
" : ,_IIII_
,'-' 1113___6

11111"2---511111"----4lllli_





SAND93-2419C

MULTIPLE WEIGHT STEPWISE REGRESSION

Joel Atldns 1,2 and James Campbell 2

Statistics Department
University of California
Berkeley, CA 94720

2 ManufacturingSystemsModeling

Division 6613 Thisworkwas supr_ortedbythe United
SandiaNationalLaboratories StatesDepartmentof Energyunder
P. O. Box 5800 ContractDE.ACn4.94ALR5Or_0.
Alb1_querque,N_ 87185

INTRODUCTION

Background

Inmany scienceand engineeringapplications,thereisaninterestinpredictingtheoutputs
of a processforgivenlevelsof inputs.In orderto developa model,one couldrun the

process(ora simulationofthe process)at a number ofpoints(a point.wouldbe one run
at one setof possibleinputvalues)and observethev'_luesofthe outputsat thosepoints.
These observationscar be used topredictthev_luesoftheoutputsforothervaluesof the

inputs.Sincetheoutputsarea functionofthetheinputs,we cangeneratea surfacein the
spaceof possibleinputsand outputs.This surfaceiscalleda responsesurface.In some

cases,collectingdataneedcdto generatea responsesurfacecan e veryexpensive.Thus,in

thesecases,thereisa powerfulincentiveto minimizethe samplesizewhilebuildingbetter

responsesurfaces.One suchca..._eisthesemiconductorequipmentmanufacturingindustry.
Semiconductormanufacturinge_luipznentiscomplex and expensive.Depending upon the
typebfequipmcnt,thenumber ofcontrolparametersmay rangefrom 10 to 30 withperhaps
5 to 10 beingimportant.Sincea singlerun can costhundredsorthousandsofdollars,itis
veryimportanttohaveefficientmethodsforbuildlngresponsesurfaces.

A currentapproachto thisproblemisto do the experimentin two stages.First,a

traditionaldesign(suchas fractionalfactorial)isusedto screenvariables.Afterdeciding
whichvariablesaresignificant,additionalrunsoftheexperimentareconducted.The original
runsand thenew runsareusedtobuilda modelwiththesignificantvariables.However,the

orignal(screening)runsarenotashelp[ulforbuildingthismodel assome otherpointsmight
havebeen.Thispaperpresentsa pointselectionschemethatismore efficientthantraditional

Tr rD
designs. M_,S _ 0_,_

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITE_ ib/



i

J

r ' Approach

L_tin Hypercube Sampling (I.man and Conover) is used to se.lect design points. Stratifi-
cation intervals axe chosen in a way that will help us fit a better quadratic screening model.
Once the selected input points have been run, a stepwise method is used to add _he terms
that give the most sigrtiftca.at improvement in the model. Each time a term is added, terms
that are no longer significant are dropped.

Once we have Rt a quadraticmodel,thatmodel isused to screeninputvariablesand
decidewhich axeimportant.Inputv_riablesidentifiedasimportantarethenusedina similar

method to fitthefinalresponsesurface.

Notation

Assume thatthe spaceof possibleinputvaluesisrectangular,or in otherwords,that

thepossiblevaluesofany giveninputv_riabledo not depend on the valuestheotherinput
v_riablestake.Thisisequiv'Menttoassumingthat£rnE I]_=1[min(zi),ma-x(x,')].

Throughout thisdiscussion,we willusethefollowingnotation:d fo'.thenumber ofinput
variables,n forthe number ofpointsin thedesign,y fortheoutput(whichwe willassume

isone-dimensional),5_ forthevaluesoftheinputvaxiablesat theruthpointinour design,

and zi,mforthevalueoftheithinputvaxiableattheruthpoint.

