

Unvalidated Analytical Data Sheets

200 Area Treated Effluent Disposal Facility

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

## **DISCLAIMER**

**Portions of this document may be illegible  
in electronic image products. Images are  
produced from the best available original  
document.**

CROSS REFERENCE  
STREAM AND SAMPLE NUMBER

| STREAM - End of Pipe                                       | Primary Sample Number                                          |
|------------------------------------------------------------|----------------------------------------------------------------|
| PFP - Manhole #9                                           | B08QB0, B08QB3, B08LG8, B083R2, B083R2, B083R2                 |
| 222-S - 207 Retention Basin                                | B08KS3, B08KS6                                                 |
| T-PLANT WASTE WATER - 216-T-4-2 Ditch                      | B08Q54, B08Q57, B08Q62, B08Q63                                 |
| 284-W POWER PLANT - Manhole above discharge to 284-WB pond | B098S0, B098S1, B098S2, B098S3, B098J7, B098M7                 |
| PUREX CHEMICAL SEWER - 295-AC                              | B08QG1, B08QG4                                                 |
| B-PLANT CHEMICAL SEWER - 211-BA                            | B087C5, B087C6, B08QF2, B08QF3                                 |
| B-PLANT COOLING WATER - 207-BA Retention Basin             | B08795, B08796, B087F1, B087F2, B08QB9, B08QC0, B08QC3, B08QC4 |
| 242-A-81 COOLING WATER - Raw Water                         | B08Q81, B08Q84, B08779, B08784                                 |

PLUTONIUM FINISHING PLANT

STREAM 1a

1A  
VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

000122

B08QBO

Lab Name: TMA/ARLI

Contract: WHD

Lab Code: TMALA Case No.: 07078

SAS No.: NA SDG No.: NA

Matrix: (soil/water) WATER

Lab Sample ID: A307078-01A

Sample wt/vol: 5.0 (g/mL) ML

Lab File ID: 30803M10

Level: (low/med) LOW

Date Received: 07/29/93

% Moisture: not dec.

Date Analyzed: 08/03/93

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L

Q

|                 |                           |    |   |
|-----------------|---------------------------|----|---|
| 74-87-3-----    | Chloromethane             | 10 | U |
| 74-83-9-----    | Bromomethane              | 10 | U |
| 75-01-4-----    | Vinyl Chloride            | 10 | U |
| 75-00-3-----    | Chloroethane              | 10 | U |
| 75-09-2-----    | Methylene Chloride        | 2  | J |
| 67-64-1-----    | Acetone                   | 10 | U |
| 75-15-0-----    | Carbon Disulfide          | 5  | U |
| 75-35-4-----    | 1,1-Dichloroethene        | 5  | U |
| 75-34-3-----    | 1,1-Dichloroethane        | 5  | U |
| 67-66-3-----    | Chloroform                | 5  |   |
| 107-06-2-----   | 1,2-Dichloroethane        | 5  | U |
| 78-93-3-----    | 2-Butanone                | 10 | U |
| 71-55-6-----    | 1,1,1-Trichloroethane     | 5  | U |
| 56-23-5-----    | Carbon Tetrachloride      | 2  | J |
| 108-05-4-----   | Vinyl Acetate             | 10 | U |
| 75-27-4-----    | Bromodichloromethane      | 5  | U |
| 78-87-5-----    | 1,2-Dichloropropane       | 5  | U |
| 10061-01-5----- | cis-1,3-Dichloropropene   | 5  | U |
| 79-01-6-----    | Trichloroethene           | 5  | U |
| 124-48-1-----   | Dibromochloromethane      | 5  | U |
| 79-00-5-----    | 1,1,2-Trichloroethane     | 5  | U |
| 71-43-2-----    | Benzene                   | 5  | U |
| 10061-02-6----- | trans-1,3-Dichloropropene | 5  | U |
| 75-25-2-----    | Bromoform                 | 5  | U |
| 108-10-1-----   | 4-Methyl-2-pentanone      | 10 | U |
| 591-78-6-----   | 2-Hexanone                | 10 | U |
| 127-18-4-----   | Tetrachloroethene         | 5  | U |
| 79-34-5-----    | 1,1,2,2-Tetrachloroethane | 5  | U |
| 108-88-3-----   | Toluene                   | 5  | U |
| 108-90-7-----   | Chlorobenzene             | 5  | U |
| 100-41-4-----   | Ethylbenzene              | 5  | U |
| 100-42-5-----   | Styrene                   | 5  | U |
| 1330-20-7-----  | Xylene (Total)            | 5  | U |

1A  
VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

000175

B08QB3

Lab Name: TMA/ARLI

Contract: WHC

Lab Code: TMALA Case No.: 07078 SAS No.: NA SDG No.: NA

Matrix: (soil/water) WATER Lab Sample ID: A307078-04A

Sample wt/vol: 5.0 (g/mL) ML Lab File ID: 30803M05

Level: (low/med) LOW Date Received: 07/29/93

% Moisture: not dec. Date Analyzed: 08/03/93

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:  
(ug/L or ug/Kg) UG/L Q

|                   |                                  |           |          |
|-------------------|----------------------------------|-----------|----------|
| <u>74-87-3</u>    | <u>Chloromethane</u>             | <u>10</u> | <u>U</u> |
| <u>74-83-9</u>    | <u>Bromomethane</u>              | <u>10</u> | <u>U</u> |
| <u>75-01-4</u>    | <u>Vinyl Chloride</u>            | <u>10</u> | <u>U</u> |
| <u>75-00-3</u>    | <u>Chloroethane</u>              | <u>10</u> | <u>U</u> |
| <u>75-09-2</u>    | <u>Methylene Chloride</u>        | <u>5</u>  | <u>U</u> |
| <u>67-64-1</u>    | <u>Acetone</u>                   | <u>10</u> | <u>U</u> |
| <u>75-15-0</u>    | <u>Carbon Disulfide</u>          | <u>5</u>  | <u>U</u> |
| <u>75-35-4</u>    | <u>1,1-Dichloroethene</u>        | <u>5</u>  | <u>U</u> |
| <u>75-34-3</u>    | <u>1,1-Dichloroethane</u>        | <u>5</u>  | <u>U</u> |
| <u>67-66-3</u>    | <u>Chloroform</u>                | <u>5</u>  | <u>U</u> |
| <u>107-06-2</u>   | <u>1,2-Dichloroethane</u>        | <u>5</u>  | <u>U</u> |
| <u>78-93-3</u>    | <u>2-Butanone</u>                | <u>10</u> | <u>U</u> |
| <u>71-55-6</u>    | <u>1,1,1-Trichloroethane</u>     | <u>5</u>  | <u>U</u> |
| <u>56-23-5</u>    | <u>Carbon Tetrachloride</u>      | <u>2</u>  | <u>J</u> |
| <u>108-05-4</u>   | <u>Vinyl Acetate</u>             | <u>10</u> | <u>U</u> |
| <u>75-27-4</u>    | <u>Bromodichloromethane</u>      | <u>5</u>  | <u>U</u> |
| <u>78-87-5</u>    | <u>1,2-Dichloropropane</u>       | <u>5</u>  | <u>U</u> |
| <u>10061-01-5</u> | <u>cis-1,3-Dichloropropene</u>   | <u>5</u>  | <u>U</u> |
| <u>79-01-6</u>    | <u>Trichloroethene</u>           | <u>5</u>  | <u>U</u> |
| <u>124-48-1</u>   | <u>Dibromochloromethane</u>      | <u>5</u>  | <u>U</u> |
| <u>79-00-5</u>    | <u>1,1,2-Trichloroethane</u>     | <u>5</u>  | <u>U</u> |
| <u>71-43-2</u>    | <u>Benzene</u>                   | <u>5</u>  | <u>U</u> |
| <u>10061-02-6</u> | <u>trans-1,3-Dichloropropene</u> | <u>5</u>  | <u>U</u> |
| <u>75-25-2</u>    | <u>Bromoform</u>                 | <u>5</u>  | <u>U</u> |
| <u>108-10-1</u>   | <u>4-Methyl-2-pentanone</u>      | <u>10</u> | <u>U</u> |
| <u>591-78-6</u>   | <u>2-Hexanone</u>                | <u>10</u> | <u>U</u> |
| <u>127-18-4</u>   | <u>Tetrachloroethene</u>         | <u>5</u>  | <u>U</u> |
| <u>79-34-5</u>    | <u>1,1,2,2-Tetrachloroethane</u> | <u>5</u>  | <u>U</u> |
| <u>108-88-3</u>   | <u>Toluene</u>                   | <u>1</u>  | <u>J</u> |
| <u>108-90-7</u>   | <u>Chlorobenzene</u>             | <u>5</u>  | <u>U</u> |
| <u>100-41-4</u>   | <u>Ethylbenzene</u>              | <u>5</u>  | <u>U</u> |
| <u>100-42-5</u>   | <u>Styrene</u>                   | <u>5</u>  | <u>U</u> |
| <u>1330-20-7</u>  | <u>Xylene (Total)</u>            | <u>5</u>  | <u>U</u> |

222-S LABORATORY COMPLEX

STREAM 1b

1C  
SEMITOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

000468

B08KS3

Lab Name: TMA/ARLI

Contract: WHC

Lab Code: TMALA

Case No.: 07020

SAS No.: NA

SDG No.: NA

Matrix: (soil/water) WATER

Lab Sample ID: A307020-04B

Sample wt/vol: 1000 (g/mL) ML

Lab File ID: 30727I06

Level: (low/med) LOW

Date Received: 07/09/93

% Moisture: not dec.        dec.       

Date Extracted: 07/12/93

Extraction: (SepF/Cont/Sonc) CONT

Date Analyzed: 07/27/93

GPC Cleanup: (Y/N) N pH:       

Dilution Factor: 1.0

| CAS NO.   | COMPOUND                   | CONCENTRATION UNITS: |      |
|-----------|----------------------------|----------------------|------|
|           |                            | (ug/L or ug/Kg)      | UG/L |
| 99-09-2   | 3-Nitroaniline             | 50                   | U    |
| 83-32-9   | Acenaphthene               | 10                   | U    |
| 51-28-5   | 2,4-Dinitrophenol          | 50                   | U    |
| 100-02-7  | 4-Nitrophenol              | 50                   | U    |
| 132-64-9  | Dibenzofuran               | 10                   | U    |
| 121-14-2  | 2,4-Dinitrotoluene         | 10                   | U    |
| 606-20-2  | 2,6-Dinitrotoluene         | 10                   | U    |
| 84-66-2   | Diethylphthalate           | 10                   | U    |
| 7005-72-3 | 4-Chlorophenyl-phenylether | 10                   | U    |
| 86-73-7   | Fluorene                   | 10                   | U    |
| 100-01-6  | 4-Nitroaniline             | 50                   | U    |
| 534-52-1  | 4,6-Dinitro-2-methylphenol | 50                   | U    |
| 86-30-6   | N-Nitrosodiphenylamine (1) | 10                   | U    |
| 101-55-3  | 4-Bromophenyl-phenylether  | 20                   | U    |
| 118-74-1  | Hexachlorobenzene          | 10                   | U    |
| 87-86-5   | Pentachlorophenol          | 50                   | U    |
| 85-01-8   | Phenanthrene               | 10                   | U    |
| 120-12-7  | Anthracene                 | 10                   | U    |
| 84-74-2   | Di-n-butylphthalate        | 10                   | U    |
| 206-44-0  | Fluoranthene               | 10                   | U    |
| 129-00-0  | Pyrene                     | 10                   | U    |
| 85-68-7   | Butylbenzylphthalate       | 10                   | U    |
| 91-94-1   | 3,3'-Dichlorobenzidine     | 20                   | U    |
| 56-55-3   | Benzo(a)anthracene         | 10                   | U    |
| 117-81-7  | Bis(2-ethylhexyl)phthalate | 4                    | J    |
| 218-01-9  | Chrysene                   | 10                   | U    |
| 117-84-0  | Di-n-octylphthalate        | 10                   | U    |
| 205-99-2  | Benzo(b)fluoranthene       | 10                   | U    |
| 207-08-9  | Benzo(k)fluoranthene       | 10                   | U    |
| 50-32-8   | Benzo(a)pyrene             | 10                   | U    |
| 193-39-5  | Indeno(1,2,3-cd)pyrene     | 10                   | U    |
| 53-70-3   | Dibenz(a,h)anthracene      | 10                   | U    |
| 191-24-2  | Benzo(g,h,i)perylene       | 10                   | U    |

(1) - Cannot be separated from Diphenylamine

1C  
SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

000492

B08KS6

Lab Name: TMA/ARLI

Contract: WHC

Lab Code: TMALA

Case No.: 07020

SAS No.: NA

SDG No.: NA

Matrix: (soil/water) WATER

Lab Sample ID: A307020-07B

Sample wt/vol: 1000 (g/mL) ML

Lab File ID: 30727I07

Level: (low/med) LOW

Date Received: 07/09/93

% Moisture: not dec.        dec.       

Date Extracted: 07/12/93

Extraction: (SepF/Cont/Sonc) CONT

Date Analyzed: 07/27/93

GPC Cleanup: (Y/N) N pH:       

Dilution Factor: 1.0

| CAS NO.   | COMPOUND                   | CONCENTRATION UNITS: |      |
|-----------|----------------------------|----------------------|------|
|           |                            | (ug/L or ug/Kg)      | UG/L |
| 99-09-2   | 3-Nitroaniline             | 50                   | U    |
| 83-32-9   | Acenaphthene               | 10                   | U    |
| 51-28-5   | 2,4-Dinitrophenol          | 50                   | U    |
| 100-02-7  | 4-Nitrophenol              | 50                   | U    |
| 132-64-9  | Dibenzofuran               | 10                   | U    |
| 121-14-2  | 2,4-Dinitrotoluene         | 10                   | U    |
| 606-20-2  | 2,6-Dinitrotoluene         | 10                   | U    |
| 84-66-2   | Diethylphthalate           | 10                   | U    |
| 7005-72-3 | 4-Chlorophenyl-phenylether | 10                   | U    |
| 86-73-7   | Fluorene                   | 10                   | U    |
| 100-01-6  | 4-Nitroaniline             | 50                   | U    |
| 534-52-1  | 4,6-Dinitro-2-methylphenol | 50                   | U    |
| 86-30-6   | N-Nitrosodiphenylamine (1) | 10                   | U    |
| 101-55-3  | 4-Bromophenyl-phenylether  | 20                   | U    |
| 118-74-1  | Hexachlorobenzene          | 10                   | U    |
| 87-86-5   | Pentachlorophenol          | 50                   | U    |
| 85-01-8   | Phenanthrene               | 10                   | U    |
| 120-12-7  | Anthracene                 | 10                   | U    |
| 84-74-2   | Di-n-butylphthalate        | 10                   | U    |
| 206-44-0  | Fluoranthene               | 10                   | U    |
| 129-00-0  | Pyrene                     | 10                   | U    |
| 85-68-7   | Butylbenzylphthalate       | 10                   | U    |
| 91-94-1   | 3,3'-Dichlorobenzidine     | 20                   | U    |
| 56-55-3   | Benzo(a)anthracene         | 10                   | U    |
| 117-81-7  | Bis(2-ethylhexyl)phthalate | 62                   | U    |
| 218-01-9  | Chrysene                   | 10                   | U    |
| 117-84-0  | Di-n-octylphthalate        | 10                   | U    |
| 205-99-2  | Benzo(b)fluoranthene       | 10                   | U    |
| 207-08-9  | Benzo(k)fluoranthene       | 10                   | U    |
| 50-32-8   | Benzo(a)pyrene             | 10                   | U    |
| 193-39-5  | Indeno(1,2,3-cd)pyrene     | 10                   | U    |
| 53-70-3   | Dibenz(a,h)anthracene      | 10                   | U    |
| 191-24-2  | Benzo(g,h,i)perylene       | 10                   | U    |

(1) - Cannot be separated from Diphenylamine

T PLANT WASTEWATER

STREAM 1c

LA  
VOLATILE ORGANICS ANALYSIS DATA SHEET

000124

EPA SAMPLE NO.

Lab Name: TMA/ARLI

Contract: WHC

B08Q54

Lab Code: TMALA

Case No.: 07025

SAS No.: NA

SDG No.: NA

Matrix: (soil/water) WATER

Lab Sample ID: A307025-01A

Sample wt/vol: 5.0 (g/mL) ML

Lab File ID: 30715B12

Level: (low/med) LOW

Date Received: 07/12/93

Moisture: not dec.

Date Analyzed: 07/15/93

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

|                 |                           |    |   |
|-----------------|---------------------------|----|---|
| 74-87-3-----    | Chloromethane             | 10 | U |
| 74-83-9-----    | Bromomethane              | 10 | U |
| 75-01-4-----    | Vinyl Chloride            | 10 | U |
| 75-00-3-----    | Chloroethane              | 10 | U |
| 75-09-2-----    | Methylene Chloride        | 5  | U |
| 67-64-1-----    | Acetone                   | 10 | U |
| 75-15-0-----    | Carbon Disulfide          | 5  | U |
| 75-35-4-----    | 1,1-Dichloroethene        | 5  | U |
| 75-34-3-----    | 1,1-Dichloroethane        | 5  | U |
| 67-66-3-----    | Chloroform                | 2  | J |
| 107-06-2-----   | 1,2-Dichloroethane        | 5  | U |
| 78-93-3-----    | 2-Butanone                | 10 | U |
| 71-55-6-----    | 1,1,1-Trichloroethane     | 5  | U |
| 56-23-5-----    | Carbon Tetrachloride      | 5  | U |
| 108-05-4-----   | Vinyl Acetate             | 10 | U |
| 75-27-4-----    | Bromodichloromethane      | 5  | U |
| 78-87-5-----    | 1,2-Dichloropropane       | 5  | U |
| 10061-01-5----- | cis-1,3-Dichloropropene   | 5  | U |
| 79-01-6-----    | Trichloroethene           | 5  | U |
| 124-48-1-----   | Dibromochloromethane      | 5  | U |
| 79-00-5-----    | 1,1,2-Trichloroethane     | 5  | U |
| 71-43-2-----    | Benzene                   | 5  | U |
| 10061-02-6----- | trans-1,3-Dichloropropene | 5  | U |
| 75-25-2-----    | Bromoform                 | 5  | U |
| 108-10-1-----   | 4-Methyl-2-pentanone      | 10 | U |
| 591-78-6-----   | 2-Hexanone                | 10 | U |
| 127-18-4-----   | Tetrachloroethene         | 5  | U |
| 79-34-5-----    | 1,1,2,2-Tetrachloroethane | 5  | U |
| 108-88-3-----   | Toluene                   | 5  | U |
| 108-90-7-----   | Chlorobenzene             | 5  | U |
| 100-41-4-----   | Ethylbenzene              | 5  | U |
| 100-42-5-----   | Styrene                   | 5  | U |
| 1330-20-7-----  | Xylene (Total)            | 5  | U |

LA  
VOLATILE ORGANICS ANALYSIS DATA SHEET000167  
EPA SAMPLE NO.Lab Name: TMA/ARLIContract: WHC

B08Q57

Lab Code: TMALACase No.: 07025SAS No.: NASDG No.: NAMatrix: (soil/water) WATERLab Sample ID: A307025-04ASample wt/vol: 5.0 (g/mL) MLLab File ID: 30715B17Level: (low/med) LOWDate Received: 07/12/93Moisture: not dec.       Date Analyzed: 07/15/93Column: (pack/cap) CAPDilution Factor: 1.0

| CAS NO.    | COMPOUND                  | CONCENTRATION UNITS:<br>(ug/L or ug/Kg) <u>UG/L</u> | Q |
|------------|---------------------------|-----------------------------------------------------|---|
| 74-87-3    | Chloromethane             | 10                                                  | U |
| 74-83-9    | Bromomethane              | 10                                                  | U |
| 75-01-4    | Vinyl Chloride            | 10                                                  | U |
| 75-00-3    | Chloroethane              | 10                                                  | U |
| 75-09-2    | Methylene Chloride        | 5                                                   | U |
| 67-64-1    | Acetone                   | 10                                                  | U |
| 75-15-0    | Carbon Disulfide          | 5                                                   | U |
| 75-35-4    | 1,1-Dichloroethene        | 5                                                   | U |
| 75-34-3    | 1,1-Dichloroethane        | 5                                                   | U |
| 67-66-3    | Chloroform                | 2                                                   | J |
| 107-06-2   | 1,2-Dichloroethane        | 5                                                   | U |
| 78-93-3    | 2-Butanone                | 10                                                  | U |
| 71-55-6    | 1,1,1-Trichloroethane     | 5                                                   | U |
| 56-23-5    | Carbon Tetrachloride      | 5                                                   | U |
| 108-05-4   | Vinyl Acetate             | 10                                                  | U |
| 75-27-4    | Bromodichloromethane      | 5                                                   | U |
| 78-87-5    | 1,2-Dichloropropane       | 5                                                   | U |
| 10061-01-5 | cis-1,3-Dichloropropene   | 5                                                   | U |
| 79-01-6    | Trichloroethene           | 5                                                   | U |
| 124-48-1   | Dibromochloromethane      | 5                                                   | U |
| 79-00-5    | 1,1,2-Trichloroethane     | 5                                                   | U |
| 71-43-2    | Benzene                   | 5                                                   | U |
| 10061-02-6 | trans-1,3-Dichloropropene | 5                                                   | U |
| 75-25-2    | Bromoform                 | 5                                                   | U |
| 108-10-1   | 4-Methyl-2-pentanone      | 10                                                  | U |
| 591-78-6   | 2-Hexanone                | 10                                                  | U |
| 127-18-4   | Tetrachloroethene         | 5                                                   | U |
| 79-34-5    | 1,1,2,2-Tetrachloroethane | 5                                                   | U |
| 108-88-3   | Toluene                   | 5                                                   | U |
| 108-90-7   | Chlorobenzene             | 5                                                   | U |
| 100-41-4   | Ethylbenzene              | 5                                                   | U |
| 100-42-5   | Styrene                   | 5                                                   | U |
| 1330-20-7  | Xylene (Total)            | 5                                                   | U |

284-W POWER PLANT WASTE WATER

STREAM 1d

000305

1A  
VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

B098M7

Lab Name: TMA/ARLIContract: WHCLab Code: TMALACase No.: 09065SAS No.: NASDG No.: NAMatrix: (soil/water) WATERLab Sample ID: A309065-07ASample wt/vol: 5.0 (g/mL) MLLab File ID: 31004M17Level: (low/med) LOWDate Received: 09/24/93% Moisture: not dec.       Date Analyzed: 10/04/93Column: (pack/cap) CAPDilution Factor: 1.0CONCENTRATION UNITS:  
(ug/L or ug/Kg) UG/L

Q

|                   |                                  |           |          |
|-------------------|----------------------------------|-----------|----------|
| <u>74-87-3</u>    | <u>Chloromethane</u>             | <u>10</u> | <u>U</u> |
| <u>74-83-9</u>    | <u>Bromomethane</u>              | <u>10</u> | <u>U</u> |
| <u>75-01-4</u>    | <u>Vinyl Chloride</u>            | <u>10</u> | <u>U</u> |
| <u>75-00-3</u>    | <u>Chloroethane</u>              | <u>10</u> | <u>U</u> |
| <u>75-09-2</u>    | <u>Methylene Chloride</u>        | <u>5</u>  | <u>U</u> |
| <u>67-64-1</u>    | <u>Acetone</u>                   | <u>10</u> | <u>U</u> |
| <u>75-15-0</u>    | <u>Carbon Disulfide</u>          | <u>5</u>  | <u>U</u> |
| <u>75-35-4</u>    | <u>1,1-Dichloroethene</u>        | <u>5</u>  | <u>U</u> |
| <u>75-34-3</u>    | <u>1,1-Dichloroethane</u>        | <u>5</u>  | <u>U</u> |
| <u>67-66-3</u>    | <u>Chloroform</u>                | <u>9</u>  |          |
| <u>107-06-2</u>   | <u>1,2-Dichloroethane</u>        | <u>5</u>  | <u>U</u> |
| <u>78-93-3</u>    | <u>2-Butanone</u>                | <u>10</u> | <u>U</u> |
| <u>71-55-6</u>    | <u>1,1,1-Trichloroethane</u>     | <u>5</u>  | <u>U</u> |
| <u>56-23-5</u>    | <u>Carbon Tetrachloride</u>      | <u>5</u>  | <u>U</u> |
| <u>108-05-4</u>   | <u>Vinyl Acetate</u>             | <u>10</u> | <u>U</u> |
| <u>75-27-4</u>    | <u>Bromodichloromethane</u>      | <u>5</u>  | <u>U</u> |
| <u>78-87-5</u>    | <u>1,2-Dichloropropane</u>       | <u>5</u>  | <u>U</u> |
| <u>10061-01-5</u> | <u>cis-1,3-Dichloropropene</u>   | <u>5</u>  | <u>U</u> |
| <u>79-01-6</u>    | <u>Trichloroethene</u>           | <u>5</u>  | <u>U</u> |
| <u>124-48-1</u>   | <u>Dibromochloromethane</u>      | <u>5</u>  | <u>U</u> |
| <u>79-00-5</u>    | <u>1,1,2-Trichloroethane</u>     | <u>5</u>  | <u>U</u> |
| <u>71-43-2</u>    | <u>Benzene</u>                   | <u>5</u>  | <u>U</u> |
| <u>10061-02-6</u> | <u>trans-1,3-Dichloropropene</u> | <u>5</u>  | <u>U</u> |
| <u>75-25-2</u>    | <u>Bromoform</u>                 | <u>5</u>  | <u>U</u> |
| <u>108-10-1</u>   | <u>4-Methyl-2-pentanone</u>      | <u>10</u> | <u>U</u> |
| <u>591-78-6</u>   | <u>2-Hexanone</u>                | <u>10</u> | <u>U</u> |
| <u>127-18-4</u>   | <u>Tetrachloroethene</u>         | <u>5</u>  | <u>U</u> |
| <u>79-34-5</u>    | <u>1,1,2,2-Tetrachloroethane</u> | <u>5</u>  | <u>U</u> |
| <u>108-88-3</u>   | <u>Toluene</u>                   | <u>5</u>  | <u>U</u> |
| <u>108-90-7</u>   | <u>Chlorobenzene</u>             | <u>5</u>  | <u>U</u> |
| <u>100-41-4</u>   | <u>Ethylbenzene</u>              | <u>5</u>  | <u>U</u> |
| <u>100-42-5</u>   | <u>Styrene</u>                   | <u>5</u>  | <u>U</u> |
| <u>1330-20-7</u>  | <u>Xylene (Total)</u>            | <u>5</u>  | <u>U</u> |

