-349 Chapter 13 rules.

Use the "Direct Design Method" of chapter 13 :

- A minimum of 3 spans in each direction is required; 2736Z has 4 spans in the NS direction and 5 in the EW direction.
- Ratio of longest to shortest span, not greater than 2.0; 2736Z has $13.33'/7' = 1.9 : 0.K.$
- Successive span ratios not greater than 1/3 of the longer; 2736Z has $7'/14' = 1/2$ for one span, but since the shorter span has a weaker cross-section it is roughly equivalent to the 1/3 requirement.
- Columns may be offset by no more than 10%; 2736Z has 0% offsets.
- All loads are from gravity, and live loads do not exceed 3 times the dead load.

Total Factored Static Moment:

$$M_o = \frac{w_u l_2 l_n^2}{8}$$

w_u = factored load

l_2 = panel width

l_n = clear span, from the face of supports

$$M_o = \frac{156 \text{ psf} (14.167) (13.33)^2}{8}$$

$$M_o = 49,088 \text{ ft-lbs} = 589 \text{ in-kips}$$

Distribution of Static Moment: (ACI Section 13.6.3)

A3-6

Interior Span Negative Moment =	0.65 M_o	ACI, 13.6.3.2
Interior Span Positive Moment =	0.35 M_o	ACI, 13.6.3.2
End Span Interior Negative Moment =	0.70 M_o	ACI, 13.6.3.3
End Span Exterior Negative Moment =	0.30 M_o	ACI, 13.6.3.3
End Span Positive Moment =	0.50 M_o	ACI, 13.6.3.3

Distribution of Pos. & Neg. Moments to Panel Strips: (ACI 13.6.4)

$$l_2/l_1 = 14' / 14.167' = 0.99$$

$$\alpha_1 \text{ approx.} = \frac{bh^3 \text{ beam}}{bh^3 \text{ slab}} = \frac{17(9^3)}{151(6.5^3)} = 0.30$$

$$\alpha_1 l_2/l_1 = \cancel{0.20} \quad 0.30$$

β_t = 0.0, for masonry edge wall
2.5, for a monolithic concrete wall

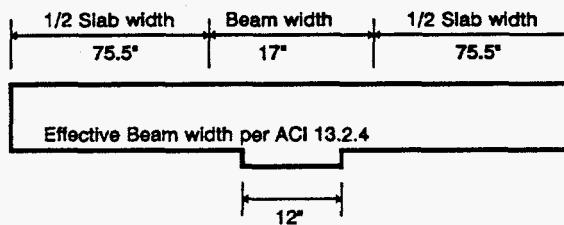
β_t = use 1.25 for a slab with an edge beam and a partially restraining precast wall.

Interior Negative Moment ACI, 13.6.4.1

Column Strip = 75% of the negative moment

Middle Strip = 25% of the negative moment

Exterior Negative Moment ACI, 13.6.4.2


Column Strip = 87.5% of the negative moment

Middle Strip = 12.5% of the negative moment

Positive Moment ACI, 13.6.4.4

Column Strip = 64.0% of the positive moment

Middle Strip = 36.0% of the positive moment

Orig RA Miller2-8-94 Checker ED Weiner 2-8-94

WHC-SD-CP-SA-023

Rev. 01

A3-7

Final Moment Distributions: When there are beams between supports.

Moment Type And Location	Moment in Panel	Column Strip	Middle Strip
Interior Span Negative Moment	$0.65M_o$	75%	25%
Interior Span Positive Moment	$0.35M_o$	64%	36%
End Span Interior Negative Moment	$0.70M_o$	75%	25%
End Span Exterior Negative Moment	$0.30M_o$	87.5%	12.5%
End Span Positive Moment	$0.50M_o$	64%	36%

Design Moments: *** ($M_o = 589$ in-kips)

Interior Span Negative Moment; Column Strip = $0.65 (0.75) M_o = 287$ in.-kips
 Middle Strip = $0.65 (0.25) M_o = 96$ in.-kips

Interior Span Positive Moment; Column Strip = $0.35 (0.64) M_o = 132$ in.-kips
 Middle Strip = $0.35 (0.36) M_o = 74$ in.-kips

End Span Interior Negative Moment; Column Strip = $0.70 (0.75) M_o = 309$ in.-kips
 Middle Strip = $0.70 (0.25) M_o = 103$ in.-kips

End Span Exterior Negative Moment; Column Strip = $0.30 (0.875) M_o = 155$ in.-kips
 Middle Strip = $0.30 (0.125) M_o = 22$ in.-kips

End Span Positive Moment; Column Strip = $0.50 (0.64) M_o = 188$ in.-kips
 Middle Strip = $0.50 (0.36) M_o = 106$ in.-kips

*** See further adjustments, next page.

Column Strip Positive Moments:

Shall be further divided between the beam and the slab

For $\alpha_1 l_2 / l_1 = 1.0$ Column strip beam resists 85% of strip moment

For $\alpha_1 l_2 / l_1 = 0.0$ Column strip beam resists 0% of strip moment

For $\alpha_1 l_2 / l_1 = 0.30$ Column strip beam resists $0.30(85\%) = 25\%$ of the strip moment. And the column strip slab resists $100 - 25 = 75\%$.

Interior Span, Column Strip, Positive Moment;	Beam =	$132 \times .25 =$	33 in.-kips
	Slab =	$132 \times .75 =$	99 in.-kips

End Span, Column Strip, Positive Moment;	Beam =	$188 \times .25 =$	47 in.-kips
	Slab =	$188 \times .75 =$	141 in.-kips

Chapter 13, Section 13.6.7

This section allows a further 10% readjustment in moments so long as the absolute sum of positive + negative moments ~~does~~ not fall below the minimum

~~does~~

$$\frac{w_u l_2 l_u^2}{8}$$

Orig R.A. Miller

2-8-94 Checker EO Werner 2-8-94

WHC-SD-CP-SA-023

Rev. 01

Page A3-9

Total Factored Shear Load:

$$Vu = \frac{156 \text{ psf}}{1000} \times 13.33' \times 13.33' = 27.7 \text{ kips, per panel}$$

13.9 kips, each end of member

Distribution of Shear Load:

Column strip, for Beam with $\alpha_1 = 1.0$: Fig. R13.6.8

$$Vu = \frac{156 \text{ psf}}{1000} \times \frac{14.2'}{2} \times 13.33 = 14.8 \text{ kips, per panel}$$

Column strip, for Beam with $\alpha_1 = 0.30$

$$\text{Beam } Vu = 0.30(14.8) = 4.4 \text{ kips, per panel}$$

2.2 kips, each end

$$\text{Slab } Vu = 14.8 - 4.4 = 10.4 \text{ kips, per panel}$$

5.2 kips, each end

Middle strip:

$$Vu = 27.7 - 14.8 = 12.9 \text{ kips, per panel}$$

6.5 kips, each end

Orig RA Miller 2-8-94 Checker ED Werner 2-8-94

WHC-SD-CP-SA-023

Rev. 0
A3-10

Middle Strip, Positive Moment Capacity:

$$h = 6.5"$$

$$d = h - 1.5" \text{ cover} - 1/2 \text{ bar } \phi$$

$$d = 4.8"$$

$$b = \frac{14.2'}{2} = 7.1' = 85"$$

column strip width = 7.1'

middle strip width = 7.1'

#3 bars @ 10" centers;

$$(12"/10") 7.1' = 8.52 \text{ bars} : 8 \text{ bars}$$

$$As (8 - \#3 \text{ bars}) = 0.88 \text{ si}$$

From Whitney stress block theory;

$$Asfy = 0.85f'c (ab) :$$

$$a = \frac{Asfy}{0.85 f'c (b)} \quad a = 0.16"$$

$$\text{Moment} = \phi Asfy (d - a/2)$$

$$\phi M_n = 0.9 (0.88 \times 40) (4.8 - 0.16/2) = 150 \text{ in-kips}$$

Slab Shear Capacity:

$$\text{Shear} = \phi 2 \sqrt{f'c} bd$$

$$\phi V_n = \phi 2 \sqrt{3000} (85") (4.8")$$

$$\phi V_n = \phi 45 \text{ kips} = 38 \text{ kips}$$

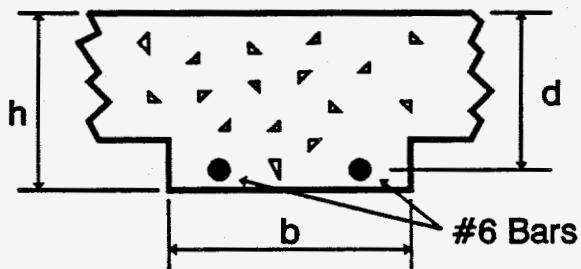
Orig RA Miller 2-8-94 Checker EO Werner 2-8-94

WHC-SD-CP-SA-023
Rev. 0/1
A3 - 11

Column Strip (Slab only), Positive Moment Capacity:

$$\phi M_n = 150 \text{ in.-kips} \frac{(7.1' - 1')}{7.1'} = 129 \text{ in.-kips}$$

Column Strip (Beam only), Positive Moment Capacity:


$$h = 9"$$

$$b = 12"$$

$$d = h - 1.5" \text{ cover} - 1/2 \text{ bar } \phi$$

$$d = 7.1"$$

$$A_s (2 - \#6 \text{ bars}) = 0.88 \text{ in.}^2$$

From Whitney Stress Block Theory and Equilibrium;

$$A_s f_y = 0.85 f'_c (a b)$$

$$a = \frac{A_s f_y}{0.85 f'_c (b)} \quad a = 1.15"$$

$$\text{Moment} = A_s f_y (d - a/2)$$

$$\phi M_n = .9 A_s f_y (7.1" - \frac{1.15"}{2}) = 207 \text{ in.-kips}$$

Beam Shear Capacity:

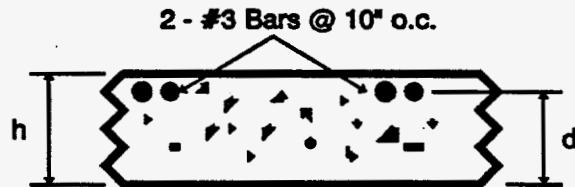
$$\text{Shear} = \phi 2 \sqrt{f'_c} b d$$

$$\phi V_n = \phi 2 \sqrt{3000} (12") (7.1")$$

$$\phi V_n = \phi 9.3 \text{ kips} = 8 \text{ kips}$$

Column & Middle Strip, Interior Neg. Moment capacity:

$$h = 6.5"$$


$$d = 4.8"$$

$$b = 85"$$

2 - #3 Bars @ 10" centers
 (#3 Bars @ 5" centers)

$$(12"/5") 7.1' = 17.04 \text{ bars}$$

$$As (17 - \#3 \text{ Bars}) = 1.87 \text{ si}$$

From Whitney Stress Block Theory:

$$Asfy = 0.85f'c (ab)$$

$$a = \frac{Asfy}{0.85f'c (b)} \quad a = 0.345"$$

$$\text{Moment} = 0.9Asfy (d - a/2)$$

$$\phi M_n = 0.9Asfy (4.8 - 0.345/2) = 312 \text{ in.-kips}$$

Column & Middle Strip, End Span Neg. Mom. Capacity:

$$h = 6.5"$$

$$d = 4.8"$$

$$b = 85"$$

$$\text{As for 8 - #3 Bars} = 0.88 \text{ si}$$

From Whitney Stress Block Theory:

$$Asfy = 0.85f'c (ab)$$

$$a = \frac{Asfy}{0.85f'c (b)} \quad a = 0.16"$$

$$\text{Moment} = 0.9Asfy (d - a/2)$$

$$\phi M_n = 0.9Asfy (4.8 - 0.16/2) = 150 \text{ in.kips}$$

Strength Check:

Moments : in.-Kips, Shears : Kips

Interior Span:

(-) Moment, Column Strip =	287 < 312	O.K.
Middle Strip =	96 < 312	O.K.
(+) Moment, Column Strip, Beam =	33 < 207	O.K.
Column Strip, Slab =	99 < 129	O.K.
Middle Strip =	74 < 150	O.K.

End Span, Interior Support:

(-) Moment, Column Strip =	309 < 312	O.K.
Middle Strip =	103 < 312	O.K.

End Span, Exterior Support:

(-) Moment, Column Strip =	155 > 150	*****
Middle Strip =	22 < 150	O.K.

End Span,

(+) Moment, Column Strip, Beam =	47 < 207	O.K.
Column Strip, Slab =	141 > 129	*****
Middle Strip =	106 < 150	O.K.

***** Using the 10% moment redistribution from 13.6.7:
155 in.-kips minus 10% = 139.5 \leftarrow 150 and thus O.K.
141 in.-kips minus 10% = 126.9 \leftarrow 129 and thus O.K.

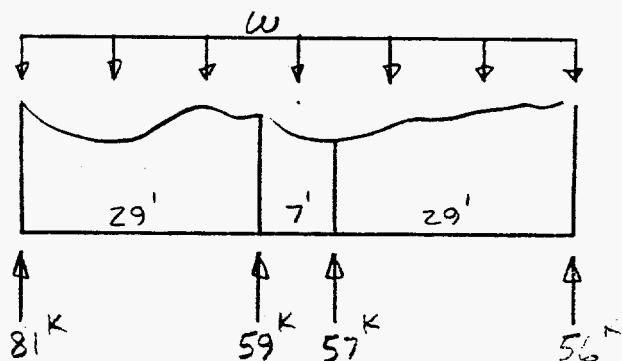
Shear,

Column Strip, Beam Shear =	2.2 < 8.0	O.K.
Column Strip, Slab Shear =	5.2 < 38	O.K.
Middle Strip =	6.5 < 38	O.K.

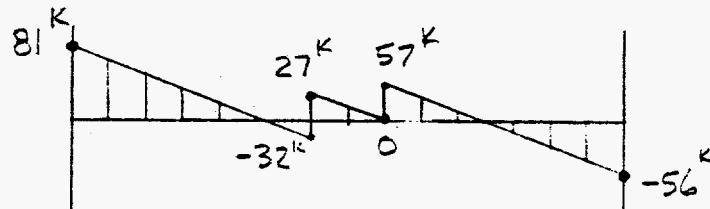
DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 6

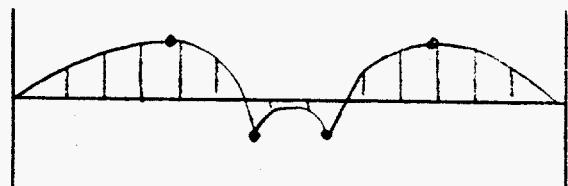
(1) Drawing _____ (2) Doc. No. _____ (3) Page A3-14 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator RA Hilla Date 2-8-94
 (9) Checker EO Werner Date 2-8-94


(10) Roof Diaphragm Action

Loads and wall reactions are from the
 "Lateral Load Resistance" section.


N.S. Loads

253 K


$$w = \frac{253}{65'} = 3.9 \text{ K/ft}$$

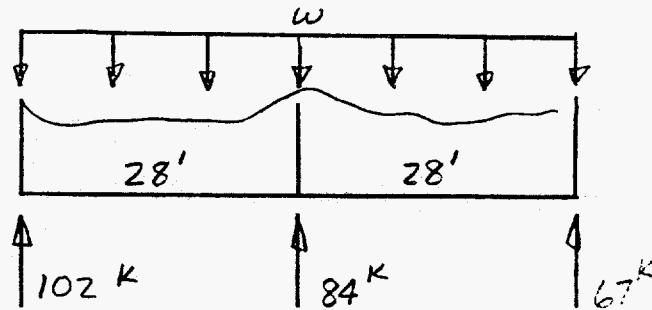
Shear diagram

Moment diagram

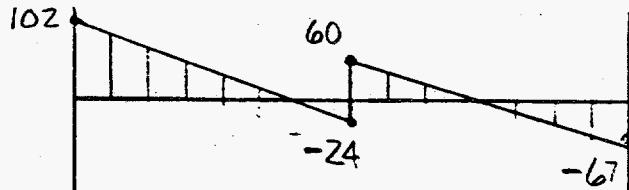
Maximum moment @ any point will not exceed $\frac{wl^2}{8}$ ∴ so design for $\frac{wl^2}{8}$

$$\frac{wl^2}{8} = \frac{3.9(29)^2}{8} = 410 \text{ ft-K}$$

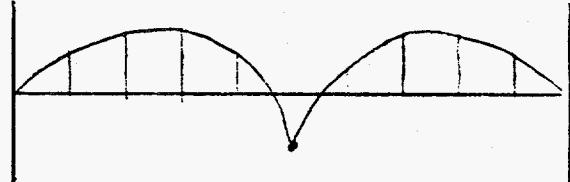
DESIGN CALCULATION


WHC-SD-CP-SA-023 Rev. 0

(1) Drawing _____ (2) Doc. No. _____ (3) Page A3-15 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator RA Diller Date 2-8-94
 (9) Checker EO Werner Date 2-8-94


(10)

EW Loads


$$w = 4.5^k$$

Shear diagram:

Moment diagram:

Maximum moment at any point will not exceed $\frac{wl^2}{8}$

$$\frac{wl^2}{8} = \frac{4.5(28)^2}{8} = 441^k$$

Design for larger of NS or EW Forces

102^k shear & 441^k moment

DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 01

(1) Drawing _____ (2) Doc. No. _____ (3) Page A3-16 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator RA Miller Date 2-8-94
 (9) Checker EO Werner Date 2-8-94

(10)

Shear Capacity Check

$$V_c = 2\sqrt{f_c} bd \quad \text{where } d = .8h$$

$$= 2\sqrt{3000} (6.5") (.8 \times 56' \times 12")$$

$$= 383^k$$

$$V_s = \frac{Av F_y d}{s}$$

$$= \frac{(0.11)(40 \text{ ksi})(.8 \times 56' \times 12")}{10''}$$

$$= 237^k$$

$$\phi V_n = .85(383 + 237) = 527^k > 102^k \quad \text{O.K.}$$

Moment Capacity Check

use wall beam reinf. as tension reinf. for the in-place roof slab bending.

