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INTRODUCTION
Background

In many science and engineering applications, there is an interest in predicting the outputs
of a process for given levels of inputs. In order to develop a model, one could run the
process (or a simulation of the process) at a number of points (a point would be one run
at one set of possible input values) and observe the values of the outputs at those points.
These observations can be used to predict the values of the outputs for other values of the
inputs.. Since the outputs are a function of the the inputs, we can generate a surface in the
space of possible inputs and outputs. This surface is called a response surface. In some
cases, collecting data needed to generate a response surface can e very expensive. Thus, in
these cases, there is a powerful incentive to minimize the sample size while building better
resaponse surfaces. One such case is the semiconductor equipment manufacturing industry.
Semiconductor manufacturing equipment is complex and expensive. Depending upon the
type of equipment, the number of control parameters may range from 10 to 30 with perhaps
5 to 10 being important. Since a single run can cost hundreds or thousands of dollars, it is
very important to have efficient methods for building response surfaces.

A current approach to this problem is to do the experiment in two stages. First, a
traditional design (such as fractional factorial) is used to screen variables. After deciding
which variables are significant, additional runs of the experiment are conducted. The original
runsg and the new runs are used to build a mode] with the significant variables. However, the
orignal (screening) runs are not as help/ul for building this model as some other points might
have been. This paper presents a point selection scheme that is more efficient than traditional

designs. M A S TE R
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Approach

Latin Hypercube Sampling (Iman and Conover) is used to select design points. Stratifi-
catjon intervals are chosen in a way that will help us fit a better quadratic screening model.
Once the selected input points have been run, a stepwise method is used to add the terms
that give the most significant improvement in the model. Each time a term is added, terms
that are no longer significant are dropped.

Once we have fit a quadratic model, that model is used to screen input variables and
decide which are important. Input variables identified as important are then used in a similar
method to fit the final response surface.

Notation

Assume that the space of possible input values is rectangular, or in other words, that
the possible values of any given input variable do not depend on the values the other input
variables take. This is equivalent to assuming that Z,, € [[,[min(z;), max(z;)).

Throughout this discussion, we will use the following notation: d for the number ol input
variables, n for the number of points in the design, y [or the output (which we will assume
is one-dimensional), £™ for the values of the input variables at the mth point in our design,
and z;;, for the value of the ith input variable at the mth point.

Initial Screening Model

Our model will include a2 mean, and a linear and square term for each independent variable.
It will also include interactions between pairs of independent variables, i.e. z;zx. Thus our
initial model will be of the form:

y=p+ S Bizi+ S aie? + Y vikziz

i<k

CHOOSING THE DESIGN POINTS

We want our screening model to be “good” with respect to some importance function,
A(Z). (Assume that A(Z) = [T Mi(z:))-

For One Input Variable

Here, we chaose the values of one input variable, z, at the design points. We are interested
in developing the best quadratic fit for y, i.e. @z} + B;z; + ¢; which has the minimum mean
squared error of all quadratic functions under weight A;(z). For our purposes we can treat
Ai(zi) as a probability density. If we let d;; = E(z}|A;), then we will have:

di2 —d?, di2diy — d;3 diadiy — d?,
dijgdiy — di3 dig - d?, diadiz ~ diadiy

. 20N
Z'_ | diadin —d}, digdig —digdin  digdia —di5 ] giz‘:{ Af;
! - . .d: A R, P Y] YA

o diadia + 2di3di2di1 = diadfy - di; — dig E(y|A)

The above equation is true because the weight measure i8 a product of one-dimensional
weight measures and thus a; and §; are orthogonal to all of the other terms in the model.

Thus, a;, §;, and ¢; will be linear functions of E(y|A;), E(ziy|);), and E(z?y|)). We
can divide the range of z into n strata of the form (I, m-1,/i,m] and choose a point from each




strata using the distribution A, ,(z) = TN (A m)'\_"%’l,)({._ 7 (kiim=1<z<lim)+ After we choose the
points, ' '

E': [Aillim) = Ai(lim—1)]Ym,

m=]

Z [Ai(liim) = Ai(lim=1))ZimYm, and
m=]

i [At'(zl',m) - Ai(li,m—l)]zﬁmym

m=l

will be unbiased estimates of E(y), E(z;¥), and E(z?y). If we set wim = Ai(lim) = Ai(lim-1),
then:

n
E(y) = Z WimYm,
m=1
. n
E(z;y) = Z Wi mZi,m Ym, and
m=1
- n
E(zly) = Y wimzi ym
ms=l
Thus,
n
di = Y Wimla¥m + Q1ZimYm + a28% Y s
=1
. "
Bi = Y wimlboyi + biziyi + bozluil,
i=1

n
Y wimleowi + erziyi + eaztyil,

g=1

B
(=¥
(23
i

are unbiased estimates of @, b, and c. We want to choose our intervals to minimize the
expected value of the mean squared errors of our estimates, or:

max(z) R
MSE, = / A [/ E((y—&zz~bz-é)2) A(z)dw] dy
‘ é,5,3e¥ | /min(z)

We can not minimize this function, or even evaluate it, if we do not know y. However,
we can approximate this function for a given set of intervals, and then minimize our approx-
imation. Towards this end, we will break y into f(z) = E(y|z) and g(%,¢) = y = f(z). Thus,
E(g(Z%,€)) = 0, and var(g(Z, €)|z) = 0*(z). We can now argue that within each interval g(Z, ¢)
will have more variation than f(z) will have. If we agsume that ¢?(z) is fairly constant, we
can minimize the part of the variance of &, b, and ¢ that comes from g(Z,¢) by choosing
shorter intervals near the ends of the range and longer intervals near the middle.