## WESTINGHOUSE/HANFORD

1

## INORGANIC ANALYSIS DATA SHEET

SAMPLE NUMBER:

8098M7

Lab Name: SKINNER &amp; SHERMAN LABS. Contract: 68-02-0039

Lab Code: SKINNER Case No.: N3-09-116SAS No.: S0G No.: 8098M0

Matrix (soil/water): WATER Lab Sample ID: 6310095-07 S

Level (low/med): LOW Date Received: 09/28/93

% Solids: 0.0

Concentration Units (ug/L or mg/Kg dry weight): ug/L

| CAS No.   | Analyte  | Concentration (C) | Q  | M   |
|-----------|----------|-------------------|----|-----|
| 7440-38-2 | Arsenic  | 11.5              |    | F   |
| 7440-47-3 | Chromium |                   |    | INR |
| 7439-92-1 | Lead     | 4.3               | *  | F   |
| 7782-49-0 | Selenium | 2.4 (U)           | WN | F   |
| 7440-08-0 | Thallium | 3.8 (U)           |    | F   |

Color Before: COLORLESS Clarity Before: CLOUDY Texture:

Color After: COLORLESS Clarity After: CLOUDY Artifacts:

Comments:

---



---



---

008

## WESTINGHOUSE/HANFORD

1

## INORGANIC ANALYSIS DATA SHEET

SAMPLE NUMBER:

8098J7

Lab Name: SKINNER &amp; SHERMAN LABS. Contract: 68-D0-0108

Lab Code: SKINER Case No.: N3-09-090SAS No.: SDG No.: 8098J0

Matrix (soil/water): WATER Lab Sample ID: S309198-07 S

Level (low/med): LOW Date Received: 09/23/93

% Solids: 0.0

Concentration Units (ug/L or mg/Kg dry weight): UG/L

| CAS No.   | Analyte   | Concentration | C | G  | M |
|-----------|-----------|---------------|---|----|---|
| 7440-36-0 | Antimony  | 12.9          | U | P  |   |
| 7440-38-2 | Arsenic   | 10.8          |   | P  |   |
| 7440-39-3 | Barium    | 37.8          | B | P  |   |
| 7440-41-7 | Beryllium | 0.20          | U | P  |   |
| 7440-43-9 | Cadmium   | 1.3           | U | P  |   |
| 7440-47-3 | Chromium  | 10.0          | B | P  |   |
| 7440-48-4 | Cobalt    | 7.5           | B | P  |   |
| 7440-50-3 | Copper    | 53.6          |   | P  |   |
| 7439-92-1 | Lead      | 6.3           |   | P  |   |
| 7439-97-6 | Mercury   | 0.10          | U | CV |   |
| 7440-02-0 | Nickel    | 4.7           | B | P  |   |
| 7782-49-2 | Selenium  | 3.2           | B | P  |   |
| 7440-22-4 | Silver    | 2.6           | U | P  |   |
| 7440-28-0 | Thallium  | 3.2           | B | P  |   |
| 7440-62-2 | Vanadium  | 5.5           | U | P  |   |
| 7440-66-6 | Zinc      | 42.6          |   | P  |   |
|           | Cyanide   | 10.0          | U | CA |   |
| 7440-31-5 | Tin       | 5.5           | U | P  |   |

Color Before: COLORLESS Clarity Before: CLOUDY Texture:

Color After: COLORLESS Clarity After: CLOUDY Artifacts:

Comments:

---



---



---

008

## WESTINGHOUSE/HANFORD

1

## INORGANIC ANALYSIS DATA SHEET

SAMPLE NUMBER:

B098M7

Lab Name: SKINNER &amp; SHERMAN LABS. Contract: 68-D0-0108

Lab Code: SKINER Case No.: N3-09-116SAS No.: SDG No.: B098M0

Matrix (soil/water): WATER Lab Sample ID: S309238-07 S

Level (low/med): LOW Date Received: 09/28/93

% Solids: 0.0

Concentration Units (ug/L or mg/Kg dry weight): UG/L

| CAS No.   | Analyte   | Concentration | C  | Q | M  |
|-----------|-----------|---------------|----|---|----|
| 7440-36-0 | Antimony  | 12.9          | U  |   | P  |
| 7440-38-2 | Arsenic   | 13.4          |    |   | P  |
| 7440-39-3 | Barium    | 42.8          | I8 |   | P  |
| 7440-41-7 | Beryllium | 0.20          | U  |   | P  |
| 7440-43-9 | Cadmium   | 1.3           | U  |   | P  |
| 7440-47-3 | Chromium  | 13.2          |    |   | P  |
| 7440-48-4 | Cobalt    | 2.6           | U  |   | P  |
| 7440-50-3 | Copper    | 27.7          |    |   | P  |
| 7439-92-1 | Lead      | 5.1           |    |   | P  |
| 7439-97-6 | Mercury   | 0.10          | U  |   | CV |
| 7440-02-0 | Nickel    | 3.4           | U  |   | P  |
| 7782-49-2 | Selenium  | 2.8           | U  |   | P  |
| 7440-22-4 | Silver    | 2.6           | U  |   | P  |
| 7440-28-0 | Thallium  | 1.6           | U  |   | P  |
| 7440-62-2 | Vanadium  | 7.2           | I8 |   | P  |
| 7440-66-6 | Zinc      | 41.7          |    |   | P  |
|           | Cyanide   | 10.0          | U  |   | CA |
| 7440-31-5 | Tin       | 10.9          | I8 |   | P  |

Color Before: COLORLESS Clarity Before: CLOUDY Texture:

Color After: COLORLESS Clarity After: CLOUDY Artifacts:

## Comments:

Amenable CN &lt;10 ug/L

PLUTONIUM URANIUM EXTRACTION PLANT

STREAM 1e

LA  
VOLATILE ORGANICS ANALYSIS DATA SHEET

000017 EPA SAMPLE NO.

B08QG1

Name: TMA/ARLI Contract: WHC  
 Code: TMALA Case No.: 08029 SAS No.: NA SDG No.: NA  
 Matrix: (soil/water) WATER Lab Sample ID: A308029-01A  
 Sample wt/vol: 5.0 (g/mL) ML Lab File ID: 30816M05  
 Rel: (low/med) LOW Date Received: 08/12/93  
 Moisture: not dec. Date Analyzed: 08/16/93  
 Column: (pack/cap) CAP Dilution Factor: 1.0

## CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

|                 |                           |    |   |
|-----------------|---------------------------|----|---|
| 74-87-3-----    | Chloromethane             | 10 | U |
| 74-83-9-----    | Bromomethane              | 10 | U |
| 75-01-4-----    | Vinyl Chloride            | 10 | U |
| 75-00-3-----    | Chloroethane              | 10 | U |
| 75-09-2-----    | Methylene Chloride        | 5  | U |
| 67-64-1-----    | Acetone                   | 10 | U |
| 75-15-0-----    | Carbon Disulfide          | 5  | U |
| 75-35-4-----    | 1,1-Dichloroethene        | 5  | U |
| 75-34-3-----    | 1,1-Dichloroethane        | 5  | U |
| 67-66-3-----    | Chloroform                | 50 |   |
| 107-06-2-----   | 1,2-Dichloroethane        | 5  | U |
| 78-93-3-----    | 2-Butanone                | 10 | U |
| 71-55-6-----    | 1,1,1-Trichloroethane     | 1  | J |
| 56-23-5-----    | Carbon Tetrachloride      | 5  | U |
| 108-05-4-----   | Vinyl Acetate             | 10 | U |
| 75-27-4-----    | Bromodichloromethane      | 2  | J |
| 78-87-5-----    | 1,2-Dichloropropane       | 5  | U |
| 10061-01-5----- | cis-1,3-Dichloropropene   | 5  | U |
| 79-01-6-----    | Trichloroethene           | 5  | U |
| 124-48-1-----   | Dibromochloromethane      | 5  | U |
| 79-00-5-----    | 1,1,2-Trichloroethane     | 5  | U |
| 71-43-2-----    | Benzene                   | 5  | U |
| 10061-02-6----- | trans-1,3-Dichloropropene | 5  | U |
| 75-25-2-----    | Bromoform                 | 5  | U |
| 108-10-1-----   | 4-Methyl-2-pentanone      | 10 | U |
| 591-78-6-----   | 2-Hexanone                | 10 | U |
| 127-18-4-----   | Tetrachloroethene         | 5  | U |
| 79-34-5-----    | 1,1,2,2-Tetrachloroethane | 5  | U |
| 108-88-3-----   | Toluene                   | 5  | U |
| 108-90-7-----   | Chlorobenzene             | 5  | U |
| 100-41-4-----   | Ethylbenzene              | 5  | U |
| 100-42-5-----   | Styrene                   | 5  | U |
| 1330-20-7-----  | Xylene (Total)            | 5  | U |

00006?

1A  
VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

B08QG4

b Name: TMA/ARLIContract: WHCb Code: TMALA Case No.: 08029SAS No.: NASDG No.: NAmatrix: (soil/water) WATERLab Sample ID: A308029-04Asample wt/vol: 5.0 (g/mL) MLLab File ID: 30816M10vel: (low/med) LOWDate Received: 08/12/93Moisture: not dec.       Date Analyzed: 08/16/93lumn: (pack/cap) CAPDilution Factor: 1.0

## CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L

Q

|                   |                                  |           |          |
|-------------------|----------------------------------|-----------|----------|
| <u>74-87-3</u>    | <u>Chloromethane</u>             | <u>10</u> | <u>U</u> |
| <u>74-83-9</u>    | <u>Bromomethane</u>              | <u>10</u> | <u>U</u> |
| <u>75-01-4</u>    | <u>Vinyl Chloride</u>            | <u>10</u> | <u>U</u> |
| <u>75-00-3</u>    | <u>Chloroethane</u>              | <u>10</u> | <u>U</u> |
| <u>75-09-2</u>    | <u>Methylene Chloride</u>        | <u>2</u>  | <u>J</u> |
| <u>67-64-1</u>    | <u>Acetone</u>                   | <u>10</u> | <u>U</u> |
| <u>75-15-0</u>    | <u>Carbon Disulfide</u>          | <u>5</u>  | <u>U</u> |
| <u>75-35-4</u>    | <u>1,1-Dichloroethene</u>        | <u>5</u>  | <u>U</u> |
| <u>75-34-3</u>    | <u>1,1-Dichloroethane</u>        | <u>5</u>  | <u>U</u> |
| <u>67-66-3</u>    | <u>Chloroform</u>                | <u>49</u> |          |
| <u>107-06-2</u>   | <u>1,2-Dichloroethane</u>        | <u>5</u>  | <u>U</u> |
| <u>78-93-3</u>    | <u>2-Butanone</u>                | <u>10</u> | <u>U</u> |
| <u>71-55-6</u>    | <u>1,1,1-Trichloroethane</u>     | <u>5</u>  | <u>U</u> |
| <u>56-23-5</u>    | <u>Carbon Tetrachloride</u>      | <u>5</u>  | <u>U</u> |
| <u>108-05-4</u>   | <u>Vinyl Acetate</u>             | <u>10</u> | <u>U</u> |
| <u>75-27-4</u>    | <u>Bromodichloromethane</u>      | <u>2</u>  | <u>J</u> |
| <u>78-87-5</u>    | <u>1,2-Dichloropropane</u>       | <u>5</u>  | <u>U</u> |
| <u>10061-01-5</u> | <u>cis-1,3-Dichloropropene</u>   | <u>5</u>  | <u>U</u> |
| <u>79-01-6</u>    | <u>Trichloroethene</u>           | <u>5</u>  | <u>U</u> |
| <u>124-48-1</u>   | <u>Dibromochloromethane</u>      | <u>5</u>  | <u>U</u> |
| <u>79-00-5</u>    | <u>1,1,2-Trichloroethane</u>     | <u>5</u>  | <u>U</u> |
| <u>71-43-2</u>    | <u>Benzene</u>                   | <u>5</u>  | <u>U</u> |
| <u>10061-02-6</u> | <u>trans-1,3-Dichloropropene</u> | <u>5</u>  | <u>U</u> |
| <u>75-25-2</u>    | <u>Bromoform</u>                 | <u>5</u>  | <u>U</u> |
| <u>108-10-1</u>   | <u>4-Methyl-2-pentanone</u>      | <u>10</u> | <u>U</u> |
| <u>591-78-6</u>   | <u>2-Hexanone</u>                | <u>10</u> | <u>U</u> |
| <u>127-18-4</u>   | <u>Tetrachloroethene</u>         | <u>5</u>  | <u>U</u> |
| <u>79-34-5</u>    | <u>1,1,2,2-Tetrachloroethane</u> | <u>5</u>  | <u>U</u> |
| <u>108-88-3</u>   | <u>Toluene</u>                   | <u>5</u>  | <u>U</u> |
| <u>108-90-7</u>   | <u>Chlorobenzene</u>             | <u>5</u>  | <u>U</u> |
| <u>100-41-4</u>   | <u>Ethylbenzene</u>              | <u>5</u>  | <u>U</u> |
| <u>100-42-5</u>   | <u>Styrene</u>                   | <u>5</u>  | <u>U</u> |
| <u>1330-20-7</u>  | <u>Xylene (Total)</u>            | <u>5</u>  | <u>U</u> |

B PLANT CHEMICAL SEWER  
STREAM 1f

000167

EPA SAMPLE NO.

1A  
VOLATILE ORGANICS ANALYSIS DATA SHEETLab Name: TMA/ARLIContract: WHC

B087C5

Lab Code: TMALACase No.: 04073SAS No.: NASDG No.: NAMatrix: (soil/water) WATERLab Sample ID: A304073-01ASample wt/vol: 5.0 (g/mL) MLLab File ID: 30504B04Level: (low/med) LOWDate Received: 04/23/93\* Moisture: not dec.       Date Analyzed: 05/04/93Column: (pack/cap) CAPDilution Factor: 1.0

## CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L

Q

| CAS NO.    | COMPOUND                  | Q    |
|------------|---------------------------|------|
| 74-87-3    | Chloromethane             | 10 U |
| 74-83-9    | Bromomethane              | 10 U |
| 75-01-4    | Vinyl Chloride            | 10 U |
| 75-00-3    | Chloroethane              | 10 U |
| 75-09-2    | Methylene Chloride        | 5 U  |
| 67-64-1    | Acetone                   | 10 U |
| 75-15-0    | Carbon Disulfide          | 5 U  |
| 75-35-4    | 1,1-Dichloroethene        | 5 U  |
| 75-34-3    | 1,1-Dichloroethane        | 5 U  |
| 67-66-3    | Chloroform                | 2 J  |
| 107-06-2   | 1,2-Dichloroethane        | 5 U  |
| 78-93-3    | 2-Butanone                | 10 U |
| 71-55-6    | 1,1,1-Trichloroethane     | 5 U  |
| 56-23-5    | Carbon Tetrachloride      | 5 U  |
| 108-05-4   | Vinyl Acetate             | 10 U |
| 75-27-4    | Bromodichloromethane      | 5 U  |
| 78-87-5    | 1,2-Dichloropropane       | 5 U  |
| 10061-01-5 | cis-1,3-Dichloropropene   | 5 U  |
| 79-01-6    | Trichloroethene           | 5 U  |
| 124-48-1   | Dibromochloromethane      | 5 U  |
| 79-00-5    | 1,1,2-Trichloroethane     | 5 U  |
| 71-43-2    | Benzene                   | 5 U  |
| 10061-02-6 | trans-1,3-Dichloropropene | 5 U  |
| 75-25-2    | Bromoform                 | 5 U  |
| 108-10-1   | 4-Methyl-2-pentanone      | 10 U |
| 591-78-6   | 2-Hexanone                | 10 U |
| 127-18-4   | Tetrachloroethene         | 5 U  |
| 79-34-5    | 1,1,2,2-Tetrachloroethane | 5 U  |
| 108-88-3   | Toluene                   | 5 U  |
| 108-90-7   | Chlorobenzene             | 5 U  |
| 100-41-4   | Ethylbenzene              | 5 U  |
| 100-42-5   | Styrene                   | 5 U  |
| 1330-20-7  | Xylene (Total)            | 5 U  |

# State Waste Discharge Permit Application

## 200 Area Treated Effluent Disposal Facility (Project W-049H)

Date Published  
August 1994

### DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.



United States  
Department of Energy  
P.O. Box 550  
Richland, Washington 99352

Approved for Public Release

MASTER

*js*  
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

**FOREWORD**

As part of the original *Hanford Federal Facility Agreement and Consent Order* negotiations (Ecology et al. 1992), the U.S. Department of Energy, Richland Operations Office (DOE-RL), the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) agreed that liquid effluent discharges to the ground on the Hanford Site are subject to permitting pursuant to Chapter 173-216 (or 173-218 where applicable) of the *Washington Administrative Code* (WAC), the State Waste Discharge Permit (SWDP) Program. As a result of this decision, Ecology and DOE-RL entered into *Consent Order No. DE 91NM-177* known hereafter as the 216 Consent Order (Ecology and DOE-RL 1991).

The 216 Consent Order requires a series of permitting activities for liquid effluent discharges. Liquid effluents at the Hanford Site have been classified as Phase I, Phase II, and Miscellaneous Streams according to compositional and flow rate characteristics. The 216 Consent Order establishes milestones for SWDP application submittals for all Phase I, Phase II, and miscellaneous streams. The 200 Area Treated Effluent Disposal Facility (200 Area TEDF) will provide collection, transfer, and disposal for the streams identified in Table 2 of the 216 Consent Order which will not have been eliminated by June 1995 when the 200 Area TEDF is scheduled to be operational. The following streams taken from Table 2 of the 216 Consent Order are anticipated to be discharged to the 200 Area TEDF.

- Plutonium Finishing Plant waste water
- 222-S Laboratory Complex waste water
- T Plant waste water (including T Plant Laboratory waste water)
- 284-W Power Plant waste water
- PUREX Chemical Sewer
- B Plant Chemical Sewer
- B Plant Process Condensate
- B Plant Steam Condensate
- 242-A-81 Water Services waste water

Through waste minimization efforts, the following effluent streams taken from Table 2 of the 216 Consent Order, have been eliminated and will not be discussed further in this application:

- 242-S Evaporator Steam Condensate
- 2101-M Laboratory Waste Water
- $UO_3$  Waste Water
- $UO_3$  Process Condensate
- 200 E Laundry (new)
- PUREX Facility Cooling Water
- PUREX Facility Steam Condensate

The Hanford Waste Vitrification Plant (HWVP) also will not be discussed in this permit application. The effluent stream from the HWVP, which is anticipated to be discharged to the 200 Area TEDF after 2000, will be addressed at a future date.

In February 1992, DOE-RL submitted an Engineering Report pursuant to Washington Administrative Code 173-240, "Submission of Plans and Reports for Construction of Wastewater Facilities." The Engineering Report described the 200 Area TEDF, and the best available technology/all known, available, and reasonable methods of prevention, control and treatment evaluation for each effluent stream anticipated to be discharged to the 200 Area TEDF. Subsequently, a site characterization report was submitted to Ecology in October 1993, completing all of the requirements under WAC 173-240-130.

This document constitutes the SWDP application for the 200 Area TEDF stream. The 200 Area TEDF will discharge to two adjacent 5-acre disposal basins, east of the 200 East Area on the Hanford Site. The SWDP application for the 200 Area Treated Effluent Disposal Facility (Project W-049H) contains information current as of September 30, 1994.

|    |                                                   |         |
|----|---------------------------------------------------|---------|
| 1  | DOCUMENT CONTENTS                                 |         |
| 2  |                                                   |         |
| 3  |                                                   |         |
| 4  | FOREWORD                                          |         |
| 5  |                                                   |         |
| 6  | GLOSSARY                                          |         |
| 7  |                                                   |         |
| 8  | METRIC CONVERSION TABLE                           |         |
| 9  |                                                   |         |
| 10 | 1.0 PERMIT APPLICATION . . . . .                  | 1-1     |
| 11 |                                                   |         |
| 12 | 2.0 REFERENCES . . . . .                          | 2-1     |
| 13 |                                                   |         |
| 14 |                                                   |         |
| 15 |                                                   |         |
| 16 | APPENDICES                                        |         |
| 17 |                                                   |         |
| 18 |                                                   |         |
| 19 | A LOCATION MAPS . . . . .                         | APP A-i |
| 20 |                                                   |         |
| 21 | B PRODUCT OR SERVICE INFORMATION . . . . .        | APP B-i |
| 22 |                                                   |         |
| 23 | C PLANT OPERATIONAL CHARACTERISTICS . . . . .     | APP C-i |
| 24 |                                                   |         |
| 25 | D WATER CONSUMPTION AND WATER LOSS . . . . .      | APP D-i |
| 26 |                                                   |         |
| 27 | E WASTEWATER INFORMATION . . . . .                | APP E-i |
| 28 |                                                   |         |
| 29 | F STORMWATER . . . . .                            | APP F-i |
| 30 |                                                   |         |
| 31 | G OTHER INFORMATION . . . . .                     | APP G-i |
| 32 |                                                   |         |
| 33 | H SITE ASSESSMENT . . . . .                       | APP H-i |
| 34 |                                                   |         |
| 35 | I ADDITIONAL STREAM ACCEPTANCE CRITERIA . . . . . | APP I-i |

1  
2  
3  
4

This page intentionally left blank.

**GLOSSARY**

|           |                                                              |
|-----------|--------------------------------------------------------------|
| BAT/AKART | best available technology/all known and reasonable treatment |
| BCE       | B Plant Chemical Sewer                                       |
| BCP       | B Plant Process Condensate                                   |
| BCS       | B Plant Steam Condensate                                     |
| Btu       | British Thermal Unit                                         |
| CFR       | Code of Federal Regulations                                  |
| DOE       | U.S. Department of Energy                                    |
| DOE/RL    | U.S. Department of Energy Richland Operations Office         |
| EPA       | U.S. Environmental Protection Agency                         |
| ETF       | Effluent Treatment Facility                                  |
| gpm       | gallons per minute                                           |
| HVAC      | heating, ventilation, and air conditioning                   |
| LLW       | low level waste                                              |
| M         | million                                                      |
| N/A       | not applicable                                               |
| NPDES     | National Pollutant Discharge Elimination System              |
| ppb       | parts per billion                                            |
| PUREX     | plutonium-uranium extraction (Plant)                         |
| RCRA      | Resource Conservation and Recovery Act of 1986               |
| SAP       | sampling and analysis plan                                   |
| SEPA      | State Environmental Policy Act of 1971                       |
| SIC       | Standard industrial classification                           |
| SWDP      | state waste discharge permit                                 |
| TEDF      | Treated Effluent Disposal Facility                           |
| USGS      | United States Geological Survey                              |
| WAC       | Washington Administrative Code                               |
| WHC       | Westinghouse Hanford Company                                 |

## METRIC CONVERSION CHART

| INTO METRIC   |                                        |              |
|---------------|----------------------------------------|--------------|
| If you know   | Multiply by                            | To get       |
| Length        |                                        |              |
| inches        | 2.54                                   | centimeters  |
| feet          | 30.48                                  | centimeters  |
| Volume        |                                        |              |
| gallons       | 3.786                                  | liters       |
| cubic feet    | 0.02832                                | cubic meters |
| Temperature   |                                        |              |
| Fahrenheit    | Subtract 32 then<br>multiply by 5/9ths | Celsius      |
| Pressure      |                                        |              |
| inches water  | 1.87                                   | mm Hg        |
| inches water  | 249                                    | pascal (Pa)  |
| OUT OF METRIC |                                        |              |
| Length        |                                        |              |
| centimeters   | 0.3937                                 | inches       |
| meters        | 3.28                                   | feet         |
| Volume        |                                        |              |
| milliliters   | $1.247 \times 10^{-3}$                 | cubic feet   |
| liters        | 0.264                                  | gallons      |
| cubic meters  | 35.31                                  | cubic feet   |
| Temperature   |                                        |              |
| Celsius       | Multiply by 9/5ths,<br>then add 32     | Fahrenheit   |
| Pressure      |                                        |              |
| mm Hg         | 0.5353                                 | inches water |
| pascal (Pa)   | $4.02 \times 10^{-3}$                  | inches water |

1

**PERMIT APPLICATION ORGANIZATION**

2 The Washington Administrative Code (WAC) 173-216 State Waste Discharge  
3 Permit application form for the 200 Area Treated Effluent Disposal Facility is  
4 presented in this section. Information required by the State Waste Discharge  
5 Permit application form is provided on the form when adequate space is  
6 available. Otherwise, information is provided in the appendices as noted on  
7 the completed form. The appendices follow precisely the format of the State  
8 Waste Discharge Permit application and are designed to supplement the permit  
9 application form. Appendix A contains site location information referenced in  
10 Section A of the permit application form. Appendices B through H correspond  
11 to Section B through H in the permit application form. Within each appendix,  
12 those questions which require additional space more than is available in the  
13 form have been restated and the answer directly follows the question. The  
14 questions in the appendices are worded precisely as they are in the  
15 application form and are highlighted in capitals, bolded, and underline.