$A_s = 1.24$ for 4-#5 bars

$$a = \frac{A_s F_y}{.85 f_c' b} = \frac{1.24 (40)}{.85 (3)(6.5)} = 3.00$$

$$\phi M_n = .9(A_s F_y)(d - \frac{1}{2}) = .9(1.24 \times 40)(.8 \times 56 \times 12 - \frac{3}{2})$$

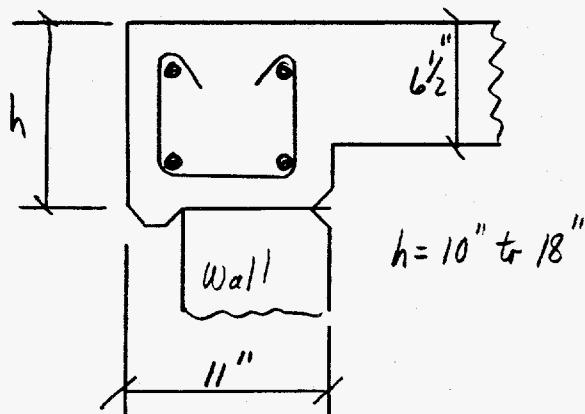
$$= 23,931''^k = 1994'^k > 441'^k \quad \text{O.K.}$$

DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 0

(1) Drawing _____ (2) Doc. No. _____ (3) Page A3-17 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator RA Hille Date 2-8-94
 (9) Checker ED Weiner Date 2-8-94

(10) WALL BEAM COMPRESSIVE FORCE ANALYSIS


Exterior Wall Beam

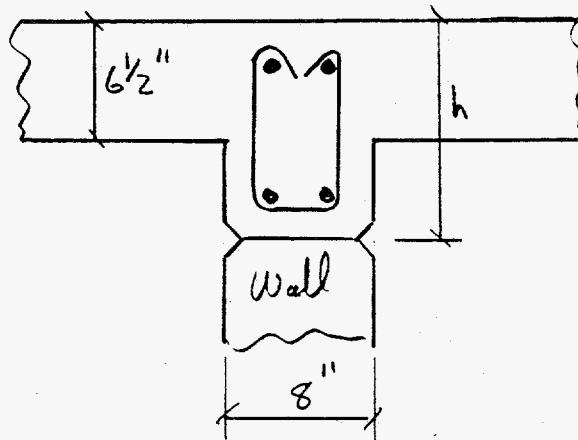
Gross Area:

$$11'' \times 10'' = 110 \text{ si}$$

to

$$11'' \times 18'' = 198 \text{ si}$$

H-2-26652 Section 39, 40


Interior Wall Beam

Gross Area:

$$8'' \times 10 = 80 \text{ si}$$

to

$$8'' \times 18'' = 144 \text{ si}$$

 $h = 10'' \text{ to } 18''$ H-2-26652 Section 41

DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 0

(1) Drawing _____ (2) Doc. No. _____ (3) Page A3-18 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator RA Diller Date 2-8-94
 (9) Checker EO Werner Date 2-8-94

(10) WALL BEAM CONT.

From the roof shear diagrams, the maximum total shear load to be transferred to wall shear is 102^k along one outside wall.

This 102^k shear load becomes compression in the wall beam before being transferred into the wall shear.

The 102^k compression load is transferred by shear friction and wall reinforcement to the wall, and the maximum compression load in the roof beam is the total load divided by the wall length and multiplied by the rebar spacing.

$$\frac{102^k}{(57' \times 12'')} \text{ 5" spacing} = 0.75^k$$

Check Capacity: (4- #5 bars $A_s = 1.24 \text{ in}^2$)

$$\begin{aligned} \phi P_n &= .8 \phi [.85 f'_c (A_g - A_s) + f_y A_s] \\ &= .8(.7) [.85 (3)(80 \text{ si} - 1.24) + 40(1.24)] \\ &= 140^k > 0.75^k \end{aligned}$$

O.K.

DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 0

(1) Drawing _____ (2) Doc. No. _____ (3) Page A3-19 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator RA Hille Date 2-8-94
 (9) Checker EO Werner Date 2-8-94

(10) Check Shear Friction

ACI-349 Section 11.7

$V_n = A_v f_y \mu$ A_v , steel reinf. for wall panels
and columns

30-#3 bars \times 4 wall panels

$$A_v = .11(30)4 = \underline{13.2 \text{ si}}$$

4-#5 bars \times 5 columns

$$A_v = .31(4)(5) = \underline{6.2}$$

$$A_v = 13.2 + 6.2 = \underline{19.4 \text{ si}}$$

$$f_y = 40 \text{ ksi}$$

$$\mu = 0.6$$

$$V_n = .85(19.4)40(0.6)$$

$$= 395.76^k > 102^k \quad O.K.$$

DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 0

(1) Drawing _____ (2) Doc. No. _____ (3) Page A3-20 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator RA Miller Date 2-8-94
 (9) Checker EW Werner Date 2-8-94

(10) Margins of Safety

$$MS = \frac{\text{Allowable}}{\text{Actual}} - 1$$

$$\text{Two Way Slab Bending} = \frac{129}{127.8} - 1 = 0.009$$

$$\text{Two Way Slab Shear} = \frac{9.3}{3.3} - 1 = 1.82$$

$$\text{In Plane Diaphragm Shear} = \frac{527}{102} - 1 = 4.17$$

$$\text{In Plane Diaphragm Bending} = \frac{1994}{441} - 1 = 3.52$$

$$\text{Wall Beam Compression} = \frac{140}{0.75} - 1 = 186$$

$$\text{Shear Friction} = \frac{396}{102} - 1 = 2.88$$

Orig RA Miller

2-8-94

Checker ED Werner 2-8-94

WHC-SD-CP-SA-023

Rev. 0/1

A3-21

Reinforcing Detail Check

ACI-349

Chapter 7

$\rho_{min} = .0018$ in each direction

$\rho = As/bd = .11/(10" \times 4.8") = .0023 > .0018$ O.K.

maximum slab spacing; $3h = 3 \times 6.5" = 19.5" > 10"$ O.K.

$18" > 10"$ O.K.

Chapter 13 In-plane, two-way bending (See figure 13.4.8)

maximum slab spacing; $2h = 2 \times 6.5" = 13" > 10"$ O.K.

Column strip straight top bars

hooked wall embedment required, hooked provided

50% slab development length (l_d) at 0.31 required

50% slab l_d at 0.21 required

100% slab l_d at 0.351 provided O.K.

Column strip straight bottom bars

6" straight wall embedment required, 7" provided

50% slab l_d at 1 - 3" required

50% slab l_d at 0.8751 required

100% slab l_d at 1.01 provided O.K.

Middle strip

same reinforcing provided and less reinf. required O.K.

Chapter 11 In-plane diaphragm action

For deep flexural members 11.8

$A_v > .0015 b_w s$

$.0015 (6.5" \times 5") = 0.04875$ si

0.11 si > 0.04875 si O.K.

$A_{vh} > .0025 b_w s_2$

$.0025 (6.5" \times 5") = 0.08125$ si

0.11 si > 0.08125 si O.K.

A4.0 WALL PANEL EVALUATION

WHC-SD-CP-SA-023

Rev. 1

Page A4-1

Orig R. Hill 7-12-94 Checker E. O. Werni 7-12-94

The 2736Z building wall panels are precast reinforced concrete panels. These panels have rebar extending outward 6" on the top edge and two sides edges which are then cast into the surrounding beams and columns. The bottom edge is left free during the beam and column construction with a 1/4" gap which is grouted-in after the rest of the building has been poured.

The precast wall panels act as shear wall units once the beam and column cast-in-place concrete has hardened. These shear wall units transfer the entire lateral load to the building foundation.

- **DESIGN LOADS AND LOAD COMBINATIONS**

rev. 12

Design loads are specified in SDC-4.1 ~~rev. 11~~, UCRL-15910 and ANSI A58.1. Load combinations are listed in UCRL-15910 and ACI-349.

- **SHEAR DIAPHRAGM STRENGTH ANALYSIS**

The wall provides lateral building shear resistance through diaphragm action, which is a shear check using ACI-349 chapter 11.

- **OUT-OF-PLANE BENDING**

The wall panels also experience out-of-plane bending which is checked with bending formulas obtained from "Roark's Formulas For Stress and Strain".

- **REINFORCING DETAIL CHECK**

Reinforcing details are found in several ACI-349 chapters. Minimum reinforcing is specified in chapter 7 and rebar anchorage in chapter 12. Shear strength, flexural strength and shear friction are found in chapters 10, 11 and 13.

DESIGN LOADSLength of Walls:

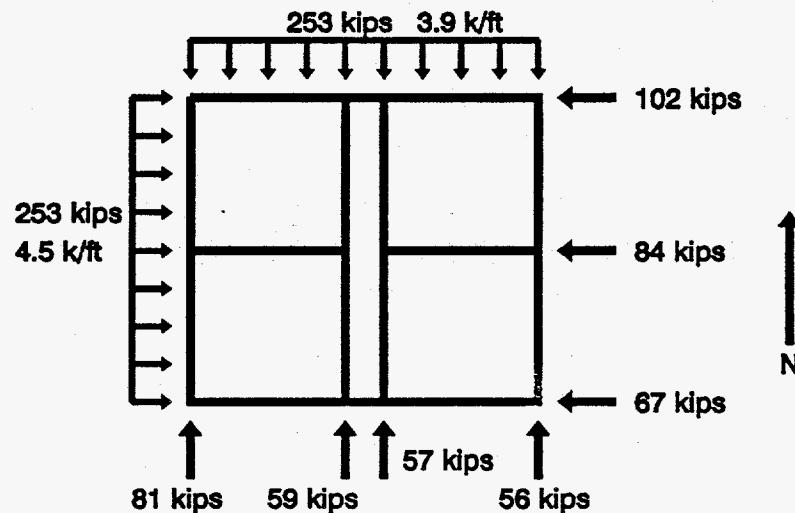
$$56' \times 4 + 64.33' \times 2 + 28.33' \times 2 = 409.32'$$

Vertical Loads:

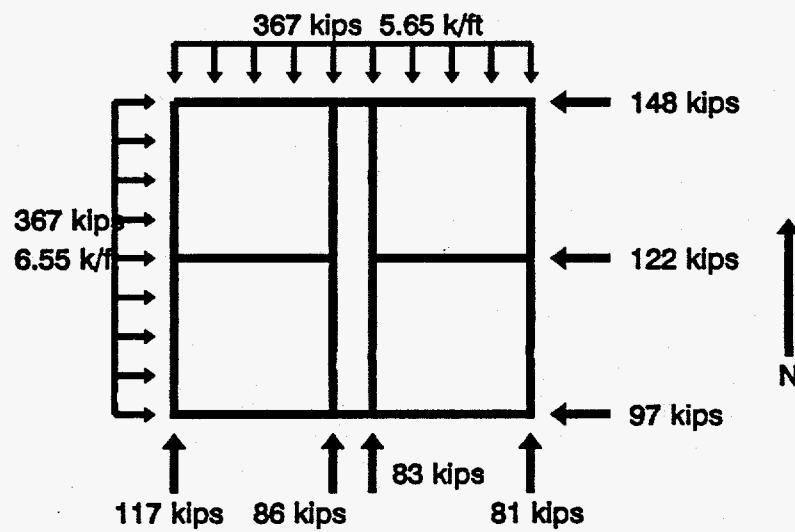
Dead Loads:

roof =	325 kips		
beams =	40 kips		
8" walls =	402 kips		Total = 767 kips

Live Loads:


roof =	75 kips
--------	---------

Earthquake Loads:

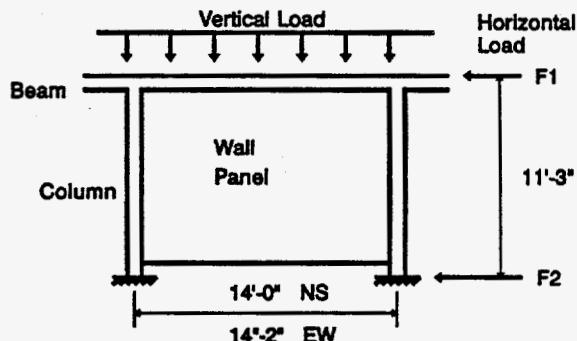

roof =	325 kips	X .25 =	81 kips	
beams =	40 kips	X .25 =	10 kips	
8" walls =	402 kips	X .25 =	101 kips	Total = 192 kips

Horizontal Loads:

Earthquake Loads at the roof level

Building Plan

Earthquake Loads at the Wall Bottom (includes the above roof level loads)


Building Plan

Load Combinations

28 wall panels not counting 7' in-fill walls

4 walls resist N.S. lateral loads, the two outside walls have 4 wall panels with no openings, the two inside walls have 2 door openings in the 4 wall panels so the walls are assumed to be only 85% effective in resisting lateral loads

3 walls, with 4 wall panels each, resist E.W. lateral loads

ACI-349 Section 9.2:

1.) $1.4D + 1.7L$

$$u = \frac{1.4(767^k) + 1.7(75^k)}{28 \text{ wall panels}} = 43 \text{ k/wall panel}$$

$$F = 0$$

4.) $D + L + E$

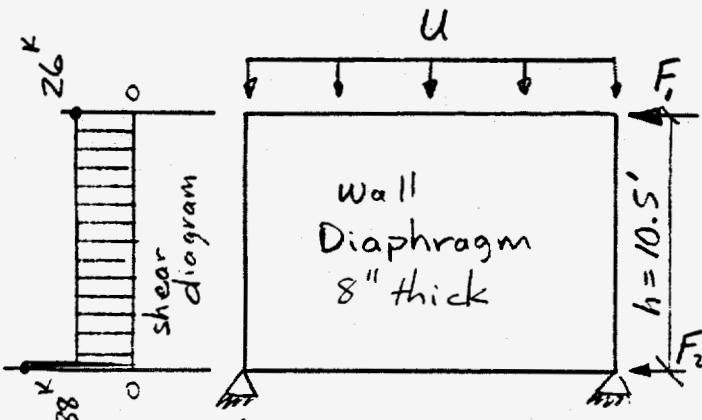
$$U = \frac{767^k + 75^k + 192^k}{28 \text{ wall panels}} = 37 \text{ k/wall panel}$$

$$F_1 = \frac{81^k}{4 \text{ wall panels}} = 20 \text{ k/wall panel} \quad \text{NS direction}$$

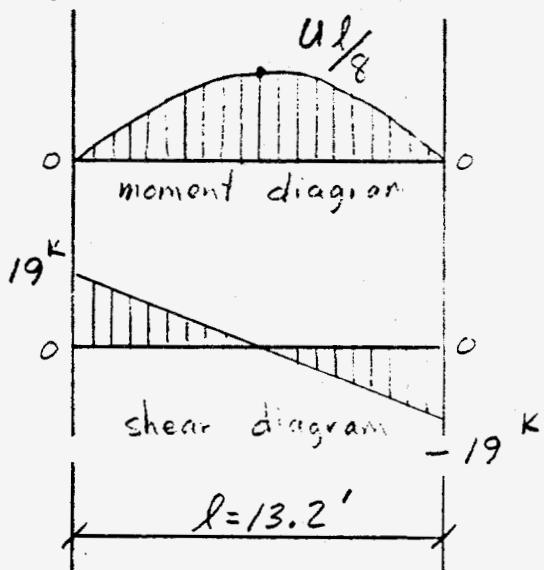
$$F_1 = \frac{102^k}{4 \text{ wall panels}} = 26 \text{ k/wall panel} \quad \text{EW direction}$$

$$F_2 = \frac{117^k - 81^k}{4 \text{ wall panels}} = 9 \text{ k/wall panel} \quad \text{NS direction}$$

$$F_2 = \frac{148^k - 102^k}{4 \text{ wall panels}} = 12 \text{ k/wall panel} \quad \text{EW direction}$$


(1) Drawing _____ (2) Doc. No. _____ (3) Page A4-5 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator R.A. Diller Date 2-8-94
 (9) Checker E.O. Werner Date 2-8-94

(10) SHEAR DIAPHRAGM ACTION ANALYSIS


$$U = 37 \text{ K} \quad \text{uniform load}$$

$$F_1 = 26 \text{ K}$$

$$F_2 = 12 \text{ K}$$

$$\frac{Ul}{8} = \frac{37 (13.2)}{8} = 61.1 \text{ K}$$

Check Capacity:

Bending:

$$a = \frac{AsF_y}{.85f_c'b} \quad (3 - \# 3 \text{ bars})$$

$$= \frac{.33(40)}{.85(3)(8)} = .65''$$

$$\phi M_n = AsF_y (d - \frac{a}{2})$$

$$= .33(40)(8.4 \times 12'' - .65/2)$$

$$= .9(1474 \frac{\text{in.}^3}{12}) \left(\frac{1}{12}\right) = 110.5 \text{ in.}^3 > 61 \text{ in.}^3 \text{ O.K.}$$

$$d = .8h = 8.4'$$

Note: Bending due to F_1 shows up as column compression due to overturning; see column analysis

DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 0

(1) Drawing _____ (2) Doc. No. _____ (3) Page A4-6 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator RA Miller Date 2-8-94
 (9) Checker EO Werner Date 2-8-94

(10) Check Capacity :