Since nothing we do in the one variable case depends on y, we will use the same method-
ology if there is more than one cutput variable of interest.



More than one Independent Variable

Once we have chosen z7* : m = 1,...,n, for each i, these marginal points are combined to
create the design points. In creating the design points, we want to minimize the correlations
between each pairs of independent variables. One popular method for doing this is using a
Cholesky decomposition variation of Latin Hypercube Sampling (Iraan).

When the problem involves more than one input variable, we must cousider interaction
terms. We can show that ;& = Somay Wik m(djko + € k125,mZhm)¥m. For wjem, we will
use the average of the two relevant weights, giving us wjxm = 1’44"'—}'552

To estimate the mean, we will use the average of the weights corresponding to significant
terms. Thus, if 21, 22, andz3 are all significant, then we would let 4 = 3"n | wf‘i—ﬂﬂym.

FITTING A MODEL AT EACH STEP IN THE STEPWISE ALGORITHM
Stepwise Technique

To build our model, we will cycle through two steps. In the first, we will consider whether
adding any term will improve the fit. If any terms do improve the fit, then we add the term
which gives the biggest improvement. If no term improves the fit, then we stop and keep
the model from the last iteration. Each time that we add a new term, we will go through
the second step, dropping any terms which are no longer significant. We will continue going
through this cycle until both (a) there are no terms left which would significantly improve
the mode, and (b) all of the terms already in the model are significant.

Estimating Individual Terms

As we mentjoned in the previous section,

n

. Z Eigmodel“’"-m

2 |model| ™
a; = ‘Z w,-,m[aoym + a1Zim¥m + azr?,myIn])
m=1

n
Bi = % wimlboy + biziwi + baz?yil,

i=1

n
V;vk = ,Z 'wj,k‘m(dj‘k,o + dj,k,lzj,mzk,m)ym-
rn.:l
Unfortunately, this leaves a great deal of confounding between the different effects. In the
next subsection, dealing with this confounding will be discussed.

Estimating Terms Simultancously

Here, we will discuss getting around the confounding and the different sets of weights. To
do this, we will show an example where we are interested in fitting the madel § = p + Srz1 +
as73 + 73 473z4. To do this, we can look for values of 0, By, éa, and9; 4, 60 that evaluating §
at each of the design points, and then using these values of § to estimate the individual terms
will give us the same values of i, B1, &2,and93 4 as we used to construct §. We can find these
four values by solving the following system of linear equations.



n

2 Wim + Wam + Wam + Wy,m

Ym
f=1 4
n
Yim + Wam + Wam + Wam ,. 2 . -
3 e T Pam " PR (it frori + dzed; + 75 423i744)
=1
n
): w1,m(b1,0 + b1121,; + ba 222 )y
=1

n
= Y wim(bro+ bz, + biazd )6+ Bizy,i + 4223 ; + ¥3.423,4,)

=1

n
> W2,m(620 + a2yz3, + 02,223 )y

=1

n
= > wim(azo+ 2122, + 83,223 ;)(@ + frzy s + d223; + V3,473,i24,0)

s==]

=\ Wy + W
) "3""1-2——41‘-((13,4.0 +d3,4,1%3,iZ4,)y;
1=1

O Wam + Wym | -, 2 - 2 -
> _'—,‘,—'—(da.mo + d3,4123,i24,0)(f + P12, + 6223 ; + 73,423,i%4,0)

=1

SIMULATION RESULTS

Here, we ran three simulations do see how our method would compare to stepwise regres-
sion. We used both uniform strata intervals and the improved intervals which our method
generated. We measured the mean squared error between our fitted models and the true
model. We used a uniform measure on the space [-1,1])%, All of the simulations used experi-
ments of thirty runs for each paint in the simulation.

Z1 + 22+ 23 + T4 + 75 + € with four additional nonsense input variables.

sd(e) my method | regression | my method | regression
improved | improved uniform uniform

intervals | intervals intervals | intervals

1 [ ave(MSE) | .0012773 | .001604 003019 | 241090
sd(MSE) .000613 .001024 .002091 .752062

4 | ave(MSE) .120925 .210063 034327 .040045
sd(MSE) 329010 .586223 025154 023383

.7 | ave(MSE) 519136 .514908 421598 528845
sd(MSE) 571021 | 442535 394462 | 493094




VL 1 + sin(T32) + cos(nzz) + T4 + 2123 + ¢ with five additional nonsense iuput

variables.
sd(¢) my method | regression | my method regre:ssion
improved | improved uniform uniformn
inte als | iutervals intervalg | intervals
0 | ave(MSE) 385236 | 371297 | 413790 | 413790
sd(MSE) 136567 | 075868 | 069418 | 069418
.1 | ave(MSE) 476141 403006 406254 406254
sd(MSE) 291063 .158053 .053048 .053048
4 | ave(MSE) 4427 4738 4028 4348
sd(MSE) 172750 .153947 .073289 091597

Tius, we fee] that in some cases, when the function is not well approximated by the mod‘el
or when there is a lot of noise, it will be better to use our method for choosing points, and to
then use our analysis as well as regression and use the better of the two models.
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