Facility: 200 Area TEDF

DOE/RL-94-29, Rev. 0  
08/94

This page intentionally left blank.



# STATE WASTE DISCHARGE PERMIT APPLICATION FOR INDUSTRIAL DISCHARGES TO LAND

| FOR STATE USE ONLY              |               |                                  |  |
|---------------------------------|---------------|----------------------------------|--|
| Date Application Received       | Date Fee Paid | Application/Permit No.           |  |
| Date Application Accepted       |               | Facility No.                     |  |
| Temporary Permit Effective Date |               | Temporary Permit Expiration Date |  |

This application is for a waste discharge permit as required in accordance with provisions of Chapter 90.48 RCW and Chapter 173-216 WAC. Additional information may be required. Information previously submitted and applicable to this application should be referenced in the appropriate section.

## SECTION A. GENERAL INFORMATION

1. Company Name: U.S. Department of Energy, Richland Operations Office
2. Unified Business Identification Number (UBI#): 91-0565159 (Tax Exempt Number)
3. Mailing Address: P.O. Box 550  
Street  
Richland, Washington 99352  
City/State Zip
4. Facility Location: 200 East, 200 West and Adjacent 600 Areas - Hanford Site  
Street or Other Description  
Refer to drawings in Appendix A  
City/State Zip
5. Person to contact who is familiar with the information contained in this application:  
James E. Rasmussen U.S. DOE, Regulatory Permits, Acting Program Manager (509) 376-2247  
Name Title Telephone
6. Check One:  Permit Renewal  Existing Unpermitted Discharge  
 Proposed Discharge  
Anticipated date of discharge: April 30, 1995

*I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of a fine and/or imprisonment for knowing violations.*

James E. Rasmussen  
Signature\*

9/30/94  
Date

Acting Program Manager, Office of  
Environmental Assurance, Permits and Policy  
Title

James E. Rasmussen  
Printed Name

\*Applications must be signed as follows: Corporation, by a principal executive officer of at least the level of vice-president; partnership, by a general partner; sole proprietorship, by the proprietor.

**SECTION B. PRODUCT INFORMATION**

1. Briefly describe all manufacturing processes and products, and/or commercial activities. Provide the applicable Standard Industrial Classification (SIC) Code(s) for each activity. (See *Standard Industrial Classification Manual*, 1987 ed.)

SIC No(s): 9999

Description: Refer to Appendix B, Section B.1.0

---

---

---

---

---

---

---

2. Include a production schematic flow diagram of the process and service activities described above on a separate sheet.

Refer to flowchart in Appendix B, Section B.2.0.

3. List raw materials and products:

| Type                               | RAW MATERIALS | Quantity |
|------------------------------------|---------------|----------|
|                                    |               |          |
|                                    |               |          |
| Refer to Appendix B, Section B.3.0 |               |          |
|                                    |               |          |
|                                    |               |          |
| Type                               | PRODUCTS      | Quantity |
|                                    |               |          |
|                                    |               |          |
|                                    |               |          |
|                                    |               |          |

**SECTION C. PLANT OPERATIONAL CHARACTERISTICS**

1. Identify the waste stream for each of the production processes or activities described in Section B.1. Assign each waste stream an identification number--use this number in subsequent questions.

| Process                            | Waste Stream Name | Batch or Continuous Process | Waste Stream ID # |
|------------------------------------|-------------------|-----------------------------|-------------------|
| Refer to Appendix C, Section C.1.0 |                   |                             |                   |
|                                    |                   |                             |                   |
|                                    |                   |                             |                   |
|                                    |                   |                             |                   |
|                                    |                   |                             |                   |
|                                    |                   |                             |                   |
|                                    |                   |                             |                   |
|                                    |                   |                             |                   |
|                                    |                   |                             |                   |

2. On a separate sheet, describe in detail the treatment and disposal of all waste waters as described above. Include a schematic flow diagram for all waste water treatment and disposal systems.

**Refer to Appendix C, Section C.2.0.**

3. Indicate treatment provided to each waste stream identified in C.1. above.

**Refer to Appendix C, Section C.3.0.**

| Waste Stream(s) ID # | Treatment                | Waste Stream(s) ID # | Treatment                      |
|----------------------|--------------------------|----------------------|--------------------------------|
|                      | Air flotation            |                      | pH correction                  |
|                      | Centrifuge               |                      | Ozonation                      |
|                      | Chemical precipitation   |                      | Reverse osmosis                |
|                      | Chlorination             |                      | Screen                         |
|                      | Cyclone                  |                      | Sedimentation                  |
|                      | Filtration               |                      | Septic tank                    |
|                      | Flow equalization        |                      | Solvent separation             |
|                      | Grease or oil separation |                      | Biological treatment, type:    |
|                      | Grease trap              |                      | Rainwater diversion or storage |
|                      | Grit removal             |                      | Other chemical treatment type: |
|                      | Ion exchange             |                      | Other physical treatment type: |

4. Describe any planned waste water treatment improvements or changes in waste water disposal methods and when they will occur (*use additional sheets, if necessary*).

**Refer to Appendix C, Section C.4.0.**

5. If production processes are subject to seasonal variations, provide the following information. List discharge for each waste stream in gallons per day (GPD). The combined value for each month should equal the estimated total monthly flow.

## 6. Shift Information: Refer to Appendix C, Section C.6.0

- a. Number of shifts per work day: \_\_\_\_\_
- b. Number of work days per week: \_\_\_\_\_
- c. Average number of work days per year: \_\_\_\_\_
- d. Maximum number of work days per year: \_\_\_\_\_
- e. Number of employees per shift: \_\_\_\_\_ Shift start times \_\_\_\_\_

1st \_\_\_\_\_ 1st \_\_\_\_\_  
2nd \_\_\_\_\_ 2nd \_\_\_\_\_  
3rd \_\_\_\_\_ 3rd \_\_\_\_\_

7. List all incidental materials like oil, paint, grease, solvents, soaps, cleaners, that are used or stored on-site. (Use additional sheets, if necessary.)

**Refer to Appendix C, Section C.7.0**

**Material/Quantity Stored**

Refer to Appendix C, Section C.7.0

8. Describe any water recycling or material reclaiming processes:

Refer to Appendix C, Section C.8.0

---

---

---

---

9. Does this facility have: Refer to Appendix C, Section C.9.0

a. Spill Prevention, Control, and Countermeasure Plan  
(per 40 CFR 112)?  Yes  No

b. Emergency Response Plan (per WAC 173-303-350)?  Yes  No

c. Runoff, spillage, or leak control plan (per WAC 173-216-110(f))?  Yes  No

d. Does your current waste discharge permit require a spill plan?  Yes  No  
*If yes, submit an update with your application. Not Applicable.*

e. Solid Waste Management Plan?  Yes  No

## SECTION D. WATER CONSUMPTION AND WATER LOSS

1. Water Source(s): Refer to Appendix D, Section D.1.0

Public System (Specify) \_\_\_\_\_

Private Well  Surface Water

a. Water Right Permit Number: NA

b. Legal Description: Refer to Appendix D, Item 1b.

\_\_\_\_\_ 1/4S, \_\_\_\_\_ 1/4S, \_\_\_\_\_ Section, \_\_\_\_\_ TWN, \_\_\_\_\_ R

2. a. Indicate total water use: Gallons per day (average) \_\_\_\_\_

Refer to Appendix D, Section D.2.0

Gallons per day (Maximum) \_\_\_\_\_

b. Is water metered?  Yes  No

3. Attach a line drawing showing the water flow through the facility. Indicate source of intake water, operations contributing waste water to the effluent, and treatment units labeled to correspond to the more detailed descriptions in Item C. Construct a water balance on the line drawing by showing average flows between intakes, operations, treatment units, and outfalls. If a water balance cannot be determined (e.g., for certain mining activities), provide a pictorial description of the nature and amount of any sources of water and any collection or treatment measures.

Refer to Appendix D, Section D.3.0

## SECTION E. WASTEWATER INFORMATION

1. Provide measurements for treated waste water prior to land application for the parameters listed below, unless waived by the permitting authority. All analytical methods used to meet these requirements shall, unless approved otherwise in writing by Ecology, conform to the Guidelines Establishing Test Procedures for the Analysis of Pollutants Contained in 40 CFR Part 136.

| Parameter              | Concentrations Measured            | Analytical Method | Detection Limit |
|------------------------|------------------------------------|-------------------|-----------------|
| pH                     |                                    |                   |                 |
| Conductivity           |                                    |                   |                 |
| Total Dissolved Solids | Refer to Appendix E, Section E.1.0 |                   |                 |
| Total Suspended Solids |                                    |                   |                 |
| BOD (5 day)            |                                    |                   |                 |
| COD                    |                                    |                   |                 |
| Ammonia-N              |                                    |                   |                 |
| TKN-N                  |                                    |                   |                 |
| Nitrate-N              |                                    |                   |                 |
| Ortho-phosphate-P      |                                    |                   |                 |
| Total-phosphate-P      |                                    |                   |                 |
| Total Oil & Grease     |                                    |                   |                 |
| Calcium                |                                    |                   |                 |
| Magnesium              |                                    |                   |                 |
| Sodium                 |                                    |                   |                 |
| Potassium              |                                    |                   |                 |
| Chloride               |                                    |                   |                 |
| Sulfate                |                                    |                   |                 |
| Fluoride               |                                    |                   |                 |
| Cadmium (total)        |                                    |                   |                 |
| Chromium (total)       |                                    |                   |                 |
| Lead (total)           |                                    |                   |                 |
| Mercury                |                                    |                   |                 |
| Selenium (total)       |                                    |                   |                 |
| Silver (total)         |                                    |                   |                 |
| Copper (total)         |                                    |                   |                 |
| Iron (total)           |                                    |                   |                 |
| Manganese (total)      |                                    |                   |                 |
| Zinc (total)           |                                    |                   |                 |
| Barium (total)         |                                    |                   |                 |
| Total Coliform         |                                    |                   |                 |

## 2. Waste water characteristics for toxic pollutants.

The intent of this question is to determine which chemicals are or might be present in the process water or waste water. For each chemical listed below: Refer to Appendix E, Section E.2.0

- Use the letter A in the Absent column if the chemical is not likely to be present because it is not used in the production process or used on site.
- Use the letter S in the Absent column if the chemical may be present because it is used on site, but the chemical is not used in the production process.
- Use the letter P in the Present column if the chemical is likely to be present because it is used in the production process, but the effluent has not been tested.
- Use the letter K in the Present column if the effluent has been tested and the chemical was found to be present. Attach the analytical results.

Attach the analytical results

### Analytical Results

#### Waste water Characterization for Toxic Pollutants

| Absent / Present | Constituent/CAS No.                 | Absent / Present | Constituent/CAS No.              |
|------------------|-------------------------------------|------------------|----------------------------------|
| _____            | Acrylamide/79-06-1                  | _____            | 1,2 Dichloropropane/78-87-5      |
| _____            | Acrylonitrile/107-13-1              | _____            | 1,3 Dichloropropene/542-75-6     |
| _____            | Aldrin/309-00-2                     | _____            | Dichlorvos/62-73-7               |
| _____            | Aniline/62-53-3                     | _____            | Dieldrin/60-57-1                 |
| _____            | Aramite/140-57-8                    | _____            | 3,3' Dimethoxybenzidine/119-90-4 |
| _____            | Arsenic/7440-38-2                   | _____            | 3,3 Dimethylbenzidine/119-93-7   |
| _____            | Azobenzene/103-33-3                 | _____            | 1,2 Dimethylhydrazine/540-73-8   |
| _____            | Benzene/71-43-2                     | _____            | 2,4 Dinitrotoluene/121-14-2      |
| _____            | Benzidine/92-87-5                   | _____            | 2,6 Dinitrotoluene/606-20-2      |
| _____            | Benzo(a)pyrene/50-32-8              | _____            | 1,4 Dioxane/123-91-1             |
| _____            | Benzotrichloride/98-07-7            | _____            | 1,2 Diphenylhydrazine/122-66-7   |
| _____            | Benzyl chloride/100-44-7            | _____            | Endrin/72-20-8                   |
| _____            | Bis(chloroethyl)ether/111-44-4      | _____            | Epichlorohydrin/106-89-8         |
| _____            | Bis(chloromethyl)ether/542-88-1     | _____            | Ethyl acrylate/140-88-5          |
| _____            | Bis(2-ethylhexyl)phthalate/117-81-7 | _____            | Ethylene dibromide/106-93-4      |
| _____            | Bromodichloromethane/75-27-4        | _____            | Ethylene thiourea/96-45-7        |
| _____            | Bromoform/75-25-2                   | _____            | Folpet/133-07-3                  |
| _____            | Carbazole/86-74-8                   | _____            | Furmecyclox/60568-05-0           |
| _____            | Carbon tetrachloride/56-23-5        | _____            | Heptachlor/76-44-8               |
| _____            | Chlordane/57-74-9                   | _____            | Heptachlor epoxide/1024-57-3     |
| _____            | Chlorodibromomethane/124-48-1       | _____            | Hexachlorobenzene/118-74-1       |

| Absent / Present | Constituent/CAS No.                     | Absent / Present | Constituent/CAS No.                              |
|------------------|-----------------------------------------|------------------|--------------------------------------------------|
| _____            | Chloroform/67-66-3                      | _____            | Hexachlorocyclohexane (alpha)/319-84-6           |
| _____            | Chlorthalonil/1897-45-6                 | _____            | Hexachlorocyclohexane (tech.)/608-73-1           |
| _____            | 2,4-D/94-75-7                           | _____            | Hexachlorodibenzo-p-dioxin, mix/19408-74-3       |
| _____            | DDT/50-29-3                             | _____            | Hydrazine/hydrazine sulfate/302-01-2             |
| _____            | Diallate/2303-16-4                      | _____            | Lindane/58-89-9                                  |
| _____            | 1,2 Dibromoethane/106-93-4              | _____            | 2 Methylaniline/100-61-8                         |
| _____            | 1,4 Dichlorobenzene/106-46-7            | _____            | 2 Methylaniline hydrochloride/636-21-5           |
| _____            | 3,3' Dichlorobenzidine/91-94-1          | _____            | 4,4' Methylene bis(N,N-dimethyl)aniline/101-61-1 |
| _____            | 1,1 Dichloroethane/75-34-3              | _____            | Methylene chloride (dichloromethane)/75-09-2     |
| _____            | 1,2 Dichloroethane/107-06-2             | _____            | Mirex/2385-85-5                                  |
| _____            | Nitrofurazone/59-87-0                   | _____            | O-phenylenediamine/106-50-3                      |
| _____            | N-nitrosodiethanolamine/1116-54-7       | _____            | Propylene oxide/75-56-9                          |
| _____            | N-nitrosodiethylamine/55-18-5           | _____            | 2,3,7,8-Tetrachlorodibenzo-p-dioxin/ 1746-01-6   |
| _____            | N-nitrosodimethylamine/62-75-9          | _____            | Tetrachloroethylene/127-18-4                     |
| _____            | N-nitrosodiphenylamine/86-30-6          | _____            | 2,4 Toluenediamine/95-80-7                       |
| _____            | N-nitroso-di-n-propylamine/621-64-7     | _____            | o-Toluidine/95-53-4                              |
| _____            | N-nitrosopyrrolidine/930-55-2           | _____            | Toxaphene/8001-35-2                              |
| _____            | N-nitroso-di-n-butylamine/924-16-3      | _____            | Trichloroethylene/79-01-6                        |
| _____            | N-nitroso-n-methylethylamine/10595-95-6 | _____            | 2,4,6-Trichlorophenol/88-06-2                    |
| _____            | PAH/NA                                  | _____            | Trimethyl phosphate/512-56-1                     |
| _____            | PBBs/NA                                 | _____            | Vinyl chloride/75-01-4                           |
| _____            | PCBs/1336-36-3                          | _____            |                                                  |

**SECTION F. STORMWATER**

1. Do you have a Washington State Storm Water Baseline General Permit?  Yes  No

Note: Refer to Appendix F for explanation of items 1-4  
If yes, please list the permit number here \_\_\_\_\_

2. Have you applied for a Washington State Storm Water Baseline General Permit  Yes  No

3. Do you have any storm water quality or quantity data?  Yes  No

Note: If you answered "yes" to questions 1 or 2 above, skip questions 4 through 8.

4. Describe the size of the storm water collection area. Refer to

a. Unpaved Area \_\_\_\_\_ sq. ft.

b. Paved Area \_\_\_\_\_ sq. ft.

c. Other Collection Areas (Roofs) \_\_\_\_\_ sq. ft.

Note: Refer to Appendix F for explanation of items 5-7

5. Does your facility's storm water discharge to: (check all that apply)

Storm sewer systems; name of storm sewer system (operator):  
 Directly to surface waters or Washington State (e.g., river, lake, creek, estuary, ocean).  
 Indirectly to surface waters of Washington State (i.e., flows over adjacent properties first).  
 Directly to ground waters of Washington State:  dry well  drainfield  Other

6. Areas with industrial activities at facility: (check all that apply)

Manufacturing Building  
 Material Handling  
 Material Storage  
 Hazardous Waste Treatment, Storage, or Disposal (Refers to RCRA, Subtitle C Facilities Only)  
 Waste Treatment, Storage, or Disposal  
 Application or Disposal of Waste Waters  
 Storage and Maintenance of Material Handling Equipment  
 Vehicle Maintenance  
 Areas Where Significant Materials Remain  
 Access Roads and Rail Lines for Shipping and Receiving  
 Other \_\_\_\_\_

## 7. Material handling/management practices.

a. Types of materials handled and/or stored outdoors: (*check all that apply*)

|                                                              |                                                    |
|--------------------------------------------------------------|----------------------------------------------------|
| <input type="checkbox"/> Solvents                            | <input type="checkbox"/> Hazardous Wastes          |
| <input type="checkbox"/> Scrap Metal                         | <input type="checkbox"/> Acids or Alkalies         |
| <input type="checkbox"/> Petroleum or Petrochemical Products | <input type="checkbox"/> Paints/Coatings           |
| <input type="checkbox"/> Plating Products                    | <input type="checkbox"/> Woodtreating Products     |
| <input type="checkbox"/> Pesticides                          | <input type="checkbox"/> Other (Please list) _____ |

---

---

b. Identify existing management practices employed to reduce pollutants in industrial storm water discharges: (*check all that apply*)

|                                                      |                                                    |
|------------------------------------------------------|----------------------------------------------------|
| <input type="checkbox"/> Oil/Water Separator         | <input type="checkbox"/> Detention Facilities      |
| <input type="checkbox"/> Containment                 | <input type="checkbox"/> Infiltration Basins       |
| <input type="checkbox"/> Spill Prevention            | <input type="checkbox"/> Operational BMPs          |
| <input type="checkbox"/> Surface Leachate Collection | <input type="checkbox"/> Vegetation Management     |
| <input type="checkbox"/> Overhead Coverage           | <input type="checkbox"/> Other (Please list) _____ |

---

---

## 8. Attach a map showing storm water drainage/collection areas, disposal areas and discharge points. Refer to Appendix F, Section F.8.0.

**SECTION G. OTHER INFORMATION**

1. Describe liquid wastes or sludges being generated that are not disposed of in the waste stream(s) and how they are disposed of. For each type of waste, provide type of waste, name, address, and phone number of hauler.

Refer to Appendix G, Sections G.1.0, G.2.0, and G.3.0 for Items 1, 2, and 3.

2. Describe storage areas for raw materials, products, and wastes.

3. Have you designated your wastes according to the procedures of Dangerous Waste Regulations, Chapter 173-303-WAC?

Yes  No

## SECTION H. SITE ASSESSMENT

1. Give the legal description of the land treatment site(s). Give the acreage of each land treatment site(s). Attach a copy of the contract(s) authorizing use of land for treatment.  
Refer to Appendix H, Section H.1.0.

---

---

---

---

---

---

---

2. List all environmental control permits or approvals needed for this project; for example, septic tank permits, sludge application permits, or air emissions permits.

Refer to Appendix H, Section H.2.0.

---

---

---

---

---

---

---

3. Attach a United States Geological Survey (USGS) a topographic map. Show the following on this map:

Refer to Appendix H, Section H.3.0.

- Location and name of internal and adjacent streets
- Surface water drainage systems within 1/4 mile of the site
- All wells within 1 mile of the site
- Chemical and product handling and storage facilities
- Infiltration sources, such as drainfields and lagoons within 1/4 mile of the site
- Waste water and cooling water discharge points with waste stream ID numbers  
(See Section C.1)
- Other activities and land uses within 1/4 mile of the site

4. Attach well logs and well I.D.# when available for all wells within 500 feet and any available water quality data.

Refer to Appendix H, Section H.4.0.

---

---

---

---

---

---

5. Describe soils on the site using information from local soil survey reports.  
(Submit on separate sheet.)  
**Refer to Appendix H, Section H.5.0.**
6. Describe the regional geology and hydrogeology within one mile of the site. (Submit on separate sheet.)  
**Refer to Appendix H, Section H.6.0.**
7. List the names and addresses of contractors or consultants who provided information and cite sources of information by title and author.  
**Refer to Appendix H, Section H.7.0**

1                   **2.0 REFERENCES**  
2  
3  
4   DOE, 1992, *Environmental Assessment: Hanford Environmental Compliance*  
5    *Project*, DOE/EA-0383, U.S. Department of Energy, Washington, D.C.  
6  
7   DOE Order 5400.5, "Radiation Protection of the Public and the Environment".  
8  
9   Ecology and DOE-RL, 1991, *Consent Order No. DE 91NM-177*, Washington State  
10   Department of Ecology, Olympia Washington and U.S. Department of Energy,  
11   Richland Operations Office, Richland, Washington.  
12  
13   *Emergency Planning and Community Right-to-Know Act* (Title III of the Superfund  
14    Amendments and Reauthorization Act of 1986).  
15  
16   WAC 173-216, *State Waste Discharge Permit Program*.  
17  
18   WHC, 1993a, *200 Area Treated Effluent Disposal Facility, (Project W-049H)*  
19    *Wastewater Engineering Report*, WHC-SD-W049H-ER-003, Rev. 0 (1992),  
20    Rev. 0-A (1992), Rev. 0-B (1993), Rev. 0-C (1993), Westinghouse Hanford  
21   Company, Richland, Washington.  
22  
23   WHC, 1993b, *Site Characterization Report: Results of Detailed Evaluation of*  
24    *the Suitability of the Site Proposed for Disposal of 200 Areas Treated*  
25    *Effluent*, WHC-SD-EN-SE-004, Rev. 0, Westinghouse Hanford Company,  
26   Richland, Washington.  
27  
28   WHC, 1993c, *Hanford Site Stormwater Pollution Prevention Plan*,  
29    WHC-SD-EN-EV-021, Rev. 0, Westinghouse Hanford Company, Richland,  
30   Washington.  
31  
32   WHC, 1993d, *State Environmental Policy Act Checklist for Project W-049H, 200*  
33    *Area Treated Effluent Disposal Facility*, Rev. 0, DOE-RL 94-RPS-032, U.S.  
34    Department of Energy, Richland Operations Office, Richland, Washington.  
35  
36   WHC, 1994, *Information from the Hazardous Material Inventory Database No. 2,*  
37    *for 200 Area Treated Effluent Disposal Facility Generating Units*,  
38    WHC-SD-W049H-DP-001, Rev. 0, Westinghouse Hanford Company, Richland,  
39   Washington.  
40  
41

Facility: 200 Area TEDF

DOE/RL-94-29, Rev. 0  
07/07/94

1  
2  
3  
4  
5

This page intentionally left blank.

1 APPENDICES  
2  
3  
4

5 A LOCATION MAPS  
6 B PRODUCT OR SERVICE INFORMATION  
7 C PLANT OPERATIONAL CHARACTERISTICS  
8 D WATER CONSUMPTION AND WATER LOSS  
9 E WASTE WATER INFORMATION  
10 F STORM WATER  
11 G OTHER INFORMATION  
12 H SITE ASSESSMENT  
13 I ADDITIONAL STREAM ACCEPTANCE CRITERIA  
14  
15  
16  
17  
18  
19  
20

Facility: 200 Area TEDF

DOE/RL-94-29, Rev. 0  
07/07/94

1  
2  
3  
4

This page intentionally left blank.