Use ACI-349 section 11.10 for shear in walls

Horizontal Shear:

$$10\sqrt{f'_c} hd = \frac{10\sqrt{3000} (8") (0.8 \times 13.2')}{1000} (12")$$

$$= 555^k > 38^k$$

$$V_c = 2\sqrt{f'_c} hd = \frac{2\sqrt{3000} 8" (0.8 \times 13.2' \times 12")}{1000}$$

$$= 111^k$$

$$V_s = \frac{Av_f y_d}{S_2} = \frac{.11(40)(0.8 \times 13.2)}{5"} (12")$$

$$= 112^k$$

$$\phi V_n = .85(111 + 112) = 190^k > 38^k \quad O.K.$$

Vertical Shear:

$$V_c = 2\sqrt{f'_c} hd = \frac{2\sqrt{3000} 8" (0.8 \times 10.5' \times 12")}{1000} = 88^k$$

$$V_s = \frac{Av_f y_d}{S_2} = \frac{.11(40)(0.8 \times 10.5)}{5"} 12" = 89^k$$

$$\phi V_n = .85(88 + 89) = 150^k > 19^k$$

Justification

$\Delta L_m = 12'' \neq 6''$ see page A4-11 for

Section 12.2.5

OK.

$$9 = 6.0'' = 0.0004 \Delta L_f = 0.0004 \left(\frac{3}{8} \right) (40) = 0.048''$$

OR

$$9 = 0.04 A_b f_y / \sqrt{f_c} = 0.04 (11) (40) / \sqrt{300} = 3.2'' < 6''$$

ACI-349-90 code:

OK.

$$20,000 \text{ psi} \text{ allowable stress} \times 115 = 2200 \# < 3965 \#$$

$$(6'' \text{ emb.}) (1.18'') (560 \text{ psi}) = 3965 \#$$

$$\text{bar circumference } D = \pi D = 1.18''$$

$$D = 0.375'' \frac{6.7 \sqrt{f_c}}{0.375} = 978 \text{ psi}$$

$$\text{allowable } \frac{D}{6.7 \sqrt{f_c}} \text{ } 560 \text{ psi, max}$$

ACI-318-63 design code:

Development length ΔL

(10) Check shear friction

(1) Drawing	(2) Doc. No.	(3) Page A4-7 of	(4) Building	(5) Rev.	(6) Job No.
WHC-SD-CP-SA-023	Rev. 1				
DESIGN CALCULATION					
(7) Subject	(8) Originator	(9) Checker			
R.A. A.I.L.	R.A. A.I.L.	R.O. A.I.L.			
Date 7-12-94					

DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 0

(1) Drawing _____ (2) Doc. No. _____ (3) Page A4-8 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator RA Miller Date 2-8-94
 (9) Checker EO Weiner Date 2-8-94

(10) Horizontal Shear Friction Force:

$$V_h = A_v f_y \mu \quad A_v = 31 \text{ bars} \times .11 = 3.41 \text{ si}$$

$$f_y = 40 \text{ ksi}$$

$$\mu = 0.6$$

$$\phi V_h = (3.41(40)0.6) \cdot 0.85$$

$$\phi V_h = 69^k > 38^k \text{ O.K.}$$

Vertical Shear Friction Force:

$$V_h = A_v f_y \mu \quad A_v = 25 \text{ bars} \times .11 = 2.75 \text{ si}$$

$$f_y = 40 \text{ ksi} \quad \mu = 0.6$$

$$\phi V_h = (2.75(40)0.6) \cdot 0.85$$

$$\phi V_h = 56^k > 19^k \text{ O.K.}$$

(1) Drawing _____ (2) Doc. No. _____ (3) Page A4-9 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator P.A. Miller Date 7-12-94
 (9) Checker ED. Werner Date 7-13-94

(10) OUT-OF-PLANE BENDING

Typical wall panels have 3 edges supported and the bottom edge free. From "ROARK" the stresses are as follows:

Page 461 2a.

$$\text{Max } \sigma = \frac{\beta q b^2}{t^2} \quad \beta = .54 \quad @ \frac{q}{b} = \frac{10.5'}{13.2'} = 0.8$$

$$= \frac{.54 q (13.2')^2}{(8''/12'')^2} = 211.5 \frac{q}{2}$$

$$q = \frac{(6'' + 8'' \text{ walls}) (150 \text{ psf}) (.38q)}{12''} = .0665 \text{ ksf}$$

$$\text{Max } \sigma = 211.5 (.0665) = 14.06 \text{ ksf}$$

$$M_u = \sigma S_b = 14.06 \frac{(3/12)^2}{6} (1) = 1.04 \frac{\text{ft-k}}{A}$$

$$A_{sf} = .85 f_c' ab \quad \therefore a = \frac{A_{sf}}{.85 f_c' b} = \frac{.264 (40)}{.85 (3)(12)} = .345''$$

$$M_n = A_{sf} (d - \frac{a}{2}) = .264 (40) (4 - \frac{.345}{2})$$

$$= 40.4 \frac{\text{ft-k}}{A}$$

$$\phi M_n = .9 (40.4) (\frac{1}{12}) = 3.03 \frac{\text{ft-k}}{A} > 1.04 \frac{\text{ft-k}}{A}$$

Note: Equipment loads will effect the above calculations see equipment qualification analysis WHC-SD-CP-SA-026.

DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 0

(1) Drawing _____ (2) Doc. No. _____ (3) Page A4-10 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator RA Miller Date 2-8-94
 (9) Checker EO Werner Date 2-8-94

(10) Margins of Safety

$$M.S. = \frac{\text{Allowable}}{\text{Actual}} - 1$$

$$\text{In Plane Wall Bending} = \frac{99.3}{61} - 1 = 0.63$$

$$\text{In Plane Vert. Wall Shear} = \frac{150}{19} - 1 = 6.89$$

$$\text{In Plane Horiz Wall Shear} = \frac{190}{38} - 1 = 4.00$$

$$\text{In Plane Shear Friction} = \frac{69}{38} - 1 = 0.82$$

$$\frac{\text{Development length}}{\text{Bond Stress}} = \frac{6''}{3.2} - 1 = 0.875$$

$$\text{Out of Plane Bending} = \frac{3.03}{1.04} = 1.913$$

ACI-349

Chapter 14; wall design refers to sections 7.12 & 11.10 for reinforcing.

Chapter 7.12 $\rho_{min.} = .0012$ in each direction

Chapter 11.10, $\rho_{min.} = .0025$ for walls in horizontal direction

$\rho_{min.} = .0025$ for walls in vertical direction

$$\rho = As/(bs_2)$$

$$= (.11 si)/(8" \times 5") = .00275 > .0025 \text{ O.K.}$$

$$s_2 \text{ maximum} = 1_w/5 = 158"/5" = 31.6" > 5" \text{ O.K.}$$

$$= 18" > 5" \text{ O.K.}$$

Chapter 12,

The 6" embedment length of wall reinforcing into beams and columns does not meet current ACI-349-90, 12.2.5 code requirement of 12".

The rebar bond stress was calculated using both the original ACI-318-63 design code and the current ACI-349 building code and found to be acceptable;

ACI-318-63

Bonding strength for a #3 bar with 6" embed. = 3,965 lbs.

Allowable bar tension for #3 bar = 2,200 lbs.

Margin of safety = 0.80 O.K.

ACI-349-90 12.2.2

Min. embed for bonding of a #3 bar = 6.0"

Actual embed. = 6"

Margin of Safety = 0.0 O.K.

A5.0 COLUMN EVALUATION

Orig RA Miller 2-8-94 Checker EO Weiner 2-8-94

WHC-SD-CP-SA-023
Rev. 0/1
Page A5-1

The 2736Z building columns are cast-in-place columns poured monolithic with the beams and foundation wall, and are used to secure the precast wall panels in place. Some of the columns are laterally supported by the wall panels and thus have no bending or slenderness considerations. The remaining columns are not laterally supported in one or both directions and thus do have bending moments to be considered.

- **DESIGN LOADS AND LOAD COMBINATIONS**

rev. 12.

Design loads are specified in SDC-4.1 rev.11, UCRL-15910 and ANSI A58.1. Load combinations are listed in UCRL-15910 and ACI-349.

- **COMPRESSIVE STRENGTH ANALYSIS**

Check column compression using ACI-349 chapter 10 and the column design charts of ACI-340.2R. All columns in the 2736Z building are braced against side sway and they have three different types of lateral support. The three types are, full support both directions (18 columns), full support in one direction only (8 columns) and no lateral support (4 columns).

- **SHEAR STRENGTH ANALYSIS**

All lateral building loads are transferred to the foundation through column base shear. Twenty columns resist the NS direction shear and 18 resist the EW direction shear. Some columns resist shear in both directions and will be checked for combined effects.

- **REINFORCING DETAIL CHECK**

Reinforcing details are found in several ACI-349 chapters. Minimum reinforcing is specified in chapter 10 and rebar anchorage in chapter 12. Shear strength, flexural strength and shear friction are found in chapters 10 and 11.

Orig RA Miller 2-8-94 Checker EO Weiner 2/8/94

WHC-SD-CP-SA-023

Rev. 8
Page A5-2

DESIGN LOADS:

Vertical Loads:

Dead Loads

roof =	325 kips	
beams =	40 kips	
8" walls =	402 kips	
columns =	44 kips	Total = 811 kips

Live Loads

roof =	75 kips	Total = 75 kips
--------	---------	-----------------

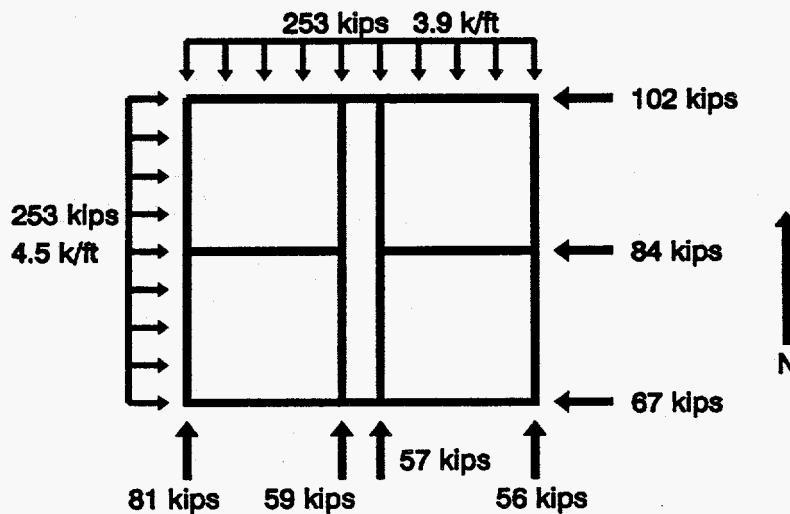
Earthquake Loads

roof =	325	X .25 =	81 kips
beams =	40	X .25 =	10 kips
8" walls =	402	X .25 =	101 kips
columns =	44	X .25 =	11 kips
			Total = 203 kips

Orig RA Miller

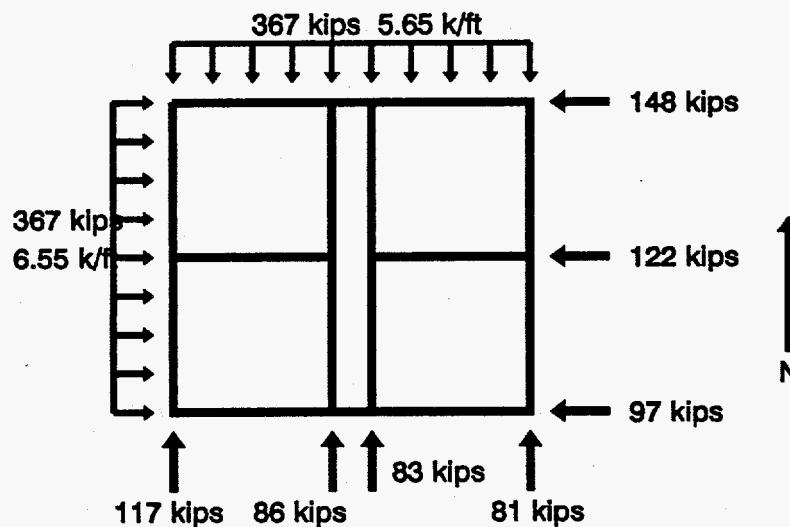
2-8-94

Checker Ed Werner 2-8-94


WHC-SD-CP-SA-023

Rev. 01

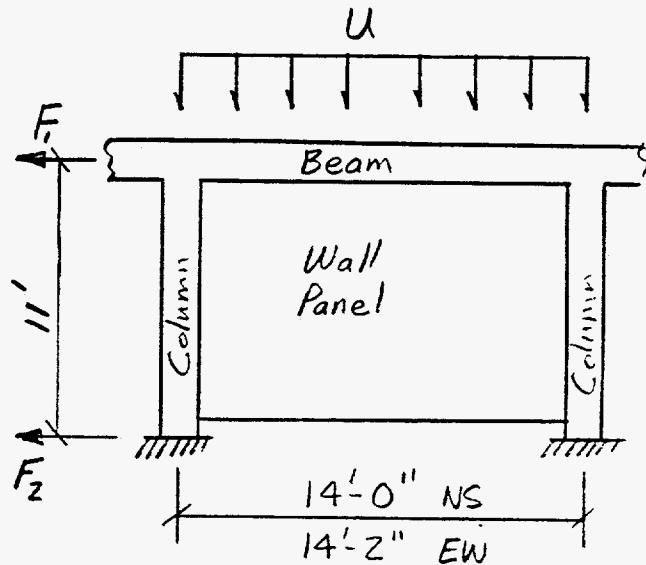
Page AS-3


Horizontal Loads:

Earthquake Loads at the roof level

Building Plan

Earthquake Loads at the column base (includes the above roof level loads)



Building Plan

DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 0

(1) Drawing _____ (2) Doc. No. _____ (3) Page 15-4 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator RA Diller Date 2-8-94
 (9) Checker EG Weiner Date 2-8-94

(10) LOAD COMBINATIONSACI-349 Section 9.2 :

1.) $1.4D + 1.7L$

$$U = \frac{1.4(811) + 1.7(75)}{30 \text{ Columns}} = 42.1^k \quad F = 0$$

4.) $D + L + E$

$$U = \frac{811 + 75 + 203}{30 \text{ Columns}} = 36.3^k$$

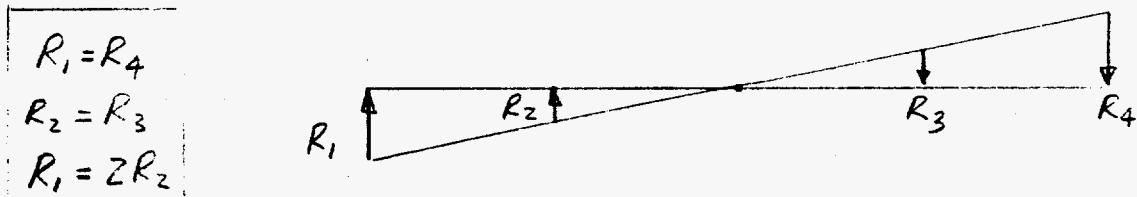
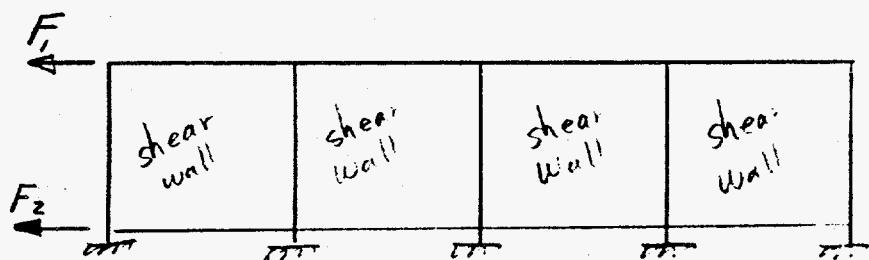
$$F_1 = 253^k \therefore 81^k \text{ highest loaded wall NS} / 102^k \text{ highest loaded wall EW}$$

$$F_2 = 367^k \therefore 117^k \text{ highest loaded wall NS} / 148^k \text{ highest loaded wall EW}$$

DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 0

(1) Drawing _____ (2) Doc. No. _____ (3) Page AS-5 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator RA Miller Date 2-8-94
 (9) Checker EO Weiner Date 2-8-94



(10) COMPRESSION ANALYSIS

Compression due to vertical load :

$$U = 36.3^k / \text{column}$$

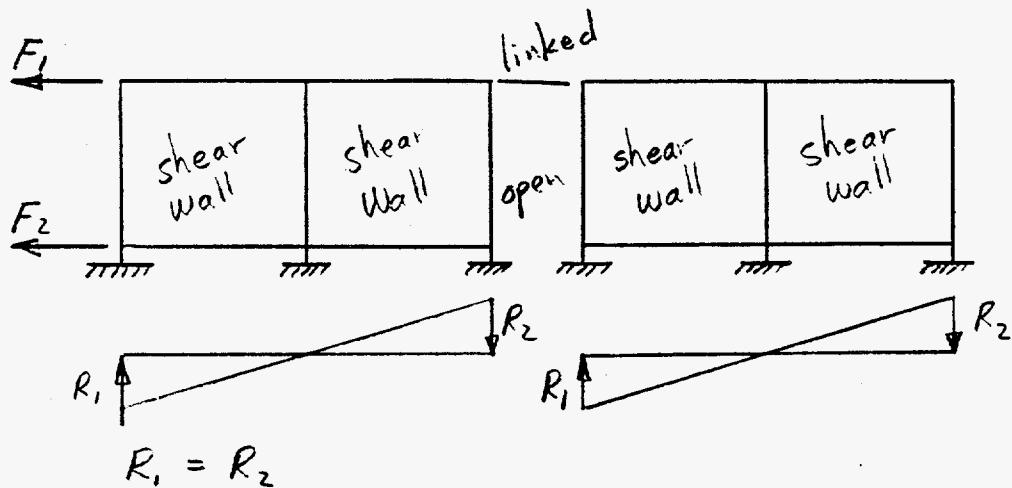
Compression due to horiz. loads :