InitialScreening Model

Our modelwillincludea mean,and alinearandsquaretermforeachindependentvariable.
Itwillalsoincludeinteractionsbetweenpairsofindependentvariables,i.e.zjzk. Thus our
initialmodel willbe oftheform:

CHOOSING THE DESIGN POINTS

We want our screen.inS model to be "good" with respect to some importance function,

A(£). (Assume that A(£)= H_ )q(zl)).

For One Input Variable

Here,we choosethevaluesofoneinputv-_riable,ziatthedesignpoints.We areinterested

indevelopingthebestquadratic:fitfory,i.e.aiz_+ flizi+ clwhichhas theminimum mean
squarederrorof allquadraticfunctionsunderweightAi(x).For our purposeswe c_n tre_t

Ai(zi)as a probabilitydensity.Ifwe letdi,j= E(z![Ai),thenwe willhave:

di,2 - d_,l dl,2di,1 - d;,3 dl,3di,1 - d_,2

di,_di,t - di,3 dl,4 - d_i,_ di,adi,2 - di,,idi,1

cq di 3di,1 d_,_ di,3di,2 di,4di,t di,,Idi,2 d2 E(x_ylA'), - -
ci

The above equation is true because the weight measure is a produc_ of one-dimensional

weight me_ures and thus ai and fli are orthogonal _o all of the other terms ia _he model.
Thus, a_, _9i, and cl will be linear functions of E(y Ai), E(ziy[A;), and E(z_yIA;). We

can divide the r_nge of x into n strata of the form [l,,m__, li,m] and choose a point from each
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willbeu_bia_edestimatesofE(:_),E(z_), _d E(z_). Ifwesetw_.,,,= n_(t_,,,,)-A_(k,,,-_),
then:

n

E(i_) -- _] w_,_i,_,and
m--1

r_

=

Thus,

axe unbiased estimates of a, b, and c. Wewant to choose our intervals to minimize the
expected value of the mean squared errors of our estimates, or:

[/m'''(:) ]MSEA = fa.g,.,_l,"I.amin(_,) E ((y - &za -- bz - e)_) A{z)d, de,,,

We can not minimize this function, or even evaluate it, if we do not "know y. However,

we can apprczximate this function for a given set of intervals, and then rnir, imi_e our approx-

imation. Towards this end, we will break y into f(z) = E(ylz) and g(_, e) = y -/(z). Thus,

E(g(_, e)) = O, and var(g(_, e)lz) -- a_(z). We can now argue that within each interval g(_, e)
will have more variation than f(z) will have. If we assume that a_(z) is fairly constant, we

can minimize the part of the variance of _, b, and _ _hat comes from g(_, _) by choosing

shorter intervals near. the ends of the range and longer intervals near the middle.
Since nothing we do in the one variable case depends on y, we will use the same method-

ology if there is more than one output vaxiable of interest.
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More than one Independent Variable

Once we havechosenz_ :m = i,...,n,foreachi,thesemarginalpointsaxecombinedto
createthedesignpoints.In cre;ttingthedesignpoints,we wamt tominimizethe correlations

betweeneachpairsofindependentvariables.One popularmethod fordoingthisisusing
Choleskydecompositionvaxi_tionofLatinHy'percubeSampling(Imam),

When theprobleminvolvesmore than one inputvaxiable,we must considerinteraction

terms.We can show that"_j,t:=-_,_--tw;',k,_(dj,k,0+ dj,t,lzj,mzk,,_,)Z/m.For wj,k,,_,we will

use the average of the two relevant weights, giving us wj,k,m = 2
To estimate the mean, we will use the _verage of the weights corresponding to significant

n .w 1 d'wT_m +w3,m
terms. Thus, if zl, z2, andz3 axe all significant, then we would let _ = _'_m---I ,m-- 3 tim.