Facility: 200 Area TEDF

DOE/RL-94-29, Rev. 0  
08/94

1  
2  
3  
4

## APPENDIX A

### LOCATION MAPS

1  
2  
3  
4  
5

**CONTENTS**

6 APP A-1. HANFORD SITE MAP  
7 APP A-2 200 AREA TREATED EFFLUENT DISPOSAL FACILITY MAP

1

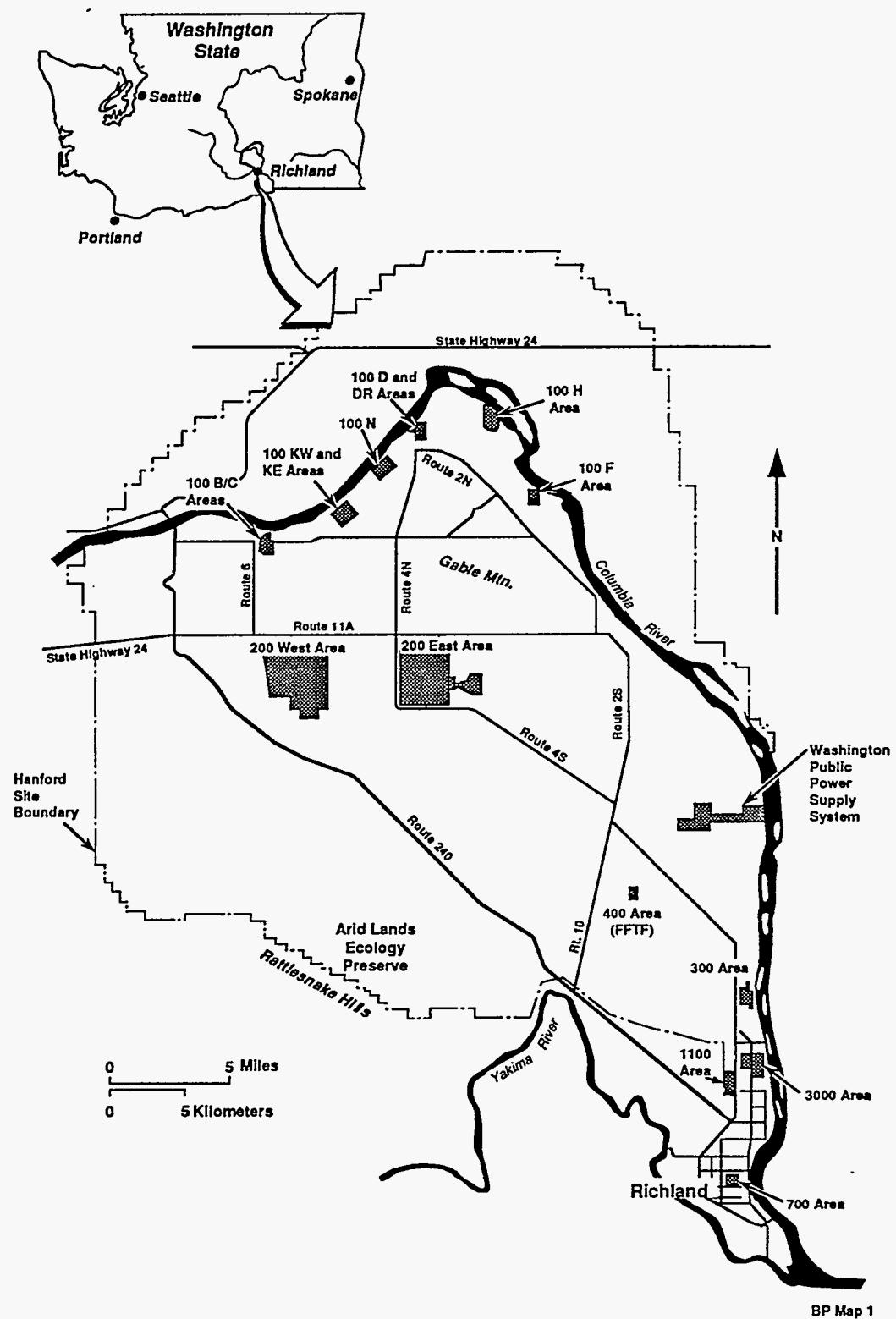
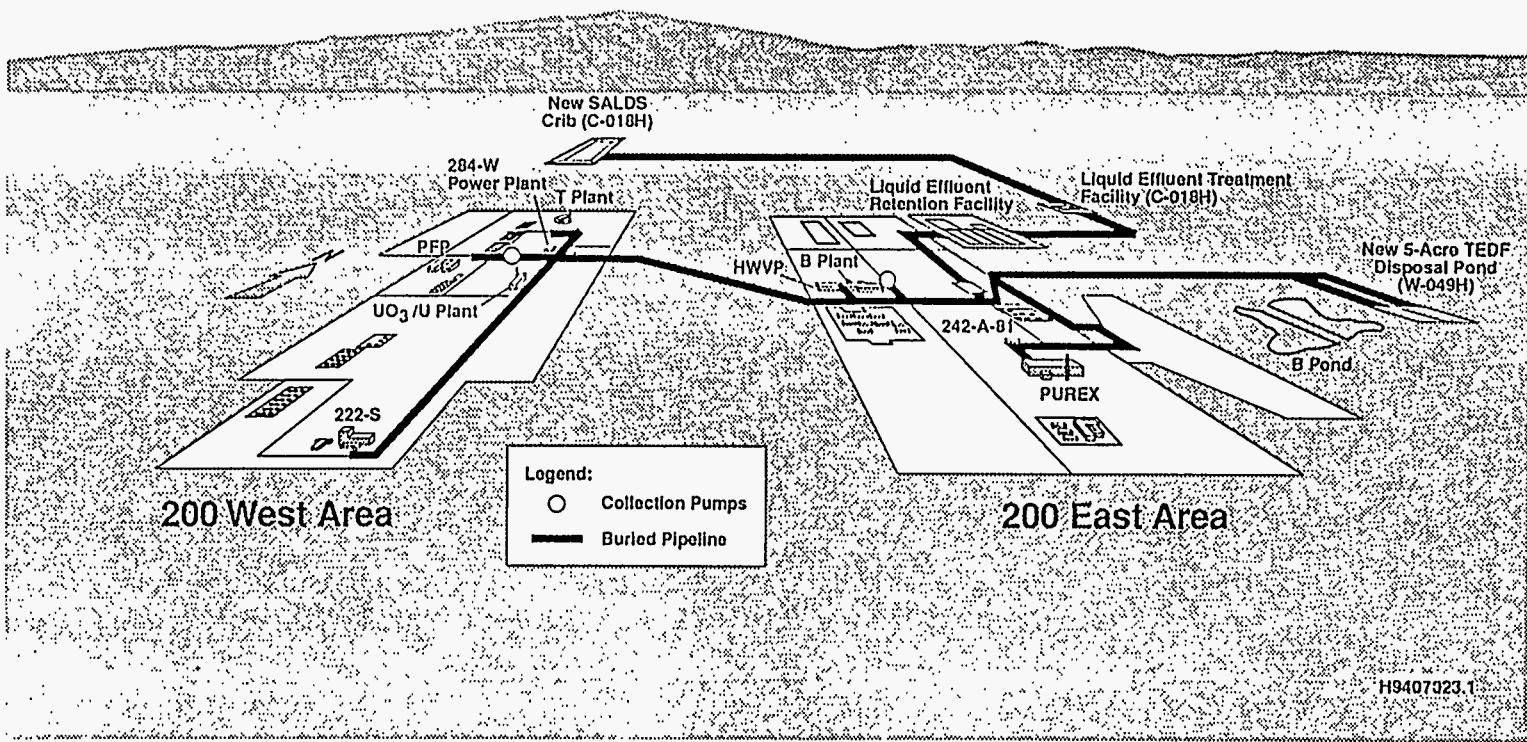




Figure A-1. Hanford Site Map

Figure A-2. 200 Area Treated Effluent Disposal Facility Map



Facility: 200 Area TEDF

DOE/RL-94-29, Rev. 0  
08/94

1  
2  
3  
4

## APPENDIX B

### PRODUCT OR SERVICE INFORMATION

1                   CONTENTS  
2  
3  
4                   B.1.0 BRIEFLY DESCRIBE ALL MANUFACTURING PROCESSES AND PRODUCTS,  
5                   AND/OR COMMERCIAL ACTIVITIES . . . . . APP B-1  
6                   B.1.1 200 AREA TREATED EFFLUENT DISPOSAL FACILITY . . . . . APP B-1  
7                   B.1.2 SUPPLEMENTARY INFORMATION ON FACILITIES DISCHARGING  
8                   EFFLUENT STREAMS TO THE 200 AREA TREATED EFFLUENT  
9                   DISPOSAL FACILITY . . . . . APP B-1  
10                  B.1.2.1 Plutonium Finishing Plant Waste Water . . . . . APP B-1  
11                  B.1.2.2 222-S Laboratory Waste Water . . . . . APP B-2  
12                  B.1.2.3 T Plant Waste Water . . . . . APP B-2  
13                  B.1.2.4 284-W Power Plant Waste Water . . . . . APP B-2  
14                  B.1.2.5 PUREX Facility Chemical Sewer . . . . . APP B-3  
15                  B.1.2.6 B Plant Chemical Sewer . . . . . APP B-3  
16                  B.1.2.7 B Plant Process Condensate . . . . . APP B-4  
17                  B.1.2.8 B Plant Steam Condensate . . . . . APP B-4  
18                  B.1.2.9 242-A-81 Water Services Waste Water . . . . . APP B-4  
19                  B.1.2.10 Future Waste Streams to be discharged to the  
20                   200 Area TEDF . . . . . APP B-5  
21  
22                  B.2.0 INCLUDE A PRODUCTION SCHEMATIC FLOW DIAGRAM OF THE PROCESS AND  
23                   SERVICE ACTIVITIES DESCRIBED ABOVE ON A SEPARATE SHEET . . . . APP B-5  
24  
25                  B.3.0 LIST RAW MATERIALS AND PRODUCTS . . . . . APP B-16  
26                  B.3.1 200 AREA TREATED EFFLUENT DISPOSAL FACILITY . . . . APP B-16  
27  
28  
29  
30                   FIGURES  
31  
32  
33                  B.2-0. Schematic Flow Diagram for the 200 Area Treated Effluent  
34                   Disposal Facility . . . . . APP B-6  
35                  B.2-1. Schematic Flow Diagram for the Plutonium Finishing Plant . . APP B-7  
36                  B.2-2. Schematic Flow Diagram for 222-S Laboratory . . . . . APP B-8  
37                  B.2-3. Schematic Flow Diagram for T Plant . . . . . APP B-9  
38                  B.2-4. Schematic Flow Diagram for 284-W Power Plant . . . . . APP B-10  
39                  B.2-5. Schematic Flow Diagram for PUREX Plant . . . . . APP B-11  
40                  B.2-6. Schematic Flow Diagram for B Plant Chemical Sewer . . . . APP B-12  
41                  B.2-7. Schematic Flow Diagram for B Plant Process Condensate . . . . APP B-13  
42                  B.2-8. Schematic Flow Diagram for B Plant Steam Condensate . . . . APP B-14  
43                  B.2-9. Schematic Flow Diagram for 242-A-81 Water Services Building . APP B-15  
44

1 APPENDIX B  
2  
3  
4  
5  
67 PRODUCT OR SERVICE INFORMATION  
8  
910 **B.1.0 BRIEFLY DESCRIBE ALL MANUFACTURING PROCESSES AND PRODUCTS, AND/OR**  
11 **COMMERCIAL ACTIVITIES. PROVIDE THE APPLICABLE STANDARD INDUSTRIAL**  
12 **CLASSIFICATION (SIC) CODE(S) FOR EACH ACTIVITY.**13 **B.1.1 200 AREA TREATED EFFLUENT DISPOSAL FACILITY SIC Code: 9999**

14 The 200 Area Treated Effluent Disposal Facility (200 Area TEDF) consists  
15 of a piping network that connects nine active streams to a new permitted waste  
16 water discharge site. A description of each of the active streams was  
17 submitted to the Washington State Department of Ecology in February 1992 in  
18 the "200 Area Treated Effluent Disposal Facility," (Project W-049H) Wastewater  
19 Engineering Report (Engineering Report) (WHC 1993a). No manufacturing  
20 processes or products are associated with the 200 Area TEDF. Section B.1.2,  
21 provides a brief description of the manufacturing processes, products, and/or  
22 commercial activities for each of the sources generating the active streams.  
23 Section B.1.2, also refers to the Engineering Report (WHC 1993a) for each of  
24 the sources.

25 **B.1.2 SUPPLEMENTARY INFORMATION ON FACILITIES DISCHARGING EFFLUENT**  
26 **STREAMS TO THE 200 AREA TREATED EFFLUENT DISPOSAL FACILITY**

27 This section describes briefly the manufacturing processes and products,  
28 and/or service activities of each of the facilities discharging effluent  
29 streams to the 200 Area TEDF.

30 The information was taken from the Engineering Report (WHC 1993a)  
31 submitted to the Washington State Department of Ecology. Where appropriate,  
32 reference to the Engineering Report is made by appendix and page number for  
33 detailed information.

34 **B.1.2.1 Plutonium Finishing Plant Waste Water**

35 The Plutonium Finishing Plant is used to purify and convert plutonium  
36 solids and plutonium nitrate solutions to other usable plutonium forms.  
37 Liquid waste produced by the plutonium reprocessing activities are  
38 concentrated and transferred to double-shell tanks for storage. The primary  
39 reprocessing activities are described in Appendix B of the Engineering Report.

40 Figure B.2-1 is a process flow diagram of the Plutonium Finishing Plant,  
41 illustrating the relationship to the various influent and effluent sources.  
42 The waste effluents, shown in shaded boxes will be discharged to the 200 Area  
43 TEDF.

1    B.1.2.2 222-S Laboratory Waste Water  
2

3       The 222-S Laboratory is located in the 200 West Area. The primary  
4       function of the 222-S Laboratory is to provide chemical and radiological  
5       analyses of samples associated with ongoing Hanford Site operations and  
6       research programs. A more detailed description of the 222-S Laboratory and  
7       associated facilities is located in Appendix C of the Engineering Report. The  
8       process flow diagram shown in Figure B.2-2 illustrates the influent and  
9       effluent water sources. The effluents depicted in the shaded boxes on the  
10      right-hand side of the figure will be discharged to the 200 Area TEDF.

11      B.1.2.3 T Plant Waste Water  
12

13       The T Plant is located in the 200 West Area. The T Plant waste water  
14      includes the T Plant Laboratory waste water which will be combined prior to  
15      discharge to the 200 Area TEDF. The T Plant provides decontamination  
16      activities for the Hanford Site. More detailed descriptions of the T Plant  
17      and the T Plant Laboratory waste water and the associated processes are  
18      located in Appendix F and Appendix G, of the Engineering Report. Figure B.2-3  
19      is a process flow diagram of T Plant that depicts the influent and effluent  
20      water sources. The shaded boxes are those effluents that will be combined and  
21      discharged to the 200 Area TEDF.  
22

23      B.1.2.4 284-W Power Plant Waste Water  
24

25       The 284-W Power Plant is located in the 200 West Area. A common process  
26      sewer is shared by the 282-W Reservoir, the 283-W Water Treatment Facility,  
27      and the 277-W Fabrication Shop.  
28

29       Steam produced at the 284-W Power Plant is distributed to all facilities  
30      in the 200 West Area. Additionally, a 24-inch steam line connects the  
31      200 West Area steam distribution system with that of the 200 East Area. The  
32      200 West Area Power Plant has a rated capacity of 260,000 pounds of steam per  
33      hour from four boilers, which has an equivalent electrical capacity of  
34      26 megawatts electrical, assuming a 38 percent thermal conversion.  
35

36       The waste water discharged from the 284-W Power Plant and associated  
37      facilities to the 200 Area TEDF includes boiler discharges, miscellaneous  
38      clean and contaminated effluents, and once-through cooling water<sup>1</sup>. A more  
39      detailed description of the 284-W Power Plant and surrounding facilities is  
40      located in Appendix J of the Engineering Report.  
41

42       The process flow diagram for the 284-W Power Plant is shown in  
43      Figure B.2-4 and illustrates the influents and effluents of the 284-W Power  
44      Plant. The shaded boxes are those effluents that will be combined and  
45      discharged to the 200 Area TEDF.  
46

---

47       <sup>1</sup> These liquid effluents are described in greater detail in Appendix U,  
48       Section U.2.2.1, "Source Categories," of the 200 Area Treated Effluent  
49       Disposal Facility, (Project W-049H) Wastewater Engineering Report, (WHC 1993a)  
50

1    **B.1.2.5 PUREX Facility Chemical Sewer**

2  
3    The PUREX Facility is located in the 200 East Area. The primary PUREX  
4 Facility processing equipment is housed in the 202-A Building. The PUREX  
5 Facility is not operating. In December 1992, the U.S. Department of Energy  
6 decided to transition from standby to shutdown followed by decontamination and  
7 decommissioning (when funding becomes available). This transition to shutdown  
8 is estimated to be completed by September 1998.  
9

10   Appendix K of the Engineering Report provides more detail on the  
11 manufacturing processes and effluent streams for the PUREX Facility chemical  
12 sewer.  
13

14   Progress in the transition to standby mode has resulted in reducing the  
15 flow rate of most of the sources that contributed to the PUREX Facility  
16 cooling water stream. Final transition to standby mode was completed in  
17 June 1992 and resulted in reducing both the cooling water and steam condensate  
18 streams flow rate to zero and rerouted the remaining active sources to the  
19 PUREX Plant chemical sewer, as described in Appendix K of the Engineering  
20 Report.  
21

22   Figure B.2-5 is a process flow diagram of the PUREX Facility influents  
23 and effluents. The shaded boxes depict those effluents that will be  
24 discharged to the 200 Area TEDF.  
25  
26

27   **B.1.2.6 B Plant Chemical Sewer**

28  
29   The B Plant, located in the 200 East Area, was constructed in the mid  
30 1940's as a fuel reprocessing facility. Currently, the B Plant Complex,  
31 including the Waste Encapsulation Storage Facility (WESF), ensures safe  
32 storage and management of radiological and mixed waste inventories.  
33

34   The B Plant consists of three adjoining buildings: 271-B, 221-B, and  
35 225-B. In addition, several adjacent buildings have been constructed to  
36 support the waste processing operations.  
37

38   The B Plant receives and stores various chemicals from commercial  
39 manufacturers for use in the operation of the low-level waste handling  
40 systems, generation of demineralized water, and conditioning of water used in  
41 heating, ventilation, and air conditioning units. The effluents include steam  
42 condensate, domestic waste water, evaporative cooling effluents, and  
43 miscellaneous effluents. Appendix N of the Engineering Report describes in  
44 detail the B Plant chemical sewer water sources and flow path.  
45

46   Figure B.2-6 is a process flow diagram of the B Plant influents and  
47 effluents. The shaded boxes represent those effluents that will be discharged  
48 to the 200 Area TEDF.  
49  
50

1    **B.1.2.7 B Plant Process Condensate**

2  
3       The description of the manufacturing processes and products, and/or  
4       service activities is the same as for the B Plant chemical sewer described in  
5       Section B.1.2.6. The following is a description of how the B Plant process  
6       condensate is generated. The B Plant process condensate evolves from the  
7       operation of the cell 23 concentrator, where the liquid low-level waste is  
8       concentrated to minimize the waste stream that requires low-level disposal to  
9       double-shell tanks. Currently, the cell 23 concentrator is not operating and  
10      the B Plant process condensate is not discharging. Appendix O of the  
11      Engineering Reports describes in detail, the B Plant process condensate water  
12      sources and flow path.

13  
14      Figure B.2-7 is a process flow diagram of the B Plant influents and  
15      effluents. The shaded boxes represent those effluents that will be discharged  
16      to the 200 Area TEDF.

17  
18    **B.1.2.8 B Plant Steam Condensate**

19  
20       The description of the manufacturing processes and products, and/or  
21       service activities is the same as for the B Plant chemical sewer described in  
22       Section B.1.2.6. The following is a description of how the B Plant steam  
23       condensate is generated when the cell 23 concentrator is operating.  
24       Currently, the cell 23 concentrator is not operating and the B Plant steam  
25       condensate is not discharging. The B Plant steam condensate evolves from the  
26       operation of the cell 23 concentrator, where the liquid low-level waste is  
27       concentrated to minimize the waste stream that requires disposal in double-  
28       shell tanks. Appendix P of the Engineering Report provides more detailed  
29       information on B Plant steam condensate sources and flowpath.

30  
31      Figure B.2-8 is a process flow diagram of the B Plant influents and  
32      effluents. The shaded boxes represent those effluents that will be discharged  
33      to the 200 Area TEDF.

34  
35    **B.1.2.9 242-A-81 Water Services Waste Water**

36  
37       The 242-A-81 Building houses equipment that strains coarse, suspended  
38       solids from a stream of raw water. This straining reduces the loading on  
39       downstream filtration units for the stream of raw water supplied to the  
40       242-A Evaporator. The 242-A Evaporator receives waste feed from the double-  
41       shell tanks.

42  
43       The two effluent sources that make up the waste water stream are the  
44       strainer backwash and the backflow preventer drain. The strainer backwash  
45       consists of raw water plus suspended solids either present in raw water  
46       obtained from the Columbia River or added to the raw water supply by normal  
47       scaling and corrosion in piping upstream of the strainers. The other source  
48       results from the two raw-water supply-line branches. Each of the two  
49       raw-water supply-line branches contains a backflow preventer located

1 downstream of the strainer to ensure that, if supply pressure is lost, the  
2 water will not drain back into the supply header.  
3

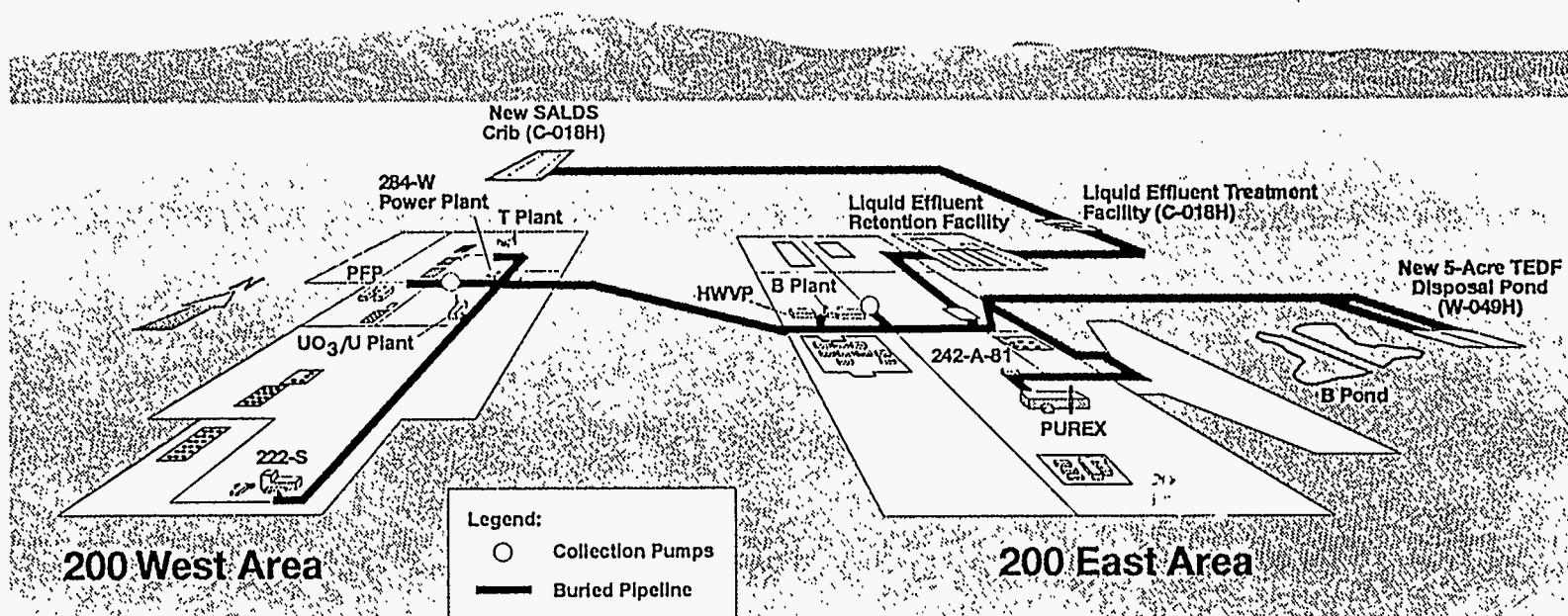
4 Figure B.2-9 is a process flow diagram of the 242-A-81 Water Services  
5 Building influents and effluents. The shaded boxes represent those effluents  
6 that will be discharged to the 200 Area TEDF.  
7

8 Appendix T of the Engineering Report provides detailed information on the  
9 242-A Evaporator and the 242-A-81 Water Services Waste Water sources and flow  
10 paths.  
11

#### 12 B.1.2.10 Future Waste Streams to be discharged to the 200 Area TEDF 13

14 Appendix I is a place holder for future streams anticipated to be  
15 discharged to the 200 Area TEDF. See Appendix I for waste stream acceptance  
16 criteria.  
17

#### 18 B.2.0 INCLUDE A PRODUCTION SCHEMATIC FLOW DIAGRAM OF THE PROCESS AND SERVICE 19 ACTIVITIES DESCRIBED ABOVE ON A SEPARATE SHEET. 20


#### 21 B.2.1 200 Area Treated Effluent Disposal Facility 22

23 The schematic flow diagram for the 200 Area TEDF is presented as  
24 Figure B.2-0.  
25

#### 26 B.2.2 Supplementary information on facilities discharging effluents streams 27 to the 200 Area Treated Effluent Disposal Facility. 28