N.S. direction : (4 wall lines)

$$\begin{aligned}
 F_x (11.0') &= R_1 (56') + R_2 (28') \\
 &= 2R_2 (56') + R_2 (28') \\
 &= 140 R_2
 \end{aligned}$$

$$R_2 = \frac{F_x (11.0')}{140} = \frac{(81^k) 11.0}{140} = 6.4^k$$

$$R_1 = 2R_2 = 12.7^k$$


DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 01

(1) Drawing _____ (2) Doc. No. _____ (3) Page AS-6 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator RA Miller Date 2-8-94
 (9) Checker EO Werner Date 2-8-94

(10) Compression due to horiz. Loads

EW direction :

$$F_1(11.0') = R_1(28.4')$$

$$R_1 = \frac{F_1(11.0)}{28.4} \quad \text{where } F_1 = \frac{102^k}{2} = 51^k$$

$$= \frac{51(11)}{28.4} = 20^k$$

DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 0

(1) Drawing _____ (2) Doc. No. _____ (3) Page A5-7 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator RA Miller Date 2-8-94
 (9) Checker EO Weimer Date 2-8-94

(10) Total Compression Load:

Use 100-40-40 method to combine
earthquake direction effects

$$\begin{aligned}
 P_u &= \frac{D + L + 4E_v}{30 \text{ columns}} + 1.0 E_{EW} + 0.4 E_{NS} \\
 &= \frac{811 + 75 + .4(203)}{30} + 20^k + .4(12.7^k) \\
 &= 57^k
 \end{aligned}$$

ACI-349 Section 10.3

$$\begin{aligned}
 \phi P_n &= .8 \phi [.85 f'_c (A_g - A_s) + f_y A_s] & A_s &= 1.24 \\
 &= .8(.7) [.85 \times 3 (96 - 1.24) + 40 \times 1.24] & A_g &= 96 \\
 &= 163^k > 57^k & \text{O.K.}
 \end{aligned}$$

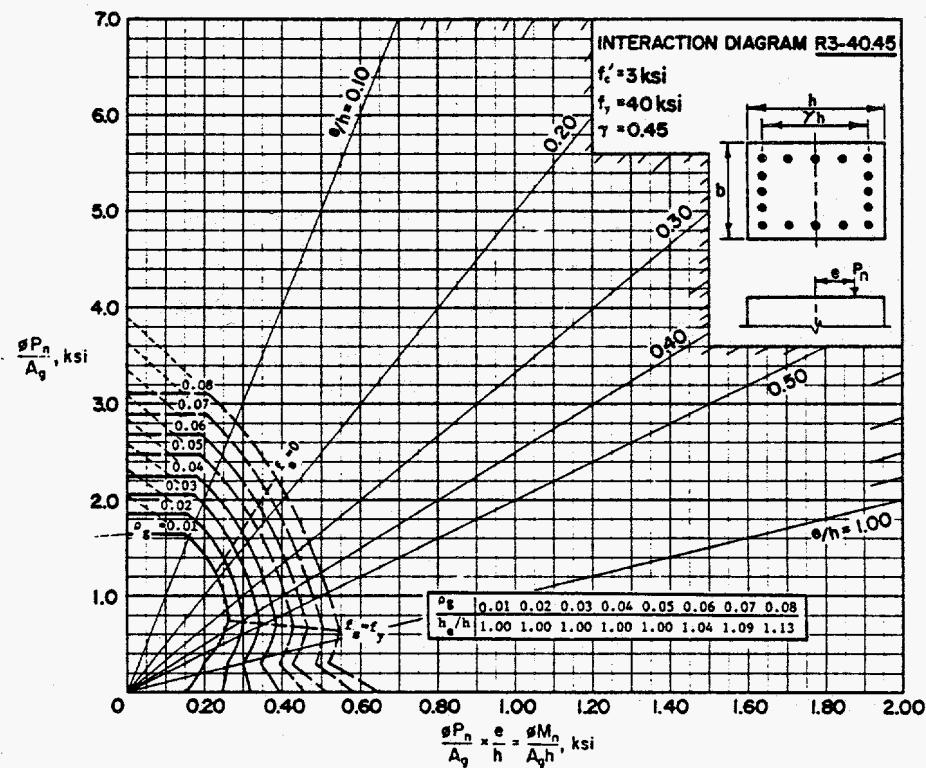
DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 01

(1) Drawing _____ (2) Doc. No. _____ (3) Page A5-8 of _____
(4) Building _____ (5) Rev. _____ (6) Job No. _____
(7) Subject _____
(8) Originator RA Diller Date 2-8-94
(9) Checker EO Weiner Date 2-8-94

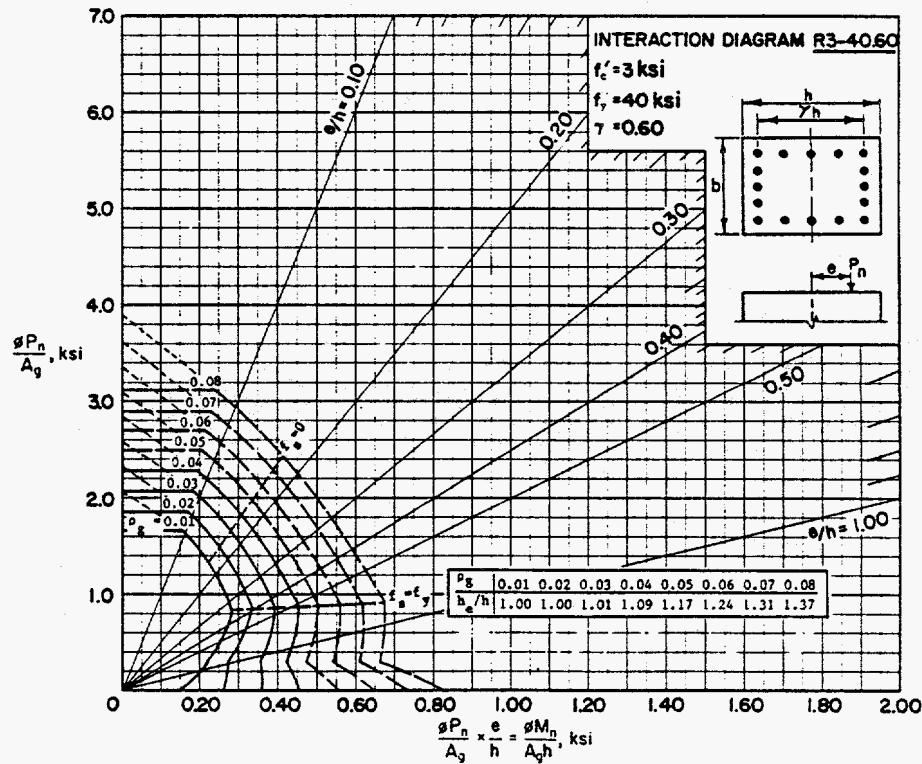
(10) Check Combined Bending & Compression

4 columns are not laterally supported in either direction, and thus have biaxial bending. See drawing H-2-26650 Foundation Plan for column.


(H.8 - 16.5)
(H.8 - 14.7)
(L - 16.5)
(L - 14.7)

8 columns are laterally supported in one direction only. See drawing H-2-26650 Foundation Plan for column.

(H.1 - 16.5)
(H.1 - 14.7)
(H.8 - 17.3)
(H.8 - 14.1)
(L - 17.3)
(L - 14.1)
(M - 16.5)
(M - 14.7)


COLUMNS 7.1.1—Load-moment strength interaction diagram for R3-40.45 columns

References: ACI 318-83, Sections 9.3.2.2, 10.2, and 10.3; ACI Publication SP-7, pp. 152-182

COLUMNS 7.1.2—Load-moment strength interaction diagram for R3-40.60 columns

References: ACI 318-83, Sections 9.3.2.2, 10.2, and 10.3; ACI Publication SP-7, pp. 152-182

For use of these Design Aids, see Columns Examples 1-8 and 11-16.

DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 0

(1) Drawing _____ (2) Doc. No. _____ (3) Page AS-10 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator RA Dilla Date 2-8-94
 (9) Checker EO Werner Date 2-8-94

(10) Biaxial ColumnsFactored load $P_u = 42.1^K$

From roof analysis :

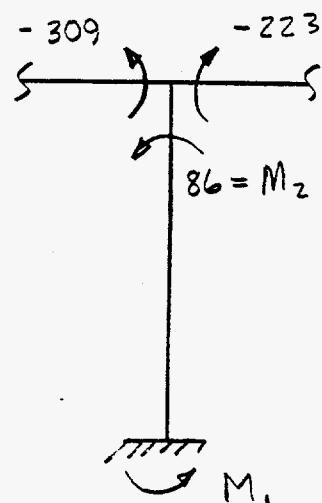
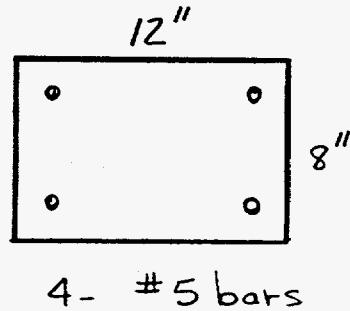
$$\begin{aligned} \text{Interior span end moment} \\ = -287 \text{ "K} \end{aligned}$$

$$\begin{aligned} \text{Exterior span end moment} \\ = -309 \text{ "K} \end{aligned}$$

Interior span (dead load only) end moment

$$= \left(\frac{1.4 \times 86.75 \text{ psf}}{156 \text{ psf}} \right) 287 = 223 \text{ "K}$$

Maximum unbalance end moment



$$= 309 - 223 = 86 \text{ "K} \text{ each way}$$

Base moment M_1 $= \frac{1}{2}$ top moment M_2

$$= 43 \text{ "K}$$

see Blodgett 8.1-18

Fig 5E

DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 0

(1) Drawing _____ (2) Doc. No. _____ (3) Page AS-11 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator RA Miller Date 2-8-94
 (9) Checker EO Weiner Date 2-8-94

(10)

β_d Ratio of dead to total load

$$= \frac{86.75 \text{ psf}}{86.75 + 20} = .81$$

l_u Column length $K = 1.0$

$$= 10' - 10'' = 130''$$

E_c Concrete modulus (ACI-349 8.5)

$$= 57000 \sqrt{f_c'} = 3122000 \text{ psi}$$

I_g strong axis

$$= \frac{(12)^3 8}{12} = 1152 \text{ in}^4$$

I_g weak axis

$$= \frac{(8)^3 12}{12} = 512 \text{ in}^4$$

EI (from ACI-349 10.11)

$$= \frac{E_c I_g / 2.5}{1 + \beta_d}$$

$$= 794,816,353$$

strong axis

$$= 353,251,712$$

weak axis

DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 0

(1) Drawing _____ (2) Doc. No. _____ (3) Page A5-12 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator RA Koller Date 2-8-94
 (9) Checker EO Weiner Date 2-8-94

(10) Strong Axis Magnified Moment (ACI-349 10.11)

P_c buckling load

$$= \frac{\pi^2}{(kl_a)^2} EI = 464,173 = 464^K$$

$$C_m = .6 + .4 \left(\frac{M}{M_2} \right) = .6 + .4 \left(\frac{-43}{86} \right) = .4$$

$$\delta = \frac{C_m}{1 - \frac{P_u}{\phi P_c}} = .44 \Rightarrow 1.0 \quad \text{No Magnification}$$

$$M_c = M_2 = 86^{11.0} K$$

Weak Axis Mag. Moment

$$P_c = \frac{\pi^2}{(kl_a)^2} EI = 206,299 = 206^K$$

$$C_m = .4$$

$$\delta = \frac{C_m}{1 - \frac{P_u}{\phi P_c}} = .56 < 1.0 \quad \text{No Mag}$$

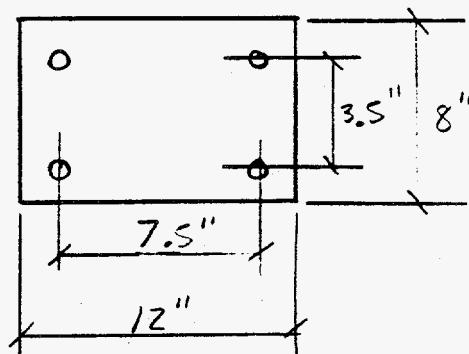
DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 0

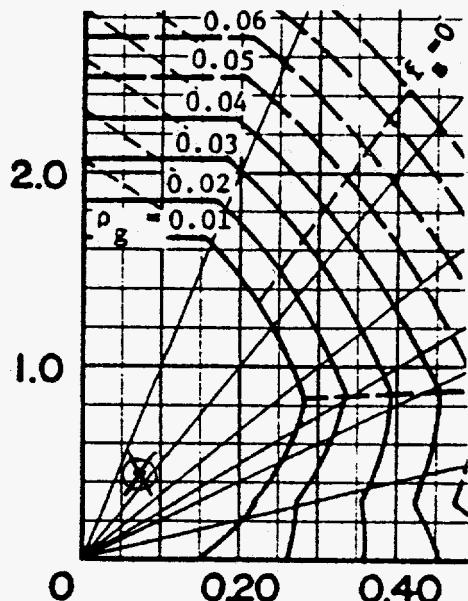
(1) Drawing _____ (2) Doc. No. _____ (3) Page A5-13 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator R.A. Miller Date 2-8-94
 (9) Checker EO Weiner Date 2-8-94

(10) Strength Check

Using the Interaction diagrams of
ACI-340.2R-85 design handbook.


$$f_c' = 3 \text{ ksi} \quad f_y = 40 \text{ ksi}$$

Strong Axis:


$$\gamma = \frac{7.5''}{12''} = .625 \approx .6$$

Use Chart 7.1.2

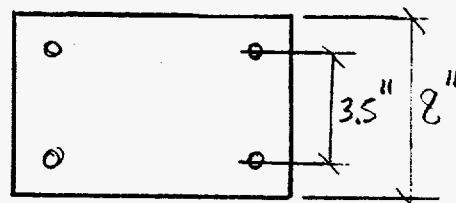
$$P_g = (.31) \frac{4}{8 \cdot 12} = .0129$$

$$\frac{P_u}{A_g} = \frac{42.1}{8 \cdot 12} = .44 \text{ ksi} \quad \frac{M_u}{A_g h} = \frac{86}{8 \cdot 12 \cdot 12} = .075 \text{ ksi}$$

Acceptable - well within
the interaction $P_g = .01$
curve. \otimes

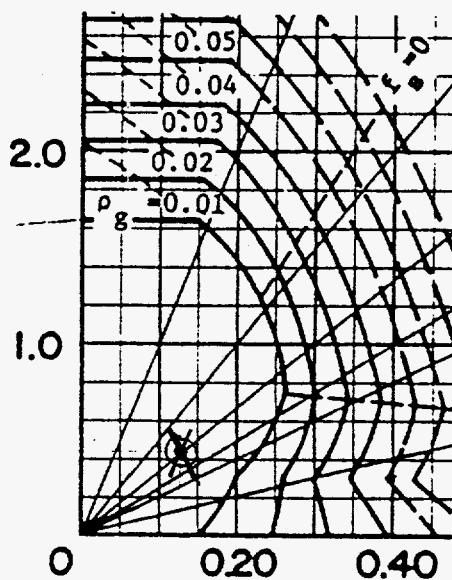
DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 0


(1) Drawing _____ (2) Doc. No. _____ (3) Page A5-14 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator RA Miller Date 2-8-94
 (9) Checker EO Werner Date 2-8-94

(10) Weak Axis :

$$\gamma = \frac{3.5''}{8''} = .44 \approx .45$$


$$h = 8'' \quad A_g = 8 \times 12''$$

$$P_g = .0129$$

$$\frac{P_u}{A_g} = .44 \text{ ksi} \quad \frac{M_u}{A_g h} = \frac{86}{8 \cdot 12 \cdot 8} = .112 \text{ ksi}$$

use chart 7.1.1

Acceptable :

Well within the

 $P_g = .01$ curve

DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 0

(1) Drawing _____ (2) Doc. No. _____ (3) Page A5-15 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator RA Miller Date 2-8-94
 (9) Checker EW Werner Date 2-8-94