FITTING A MODEL AT gACH STEP IN THE STEPWISE ALGORITHM

Stepwise Technique

To build our model, we will ,:yale through two steps. In the first, we will consider whether

adding any term will improve the fit. If any terms do improve the fit, then we add the ter_t_
which gives the biggest improvement. If no term improves the fit, then we stop and keep
the model from the last iteration. Each time that we add n new term, we will go through

the second s'cep, dropping any terms which are no longer significant. We will continue going
through this cycle until both (,_) there axe no terms left which would significantly improve

the mode, and (b) all of the terms already in the model are significaxtt.

Estimating Individual Term.s

As we mentioned in the previous section,

'_ _+emodel wi,_
= . Imodel/ Y'_rn"-I

l't

rn'l

rt

---- ,_ #wi,m[boYi q"blzlYl q- b_zpyi],
i=1

F;

"[j,k -" :E 'Wj,k,m(dj,k,O-+-dj,+,Izj,,.r,,..r.k,m)Ym,.
m.----I

Unfortunately, this leaves a great deal of confounding between the different effects, la the
next subsection, dealing with this confounding will be discussed.

Estimating Terms Simultaneously

Here, we will discuss getting eround the confounding and the different sets of weights. To
do this, we will show an example where we are interested in fitting the model _)= p + Blzl +

o_2z] + 7a.4zzz4. To do this, we can look for values of/2,1_1, _2, and'_a,4, so that evaluating _)
at each of _he design points, and then using these values of t) to estimate the individual terms

will give us the same values of/5,_1, &a,nnd_3.t a_ we used to construct !). We can find these
four values by solving the following system of linear equations.
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E IDl,m + l#2,rn + 'W3,rn + t/./4,m
_--:t 4 Ym

rt

i=I 4
FA

i--1
I'L

= _ wa,m(bx,o+ bx.xzL/+ bl,,z_,,)(fi +/_xzl,, + d2:r_,, + 7S,az3,d:r4,,)
iml

7l

i--I 2

-- E W3,m + tO4,m t,d-- 2 k 3.4,0 + d3,4,1z3,1z4,1)(# + _lzl,i + 02z22,i + 73,4.3,iz4,1)
i---1

SIMULATION RESULTS

Here,we ranthreesimulationsdo seehow ourmethod would compareto stepwiseregres-
sion.We used both uniformstrataintervals_nd theimprovedintervalswhich our method

generated.We measured the mean squarederrorbetweenour fittedmodels and the true
model.We useda uniformmea_mreon thespace[-1,i]_.Allofthe simulationsused experi-
ments of thirty runs for each point in the simulation.

zl + z2 + z3 + z4 + zs + _ with four additional nonsense input varinbles.

sd(_) ..... my method regressionmy method regression
improved improved uniform uniform
intervals intervals intervals intervals

".1 ave(MSE) .....,0012773 ' '.001694' .003010 .241090
sd(MSE) .000013 .001024 .002091 .752062

.4 a.ve(M_E _ .120925 .210063 .034327 .0400_t5
- sd(MS_'.) .3290t0 .586223" .025i54" - .0233B3'

.7 ._ve(MSE) .519136 .514908 .... .421598 ,5288'45
[- sd(MSE) .571021 .442535 .394462 .493094



* _ + sin( 'r_-2)+ e°a(rzs_l,+z4 + zlz2 + e with five additioaaJl nonseust; iLtput
variables.

sd(_) ] my method regression my m'et-hod regression

t improved improved uniform uniform
inte, .sis iaterwAs intervals intervah

i ..... ....,i36597 .o694 8-.o694i-s-ave(MSE) .... .4761411 .......403006- .406254 .40625,i

sd(MSE i .291063 ] :158053 .053048 .053048

- i

.4 i ave(MSE) .4427 ....... .4738 .4028 .4348
8d(MSE) .172750 ".15394'7 .073289 .091597

Thus, v e feel that in some ca_es, when thefunction is not we a.pp-r0xim_ted by the model
or when there is _ lot of noise, it will be better to use our method for choosing points, and to
then use our analysis a_ well as regression and use the better of the two models.
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