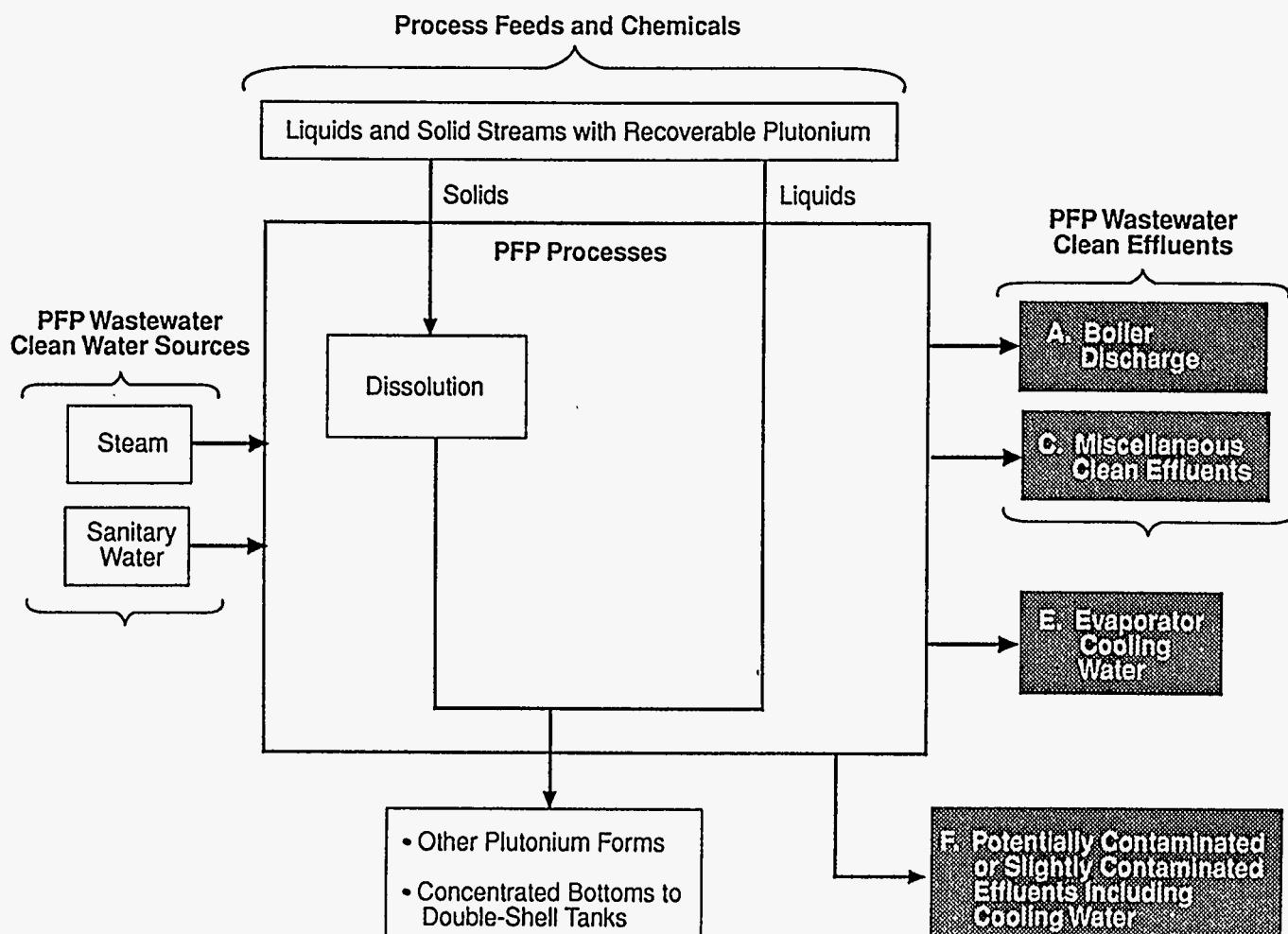

29 Schematic flow diagrams for each of the waste streams discharging to the  
30 200 Area TEDF are presented as Figures B.2-1 through B.2-9.  
31

Figure B.2-0. Schematic Flow Diagram for the 200 Area Treated Effluent Disposal Facility



H9407023.1

Figure B.2-1. Schematic Flow Diagram for the Plutonium Finishing Plant.

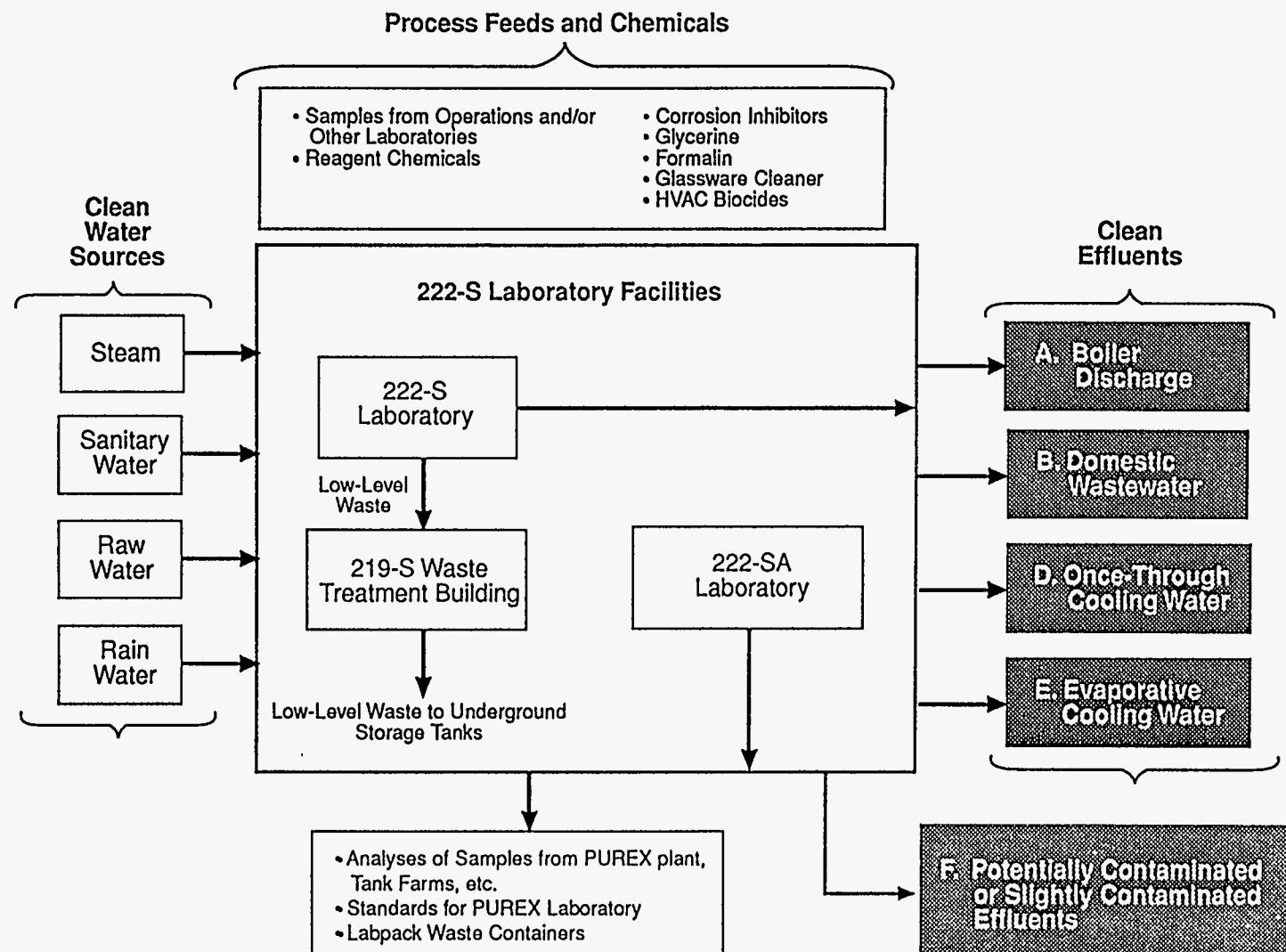
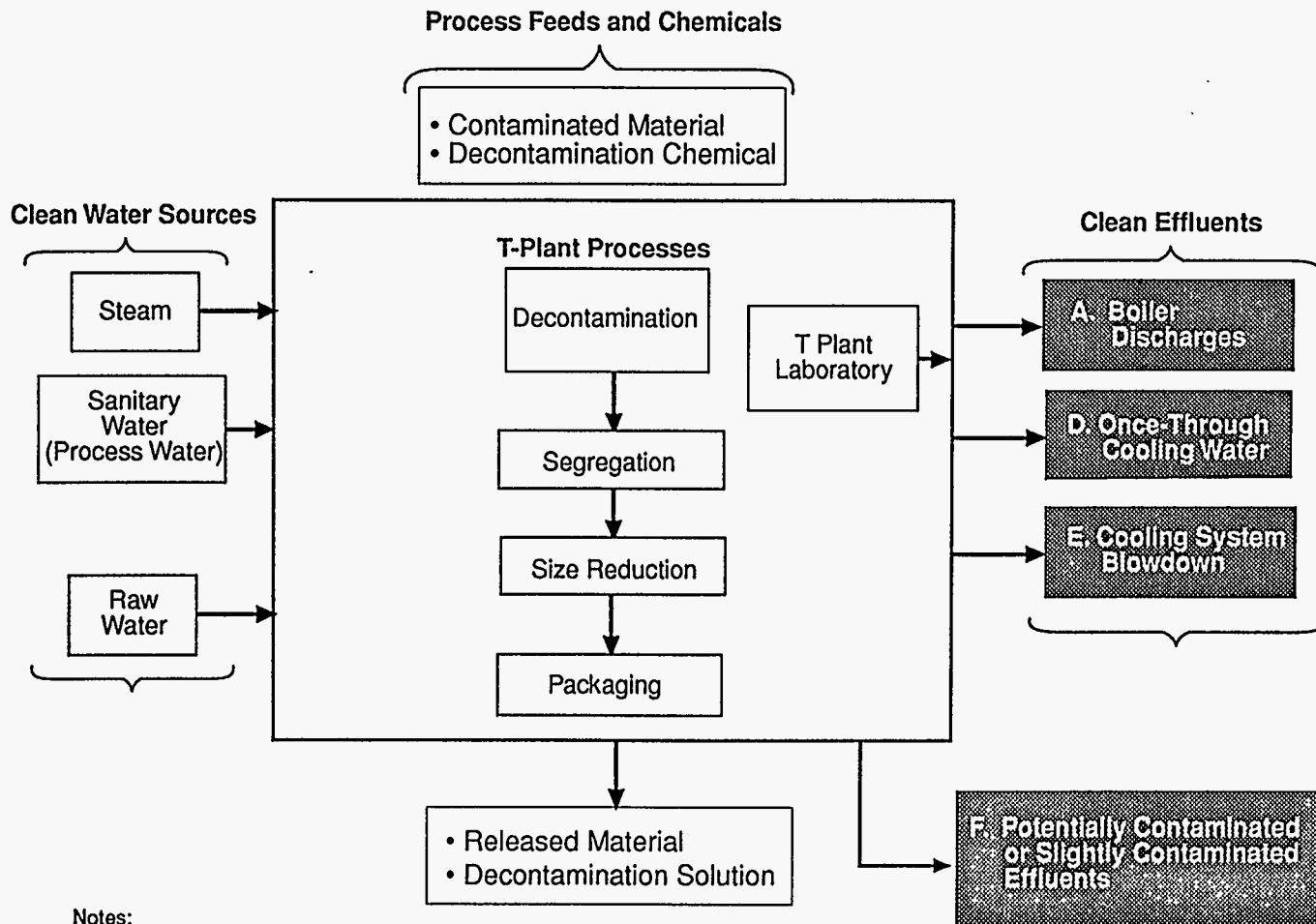


## Notes:

- The letters A through F in the shaded boxes denote the Source Categories as described in Appendix U of the 200 Area Treated Effluent Disposal Facility, (Project W-049H) Wastewater Engineering Report (WHC 1993a).
- The shaded boxes depict effluents which will be discharged to the "200 Area Treated Effluent Disposal Facility".

29403019.1

29403019.2

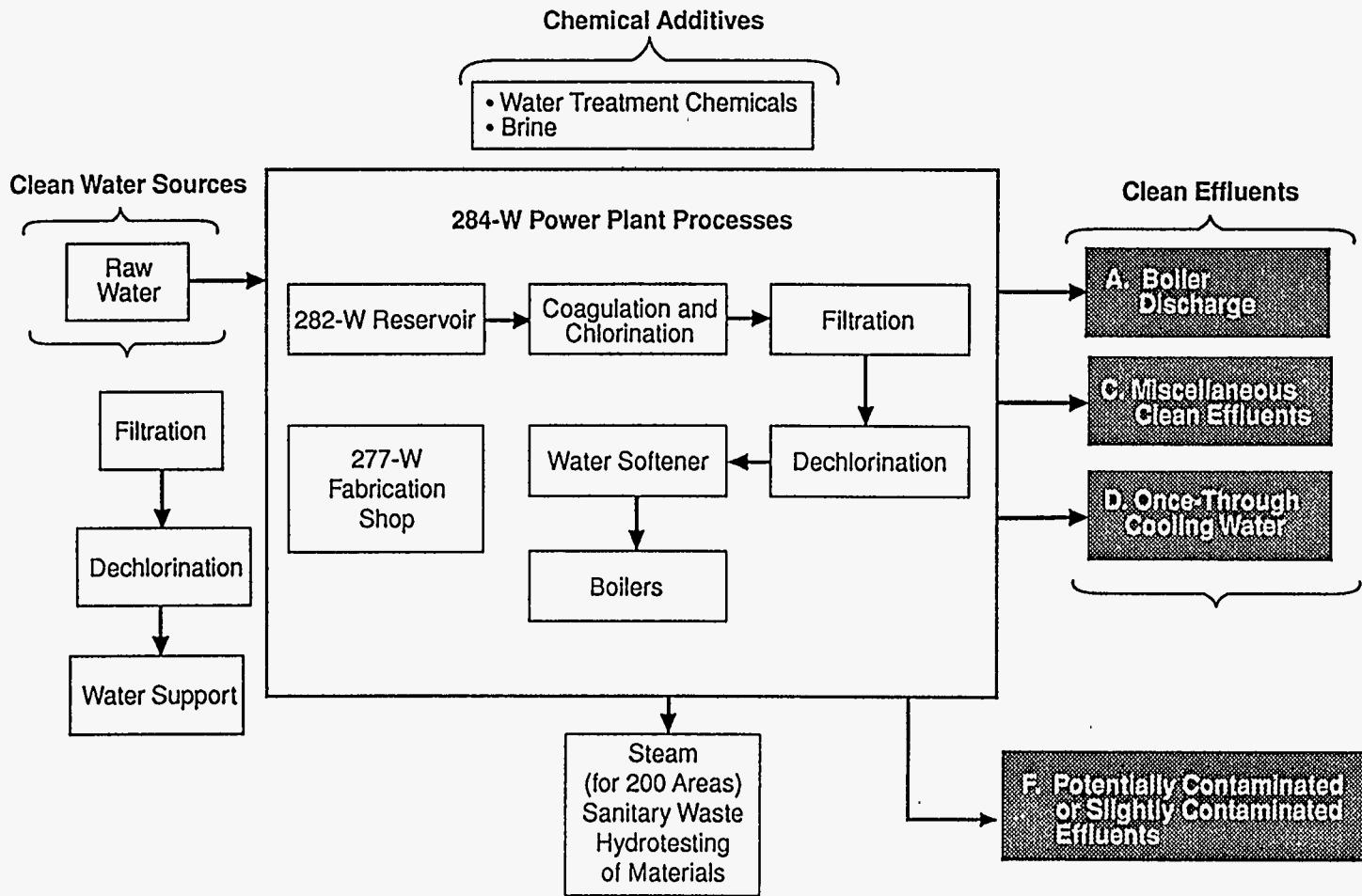


Figure B.2-2. Schematic Flow Diagram for 222-S Laboratory.

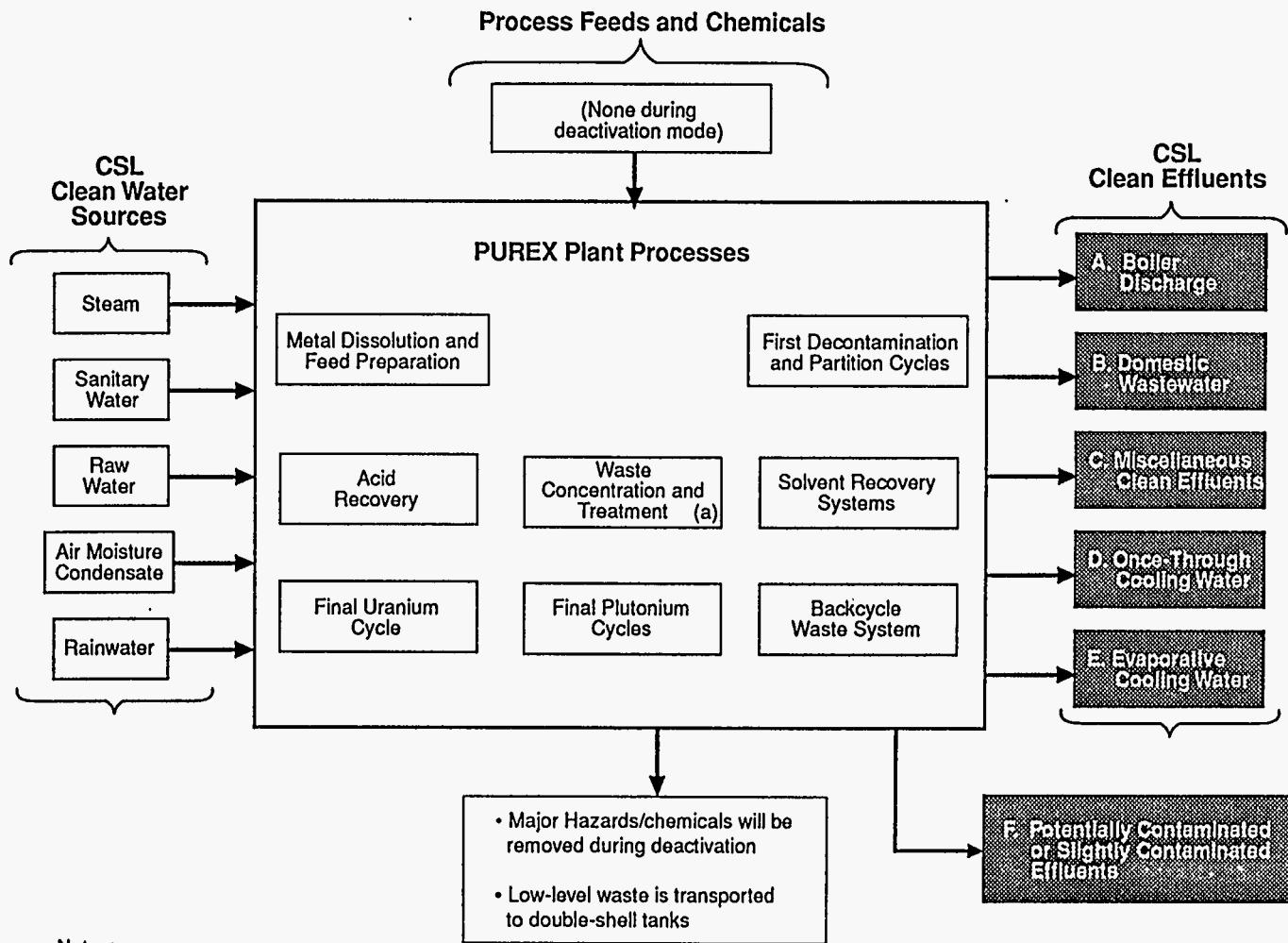
Figure B.2-3. Schematic Flow Diagram for T Plant.



29403019.3

Figure B.2-4. Schematic Flow Diagram for 284-W Power Plant.




Notes:

- The letters A through F in the shaded boxes denote the Source Categories as described in Appendix U of the 200 Area Treated Effluent Disposal Facility, (Project W-049H) Wastewater Engineering Report (WHC 1993a).
- The shaded boxes depict effluents which will be discharged to the "200 Area Treated Effluent Disposal Facility".

29403019.5

29403019.6

Figure B.2-5. Schematic Flow Diagram for PUREX Plant.



## Notes:

- Only active process during deactivation.
- The letters A through F in the shaded boxes denote the Source Categories as described in Appendix U of the 200 Area Treated Effluent Disposal Facility, (Project W-049H) Wastewater Engineering Report (WHC 1993a).
- The shaded boxes depict effluents which will be discharged to the "200 Area Treated Effluent Disposal Facility".

29403019.7

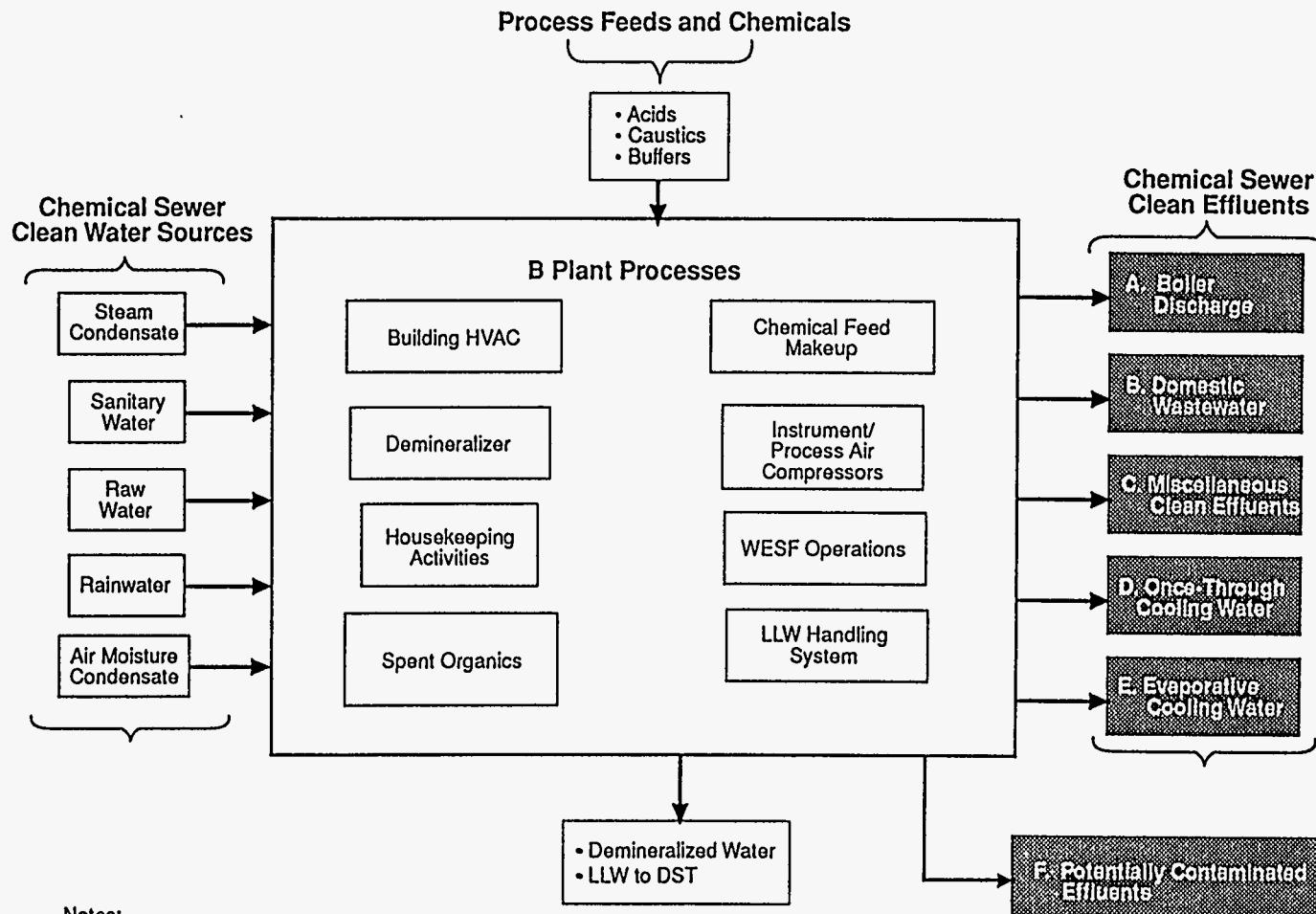
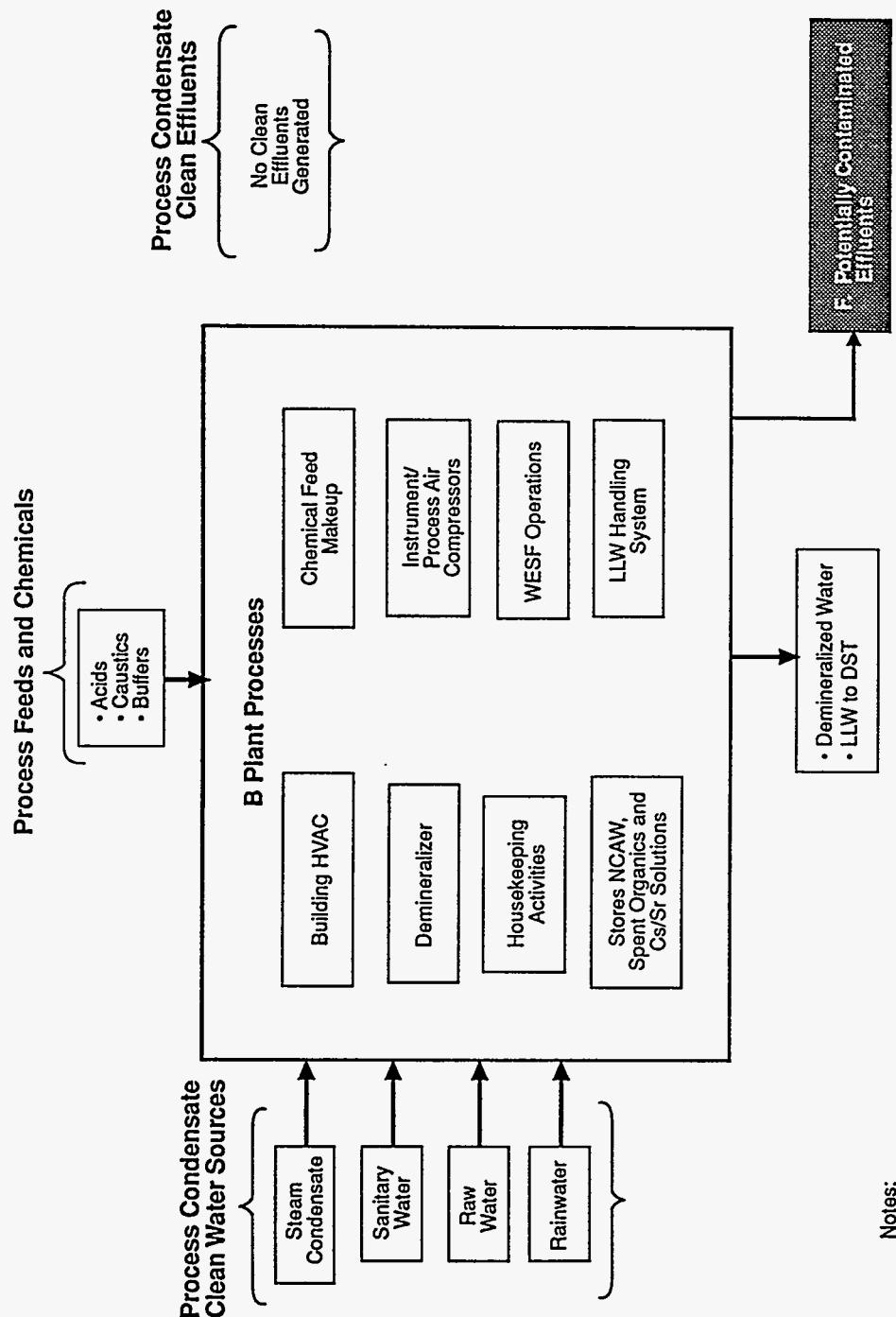




Figure B.2-6. Schematic Flow Diagram for B Plant Chemical Sewer.