(10) Biaxial Bending

Use ACI-340.2R-85 design charts

$P_u = 57^k$ (from vertical & horz. loads)

$$\phi P_n = 163^k \quad \phi P_o = \frac{\phi P_n}{.8} = 204^k$$

$$\frac{\phi P_n'}{\phi P_o} = \frac{P_u}{\phi P_o} = \frac{57}{204} = .28$$

$$\rho_g f_y / f'_c = .01(40)/3 = .13$$

$\beta = .62$ from chart 11.1.1

$$\frac{\phi P_n}{A_g} = \frac{P_u}{A_g} = \frac{57}{8'' \times 12''} = .59 \text{ ksi}$$

$$\frac{\phi M_{max}}{A_g h} = .243 \text{ ksi} @ \text{ Table R3-40}$$

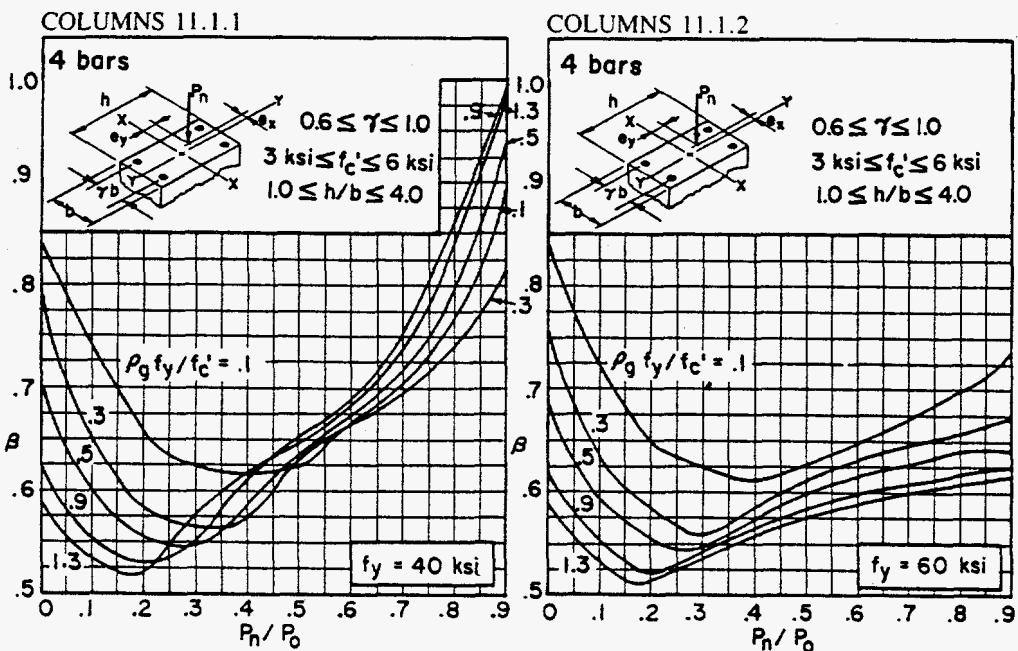
$$\chi = .6$$

Between points (5) & (6)

$$\rho_g = .01$$

$$\phi M_{max} = .243(8'' \times 12'') 8''$$

$$= 187 \text{ in. k} \quad \text{simultaneous moments}$$

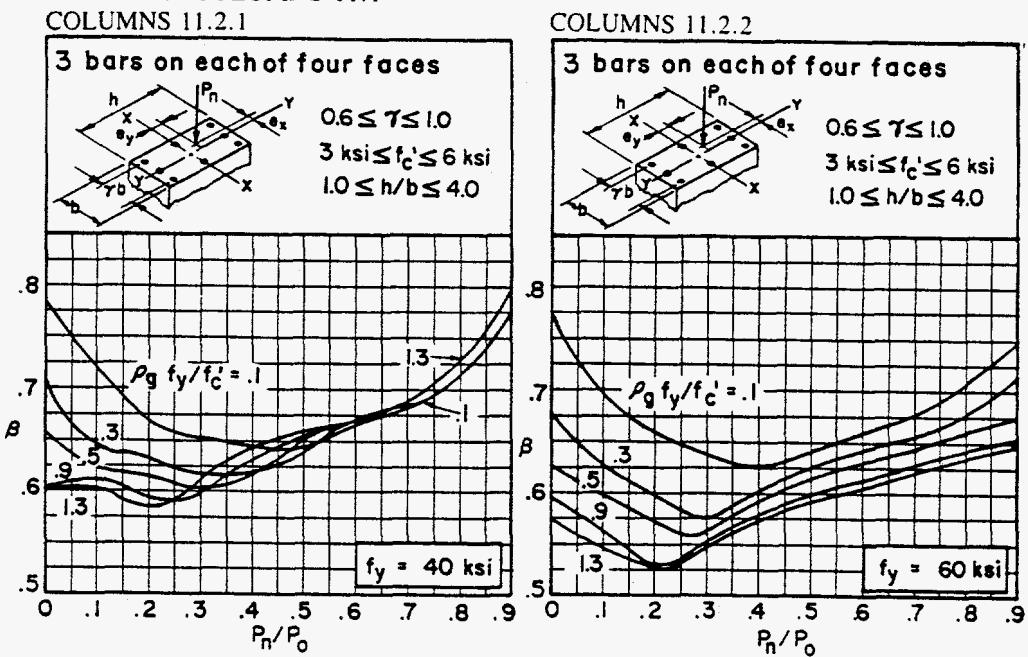

$$187 \text{ in. k} > 86 \text{ in. k} \quad \text{O.K.}$$

COLUMNS 11.1—Biaxial bending design constant* β —For rectangular columns with two bars on each of four faces

Reference: Parme, Alfred, L.; Nieves, Jose M.; and Gouwens, Albert, "Capacity of Reinforced Rectangular Columns Subject to Biaxial Bending," ACI JOURNAL, Proceedings V. 63, No. 9, Sept. 1966, pp. 911-923

COLUMNS

11.1



COLUMNS 11.2—Biaxial bending design constant* β —For rectangular columns with three bars on each of four faces

Reference: same as for COLUMNS 11.1

COLUMNS

11.2

* β = constant portion of uniaxial factored moment strengths M_{nux} and M_{nuy} which may be permitted to act simultaneously on the column cross section; value of β depends on P_n / P_o and properties of column material and cross section

For use of this Design Aid, see Columns Examples 13 and 16.

COLUMNS 8.1—Basic limits of factored axial load and factored columns (Design load and moment strengths)

References: ACI 318-83, Sections 9.3.2.2, 10.2, and 10.3; ACI Publication SP-7, pp. 152-182

AS-17

COLUMNS
8.1

BASIC LIMITS TABLE R3-40												
Rectangular column with bars on four faces												
ρ_g	$\frac{\phi P_n}{A_g}$ maximum P_u/A_g		$f_s = 0$		$f_s = 0.5f_y$		$f_s = f_y$		ϕ changes		$P_u = 0$	
	$\frac{\phi P_n}{A_g}$	$\frac{\phi M_n}{A_g h}$	$\frac{\phi P_n}{A_g}$	$\frac{\phi M_n}{A_g h}$	$\frac{\phi P_n}{A_g}$	$\frac{\phi M_n}{A_g h}$	$\frac{\phi P_n}{A_g}$	$\frac{\phi M_n}{A_g h}$	$\frac{\phi P_n}{A_g}$	$\frac{\phi M_n}{A_g h}$	$\frac{\phi M_n}{A_g h}$	
R3-4045 $\gamma = 0.45$												
.01	1.638	.150	1.246	.232	.963	.254	.742	.259	.349	.300	.197	.1512
.02	1.847	.158	1.391	.253	1.031	.286	.730	.300	.411	.300	.261	.2453
.03	2.057	.167	1.537	.274	1.100	.317	.718	.341	.475	.300	.300	.3223
.04	2.267	.176	1.683	.295	1.168	.348	.706	.382	.542	.300	.345	.3938
.05	2.477	.185	1.828	.316	1.236	.380	.694	.424	.610	.300	.397	.4567
.06	2.686	.195	1.974	.337	1.305	.411	.682	.465	.681	.300	.429	.5180
.07	2.896	.205	2.120	.358	1.373	.442	.670	.506	.755	.300	.485	.5803
.08	3.106	.214	2.265	.379	1.441	.473	.658	.547	.831	.300	.520	.6411
R3-4060 $\gamma = 0.60$												
.01	1.638	.155	1.367	.222	1.071	.264	.841	.279	.331	.300	.262	.1498
.02	1.847	.167	1.520	.250	1.155	.307	.851	.336	.394	.300	.271	.2618
.03	2.057	.180	1.673	.277	1.239	.349	.861	.392	.455	.300	.358	.3617
.04	2.267	.193	1.826	.305	1.323	.392	.871	.449	.515	.300	.424	.4576
.05	2.477	.206	1.979	.333	1.408	.435	.881	.506	.574	.300	.473	.5523
.06	2.686	.219	2.132	.360	1.492	.478	.891	.563	.631	.300	.541	.6444
.07	2.896	.233	2.285	.388	1.576	.521	.901	.619	.687	.300	.609	.7332
.08	3.106	.246	2.438	.416	1.660	.564	.911	.676	.742	.300	.663	.8193
R3-4075 $\gamma = 0.75$												
.01	1.638	.161	1.487	.204	1.171	.267	.936	.295	.315	.300	.211	.1525
.02	1.847	.179	1.646	.239	1.263	.320	.962	.367	.381	.300	.316	.2869
.03	2.057	.197	1.805	.273	1.354	.373	.989	.438	.443	.300	.484	.4157
.04	2.267	.215	1.964	.307	1.446	.426	1.015	.510	.583	.300	.483	.5339
.05	2.477	.233	2.123	.341	1.538	.479	1.041	.582	.559	.300	.548	.6473
.06	2.686	.252	2.283	.375	1.629	.533	1.068	.654	.612	.300	.632	.7598
.07	2.896	.270	2.442	.410	1.721	.586	1.094	.725	.663	.300	.717	.8695
.08	3.106	.288	2.601	.446	1.813	.639	1.121	.797	.711	.300	.786	.9727
R3-4090 $\gamma = 0.90$												
.01	1.638	.169	1.605	.179	1.278	.265	1.021	.306	.300	.241	.1643	
.02	1.847	.193	1.768	.220	1.368	.320	1.055	.392	.371	.300	.343	.3285
.03	2.057	.217	1.931	.261	1.466	.391	1.089	.477	.438	.300	.432	.4647
.04	2.267	.240	2.094	.301	1.564	.455	1.123	.563	.501	.300	.544	.6002
.05	2.477	.263	2.258	.342	1.662	.518	1.157	.648	.560	.300	.625	.7336
.06	2.686	.286	2.421	.383	1.760	.582	1.191	.734	.616	.300	.726	.8660
.07	2.896	.309	2.584	.424	1.858	.645	1.225	.828	.669	.300	.809	.9967
.08	3.106	.332	2.747	.464	1.956	.708	1.259	.905	.719	.300	.913	.1.1253

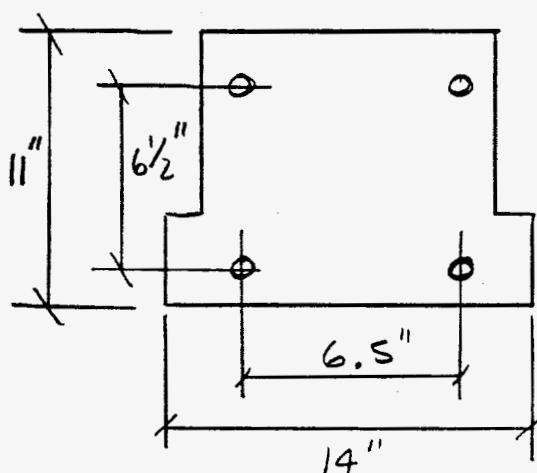
For use of this Design Aid, see Columns Examples 11 and 13.

DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 0

(1) Drawing _____ (2) Doc. No. _____ (3) Page 45-18 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator RA Diller Date 2-8-94
 (9) Checker EO Werner Date 2-8-94

(10) Single axis Columns

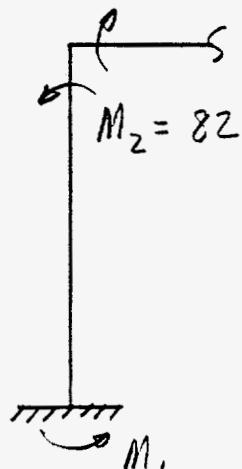

Factored Load $P_u = 36.3^k$
 average

From roof analysis:

$$\text{End span end moment} \\ = -82^{\text{in.} \cdot \text{k}}$$

Maximum unbalanced
end Moment

$$= 82^{\text{in.} \cdot \text{k}} \quad \text{effective size} = 11'' \times 11''$$

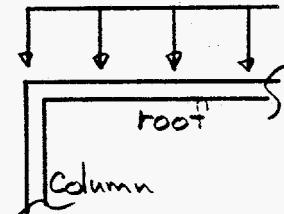

Base Moment M_1

$$= \frac{1}{2} \text{ top moment } M_2$$

$$= 41^{\text{in.} \cdot \text{k}}$$

see Blodgett 801-18

Fig 5E

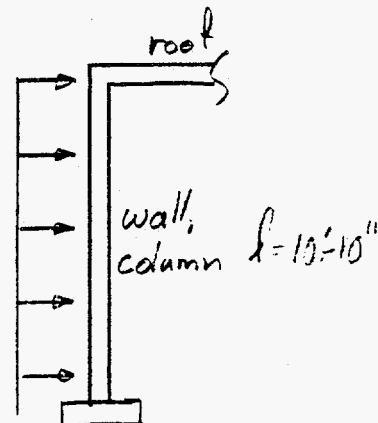

DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 0

(1) Drawing _____ (2) Doc. No. _____ (3) Page A5-19 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator RA Diller Date 2-8-94
 (9) Checker EO Werner Date 2-8-94

(10) Column Bending Moment

End Moment from factored
D & L roof loads = 82 "·K


End Moment from
factored D, L, & E
root loads = $\frac{129 \text{ psf}}{156 \text{ psf}} 82 = 68 \text{ "·K}$

Moments from out-of-plane
wall loads

$w = .0665 \text{ ksf}$ from wall analysis

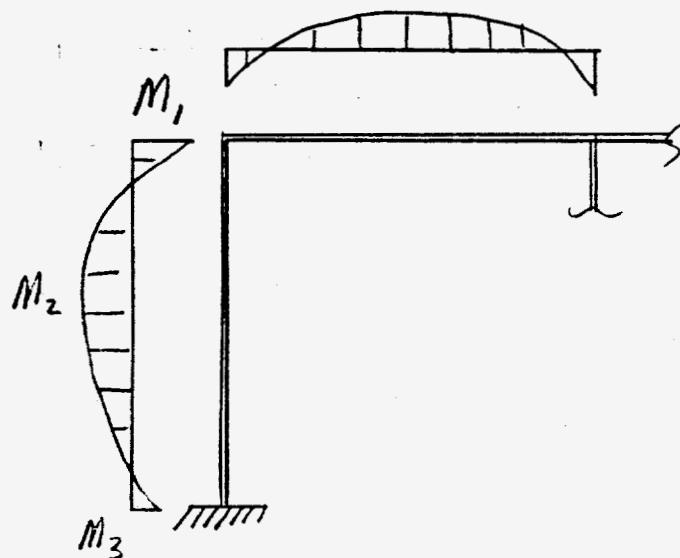
$$= .0665 \times 14.17 \text{ ' wide}$$

$$= 0.94 \text{ k/ft}$$

Since the column end have
partial fixity, use the following
moment approximations

$$\text{End moments} = \frac{wl^2}{10} = \frac{.94(10.83)^2}{10} = 11 \text{ '·K} = 132 \text{ "·K}$$

$$\text{Center mom.} = \frac{wl^2}{11} = \frac{.94(10.83)^2}{11} = 10 \text{ '·K} = 120 \text{ "·K}$$


DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 0

(1) Drawing _____ (2) Doc. No. _____ (3) Page A5-20 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator RA Miller Date 2-8-94
 (9) Checker EO Werner Date 2-8-94

(10)

Combine Roof & Wall Moments:
 Moment Diagram

$$M_1 = 132 \text{ \".K} + 68 \text{ \".K} = 200 \text{ \".K}$$

$$M_2 = 120 \text{ \".K} + 0 = 120 \text{ \".K}$$

$$M_3 = 132 \text{ \".K} + \frac{1}{2} 68 \text{ \".K} = 166 \text{ \".K}$$

DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 0

(1) Drawing _____ (2) Doc. No. _____ (3) Page A5-21 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator RA Miller Date 2-8-94
 (9) Checker EO Weiner Date 2-8-94

$$^{(10)} \beta_d = .81 \quad l_u = 130'' \quad K = 1.0$$

$$E_c = 3122000 \text{ psi}$$

$$I_g \frac{11^3 \cdot 11}{12} = 1220$$

$$EI = \frac{E_c I_g / 2.5}{1 + \beta_d}$$

$$= \frac{3122000(1220)/2.5}{1.81} = 841,732,597$$

Magnified Moment (ACI-349 10.11)

$$P_c = \frac{\pi^2}{(K l_u)^2} EI = \frac{\pi^2}{130^2} EI = 491572 = 492^K$$

$$C_m = .4$$

$$\delta = \frac{C_m}{1 - \frac{P_u}{8P_c}} = .46 \Rightarrow 1.0 \quad \text{No Magnification}$$

$$M_c = 200'' \cdot K$$

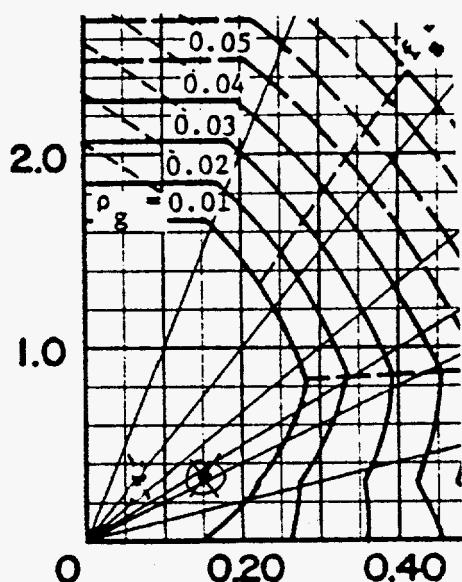
DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 0

(1) Drawing _____ (2) Doc. No. _____ (3) Page A5-22 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator RA Diller Date 2-8-94
 (9) Checker EO Werner Date 2-8-94

(10) Strength Check

Using interaction diagrams from
 ACI-340.2R-85 design handbook


$$f'_c = 3 \text{ ksi} \quad f_y = 40 \text{ ksi}$$

$$\gamma = \frac{6.5''}{11''} = .59 \approx .6$$

$$\rho_g = (0.31)4 / 11 \cdot 11 = .0102 \approx .01$$

Use chart 7.1.2

$$\frac{P_u}{A_g} = \frac{36.3}{11 \cdot 11} = .30 \text{ ksi}$$

$$\frac{P_u}{A_g h} = \frac{200}{11 \cdot 11 \cdot 11} = .15 \text{ ksi}$$

Acceptable - Well within
 the interaction $\rho_g = .01$
 curve

DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 6

(1) Drawing _____ (2) Doc. No. _____ (3) Page A5-23 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator RA Miller Date 2-8-94
 (9) Checker EO Werner Date 2-8-94

(10) LATERAL SHEAR LOAD ANALYSISN.S. Shear @ Base F_2

$$117^k \div 5 \text{ columns} = 23.4^k$$

E.IV. Shear @ Base F_2

$$148^k \div 6 \text{ columns} = 24.7^k$$

ACI-349 Section 11.3 & 11.5

$$V_c = 2\sqrt{f'_c} bd \left(1 + \frac{N_u}{2000 A_g}\right) \quad N_u \text{ average} = 36.3^k/\text{column}$$

$$A_g = 14'' \times 14'' = 196$$

$$bd = 11'' \times 14'' = 154$$

$$= 2\sqrt{3000(154)} \left(1 + \frac{36300}{2000(196)}\right)$$

$$= 18.4^k$$

$$V_s = \frac{A_v f_y d}{s}$$

$$d = 11''$$

$$s = 5''$$

$$= \frac{.22(40)(11)}{5} \quad A_v = \# 3 \text{ ties} = .22 \text{ in}^2$$

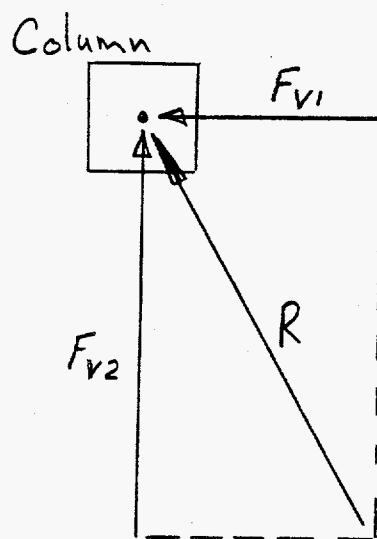
$$= 19.4^k$$

$$\phi V_n = .85(18.4 + 19.4) = 32.1^k > 23.4 \text{ & } 24.7$$

O.K.

$$\phi V_c = 2\sqrt{f'_c} bd = \phi 16.9^k \therefore \phi V_n = .85(16.9 + 19.4) = 30.9^k$$

(no comp. load)


DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 0

(1) Drawing _____ (2) Doc. No. _____ (3) Page A5-24 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator RA Miller Date 2-8-94
 (9) Checker EO Werner Date 2-8-94

(10) COMBINED DIRECTIONS ANALYSIS

Use 100-40-40 method per UCRL-15910

$$F_{v2} = 100\% (24.7) = 24.7^k$$

$$F_{v1} = 40\% (23.4) = 9.4^k$$

$$R = \sqrt{F_{v1}^2 + F_{v2}^2} = 26.4^k < 32.1^k \text{ O.K.}$$

DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 0

(1) Drawing _____ (2) Doc. No. _____ (3) Page A5-25 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator RA Miller Date 2-5-94
 (9) Checker EO Weiner Date 2-8-94

(10) Check Shear Friction

@ EL = 0'-2" (Base of Wall)

$$V_n = A_v f_y \mu \quad A_v = 4-\# \text{bars} = 1.24 \text{ si} \\ f_y = 40 \text{ ksi} \\ \mu = 1.4 \text{ monolithic point}$$

$$V_n = .85 (1.24)(40)(1.4) = 59^k > 26.4^k \text{ O.K.}$$

@ EL = (-) 0'-3" (Base of Column)

$$V_n = A_v f_y \mu \quad A_v \text{ column} = 1.24 \\ \mu = 0.6 \text{ non-monolithic}$$

$$A_v \text{ foundation} =$$

$$\#4 @ 15" = 40 \text{ bars per wall}$$

$$\frac{.2 \times 40}{5 \text{ columns}} = 1.0 \text{ si}$$

$$\mu = 1.4 \text{ monolithic}$$

$$\phi V_n = .85(40) [1.24 \times 0.6 + 1.0 \times 1.4]$$

$$= 73^k > 26.4^k \text{ O.K.}$$

DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 0

(1) Drawing _____ (2) Doc. No. _____ (3) Page A5-26 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator RA Miller Date 2-8-94
 (9) Checker EO Werner Date 2-8-94

(10) Margin of Safety

$$MS = \frac{\text{Allowable}}{\text{Actual}} - 1$$

$$\text{Compression Load} \cdot \frac{163}{57} - 1 = 1.86$$

$$\text{Combined Bending \&} \\ \text{Axial loads (See Moment} \\ \text{Interaction curve)} \simeq 1.0$$

$$\text{Biaxial Bending} \quad \frac{187}{97} - 1 = 0.92$$

$$\text{Lateral Column Base Shear} \quad \frac{32.1}{26.4} - 1 = 0.22$$

$$\text{Shear Friction @ Column Base} \quad \frac{73}{26.4} - 1 = 1.77$$

REINFORCING DETAIL CHECK

Longitudinal reinforcement:

4 - #5 bars, $A_s = 1.24 \text{ si}$

$$\rho_g = A_s/A_g \quad A_g \text{ min.} = 8" \times 12" = 96 \text{ si}$$

$$A_g \text{ max.} = 14" \times 14" = 196 \text{ si}$$

$$\rho_g = 1.24/96 = .013$$

$$\rho_g = 1.24/196 = .006 \quad \text{**}$$

Required reinf. (ACI-349 Section 10.9)

$$\rho_g \text{ min.} = .01 > .006 \quad \text{**}$$

$$\rho_g \text{ max.} = .08 > .013 \quad \text{O.K.}$$

Lateral reinforcement:

#3 bars @ 5" near base of column
#3 bars @ 10" in the remainder of the column

Required spacing (ACI-349 Section 7.10)

Least dimension, 6 columns require 8" spacing < 10"	No Good
24 columns require 11" or 14" > 10"	O.K.

Required reinf.

$$A_v \text{ min.} = 50bs/f_y$$

$$= \frac{50(14")10"}{40,000 \text{ psi}} = .175 \text{ si} < .22 \text{ si} \quad \text{O.K.}$$

Required lap splice at dowels:

Class C splice = $1.7 l_d$, $l_d = 10"$ for a #5 bar with $F_y = 40 \text{ ksi}$ and $f'c = 3 \text{ ksi}$
 $1.7 \times 10" = 17"$ Drawing shows a minimum lap length of 4 ties spaced at 5" which equals 15" plus additional over lap of about 1" top and bottom which equals = 17" O.K.

** By reducing the effective column area down to 11" X 11", ρ_g becomes .013 which is acceptable. The reduction in compressive capacity is also reduced;

$$\phi P_n = (11^2 / 14^2) \times 140 \text{ kips} = 86.4 \text{ kips} > 78.3 \text{ kips} \quad \text{O.K.}$$

The base of the column has additional longitudinal reinf. in the form of dowels, and so do not require a smaller effective area to meet minimum reinforcing.

A6.0 FOUNDATION WALL EVALUATION

Orig RA Hille

2-8-94 Checker EO Werner 2-8-94

WHC-SD-CP-SA-023

Rev. 01
Page A6-1

The 2736Z building foundation wall is a combination foundation wall column pedestal constructed of reinforced concrete poured monolithic with the footings and the columns. All loads are transferred to the foundation wall through the columns, there is no wall panel-foundation wall load transfer since the wall panels are set-in-place with a 1/4" gap between panel and foundation.

- **DESIGN LOADS AND LOAD COMBINATIONS**

Design loads are specified in SDC-4.1 rev.11, UCRL-15910 and ANSI A58.1. Load combinations are listed in UCRL-15910 and ACI-349.

rev.12.

- **COMPRESSIVE STRENGTH ANALYSIS**

Check column compression using ACI-349 chapters 10 and 14. Chapter 10 is the basic compression strength requirements and chapter 14 is the strength requirements specific to the design of load bearing walls.

- **SHEAR STRENGTH ANALYSIS**

All lateral building loads are transferred from the column base shear through the foundation wall to the footing. The shear strength requirements to be meet are in ACI-349 chapter 11.

- **REINFORCING DETAIL CHECK**

Reinforcing details are found in several ACI-349 chapters. Minimum reinforcing is specified in chapter 10 and 14 and rebar anchorage in chapter 12. Shear strength, and shear friction is found in chapter 11.

Orig RA Miller 2-8-94 Checker EO Weines 2-8-94

WHC-SD-CP-SA-023

Rev. 01

Page A6-2

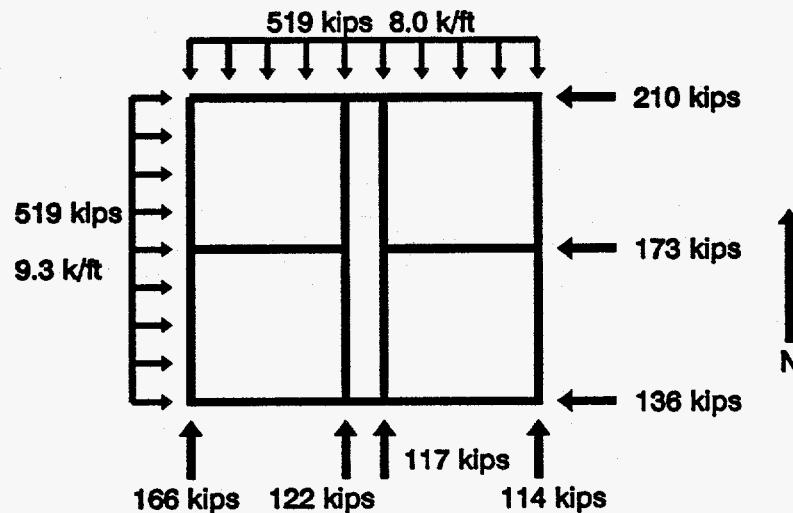
DESIGN LOADS:

Vertical Loads:

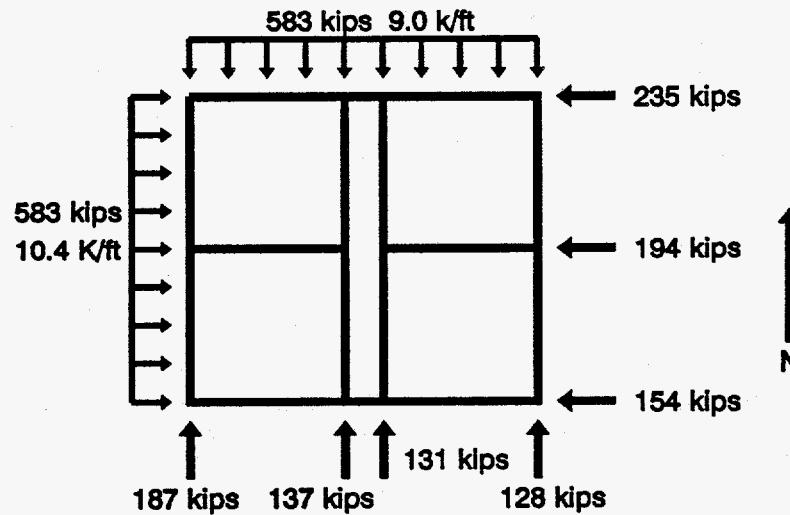
Dead Loads

roof =	325 kips
beams =	40 kips
8" walls =	402 kips
columns =	44 kips
foundation wall =	136 kips
	Total = 947 kips

Live Loads


roof =	75 kips	Total =	75 kips
--------	---------	---------	---------

Earthquake Loads


roof = 325 X .25 =	81 kips
beams = 40 X .25 =	10 kips
8" walls = 402 X .25 =	101 kips
columns = 44 X .25 =	11 kips
fdn. wall = 136 X .25 =	34 kips
	Total = 237 kips

Horizontal Loads:

Earthquake Loads at the top of the foundation wall

Building Plan

Earthquake loads at the footing base (includes the above foundation loads)

Building Plan

DESIGN CALCULATION

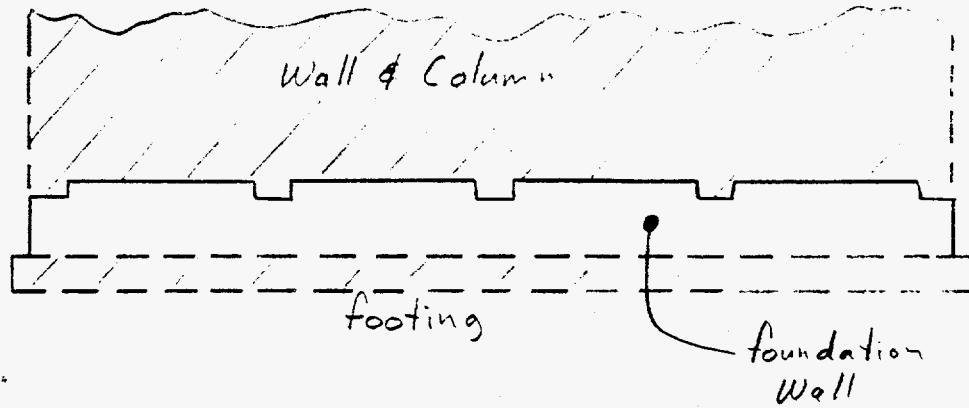
WHC-SD-CP-SA-023 Rev. 0

(1) Drawing _____ (2) Doc. No. _____ (3) Page A6-4 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator RA Diller Date 2-8-94
 (9) Checker EO Werner Date 2-8-94

(10) LOAD COMBINATIONS

ACI-349 Section 9.2 :

1.) $1.4D + 1.7L$

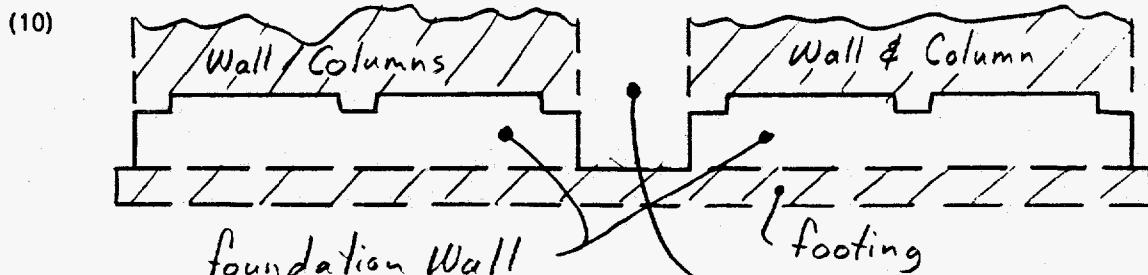

$$1.4(947) + 1.7(75) = 1453^K \quad \left. \right\} \text{vertical loads}$$

4.) $D + L + E$

$$947 + 75 + 237 = 1259^K \quad \left. \right\}$$

$$1.) E = 519^K @ \text{Top of Found.}$$

$$583^K @ \text{Footing Base}$$



N.S. Wall Line
 Typical 4 Places

DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 01

(1) Drawing _____ (2) Doc. No. _____ (3) Page A6-5 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator RA Miller Date 2-8-94
 (9) Checker EO Werner Date 2-8-94

E.W. Wall Line

1 place as shown, 2 places with
center section filled in.