## Notes:

a. The letters A through F in the shaded boxes denote the Source Categories as described in Appendix U of the 200 Area Treated Effluent Disposal Facility, (Project W-049H) Wastewater Engineering Report (WHC 1993a).

b. The shaded boxes depict effluents which will be discharged to the "200 Area Treated Effluent Disposal Facility".

29402024.8

Figure B.2-7. Schematic Flow Diagram for B Plant Process Condensate.

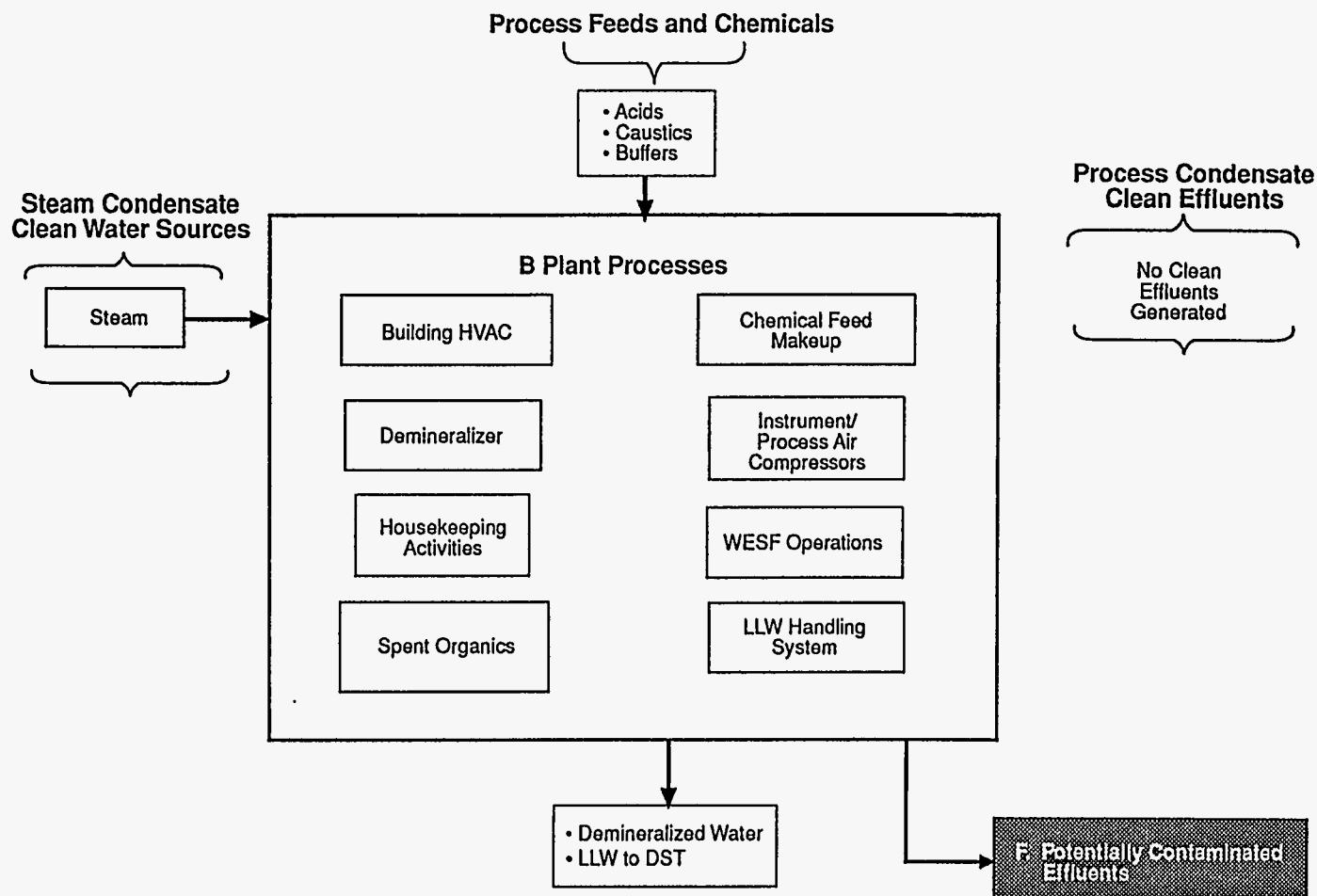



Figure B.2-8. Schematic Flow Diagram for B Plant Steam Condensate.

29403019.10

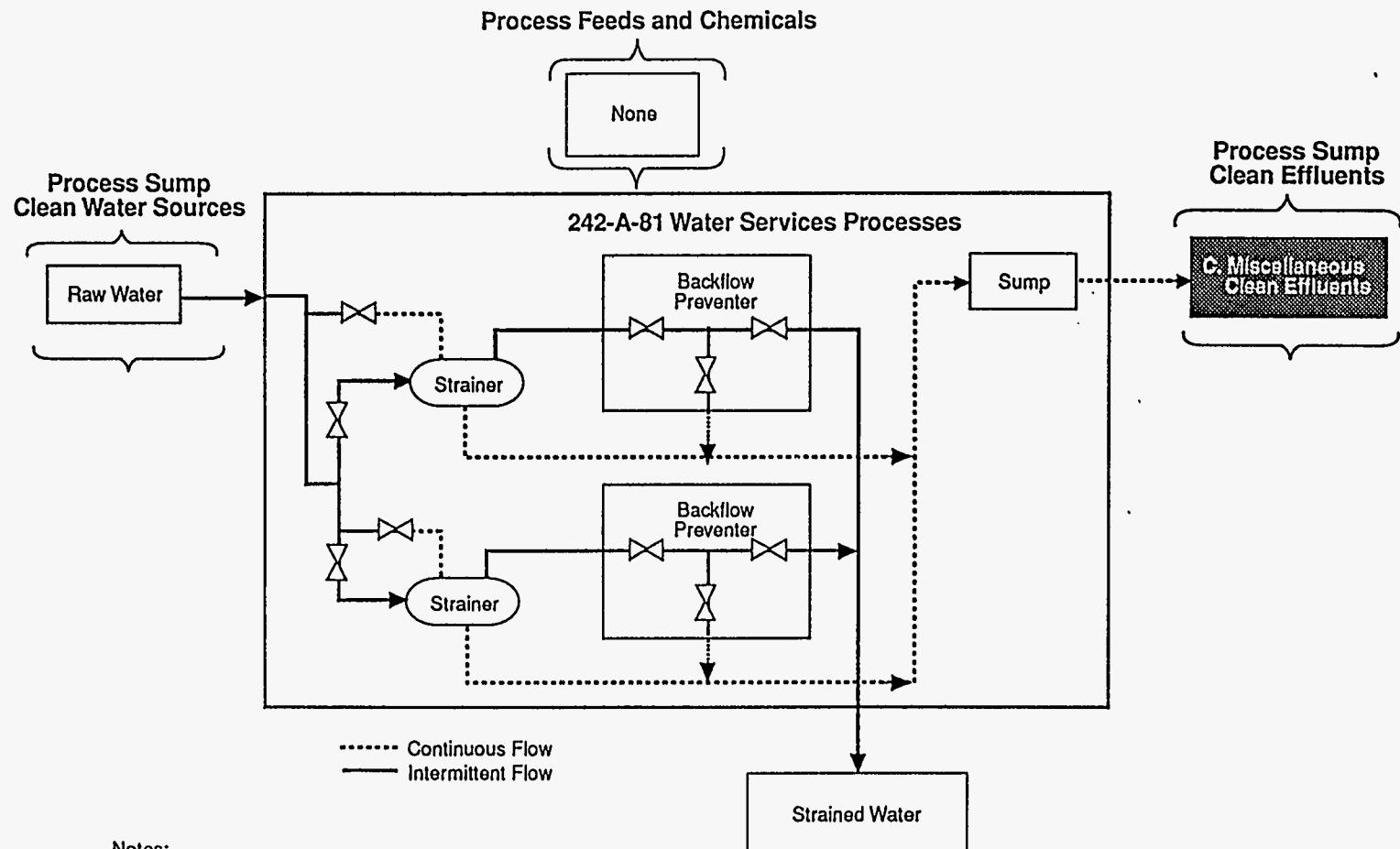



Figure B.2-9. Schematic Flow Diagram for 242-A-81 Water Services Building.

1    **B.3.0 LIST RAW MATERIALS AND PRODUCTS**

2

3

4    **B.3.1 200 AREA TREATED EFFLUENT DISPOSAL FACILITY**

5

6    The 200 Area TEDF is a collection, transfer, and disposal facility. No  
7    raw materials or products are associated with the 200 Area TEDF.

8

9    Most of the facilities discharging to the 200 Area TEDF are in standby or  
10   shutdown mode, or are in preparation for decommissioning and decontamination.  
11   With the change of the mission of the Hanford Site from weapons fuel  
12   production to waste management and restoration and remediation, the facilities  
13   discharging to the 200 Area TEDF are not in production. However, T Plant,  
14   222-S and WESF (located at the B Plant Complex), continue to provide waste  
15   management support for the Hanford Site.

16

17   The information on materials at each facility is available from the  
18   information collected by the U.S. Department of Energy pursuant to the  
19   *Emergency Planning and Community Right-to-know Act* (Title III of the Superfund  
20   amendments and Reauthorization Act of 1986). The information on each  
21   facility has been compiled and can be located in WHC 1994.

22

Facility: 200 Area TEDF

DOE/RL-94-29, Rev. 0  
08/94

1  
2  
3  
4

## APPENDIX C

### PLANT OPERATIONAL CHARACTERISTICS

1 APPENDIX C  
2  
3  
4  
5  
67 CONTENTS  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52

C.1.0 IDENTIFY THE WASTE STREAM FOR EACH OF THE PRODUCTION PROCESSES  
OR ACTIVITIES DESCRIBED IN SECTION B.1 . . . . . APP C-1  
C.1.1 200 AREA TREATED EFFLUENT DISPOSAL FACILITY . . . . . APP C-1

C.2.0 ON A SEPARATE SHEET, DESCRIBE IN DETAIL THE TREATMENT AND  
DISPOSAL OF ALL WASTE WATERS AS DESCRIBED ABOVE . . . . . APP C-3  
C.2.1 200 AREA TREATED EFFLUENT DISPOSAL FACILITY (WASTE STREAM  
NO. 1) . . . . . APP C-3

C.2.2 SUPPLEMENTARY INFORMATION ON 200 AREA TREATED EFFLUENT  
DISPOSAL FACILITY GENERATORS . . . . . APP C-3

C.2.2.1 Plutonium Finishing Plant Waste Water (Waste  
Stream No. 1a) . . . . . APP C-3

C.2.2.2 222-S Laboratory Waste Water (Waste Stream No.  
1b) . . . . . APP C-3

C.2.2.3 T Plant Waste Water (Waste Stream No. 1c) . . APP C-4

C.2.2.4 284-W Power Plant Waste Water (Waste Stream No.  
1d) . . . . . APP C-4

C.2.2.5 PUREX Plant Chemical Sewer (Waste Stream No.  
1e) . . . . . APP C-4

C.2.2.6 B Plant Chemical Sewer (Waste Stream No. 1f) . APP C-5

C.2.2.7 B Plant Process Condensate (Waste Stream No.  
1g) . . . . . APP C-5

C.2.2.8 B Plant Steam Condensate (Waste Stream No. 1h) APP C-5

C.2.2.9 242-81 Water Services Building Waste Water  
(Waste Stream No. 1i) . . . . . APP C-5

C.3.0 INDICATE TREATMENT PROVIDED TO EACH WASTE STREAM IDENTIFIED IN  
SECTION C.1.0 ABOVE . . . . . APP C-6

C.4.0 DESCRIBE ANY PLANNED WASTE WATER TREATMENT IMPROVEMENTS OR  
CHANGES IN WASTE WATER DISPOSAL METHODS AND WHEN THEY WILL OCCUR APP C-6

C.4.1 200 AREA TREATED EFFLUENT DISPOSAL FACILITY (WASTE STREAM  
NO. 1) . . . . . APP C-6

C.4.2 SUPPLEMENTARY INFORMATION ON 200 AREA TREATED EFFLUENT  
DISPOSAL FACILITY GENERATING UNITS . . . . . APP C-7

C.4.2.1 Plutonium Finishing Plant Waste Water (Waste  
Stream No. 1a) . . . . . APP C-7

C.4.2.3 T Plant Waste Water (Waste Stream No. 1c) . . APP C-13

C.4.2.4 284-W Power Plant Waste Water (Waste Stream No.  
1d) . . . . . APP C-13

C.4.2.5 PUREX Facility Chemical Sewer (Waste Stream No.  
1e) . . . . . APP C-16

C.4.2.6 B Plant Chemical Sewer (Waste Stream No. 1f) . APP C-16

C.4.2.7 B Plant Process Condensate (Waste Stream No.  
1g) . . . . . APP C-16

C.4.2.8 B Plant Steam Condensate (Waste Stream No. 1h) APP C-16

|    |         |                                                                                                                                |          |
|----|---------|--------------------------------------------------------------------------------------------------------------------------------|----------|
| 1  | C.4.2.9 | 242-81 Water Services Building Waste Water<br>(Waste Stream No. 1i) . . . . .                                                  | APP C-16 |
| 2  | C.5.0   | IF PRODUCTION PROCESSES ARE SUBJECT TO SEASONAL VARIATIONS,<br>PROVIDE THE FOLLOWING INFORMATION . . . . .                     | APP C-17 |
| 3  | C.5.1   | 200 AREA TREATED EFFLUENT DISPOSAL FACILITY . . . . .                                                                          | APP C-17 |
| 4  | C.5.2   | SUPPLEMENTARY INFORMATION ON 200 AREA TREATED EFFLUENT<br>DISPOSAL FACILITY GENERATING UNITS . . . . .                         | APP C-17 |
| 5  | C.6.0   | SHIFT INFORMATION . . . . .                                                                                                    | APP C-17 |
| 6  | C.6.1   | 200 AREA TREATED EFFLUENT DISPOSAL FACILITY . . . . .                                                                          | APP C-17 |
| 7  | C.7.0   | LIST ALL INCIDENTAL MATERIALS LIKE OIL, PAINT, GREASE, SOLVENTS,<br>SOAPS, CLEANERS, THAT ARE USED OR STORED ON-SITE . . . . . | APP C-18 |
| 8  | C.7.1   | 200 AREA TREATED EFFLUENT DISPOSAL FACILITY . . . . .                                                                          | APP C-18 |
| 9  | C.7.2   | SUPPLEMENTARY INFORMATION ON 200 AREA TREATED EFFLUENT<br>DISPOSAL FACILITY GENERATING UNITS . . . . .                         | APP C-18 |
| 10 | C.8.0   | DESCRIBE ANY WATER RECYCLING OR MATERIAL RECLAIMING PROCESSES APP C-18                                                         |          |
| 11 | C.8.1   | 200 AREA TREATED EFFLUENT DISPOSAL FACILITY . . . . .                                                                          | APP C-18 |
| 12 | C.8.2   | SUPPLEMENTARY INFORMATION ON 200 AREA TREATED EFFLUENT<br>DISPOSAL FACILITY GENERATING UNITS . . . . .                         | APP C-19 |
| 13 | C.8.2.1 | Plutonium Finishing Plant (Waste Stream No. 1a)APP C-19                                                                        |          |
| 14 | C.8.2.2 | 284-W Power Plant Waste Water (Waste Stream No.<br>1d) . . . . .                                                               | APP C-19 |
| 15 | C.9.0   | DOES THIS FACILITY HAVE . . . . .                                                                                              | APP C-19 |

## FIGURES

|    |          |                                                                                                                        |          |
|----|----------|------------------------------------------------------------------------------------------------------------------------|----------|
| 33 | C.4.2.1. | Plutonium Finishing Plant Waste Water Building Schematic as<br>of June 1995 . . . . .                                  | APP C-9  |
| 34 | C.4.2.2. | Schematic Flow Diagram for the Plutonium Finishing Plant<br>Waste Water Building waste water treatment system. . . . . | APP C-11 |
| 35 | C.4.2.3. | 284-W Power Plant Waste Water Building Schematic at<br>June 1995 . . . . .                                             | APP C-15 |

## TABLES

|    |          |                                                                                                    |          |
|----|----------|----------------------------------------------------------------------------------------------------|----------|
| 45 | C.4.2.0. | 200 Area Treated Effluent Disposal Facility Waste Stream<br>Process/Activity Information . . . . . | APP C-2  |
| 46 | C.4.2.1. | Additional Plutonium Finishing Plant Waste Water<br>Sources at June 1995 . . . . .                 | APP C-7  |
| 47 | C.4.2.2. | 284-W Power Plant Waste Water Sources at June 1995 . . . .                                         | APP C-14 |

Facility: 200 Area TEDF

DOE/RL-94-29, Rev. 0  
08/94

1  
2  
3  
4

This page intentionally left blank.

1 APPENDIX C  
2  
3  
4 PLANT OPERATIONAL CHARACTERISTICS  
5  
6  
78 **C.1.0 IDENTIFY THE WASTE STREAM FOR EACH OF THE PRODUCTION PROCESSES OR**  
9 **ACTIVITIES DESCRIBED IN SECTION B.1. ASSIGN AN IDENTIFICATION NUMBER--**  
10 **USE THIS NUMBER IN SUBSEQUENT QUESTIONS.**11 **C.1.1 200 AREA TREATED EFFLUENT DISPOSAL FACILITY**  
1213 The 200 Area TEDF is a pipeline that receives, transports, and disposes of  
14 nine waste streams from seven generating units to two 5-acre disposal ponds.  
15 The process information is provided in Table C.1-1.16 **C.1.2 SUPPLEMENTARY INFORMATION ON 200 AREA TREATED EFFLUENT DISPOSAL**  
17 **FACILITY GENERATING UNITS**  
1819 Process/activity information on the nine streams from the seven generating  
20 units is offered in Table C.1-1 for completeness. A place holder has been  
21 added for future streams that may be discharged to the 200 Area TEDF.  
22

1  
2 Table C.4.2.0. 200 Area Treated Effluent Disposal Facility Waste Stream  
3 Process/Activity Information.  
4

| 5                                            | Process                                                                                                                  | Waste stream name                                                    | Batch or continuous process | Waste stream ID No. |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------|---------------------|
| 6                                            | Receive, transport, and dispose<br>7 of generator waste stream                                                           | 200 Area TEDF                                                        | Continuous                  | 1                   |
| 8<br>9 SOURCE STREAMS TO 200 AREA TEDF<br>10 |                                                                                                                          |                                                                      |                             |                     |
| 11                                           | Ventilation heating/cooling,<br>12 steam condensate, cooling water,<br>13 compressed air production,<br>14 process water | Plutonium Finishing Plant<br>waste water                             | Continuous                  | 1a                  |
| 15                                           | Steam condensate, sanitary water,<br>16 rainwater                                                                        | 222-S Laboratory Complex<br>waste water                              | Batch                       | 1b                  |
| 17                                           | Steam condensate, miscellaneous<br>18 effluents, cooling water, heating<br>19 coil water, floor drainage                 | T Plant waste water<br>(including T Plant<br>Laboratory waste water) | Continuous                  | 1c                  |
| 20                                           | Boiler discharges, miscellaneous<br>21 effluents, cooling water                                                          | 284-W Power Plant waste<br>water                                     | Continuous                  | 1d                  |
| 22                                           | Steam condensates, floor drains,<br>23 ventilation heating/ cooling,<br>24 overflows, cooling water                      | PUREX Chemical Sewer                                                 | Continuous                  | 1e                  |
| 25                                           | Steam condensate, boiler<br>26 discharge, miscellaneous<br>27 effluents, cooling water                                   | B Plant Chemical Sewer                                               | Continuous                  | 1f                  |
| 28                                           | Steam condensate, sanitary water,<br>29 raw water, rainwater                                                             | B Plant Process<br>Condensate                                        | Batch                       | 1g                  |
| 30                                           | Steam condensate                                                                                                         | B Plant Steam Condensate                                             | Batch                       | 1h                  |
| 31                                           | Raw water                                                                                                                | 242-A-81 Water Services<br>waste water                               | Continuous                  | 1i                  |
| 32                                           | TBD                                                                                                                      | Future streams to be<br>discharged to the<br>200 Area TEDF           | TBD                         | TBD                 |

33  
34  
35 TBD = to be determined  
36  
37

1 C.2.0 ON A SEPARATE SHEET, DESCRIBE IN DETAIL THE TREATMENT AND DISPOSAL  
2 OF ALL WASTE WATERS AS DESCRIBED ABOVE. INCLUDE A SCHEMATIC FLOW  
3 DIAGRAM FOR ALL WASTE WATER TREATMENT AND DISPOSAL SYSTEMS.

4

5

6 **C.2.1 200 AREA TREATED EFFLUENT DISPOSAL FACILITY (WASTE STREAM NO. 1)**

7

8 The 200 Area TEDF is a pipeline that conveys effluent from seven  
9 generating units to disposal ponds and does not have any treatment. A  
10 detailed description of the disposal ponds is contained in a site  
11 characterization report (WHC 1993b). The schematic flow diagram for the 200  
12 Area TEDF is presented as Figure B.2-0.

13

14

15 **C.2.2 SUPPLEMENTARY INFORMATION ON 200 AREA TREATED EFFLUENT DISPOSAL**  
16 **FACILITY GENERATORS**

17

18 The following sections provide a summary of the BAT/AKART that will be  
19 implemented at each generating unit before June 1995. For more detail on  
20 BAT/AKART or pre-BAT/AKART treatment, refer to the Engineering Report (WHC  
21 1993a). Treatment is defined broadly and includes such activity as source  
22 controls. Schematic flow diagrams for each of the waste streams discharging to  
23 the 200 Area TEDF are presented as Figures B.2-1 through B.2-9.

24

25

26 **C.2.2.1 Plutonium Finishing Plant Waste Water (Waste Stream No. 1a)**

27

28 Implementing planned source control with planned end-of-pipe treatment was  
29 selected as BAT/AKART for the Plutonium Finishing Plant Waste Water  
30 (WHC 1993a, Appendix B). This alternative includes a planned source control  
31 using closed-loop cooling for 234-5Z, 236-Z, and 291-Z buildings and replacing  
32 vacuum pumps with waterless pumps. The end-of-pipe treatment includes an  
33 equalization tank to hold the incoming waste water flow of the potentially  
34 contaminated boiler blowdown microfiltration to remove suspended solids,  
35 carbon adsorption to remove organics, bone-char adsorption to remove  
36 radionuclides, ion exchange to remove cations and anions, and a system for  
37 monitoring and sampling effluent water quality before discharge to the TEDF.  
38 (See page App C-11 for schematic flow diagram of the waste water treatment  
39 system.) Some additional treatment changes not contained in Appendix B of the  
40 Engineering Report are described in Section C.4.2.1 of this permit  
41 application.

42

43

44 **C.2.2.2 222-S Laboratory Waste Water (Waste Stream No. 1b)**

45

46 Planned source control was selected as BAT/AKART. This alternative  
47 includes adding corrosion inhibitors to the steam supply to reduce metal  
48 concentration; piping and equipment changes to reduce potential for  
49 contamination; installing additional retention basin capacity; eliminating  
50 steam cell heaters to avoid condensate generation; replacing heating,  
51 ventilation, and air conditioning air washers with electric chillers to  
52 eliminate blowdown; and identifying alternative demineralizer columns to

1 reduce constituent concentrations associated with initial backwash. Some  
2 additional treatment changes that are not contained in Appendix C of the  
3 Engineering Report are described in Section C.4.2.2 of this permit  
4 application.

5

6

#### 7 C.2.2.3 T Plant Waste Water (Waste Stream No. 1c)

8

9 Additional source controls with retention/diversion capability were  
10 selected as BAT/AKART for T Plant waste water. This alternative includes  
11 replacing the water-cooled air compressor with an air-cooled unit and  
12 replacing the water-cooled pressurized water reactor chiller with an air-  
13 cooled, refrigerant cooling system. All remaining sources will be discharged  
14 to the 200 Area TEDF or trucked out for treatment. This waste stream also  
15 contains the old T Plant Laboratory waste water effluent (Appendix G of the  
16 Engineering Report). The BAT/AKART evaluation also included replacing or  
17 removing stored chemicals and decontaminate rooms containing sumps and drains.  
18 Some additional treatment changes that are not contained in Appendix F and G  
19 of the Engineering Report are described in Section C.4.2.3 of this permit  
20 application.

21

22

#### 23 C.2.2.4 284-W Power Plant Waste Water (Waste Stream No. 1d)

24

25 Additional source controls plus in-plant treatment were selected as  
26 BAT/AKART. This alternative includes installing flow and turbidity meters in  
27 conjunction with an automatic backwash valve to optimize filter backwash  
28 frequency and installing new flocculation/sedimentation units to treat filter  
29 backwash in the 283-W Water Treatment Facility. Clarified water will be  
30 recycled. Automated level control for the 282-W Reservoir will be installed  
31 to eliminate raw water overflow. This alternative also includes replacing the  
32 277-W compressor with an air-cooled unit and installing a closed-loop  
33 refrigeration cooling unit on the 277-W welding machines. Some additional  
34 treatment changes that are not contained in Appendix L of the Engineering  
35 Report are described in Section C.4.2.4 of this permit application.

36

37

#### 38 C.2.2.5 PUREX Plant Chemical Sewer (Waste Stream No. 1e)

39

40 Planned source control was selected as BAT/AKART. This alternative  
41 includes blanking off the sump of the tank car unloading station and  
42 reactivating an existing PUREX concentrator to reprocess any waste that might  
43 be diverted from the normal discharge path as a result of standby and shutdown  
44 activities. The PUREX Facility is presently transitioning to a surveillance  
45 and maintenance phase prior to final dispositioning. The remaining stream  
46 will be discharged to the 200 Area TEDF. Some additional treatment changes  
47 that are not contained in Appendix K of the Engineering Report are described  
48 in Section C.4.2.5 of this permit application.

49

50

1 C.2.2.6 B Plant Chemical Sewer (Waste Stream No. 1f)  
2

3 Planned source control was selected as BAT/AKART. Source control includes  
4 rerouting and replacing piping downstream of the 211-BA neutralization area,  
5 replacing the deteriorated floor spill containment around the aqueous makeup  
6 unit tanks, providing neutralization for acidic and alkaline liquids,  
7 providing secondary containment for tanks in the 211-B area, capping selected  
8 drains to the B Plant chemical sewer, and replacing the demineralizer with a  
9 continuous electrode de-ionizer. All potentially contaminated sources at the  
10 221-B and 271-B buildings will be connected to the B Plant low-level waste  
11 handling system for storage in the double-shell tanks or some other suitable  
12 storage. Some additional treatment changes that are not contained in Appendix  
13 N of the Engineering Report are described in Section C.4.2.6 of this permit  
14 application.

15

16

17 C.2.2.7 B Plant Process Condensate (Waste Stream No. 1g)  
18

19 Planned source control and in-plant treatment were selected as BAT/AKART.  
20 This alternative includes optimizing the deentrainer currently installed on  
21 the cell 23 concentrator. All related piping and tanks will be cleaned and  
22 piping that cannot be cleaned will be replaced. The entire effluent will be  
23 retained and sampled in the 221-BF retention tanks. An in-line flow monitor  
24 will be installed in 221-BF. Some additional treatment changes that are not  
25 contained in Appendix O of the Engineering Report are described in Section  
26 C.4.2.7 of this permit application.

27

28

29 C.2.2.8 B Plant Steam Condensate (Waste Stream No. 1h)  
30

31 Additional source control was selected as BAT/AKART. This alternative  
32 includes cleaning the steam condensate piping and the holding tank in 221-BB,  
33 calibrating the online radiation monitor to resume operation, installing a pH  
34 monitor, replacing piping that cannot be cleaned, rerouting the cleaned steam  
35 condensate 114 header from the B Plant process condensate to upstream of the  
36 online monitor, and either diverting the combined effluent to the B Plant  
37 process condensate through the low level waste handling system or discharging  
38 the combined effluent through a flow monitor and flow proportional composite  
39 sampler to the 200 Area TEDF. Some additional treatment changes that are not  
40 contained in Appendix P of the Engineering Report are described in Section  
41 C.4.2.8 of this permit application.

42

43

44 C.2.2.9 242-81 Water Services Building Waste Water (Waste Stream No. 1i)  
45

46 No change was selected as BAT/AKART. The present condition is that water  
47 strainers and backflow preventers are installed in the 242-A-81 Building to  
48 remove coarse suspended solids from a portion of the raw water supply.  
49 Periodic strainer backwash and any water that drains from the backflow  
50 preventers as a result of valve failure currently discharge to ponds through  
51 piping shared with the PUREX Facility chemical sewer. The stream will be  
52 redirected to the 200 Area TEDF.

1  
2 **C.2.2.10 Future Waste Streams to be discharged to the 200 Area Treated**  
3 **Effluent Disposal Facility**4  
5 This section is a place holder for future streams anticipated to be  
6 discharged to the 200 Area TEDF. See Appendix I for stream acceptance  
7 criteria.8  
9 **C.3.0 INDICATE TREATMENT PROVIDED TO EACH WASTE STREAM IDENTIFIED IN**  
10 **SECTION C.1.0 ABOVE.**

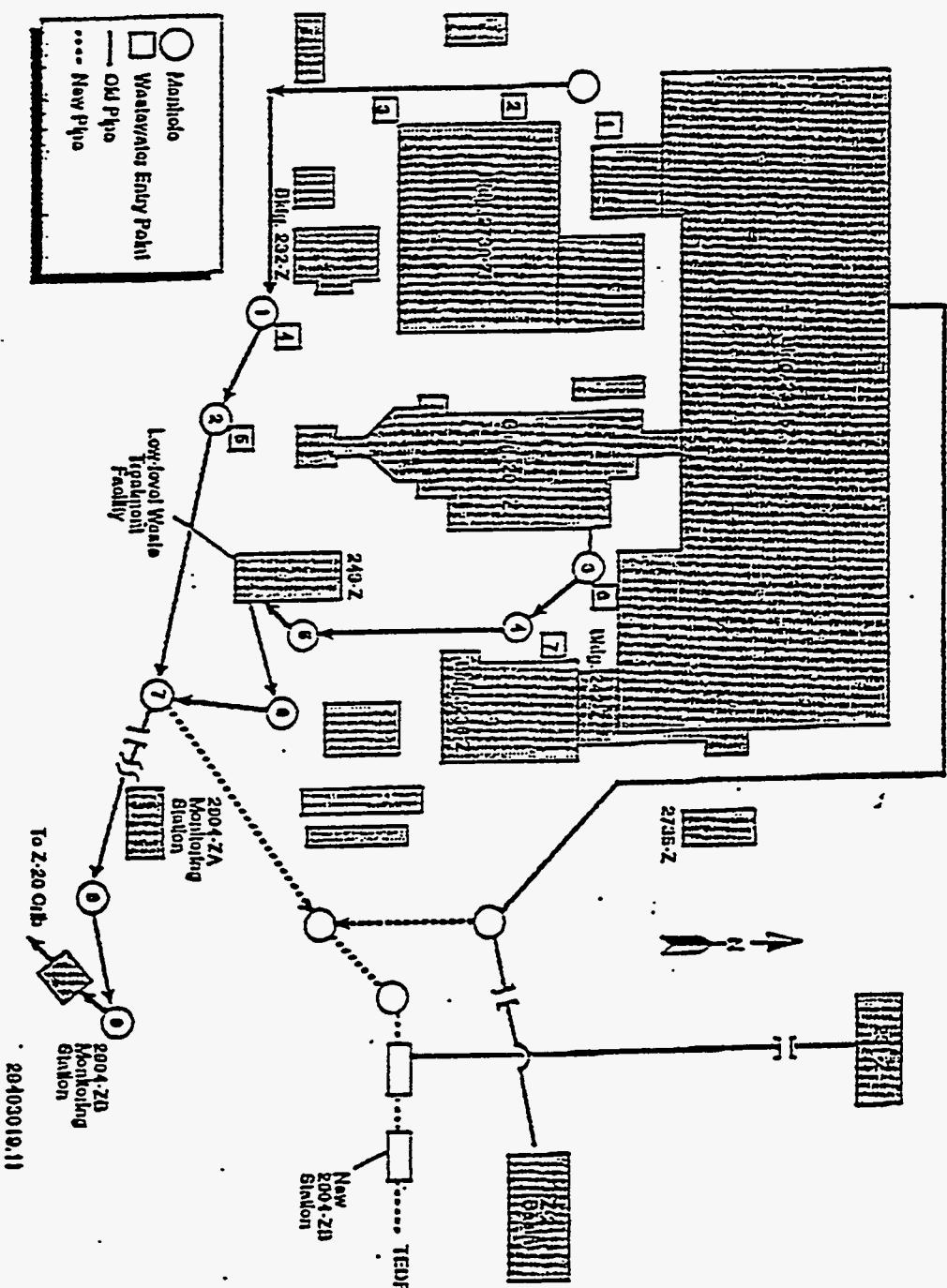
| 12<br>13<br>14<br>Waste<br>Stream(s)<br>ID Nos. | 15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>Treatment | 13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>Waste<br>Stream(s)<br>ID Nos. | 13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>Treatment |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
|                                                 | Air flotation                                                                                             |                                                                                                                                           | pH correction                                                                                                         |
|                                                 | Centrifuge                                                                                                |                                                                                                                                           | Ozonation                                                                                                             |
|                                                 | Chemical precipitation                                                                                    |                                                                                                                                           | Reverse osmosis                                                                                                       |
|                                                 | Chlorination                                                                                              |                                                                                                                                           | Screen                                                                                                                |
|                                                 | Cyclone                                                                                                   | 1d                                                                                                                                        | Sedimentation                                                                                                         |
| 1a                                              | Filtration                                                                                                |                                                                                                                                           | Septic tank                                                                                                           |
|                                                 | Flow equalization                                                                                         |                                                                                                                                           | Solvent separation                                                                                                    |
|                                                 | Grease or oil separation                                                                                  |                                                                                                                                           | Biological treatment, type:                                                                                           |
|                                                 | Grease trap                                                                                               |                                                                                                                                           | Rainwater diversion or storage                                                                                        |
|                                                 | Grit removal                                                                                              |                                                                                                                                           | Other chemical treatment type:                                                                                        |
| 1a                                              | Ion exchange                                                                                              |                                                                                                                                           | Other physical treatment type:                                                                                        |
| 1a, 1d,                                         | Closed-loop cooling system                                                                                | 1a                                                                                                                                        | Bone-char adsorption                                                                                                  |
| 1a, 1b, 1c,<br>1d, 1e, 1f,                      | <sup>b</sup> Planned source controls                                                                      | 1a                                                                                                                                        | Carbon adsorption                                                                                                     |

31  
32 \* Closed-loop cooling system, planned source controls, bone-char adsorption, carbon adsorption were added to  
the list of treatment types.33  
34 \* Planned source controls are described in Section C.2.2 for each stream identified.35  
36 **C.4.0 DESCRIBE ANY PLANNED WASTE WATER TREATMENT IMPROVEMENTS OR**  
37 **CHANGES IN WASTE WATER DISPOSAL METHODS AND WHEN THEY WILL OCCUR.**40  
41 **C.4.1 200 AREA TREATED EFFLUENT DISPOSAL FACILITY (WASTE STREAM NO. 1)**42  
43 There are no planned waste water treatment improvements or changes in  
44 waste water disposal methods for the 200 Area TEDF other than those described  
45 in the Engineering Report (1993a) and the Site Characterization Report  
(1993b).

1 C.4.2 SUPPLEMENTARY INFORMATION ON 200 AREA TREATED EFFLUENT DISPOSAL  
2 FACILITY GENERATING UNITS  
34 The following sections describe any planned waste water treatment  
5 improvements that are not described in the Engineering Report but will be  
6 completed before June 1995. Treatment is defined broadly and includes such  
7 activity as source controls. These planned changes will be implemented at  
8 each generating unit before June 1995. Because these streams from the  
9 generating units do not have disposal, disposal changes are not applicable.  
10  
1112 C.4.2.1 Plutonium Finishing Plant Waste Water (Waste Stream No. 1a)  
1314 The following waste water treatment improvements (i.e., additions and  
15 deletions to the Engineering Report) are planned to be implemented before  
16 June 1995:  
1718 • Add the sources currently discharged to the Z-21 Seepage Basin stream  
19 to the 200 Area TEDF. The Z-21 Seepage Basin will be eliminated and  
20 the stream redirected to the 200 Area TEDF. These additions are  
21 reflected in Table C.4.2.1. This table updates Table B.5-1 and the  
22 sources in Figure B.5-1 in the Engineering Report. Figure C.4.2.1.  
23 updates Figure B.2-2 in the Engineering Report.  
24  
25 • Delete sources from the 231-Z Building. These deletions change Table  
26 B.5-1, and Figure B.2-2 in the Engineering Report.  
27  
28 • Delete effluent monitoring because the 231-Z Building stream source  
29 for gamma and beta radiation has been eliminated and was the only  
30 source of radiation. The alpha radiation is not needed because the  
31 instrumentation detection limits are not sufficient to make any  
32 decisions about this stream. This change will affect page B-58 in  
33 the Engineering Report.  
3435 Table C.4.2.1. Additional Plutonium Finishing Plant Waste Water  
36 Sources at June 1995.  
3738 

| Source                      | Building | Water type   | Flow type | Status   | Changes |
|-----------------------------|----------|--------------|-----------|----------|---------|
| Dry air cooling water       | 234-5Z   | Sanitary     | I/C       | Inactive | [1]     |
| HVAC steam condensate       | 234-5Z   | Condensate   | C         | Active   | [1]     |
| Ventilation spray pan       | 234-5Z   | Raw/Sanitary | C         | Active   | [1]     |
| North storm drain           | 234-5Z   | Rain         | I         | Active   | [1]     |
| High tank overflow          | 234-5Z   | Sanitary     | C         | Active   | [1]     |
| Room 221-A air conditioning | 234-5Z   | Sanitary     | C         | Active   | [1]     |

51 Notes: I = Intermittent; C = Continuous; HVAC = heating, ventilation, and air conditioning.  
52 [1] New source flow redirecting 216-Z-21 Seepage Basin stream to the 200 Area TEDF.  
53


1       • Change the liquid sources connection listed in Table C.4.2.2 from  
 2       Closed-Loop Cooling within PFP to Low Level Waste Treatment Facility.  
 3       This change is motivated by long term shutdown considerations.  
 4       Sources # 68, 76, 78, 120, 121, 138, 139, and 141 are currently  
 5       inactive and not expected to be active again. Source # 143 is active  
 6       and will continue to send its effluents to the LLWTF for treatment  
 7       prior to TEDF discharge.

10       Table C.4.2.2 Redirection of Effluent from Closed-loop Cooling to Low Level  
 11       Waste Treatment Facility (LLWTF)

| SOURCE NUMBER | DESCRIPTION                                           | PLANNED SOURCE CONTROL  | ESTIMATED RESULTING FLOWRATE (gal/min) |
|---------------|-------------------------------------------------------|-------------------------|----------------------------------------|
| 68            | Rm 235 RMA Line Hoods<br>Cooling Water (CW)<br>drains | Treat/discharge to TEDF | 0.0                                    |
| 76            | Tk-10 Jacket J-11 CW<br>discharge                     | Treat/discharge to TEDF | 0.0                                    |
| 78            | Tk-12 Jacket J-13 CW<br>discharge                     | Treat/discharge to TEDF | 0.0                                    |
| 120           | Rm-41 Glovebox H-4<br>Still Cond. CW drain            | Treat/discharge to TEDF | 0.0                                    |
| 121           | Rm-41 Glovebox H-4<br>Furnace Cond. CW drain          | Treat/discharge to TEDF | 0.0                                    |
| 138           | Rm 169 HA-40F Glovebox<br>Furnaces/ Cond. CW          | Treat/discharge to TEDF | 0.0                                    |
| 139           | Rm 170 HC-46F Cond. CW                                | Treat/discharge to TEDF | 0.0                                    |
| 141           | Rm 179 Thermal Analyzer<br>CW                         | Treat/discharge to TEDF | 0.0                                    |
| 143           | Rm 262 HVAC CW drains                                 | Treat/discharge to TEDF | 4.8E-03                                |

24       <sup>1</sup> Sources are described in Engineering Report Tables B.2-1 & B.5-1.

Figure C.4.2.1. Plutonium Finishing Plant Waste Water Building Schematic as of June 1995.



Facility: 200 Area TEDE

DOE/RL-94-29, Rev. 0  
08/94

This page intentionally left blank.

08/94

## 243-Z, Low Level Effluent Treatment Facility

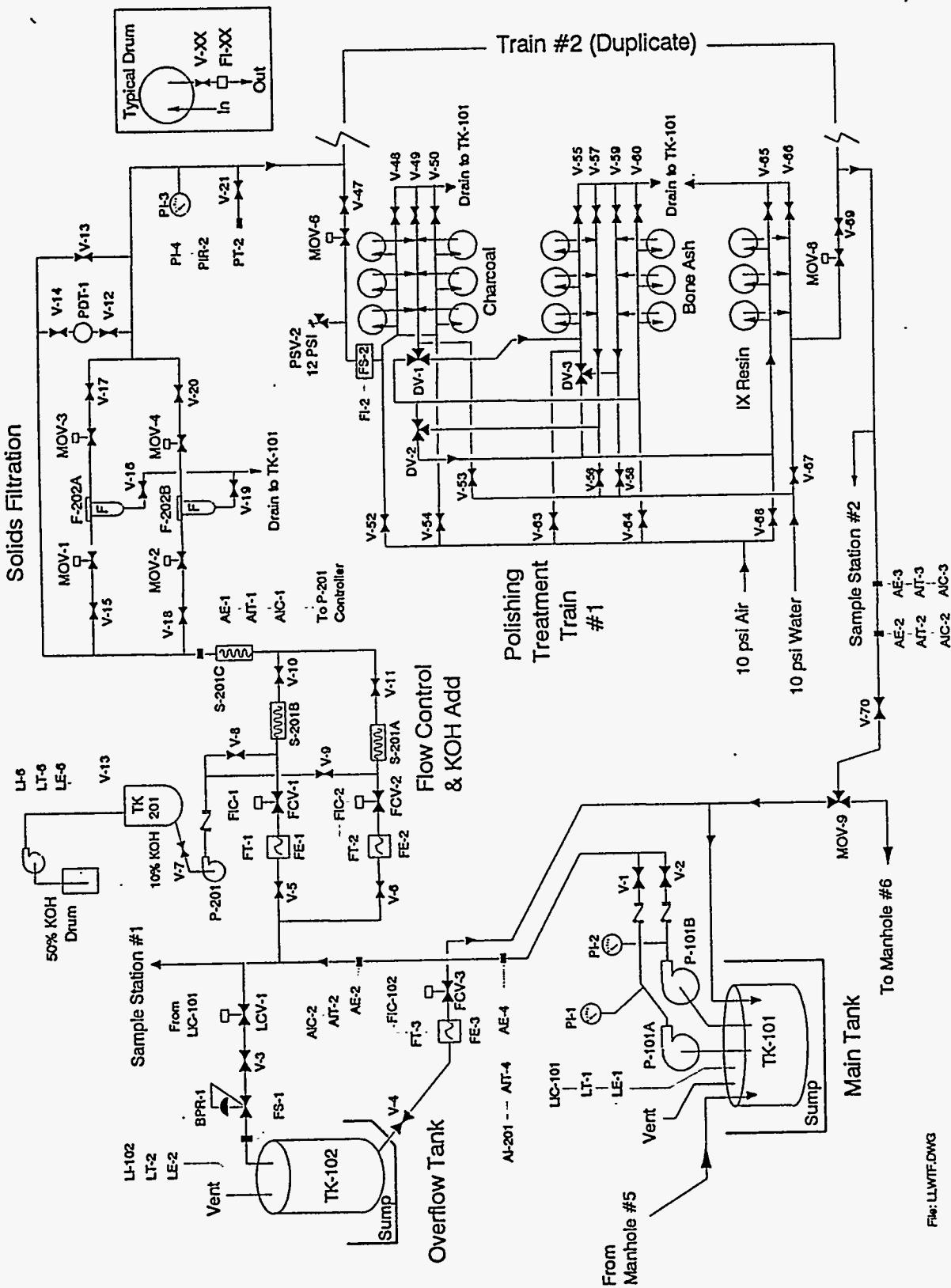



Figure C.4.2.2. Schematic Flow Diagram for the Waste Water Treatment System.

Facility: 200 Area TEDF

DOE/RL-94-29, Rev. 0  
08/94

This page intentionally left blank.

1   **C.4.2.2 222-S Laboratory Waste Water (Waste Stream No. 1b)**2       The following waste water treatment improvements (i.e., deletions) to  
3       the Engineering Report are planned to be implemented before June 1995:4       • Delete gamma radiation and pH monitoring because the effluent will be  
5       sampled and results known before batch release to the 200 Area  
6       TEDF<sup>1</sup>. This change updates page C-40 of the Engineering Report.7   **C.4.2.3 T Plant Waste Water (Waste Stream No. 1c)**8       The following waste water treatment improvements (deletions) to the  
9       Engineering Report are planned to be implemented before June 1995:10      • Delete chemical neutralization treatment because T Plant no longer  
11      dispenses acids/caustics as a service to other facilities. This  
12      change updates Figure F.4-2 of the Engineering Report.  
13      • Rooms containing sumps and drains in the head-end of T Plant were to  
14      be decontaminated. However, in order to be more proactive, T Plant  
15      will seal the sumps and drains instead of decontaminating the rooms.  
16      This change will provide an equal or greater level of control.17   **C.4.2.4 284-W Power Plant Waste Water (Waste Stream No. 1d)**18       The following waste water treatment improvements (i.e., additions, and  
19       deletions) to the Engineering Report are planned to be implemented before  
20       June 1995:21      • Delete 284-W Powerplant waste water sources.  
22      • Add package Oil-fired Boiler Plant Sources.  
23      • Add two new sources (283-W sample drain line and 283-W sample sink  
24      line)25       These deletions/additions are reflected in Table C.4.2.2 -- 284-W Power  
26       Plant Waste Water Sources at June 1995 (updates Table J.5-1 and the sources in  
27       Figure J.5-1 in the Engineering Report) and in Figure C.4.2.3 - 284-W Power  
28       Plant Waste Water Building Schematic at June 1995 (updates Figure J.2-2 in the  
29       Engineering Report).30       

---

<sup>1</sup> Criteria for batch release will be documented in the facility  
31       operation specification document. The criteria will be established following  
32       issuance of the State Waste Discharge Permit. In no event would the criteria  
33       exceed the permit limits.

Table C.4.2.2. 284-W Power Plant Waste Water Sources at June 1995<sup>[1]</sup>

| Sources |                           | Building | Water type   | Flow type | Status | Rational for change |
|---------|---------------------------|----------|--------------|-----------|--------|---------------------|
| 1       | Reservoir overflow        | 282-W    | Raw          | I         | Active |                     |
| 2       | Filter Backwash           | 283-W    | Sanitary     | I         | Active | [3]                 |
| 3       | Cooling Water             | 284-W    | Sanitary     | C         | Active | [2a]                |
| 4       | Boiler blowdown           | 284-W    | 6X Sanitary  | C         | Active | [2a]                |
| 5       | Water Softener Regenerate | 284-W    | 36X Sanitary | I         | Active | [2a]                |
| 6       | Floor drains              | 277-W    | Raw          | I         | Active |                     |
| 7       | Welding Cooling Water     | 277-W    | Raw          | I/C       | Active | [3]                 |
| 8       | Steam jet condensate      | 277-W    | Sanitary     | I         | Active |                     |
| 9       | Fire water blowdown       | 277-W    | Raw          | I         | Active |                     |
| 10      | Compressor Cooling Water  | 277-W    | Raw          | I/C       | Active | [3]                 |
| 11      | 283-W sample drain line   | 283-W    | Sanitary     | C         | Active | [4]                 |
| 12      | 283-W sample sink line    | 283-W    | Sanitary     | C         | Active | [4]                 |
| 13      | Pump pit drain            | 282-W    | Sanitary     | I         | Active | [2b]                |
| 14      | Cooling water             | 282-W    | Sanitary     | I         | Active | [2b]                |
| 15      | Boiler blowdown           | 282-W    | Sanitary     | I/C       | Active | [2b]                |
| 16      | Water softener regenerate | 282-W    | Sanitary     | I         | Active | [2b]                |

Notes:

I = Intermittent, C = Continuous

[1] This Table updates Table J. 5-1 and the sources in Figure J.5-1 in the Engineering Report.