Vertical load;

$$= 1259^k / (4 \text{ walls} \times 57.2' + 6 \text{ walls} \times 29.5')$$

$$= 3.1^k/\text{ft}$$

Horizontal load;

$$N.S. = 519^k / (4 \times 57.2) = 2.27^k/\text{ft} \text{ F. Wall Top}$$

$$583^k / (4 \times 57.2) = 2.55^k/\text{ft} \text{ Footing Base}$$

$$E.W. = 519^k / (6 \times 29.5) = 2.93^k/\text{ft} \text{ F. Wall Top}$$

$$583^k / (6 \times 29.5) = 2.55^k/\text{ft} \text{ Footing Base}$$

DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 01

(1) Drawing _____ (2) Doc. No. _____ (3) Page A6-6 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator R.A. Miller Date 2-8-94
 (9) Checker EO Weiner Date 2-8-94

(10) COMPRESSIVE STRENGTH ANALYSIS

ACI-349 Section 14.5

width of bearing under columns

$$b_w = 4t = 4 \times 8'' = 32''$$

$$\phi P_n = .55 \phi f'_c A_g \left[1 - \left(\frac{k l_c}{32 h} \right)^2 \right] \quad \phi = .7 \\ f'_c = 3 \text{ ksi}$$

$$A_g = 8'' \times 32'' \times 26 \text{ columns} = 6656 \text{ si}$$

$$k = 1.0$$

$$l_c = 1.2' \text{ to } 4.2'$$

$$h = 8''$$

$$= .55(.7)(3)(6656) \left[1 - \left(\frac{1.0 \times 4.2 \times 12''}{32 \times 8''} \right)^2 \right]$$

$$= 7390^K > 1259^K \quad \text{O.K.}$$

DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 0

(1) Drawing _____ (2) Doc. No. _____ (3) Page A6-7 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator R.A. Miller Date 2-8-94
 (9) Checker E.O. Werner Date 2-8-94

(10) SHEAR STRENGTH ANALYSIS

N.S. Direction :

$$583^k \div 4 \text{ walls} = 146^k/\text{wall}$$

$$V_c = 2\sqrt{f'_c} b h = 2\sqrt{3000} (8") (.8 \times 57.2' \times 12") \\ = 481^k$$

$$V_s = \frac{A_v f_y d}{s} = .11(40) \text{ a one bar wall segment} \\ = 4^k$$

$$\phi V_n = .85(481+4) = 412^k > 146^k \text{ O.K.}$$

E.W. Direction :

$$583^k \div 6 \text{ walls} = 97^k$$

$$V_c = 2\sqrt{f'_c} b h = 2\sqrt{3000} (8") (.8 \times 31.7' \text{ ave.} \times 12") \\ = 267^k$$

$$V_c \text{ for one bar} = 4^k$$

$$\phi V_n = .85(267+4) = 230^k > 97^k \text{ O.K.}$$

DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 0

(1) Drawing _____ (2) Doc. No. _____ (3) Page A6-8 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator R.A. Miller Date 2-8-94
 (9) Checker EO Werner Date 2-8-94

(10) Check Shear Friction

@ Fnd Wall to Footing

N.S. Direction :

$$V_s = A_v f_y \mu \quad A_v (20 - \#5 \text{ bars} \# 4 - \#4 \text{ bars})$$

$$A_v = 14.4 \text{ in.}$$

$$f_y = 40 \text{ ksi} \quad \mu = 0.6$$

$$\phi V_n = .85(14.4)(40)0.6$$

$$= 294 \text{ k} > 146 \text{ k} \quad O.K.$$

E.W. Direction :

$$V_s = A_v f_y \mu \quad A_v (12 - \#5 \text{ bars} \# 20 - \#4 \text{ bars})$$

$$A_v = 7.72 \text{ in.}$$

$$f_y = 40 \text{ ksi} \quad \mu = 0.6$$

$$\phi V_n = .85(7.72)(40)0.6$$

$$= 157 \text{ k} > 97 \text{ k} \quad O.K.$$

Margins of Safety

$$MS = \frac{\text{allowable}}{\text{actual}} - 1$$

Wall compression $\frac{7390 \text{ kips}}{1259 \text{ kips}} - 1 = 4.86$

Wall shear $\frac{230 \text{ kips}}{97 \text{ kips}} - 1 = 1.37$

Shear friction $\frac{157 \text{ kips}}{97 \text{ kips}} - 1 = 0.62$

REINFORCING CHECK:

Minimum reinforcing:

Since the shear capacity of the concrete (V_c) is approximately twice the value of the required strength, ACI-349 section 7.12 rather than 11.10.9 controls the minimum reinforcement.

Section 7.12 reinforcing;

$$\rho_{\min.} = .0012$$

$$\rho_{\text{vert}} = A_s/b s_o = .2 \text{ si} / (8" \times 15") = .0017 > .0012 \quad \text{O.K.}$$

$$\rho_{\text{horz}} = .0017 > .0012 \quad \text{O.K.}$$

A7.0 FOOTING EVALUATION

Orig RA Miller

2-8-94

Checker EO Werner 2-8-94

WHC-SD-CP-SA-023

Rev. 01
Page A7-1

The 2736Z building footings are wall and column footings constructed of reinforced concrete poured monolithic with the foundation wall-column pedestal. The footings must be designed to resist shear and bending due to vertical loads, shear and bending due to horizontal loads, and to resist sliding and overturning through interaction surrounding soil.

- **DESIGN LOADS AND LOAD COMBINATIONS**

Design loads are specified in SDC-4.1 ^{rev.12}~~rev.11~~, UCRL-15910 and ANSI A58.1. Load combinations are listed in UCRL-15910 and ACI-349.

- **BENDING AND SHEAR STRENGTH ANALYSIS**

Vertical and lateral building loads produce bending and shear due to bending in the footings. The design shall be in accordance with ACI-349 chapters 10, 11 and 15 requirements.

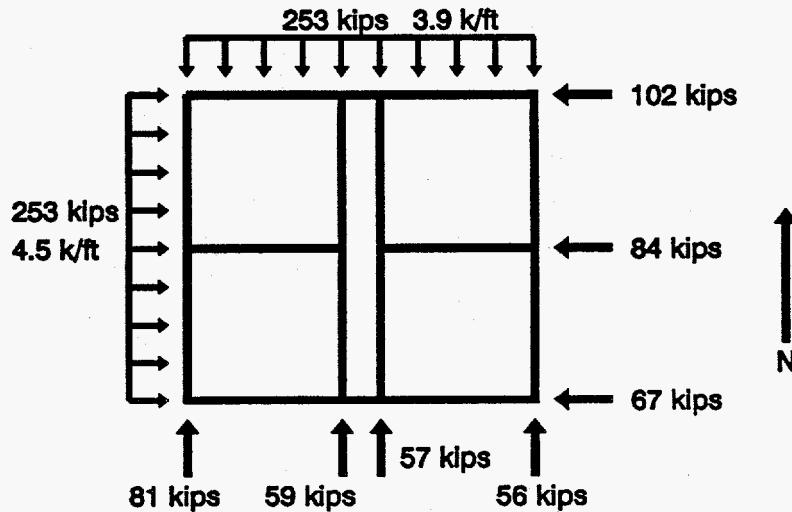
- **OVERTURNING, SLIDING RESISTANCE AND SOIL BEARING**

The design of footings or foundations for overturning, sliding and soil bearing is based on UBC 1991 and the Structural Engineers Handbook. These documents provide factors of safety for different loading conditions

DESIGN LOADS:Vertical Loads:

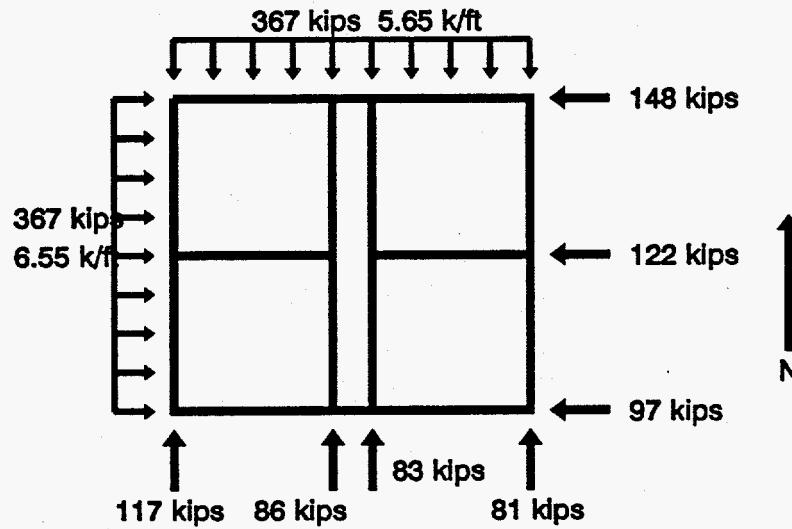
Dead Loads

roof =	325 kips
beams =	40 kips
8" walls =	402 kips
6" walls =	153 kips
columns =	44 kips
foundation walls =	136 kips
wall footing =	90 kips
column footing =	79 kips
column Ped. =	8 kips
	Total = 1277 kips

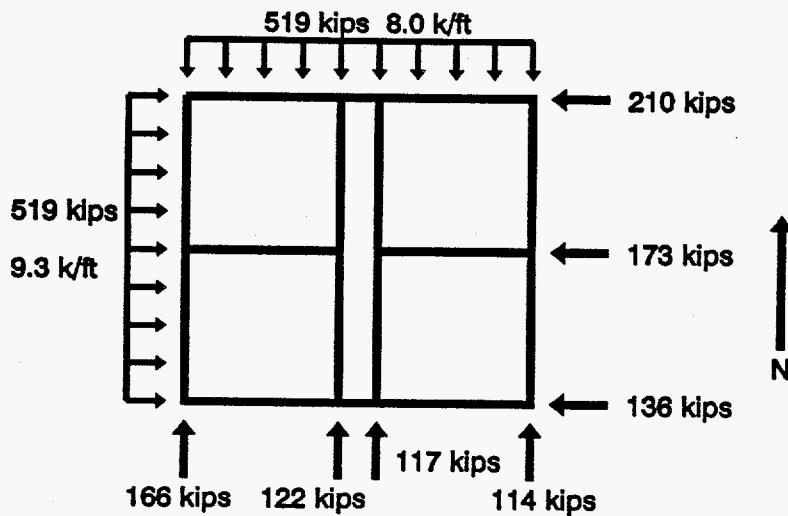

Live Loads, roof = 75 kips Total = 75 kips

Earthquake Loads

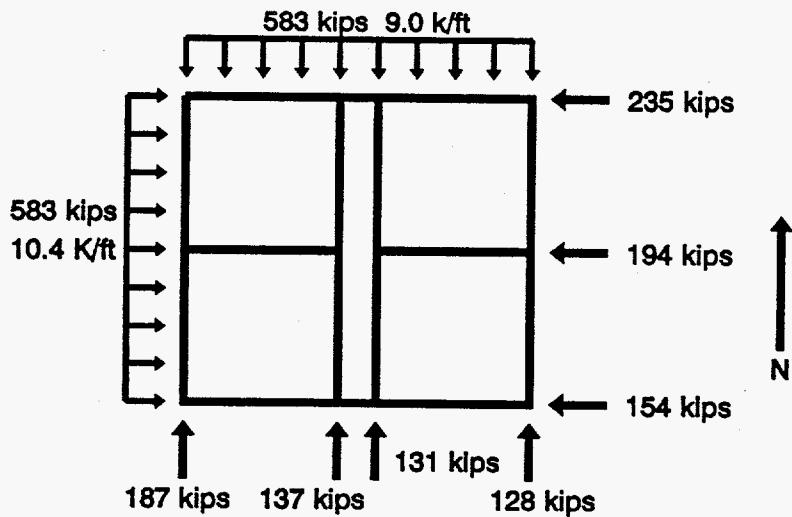
roof = 325 X .25 =	81 kips
beams = 40 X .25 =	10 kips
8" walls = 402 X .25 =	101 kips
6" walls = 153 X .25 =	38 kips
columns = 44 X .25 =	11 kips
fdn wall = 136 X .25 =	34 kips
wall ftng = 90 X .25 =	23 kips
col. ftng = 79 X .25 =	20 kips
column Ped. 8 X .25 =	2 kips
	Total = 320 kips


Horizontal Loads:

Earthquake Loads at the roof level (EL = 11')


Building Plan

Earthquake Loads at the Wall Bottom (EL = 0.22'), (includes roof level loads)


Building Plan

Earthquake Loads at the Foundation Wall Top (EL = 0.2')
(Includes the Roof level and Wall Bottom level loads)

Building Plan

Earthquake Loads at the Footing Base (EL = -2.75')
(Includes the loads from the Roof, Wall Bottom, and Foundation Wall levels)

Building Plan

LOAD COMBINATIONS: (ACI-349 Section 9.2)Vertical Loads:

Note; Live, roof, beams, 8" wall, columns, column pedestal, column footing and associated earthquake vertical loads are transferred into the column footings because the 8" walls do not rest on the foundation walls.

The 6" walls, foundation walls, wall footing, and associated earthquake vertical loads are transferred into the wall footings.

1.) 1.4D + 1.7L

$$\frac{1.4(325 + 40 + 402 + 44 + 79 + 8) + 1.7(75)}{30 \text{ columns}} = 46 \text{ kips/column}$$

$$\frac{1.4(153 + 136 + 90)}{297' \text{ of wall footing}} = 1.8 \text{ kips/ft}$$

4.) D + L + E

$$\frac{(898) + 75 + (81 + 10 + 101 + 11 + 20 + 2)}{30 \text{ columns}} = 40 \text{ kips/column}$$

$$\frac{(379) + (38 + 34 + 23)}{297' \text{ of wall footing}} = 1.6 \text{ kips/ft}$$

Horizontal Loads:

4.) E

583 kips 20 columns resist loads in the NS direction

18 columns resist loads in the EW direction

583 kips / 20 columns = 29 kips / column

583 kips / 18 columns = 32 kips / column

Orig R.A. Hille 2-8-94 Checker ED Werner 2-8-94

WHC-SD-CP-SA-023
Rev. 0 /
Page A7-6

OVERTURNING, SLIDING, AND SOIL BEARING:

References:

Rev. 12
SDC-4.1 ~~Rev. 11~~
UBC 1991
Structural Engineers Handbook (SEH)

Acronyms:

OTM = Overturning Moment
SF = Sliding Force
DLRM = Dead Load resisting Moment
DLSR = Dead Load Shear Resistance
SBL = Soil Bearing Load
ASB = Allowable Soil Bearing

Criteria:

For sustained loads such as a retaining wall resisting soil loads or a building structure resisting wind loads, UBC and SEH recommend or require the following.

DLRM \geq 1.5 (OTM)

DLSR \geq 1.5 (SF)

SBL \geq ASB Note; a 1/3 increase in ASB is allowed when resistance is being provided for wind loads.

For non-sustained seismic loads UBC recommends the following criteria.

DLRM \geq OTM

DLSR \geq SF

SBL \geq 1.33 (ASB)

Allowable Soil Bearing pressure:

2425

From the 2736Z evaporator building soil report by Shannon & Wilson

ASB = 5,000 psf at 3' depth and less than 4' wide footing.

The 2736Z building footings are 2.75' deep which will reduce the ASB to about 4,500 psf.

Use ASB = 4,500 psf
seismic ASB = $1.33 \times 4,500$ psf = 6,000 psf

BENDING AND SHEAR STRENGTH ANALYSIS:

Vertical load = 40 kips / col. and 1.6 kips / ft

Horizontal load = 32 kips / col.

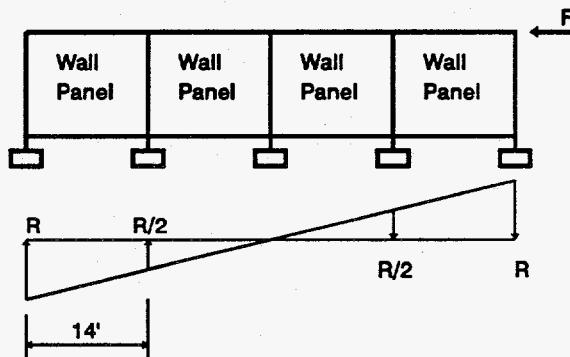
Overturning Moment:

NS direction, worst case wall

$$(81^k)14' + (166^k - 81^k)3' = 1389 \text{ ft-kips}$$

EW direction, worst case wall

$$(102^k)14' + (210^k - 102^k)3' = 1752 \text{ ft-kips}$$

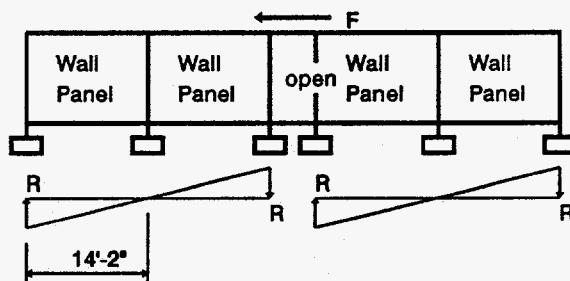

Additional vert. load due to OTM:

NS direction

$$\text{OTM} = R(56') + R/2(28')$$

$$\text{OTM} = 70R$$

$$R = \frac{1389 \text{ ft-kips}}{70} = 19.8 \text{ kips}$$



EW direction

$$\text{OTM} = R(14.17')2$$

$$\text{OTM} = 28.34R$$

$$R = \frac{1752 \text{ ft-kips}}{28.34(2 \text{ walls})} = 30.9 \text{ kips}$$

DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 0

(1) Drawing _____ (2) Doc. No. _____ (3) Page 47-8 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator RA Hiller Date 2-8-94
 (9) Checker E Werner Date 2-8-94

(10) Total Vertical Load use 100-40-40

Column Footing :

$$= \frac{D + L + .4E_V}{30} + E_{EW} + .4E_{NS}$$

$$= \frac{278 + 75 + .4(225)}{30} + 30.9 + .4(19.8)$$

$$= 74^k \text{ with seismic loads}$$

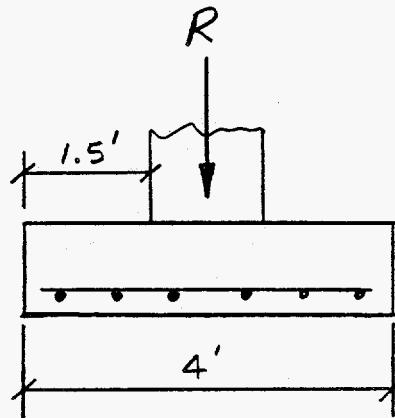
$$46^k \text{ w/o seismic loads}$$

DESIGN CALCULATION

(1) Drawing _____ (2) Doc. No. _____ (3) Page A7-9 of 1
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator R. A. Diller Date 2-8-94
 (9) Checker EO Werner Date 2-8-94

(10)

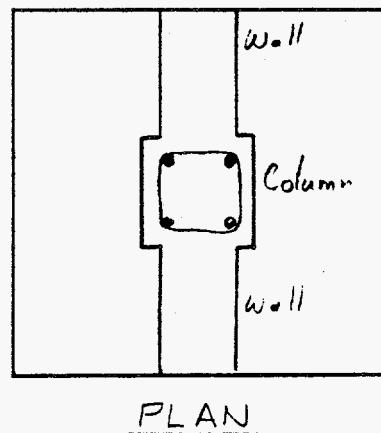
Column Footing Strength:


No applied base moment
(18 places)

6 - #4 bars each way

$$A_s = \frac{6(.2)}{4'} = .3 \text{ in}^2$$

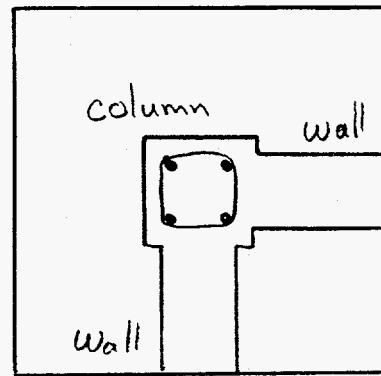
$$i = 12''$$


$$c = 12'' - 3'' - .75'' \approx 8''$$

Soil Bearing Pressure:

$$46 \text{ k}/16 \text{ sf} = 2.9 \text{ ksf} < 4.5 \text{ ksf}$$

O.K.



OR

$$74 \text{ k}/16 \text{ sf} = 4.625$$

$$4.625 < 6.0$$

O.K.

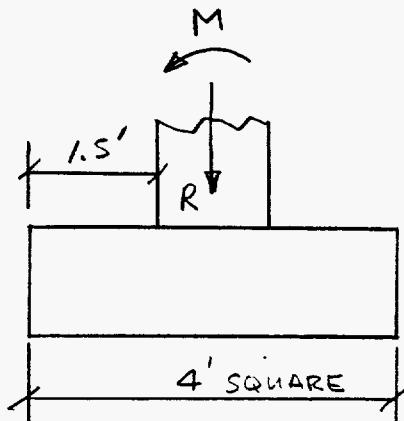
PLAN

DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 0

(1) Drawing _____ (2) Doc. No. _____ (3) Page A7-10 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator RA Miller Date 2-8-94
 (9) Checker EO Werner Date 2-8-94

(10) Column Footing Strength:

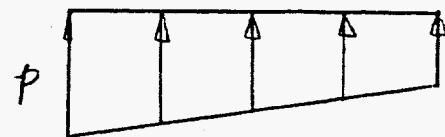
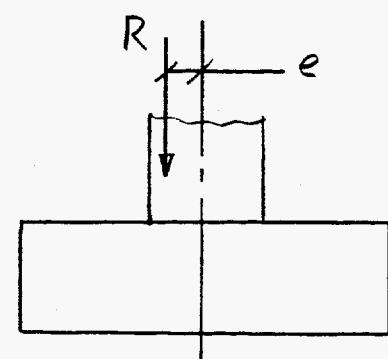

with applied moment in one direction (8 places)

$$\text{vertical load} = 74 \text{ k}$$

$$\text{applied moment} = 166'' \text{ k} \text{ from column evaluation}$$

Soil Bearing Pressure:

$$e = \frac{M}{R} = \frac{166}{74} = 2.24'' = .187'$$

$$P = \frac{R}{A} \left(1 + \frac{6e}{\lambda} \right)$$

$$P = \frac{74}{16 \text{ sf}} \left(1 + \frac{6 \times .187'}{4'} \right)$$

$$P = 5.9 \text{ ksf} < 6.0 \text{ ksf}$$

O.K.

(1) Drawing _____ (2) Doc. No. _____ (3) Page A7-11 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator R.A. Miller Date 2-8-94
 (9) Checker E.O. Werner Date 2-8-94

(10) Column Footing Strength:

with applied moment in 2-directions (4 places)

vertical load = 46^K

applied moments = $\frac{86}{2} = 43'' \cdot K$ & $\frac{97}{2} = 49'' \cdot K$

Soil Bearing Pressure:

$$e = \frac{49'' \cdot K}{46K} = 1.06'' = .089'$$

$$P = \frac{P}{A} \left(1 \pm \frac{6e}{l} \right) \quad P_{ave} = \frac{46^K}{16sf} = 2.875 \text{ ksf}$$

$$= \frac{46}{4' \times 4'} \left(1 \pm \frac{6 \times .089}{4'} \right)$$

3.26 ksf for one direction bending

pressure increase due applied moment in one direction = $3.26 - 2.875 = .385$

Total soil pressure:

$$P = 3.26 + .385 = 3.645 \text{ ksf}$$

$3.645 < 4.5$

footing G.K.

DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 0/1

(1) Drawing _____ (2) Doc. No. _____ (3) Page A7-12 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator R. A. Miller Date 2-8-94
 (9) Checker EO Weiner Date 2-8-94

(10) Bending Strength:

$$M_u = \text{Type III} \quad \frac{wl^2}{2} = \frac{3.645(1.67')^2}{2} = 5.08'' \cdot K = 61'' \cdot K$$

$$\text{Type II} \quad \frac{wl^2}{2} = \frac{5.9(1.5)^2}{2} = 6.64'' \cdot K = 80'' \cdot K$$

$$AsF_y = .85 f'_c ab$$

$$a = \frac{AsF_y}{.85 f'_c b} = \frac{.3(40)}{.85(3)(12')} = .392''$$

$$\phi l_{ii} = .9 AsF_y (d - \frac{a}{2}) = .9(.3)(40)(8 - \frac{.392}{2})$$

$$l = 84'' \cdot K > 80'' \cdot K \quad \text{O.K.}$$

Shear Strength:

for this footing-column-wall configuration
only beam shear is applicable

$$V_u = wl = 6.0(0.8') = 4.8 K$$

$$\phi V_c = (.85)2\sqrt{f'_c} bd = \frac{(.85)2\sqrt{3000} 12'' \cdot 8''}{1000} = 8.9 K$$

$$8.9 > 4.8 \quad \text{O.K.}$$

DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 0

(1) Drawing _____ (2) Doc. No. _____ (3) Page A7-13 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator R. A. Miller Date 2-8-94
 (9) Checker E.O. Werner Date 2-8-94

(10) Margins of Safety

$$D + L \text{ load Soil Bearing } \frac{4.5}{3.645} - 1 = 0.23$$

$$D + L + E \text{ Soil Bearing } \frac{6.0}{5.9} - 1 = 0.017$$

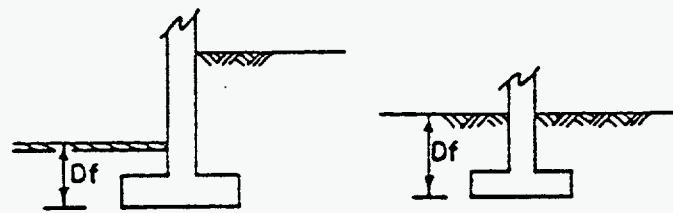
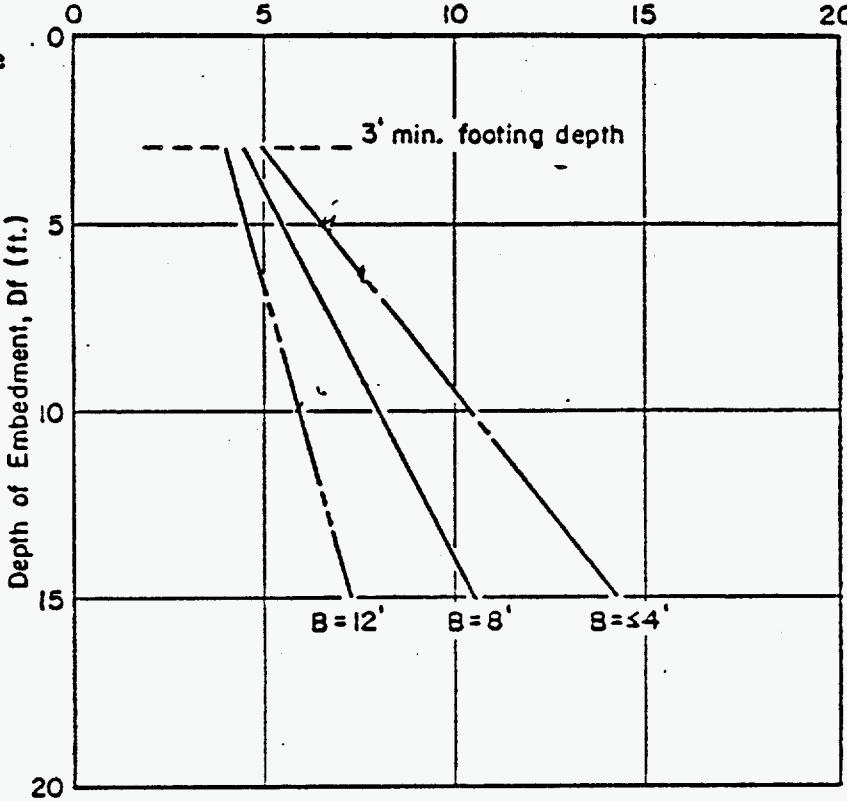
$$\text{Footing Bending } \frac{84'' \cdot k}{81} - 1 = 0.037$$

$$\text{Footing Shear } \frac{8.9}{4.8} - 1 = 0.854$$

Wall Footing

$$\text{Soil Bearing } \frac{4.5}{0.9} - 1 = 4.0$$

W & W/o seismic



Bending = ∞ Shear = ∞

GENERALIZED SOIL PROFILE

Tan, loose, silty, fine
SAND & fine-coarse
GRAVEL

Tan, med. dense,
silty, fine SAND

Gray-black, dense,
clean, med. SAND
& GRAVEL
grading to gravelly
med. SAND

Embedment

Note:

For footings in fill or backfill use allowable
bearing pressure for $B=12'$ regardless of
footing size.

B is the least dimension of continuous or
square footing.

HANFORD ATOMIC ENERGY RESERVATION
EVAPORATOR FACILITY
BLDG. 242-S

ALLOWABLE BEARING PRESSURES UNDISTURBED SUBGRADE

C-301

OCT, 1971

SHANNON & WILSON
SOIL MECHANICS & FOUNDATION ENGINEERS

A8.0 DEFLECTION CALCULATION

Orig R.A. Miller 2-8-94 Checker EO Weiner 2-8-94

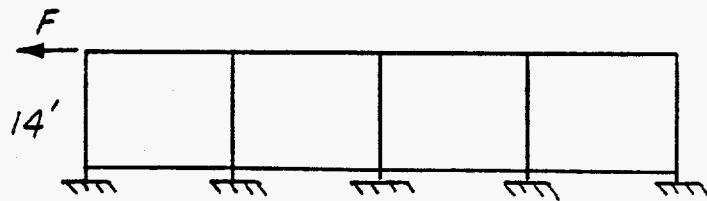
WHC-SD-CP-SA-023
Rev. 0/1
Page A8-1

- **SHEAR WALL DEFLECTIONS**

Shear wall deflections result from shear and flexural deformations of the concrete shear walls with respect to a fixed base.

- **OUT-OF-PLANE DEFLECTIONS**

Out-of-plane deflections results from the horizontal deflection of the wall panels due to slab type flexure (out-of-plane flexure).


- **SOIL SPRING DEFLECTIONS**

Soil spring deflections result from the rocking type motion of a rigid shear wall on a flexable soil base.

DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 0

(1) Drawing _____ (2) Doc. No. _____ (3) Page 18-2 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator R.A. Miller Date 2-8-94
 (9) Checker E.O. Werner Date 2-8-94

(10) SHEAR WALL DEFLECTION

Shear Deflection :

$$F = 102 \text{ k/wall} \text{ maximum}$$

$$\delta_s = \frac{PL\alpha}{AE_c}$$

$$P = F = 102 \text{ k} \quad L = 14' = 168''$$

$\alpha = 1.2$ for rectangular members

$$A = (56' \times 12) \times 8'' = 5376 \text{ si}$$

$$E_c = 1,000,000 \text{ psi}$$

$$\delta_s = .0038$$

Bending Deflection :

$$\delta_B = \frac{PL^3}{3EI}$$

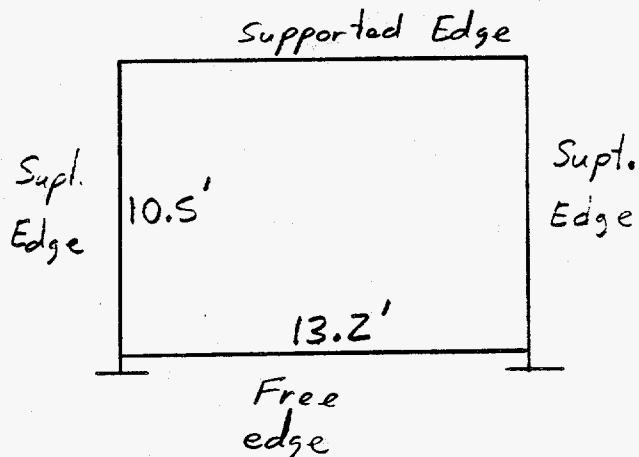
$$P = 102 \text{ k} \quad L = 168''$$

$$E = 3,000,000 \text{ psi}$$

$$I = \frac{bh^3}{12} = \frac{8''(672'')^3}{12} = 202,309,632 \text{ in}^4$$

$$\delta_B = .0003$$

DESIGN CALCULATION


WHC-SD-CP-SA-023 Rev. 0

(1) Drawing _____ (2) Doc. No. _____ (3) Page 18-3 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator RA Diller Date 2-8-94
 (9) Checker EO Werner Date 2-8-94

(10) OUT-OF-PLANE DEFLECTIONS

From "Roark"
page 461 Za.

$$\max y = \frac{\alpha q b^4}{E t^3}$$

$$\max y = \delta_0$$

$$q = w = .0665 \frac{\text{ksf}}{\text{ksi}} = .000462$$

$$b = 13.2' = 158" \quad a = 10.5' = 126"$$

$$E = 3,000,000 \text{ psi}$$

$$t = 8"$$

$$a/b = .80$$

$$\alpha = 0.120$$

$$\max y = \delta_0 = .02249"$$

DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 0

(1) Drawing _____ (2) Doc. No. _____ (3) Page A8-4 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator R.A. Hilla Date 2-8-94
 (9) Checker EO Werner Date 2-8-94

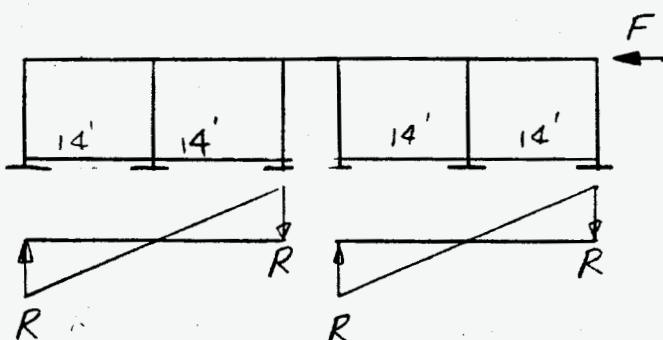
(10) SOIL SPRING DEFLECTIONSVertical Spring Rates from UCRL-15910:

$$K_v = \frac{G}{1-\nu} \beta_z \sqrt{BL}$$

for square 4'
column footings

$$B = L = 4'$$

$$\beta_z = 2.2$$

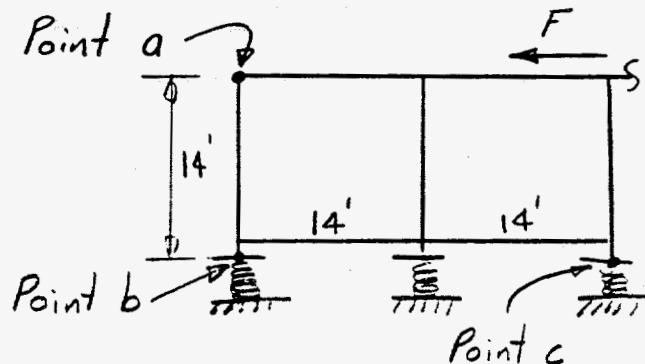

From Geotechnical Investigation of Z-Plant
dated January 1980

$$G = 1,700,000 \text{ psf} \quad \left. \right\} 0 \text{ to } 10' \text{ below} \\ \nu = .37 \quad \left. \right\} \text{grade}$$

$$K_v = 23746 \text{ K/f}$$

$$F = 102^K$$

$R = 31^K$ from
footing analysis



DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 0

(1) Drawing _____ (2) Doc. No. _____ (3) Page A8-5 of _____
 (4) Building _____ (5) Rev. _____ (6) Job No. _____
 (7) Subject _____
 (8) Originator RA Miller Date 2-8-94
 (9) Checker EO Weiner Date 2-8-94

(10)

Vertical displacement @ b due to F :

$$\delta_b = \frac{3l^k}{K_v} = \frac{3l}{23746} = .0013' = .01567''$$

$$\delta_c = -\delta_b = -.01567$$

Horizontal displ. @ a due to δ_b & δ_c :

$$\delta_a = \frac{h}{L} \delta_b = \frac{14'}{14'} (.01567'') = .01567''$$

Horizontal Spring Rate from UCRL-15910 :

$$K_h = 2(1+\nu)G \beta_x \sqrt{BL} \quad \beta_x = 1.0$$

$$K_h = 18632 \text{ K/A}$$

$$\delta_h = \frac{F}{K_h} = \frac{102}{18632} = .00547' = .06569''$$

DESIGN CALCULATION

WHC-SD-CP-SA-023 Rev. 0

(1) Drawing _____ (2) Doc. No. _____ (3) Page A8-6 of _____
(4) Building _____ (5) Rev. _____ (6) Job No. _____
(7) Subject _____
(8) Originator RA Miller Date 2-8-94
(9) Checker EO Werner Date 2-8-94

(10) Total Deflections:

$$\delta_s = .0038"$$

$$\delta_b = .0003"$$

$$\delta_o = .0225"$$

$$\delta_o = .0157"$$

$$\delta_h = .0657"$$

$$0.1080"$$