[2a] Source eliminated per replacement of the 284-W Power Plant with new Package Oil-Fired Boiler.

[2b] Sources added per replacement of the 284-W Power Plant with new Package Oil-Fired Boiler.

[3] Source reduced or eliminated per BAT/AKART (WHC 1993c).

[4] New sources identified.

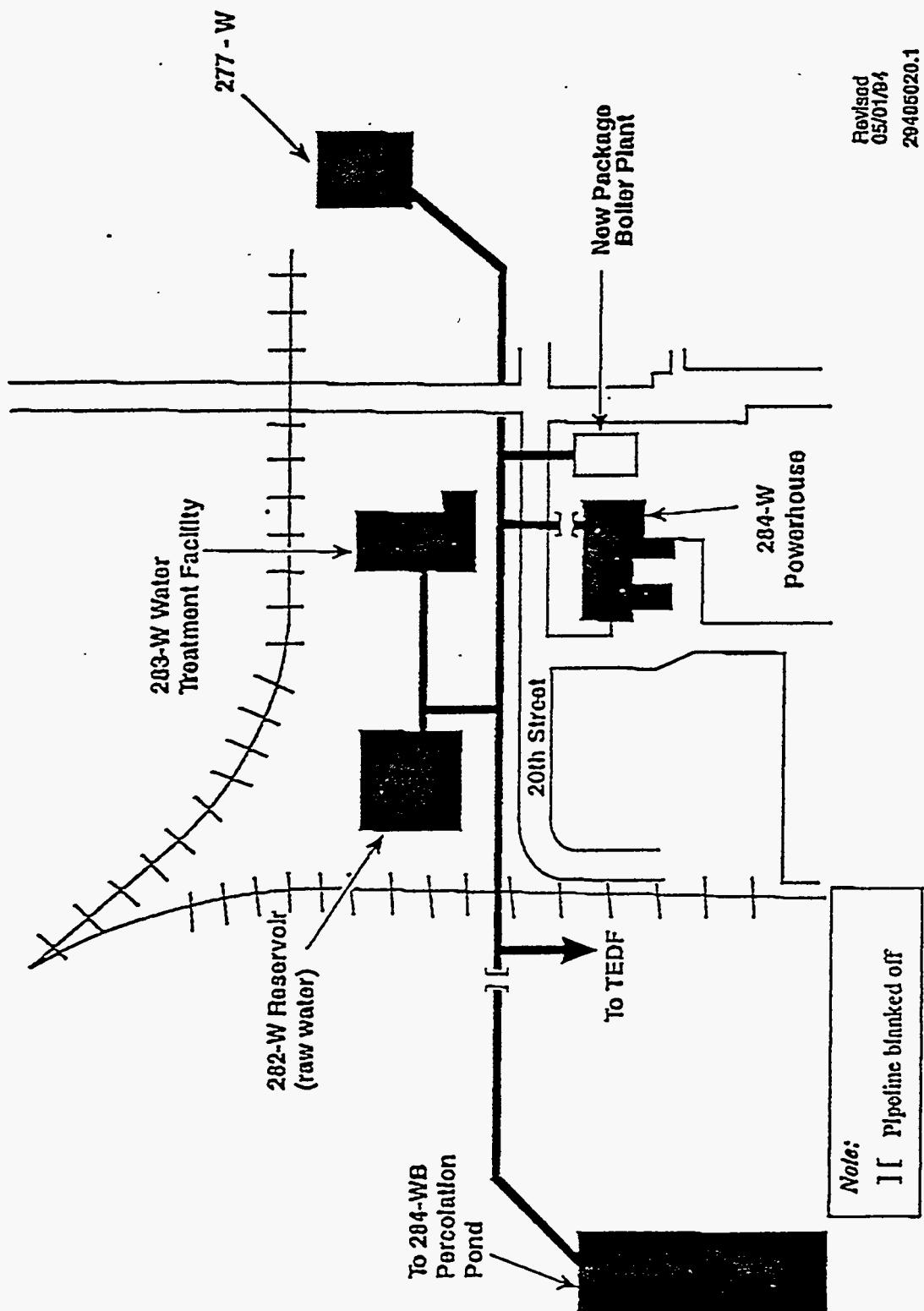



Figure C.4.2.3. 284-W Power Plant Waste Water Building Schematic at June 1995.

1   **C.4.2.5 PUREX Facility Chemical Sewer (Waste Stream No. 1e)**2           The following waste water treatment improvements (i.e., additions) to  
3           the Engineering Report are planned to be implemented before June 1995:  
4  
56           • Increase flow from waste water concentrator steam condensate from  
7           negligible to 3 gallons per minute annualized flow rate. This  
8           slightly radioactive waste water is planned to be boiled off between  
9           1994 and 1998. This change updates Figure K.5-1 (source no. 35) of  
10          the Engineering Report.  
11  
1213   **C.4.2.6 B Plant Chemical Sewer (Waste Stream No. 1f)**14           The following waste water treatment improvement (i.e., addition) to the  
15          Engineering Report is planned to be implemented before June 1995:  
16  
1718           • Add continuous pH monitoring to effluent. pH monitoring was missed.  
19           This change will update Figure N.5-1 of the Engineering Report.  
20  
2122   **C.4.2.7 B Plant Process Condensate (Waste Stream No. 1g)**23           This effluent is presently not active and a management decision may be  
24          made to change BAT/AKART in the Engineering Report before June 1995 to  
25          permanently eliminate this effluent.  
26  
2728   **C.4.2.8 B Plant Steam Condensate (Waste Stream No. 1h)**29           This effluent is presently not active and a management decision may be  
30          made to change BAT/AKART in the Engineering Report before June 1995 to  
31          permanently eliminate this effluent.  
32  
3334   **C.4.2.9 242-81 Water Services Building Waste Water (Waste Stream No. 1i)**35           No changes from the Engineering Report are anticipated before June 1995  
36          for this effluent.  
37  
38

1  
2 C.5.0 IF PRODUCTION PROCESSES ARE SUBJECT TO SEASONAL VARIATIONS, PROVIDE  
3 THE FOLLOWING INFORMATION. LIST DISCHARGE FOR EACH WASTE STREAM IN  
4 GALLONS PER DAY (GPD). THE COMBINED VALUE FOR EACH MONTH SHOULD EQUAL  
5 THE ESTIMATED TOTAL MONTHLY FLOW.

6  
7  
8 C.5.1 200 AREA TREATED EFFLUENT DISPOSAL FACILITY

9  
10 The 200 Area TEDF does not have any production processes subject to  
11 seasonal variations. The effect of the seasonal variations on the discharge  
12 to the disposal site from the 200 Area TEDF is not available. However,  
13 following 1 to 2 years of operations of the 200 Area TEDF, this information  
14 will be available.

15  
16  
17 C.5.2 SUPPLEMENTARY INFORMATION ON 200 AREA TREATED EFFLUENT DISPOSAL  
18 FACILITY GENERATING UNITS

19  
20 All the generating unit streams that have space heating by steam will  
21 have a reduced flow in the summer when the need to heat is reduced.  
22 Consequently, stream flows, except B Plant process condensate, B Plant steam  
23 condensate, and 242-81 Water Services Building waste water, will be reduced  
24 slightly from May through September.

25  
26 Presently, information on seasonal variations at the facilities  
27 generating the effluent streams discharging to the 200 Area TEDF and the  
28 effect of the seasonal variations on the discharge to the disposal site from  
29 the 200 Area TEDF is not available. However, following 1 to 2 years of  
30 operation of the 200 Area TEDF, this information will be available.

31  
32  
33 C.6.0 SHIFT INFORMATION

34  
35  
36 C.6.1 200 AREA TREATED EFFLUENT DISPOSAL FACILITY

37  
38 Operators for the 200 Area TEDF will be supplied by the 200 Area  
39 Effluent Treatment Facility (Project C-018H). The control room for the 200  
40 Area TEDF is housed in the same building as the 200 Area Effluent Treatment  
41 Facility. The shift information is provided to indicate the operating  
42 schedule of the 200 Area TEDF.

43  
44 a. Number of shifts per work day: 3  
45 b. Number of work days per week: 7  
46 c. Average number of work days per year: 365  
47 d. Maximum number of work days per year: 365  
48 e. Number of employees per shift: Shift start times  
49 1st 2 1st 7:30 am  
50 2nd 2 2nd 3:30 pm  
51 3rd 2 3rd 11:30 pm

1           **C.6.2 SUPPLEMENTARY INFORMATION ON 200 AREA TREATED EFFLUENT DISPOSAL**  
2           **FACILITY GENERATING UNITS**3  
4           No additional staff for the 200 Area TEDF will be required by generating  
5           units.  
6  
7  
89           **C.7.0 LIST ALL INCIDENTAL MATERIALS LIKE OIL, PAINT, GREASE, SOLVENTS,**  
10           **SOAPs, CLEANERS, THAT ARE USED OR STORED ON-SITE. (USE ADDITIONAL**  
11           **SHEETS IF NECESSARY)**12           **C.7.1 200 AREA TREATED EFFLUENT DISPOSAL FACILITY**13  
14           No incidental materials will be stored or used at the 200 Area TEDF  
15           except for what oil, grease, etc., used to maintain the pump at the two  
16           pumping stations.  
17  
1819           **C.7.2 SUPPLEMENTARY INFORMATION ON 200 AREA TREATED EFFLUENT DISPOSAL**  
20           **FACILITY GENERATING UNITS**21  
22           Data for incidental materials for each generating unit is compiled from  
23           those items listed on the hazardous material inventory database. WHC 1994  
24           contains materials stored at each facility.  
25  
2627           **C.8.0 DESCRIBE ANY WATER RECYCLING OR MATERIAL RECLAIMING PROCESSES.**28           **C.8.1 200 AREA TREATED EFFLUENT DISPOSAL FACILITY**29  
30           No water recycling or material reclaiming process will be done at the  
31           200 Area TEDF.  
32  
33

1 C.8.2 SUPPLEMENTARY INFORMATION ON 200 AREA TREATED EFFLUENT DISPOSAL  
2 FACILITY GENERATING UNITS  
34 Water recycling systems have been installed at the facilities  
5 discharging to the 200 Area TEDF. These systems are described below.  
6  
78 C.8.2.1 Plutonium Finishing Plant (Waste Stream No. 1a)  
910 The installation of a cooling tower and piping to convert many of the  
11 once-through cooling applications at the Plutonium Finishing Plant to closed-  
12 loop cooling systems. Waste water flow will be reduced by the elimination of  
13 the once-through cooling water sources that entered the waste water stream.  
14 The cooling tower will have a continuous blowdown (described as potentially  
15 contaminated fraction in Section C.2.2.1), that will discharge approximately  
16 7 gallons per minute to the Plutonium Finishing Plant waste water stream. The  
17 cooling tower blowdown will receive end-of-pipe treatment to remove  
18 constituents before discharge to the Project W-049H.  
19  
2021 C.8.2.2 284-W Power Plant Waste Water (Waste Stream No. 1d)  
2223 The 277-W compressor will be replaced with an air-cooled unit and a  
24 closed-loop refrigeration cooling unit will be installed on 277-W welding  
25 machines. The 283 Water Filtration Plant will treat and recycle filter  
26 backwash.  
2728 C.9.0 DOES THIS FACILITY HAVE:  
2930 C.9.1 200 AREA TREATED EFFLUENT DISPOSAL FACILITY  
31

- 32 a. Spill Prevention, Control and Countermeasure Plan  
33 (per 40 CFR 112)  Yes  XNo
- 34 b. Emergency Response Plan (per WAC 173-303-350)  Yes  XNo
- 35 c. Runoff, spillage, or leak control plan (per WAC 173-216-110(f))  XYes  No
- 36 d. Does your current waste discharge permit require a spill plan?  
37  Not applicable  Yes  No
- 38 e. Solid Waste Management Plan?  XYes  No

40 C.9.2 SUPPLEMENTARY INFORMATION ON 200 AREA TREATED EFFLUENT DISPOSAL  
41 FACILITY GENERATING UNITS  
42

- 43 a. Spill Prevention, Control and Countermeasure Plan  
44 (per 40 CFR 112)  Yes  XNo
- 45 b. Emergency Response Plan (per WAC 173-303-350)  XYes  No
- 46 c. Runoff, spillage, or leak control plan (per WAC 173-216-110(f))  XYes  No
- 47 d. Does your current waste discharge permit require a spill plan?  
48  Not applicable  Yes  No
- 49 e. Solid Waste Management Plan?  XYes  No

50  
51 Note: This response applies to all streams except where noted.

Facility: 200 Area TEDF

DOE/RL-94-29, Rev. 0  
08/94

1  
2  
3  
4

This page intentionally left blank.

Facility: 200 Area TEDF

DOE/RL-94-29, Rev. 0  
08/94

1  
2  
3  
4

## APPENDIX D

### WATER CONSUMPTION AND WATER LOSS

1 APPENDIX D  
2  
3  
4  
5  
67 CONTENTS  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32

|       |                                                                                                        |         |
|-------|--------------------------------------------------------------------------------------------------------|---------|
| D.1.0 | WATER SOURCE(S) . . . . .                                                                              | APP D-1 |
| D.1.1 | 200 AREA TREATED EFFLUENT DISPOSAL FACILITY<br>(WASTE STREAM NO. 1) . . . . .                          | APP D-1 |
| D.1.2 | SUPPLEMENTARY INFORMATION ON 200 AREA TREATED<br>EFFLUENT DISPOSAL FACILITY GENERATING UNITS . . . . . | APP D-1 |
| D.2.0 | WATER USE . . . . .                                                                                    | APP D-3 |
| D.2.1 | 200 AREA TREATED EFFLUENT DISPOSAL FACILITY<br>(WASTE STREAM NO. 1) . . . . .                          | APP D-3 |
| D.2.2 | SUPPLEMENTARY INFORMATION ON 200 AREA TREATED<br>EFFLUENT DISPOSAL FACILITY GENERATING UNITS . . . . . | APP D-4 |
| D.3.0 | ATTACH A LINE DRAWING SHOWING THE WATER FLOW THROUGH THE<br>FACILITY . . . . .                         | APP D-5 |
| D.3.1 | 200 AREA TREATED EFFLUENT DISPOSAL FACILITY<br>(WASTE STREAM NO. 1) . . . . .                          | APP D-6 |
| D.3.2 | SUPPLEMENTARY INFORMATION ON 200 AREA TREATED<br>EFFLUENT DISPOSAL FACILITY GENERATING UNITS . . . . . | APP D-6 |

## FIGURE

|        |                                                                               |         |
|--------|-------------------------------------------------------------------------------|---------|
| D.3-1. | Line Drawing for the 200 Area Treated Effluent<br>Disposal Facility . . . . . | APP D-7 |
|--------|-------------------------------------------------------------------------------|---------|

## APPENDIX D

## WATER CONSUMPTION AND WATER LOSS

#### D.1.0 WATER SOURCE(S)

#### 10 D.1.1 200 AREA TREATED EFFLUENT DISPOSAL FACILITY (WASTE STREAM NO. 1)

12 The 200 Area TEDF is a pipeline that conveys effluent from seven  
13 generators to two five-acre disposal ponds. The only water source to the 200  
14 Area TEDF originates from the nine effluent streams discharged to the 200 Area  
15 TEDF for disposal. The water sources for the seven generating facilities are  
16 described in Section D.1.2.

19 D.1.2 SUPPLEMENTARY INFORMATION ON 200 AREA TREATED EFFLUENT DISPOSAL  
20 FACILITY GENERATING UNITS

22 The following water source information on the nine streams from seven  
23 generators is offered for completeness.<sup>1</sup>

#### 26 D.1.2.1 Plutonium Finishing Plant (Waste Stream No. 1a)

— Public System (Specify) \_\_\_\_\_

Private Well  Surface Water

a. Water Right Permit Number:

None

b. Legal description

SW 1/4S. SW 1/4S. 2 Section. 13N TWN. 25E B

#### 41 D.1.2.2 222-S Laboratory (Waste Stream No. 1b)

Public System (Specify) \_\_\_\_\_

Private Well  Surface Water

47       <sup>1</sup> Surface water on the Hanford Site is distributed through two systems,  
48       a) as raw water supply, and b) as potable water which is treated by water  
49       filtration plants. The water filtration plants are permitted pursuant to WAC  
50       246-290.

1 a. Water Right Permit Number:  
23 None  
45 b. Legal description:  
67 SW 1/4S, SW 1/4S, 2 Section, 13N TWN, 25E R  
89  
10 D.1.2.3 T Plant (Waste Stream No. 1c)11        Public System (Specify) \_\_\_\_\_  
1213        Private Well                            Surface Water  
1415 a. Water Right Permit Number:  
1617 None  
1819 b. Legal description:  
2021 SW 1/4S, SW 1/4S, 2 Section, 13N TWN, 25E R  
22

## 23 D.1.2.4 284-W Power Plant (Waste Stream No. 1d)

24        Public System (Specify) \_\_\_\_\_  
2526        Private Well                            Surface Water  
2728 a. Water Right Permit Number:  
2930 None  
3132 b. Legal description:  
3334 SW 1/4S, SW 1/4S, 2 Section, 13N TWN, 25E R  
35

## 36 D.1.2.5 PUREX Facility (Waste Stream No. 1e)

37        Public System (Specify) \_\_\_\_\_  
3839        Private Well                            Surface Water  
4041 a. Water Right Permit Number:  
4243 None  
44

1       b. Legal description:

2       SW 1/4S, SW 1/4S, 2 Section, 13N TWN, 25E R3       **D.1.2.6 B Plant (Waste Stream No. 1f, No. 1g, No. 1h)**

4       \_\_\_\_ Public System (Specify) \_\_\_\_\_

5        Private Well                    Surface Water

6       a. Water Right Permit Number:

7       None

8       b. Legal description: Surface Water

9       SW 1/4S, SW 1/4S, 2 Section, 13N TWN, 25E R10       Legal description: Private Well  
11       SE 1/4S, NE 1/4S, 3 Section, 12N TWN, 26E R12       **D.1.2.7 242-A-81 Water Services Waste Water (Waste Stream No. 1i)**

13       \_\_\_\_ Public System (Specify) \_\_\_\_\_

14       \_\_\_\_ Private Well                    Surface Water

15       a. Water Right Permit Number:

16       None

17       b. Legal description:

18       SW 1/4S, SW 1/4S, 2 Section, 13N TWN, 25E R19       **D.2.0 WATER USE:**20       **D.2.1 200 AREA TREATED EFFLUENT DISPOSAL FACILITY (WASTE STREAM NO. 1)**21       The 200 Area TEDF is a pipeline that conveys effluent from seven  
22       generators to the disposal ponds. The only water use by the 200 Area TEDF  
23       originates from the nine effluent streams discharged to the 200 Area TEDF for  
24       disposal. The maximum water use by the 200 Area TEDF is based on the maximum  
25       design capacity of the pipeline and the SALDS. The average water use by the  
26       200 Area TEDF is based on the combined average of the nine effluent streams.

1 a. Indicate total water use: Gallons per day (average): 771,100  
2 Gallons per day (maximum): 3.5 Million

3  
4 b. Is water metered? X Yes    No

5  
6  
7 **D.2.2 SUPPLEMENTARY INFORMATION ON 200 AREA TREATED EFFLUENT DISPOSAL**  
8 **FACILITY GENERATING UNITS**

9  
10 The following water use information on the nine streams from seven  
11 generators is offered for completeness. The water use calculations are based  
12 on data extracted from the Engineering Report using estimated flows after  
13 BAT/AKART have been implemented. Average flows were calculated using the flow  
14 data presented in the BAT/AKART evaluation in the Engineering Report for each  
15 of the selected alternatives. Maximum water usage was calculated by summing  
16 all of the flows described in the BAT/AKART evaluations (Engineering Report  
17 "Process Description"). All water usage quantities are rounded to the nearest  
18 100 gallons per day.

19  
20  
21 **D.2.2.1 Plutonium Finishing Plant (Waste Stream No. 1a)**

22 a. Indicate total water use: Gallons per day (average): 90,700  
23 Gallons per day (maximum): 720,000

24 b. Is water metered? X Yes    No

25  
26 Notes: Water is metered on outflow waste stream not inflow of raw water.  
27 Gallons per day (maximum), assumes a 100 year rain at Hanford for  
28 24 hours.

29  
30  
31 **D.2.2.2 222-S Laboratory (Waste Stream No. 1b)**

32  
33 a. Indicate total water use: Gallons per day (average): 6,700  
34 Gallons per day (maximum): 72,000

35 b. Is water metered? X Yes    No

36 Note: Water is metered on outflow waste stream not inflow of raw  
37 water.

38  
39  
40 **D.2.2.3 T Plant (Waste Stream No. 1c)**

41 a. Indicate total water use: Gallons per day (average): 5,000  
42 Gallons per day (maximum): 158,000

43 b. Is water metered? X Yes    No

44 Note: Water is metered on outflow waste stream not inflow of raw  
45 water.

## 1

## 2 D.2.2.4 284-W Power Plant (Waste Stream No. 1d)

4 a. Indicate total water use: Gallons per day (average): 118,000  
5 Gallons per day (maximum): 490,000

7 b. Is water metered? \_\_\_\_\_ Yes  No

#### 10 D.2.2.5 PUREX Facility Chemical Sewer (Waste Stream No. 1e)

11  
12 a. Indicate total water use: Gallons per day (average): 360,000  
13 Gallons per day (maximum): 864,000

15 b. Is water metered? X Yes No

15 Note: Water is metered on outflow waste stream not inflow of raw  
16 water.  
17

#### 21 D.2.2.6 B Plant (Waste Streams No. 1f, No. 1g, No. 1h)

23 a. Indicate total water use: Gallons per day (average): 188,700  
24 Gallons per day (maximum): 460,800

26 b. Is water metered?  Yes  No

28 Note: Water is metered on outflow waste stream not inflow of raw  
29 water.

### 32 D.2.2.7 242-A-81 Water Services Waste Water (Waste Stream No. 1i)

34 a. Indicate total water use: Gallons per day (average): 2,000  
35 Gallons per day (maximum): 720,000

37 b. Is water metered?  Yes  No

39 Note: Water is metered on outflow waste stream not inflow of raw  
40 water.

43 D.3.0 ATTACH A LINE DRAWING SHOWING THE WATER FLOW THROUGH THE FACILITY.  
44 INDICATE SOURCE OF INTAKE WATER, OPERATIONS CONTRIBUTING WASTE WATER TO  
45 THE EFFLUENT, AND TREATMENT UNITS LABELED TO CORRESPOND TO THE MORE  
46 DETAILED DESCRIPTIONS IN ITEM C. CONSTRUCT A WATER BALANCE ON THE LINE  
47 DRAWING SHOWING AVERAGE FLOWS BETWEEN INTAKES, OPERATIONS, TREATMENT  
48 UNITS, AND OUTFALLS. IF A WATER BALANCE CANNOT BE DETERMINED  
49 (E.G., FOR CERTAIN MINING ACTIVITIES), PROVIDE A PICTORIAL DESCRIPTION  
50 OF THE NATURE AND AMOUNT OF ANY SOURCES OF WATER AND ANY COLLECTION OR  
51 TREATMENT MEASURES.

1   **D.3.1 200 AREA TREATED EFFLUENT DISPOSAL FACILITY (WASTE STREAM NO. 1)**

2           The line drawing for the 200 Area TEDF is presented in Figure D.3-1.

3   **D.3.2 SUPPLEMENTARY INFORMATION ON 200 AREA TREATED EFFLUENT DISPOSAL**  
4           **FACILITY GENERATING UNITS**5           Schematic flow diagrams from the Engineering Report for each of the  
6    nine waste streams are presented in Appendix B, Section B.2.0 of this  
7    document. Because inflow water to the generating facilities is not metered, a  
8    complete water balance for the facilities cannot be determined. Outflow rates  
9    for each component of the waste streams after BAT/AKART are presented in the  
10   Engineering Report (WHC 1993a). The schematic flow diagrams, with  
11   corresponding page numbers, that relate to each waste stream are listed as  
12   follows:

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

---

**SCHEMATIC  
FLOW DIAGRAM**

---

**WASTE STREAM**

|    |                         |
|----|-------------------------|
| 1a | Figure B.2-1, page B-7  |
| 1b | Figure B.2-2, page B-8  |
| 1c | Figure B.2-3, page B-9  |
| 1d | Figure B.2-4, page B-10 |
| 1e | Figure B.2-5, page B-11 |
| 1f | Figure B.2-6, page B-12 |
| 1g | Figure B.2-7, page B-13 |
| 1h | Figure B.2-8, page B-14 |
| 1i | Figure B.2-9, page B-15 |

Note: Influent to generating facilities is  
in the form of raw water and  
potable water from water  
filtration plants.

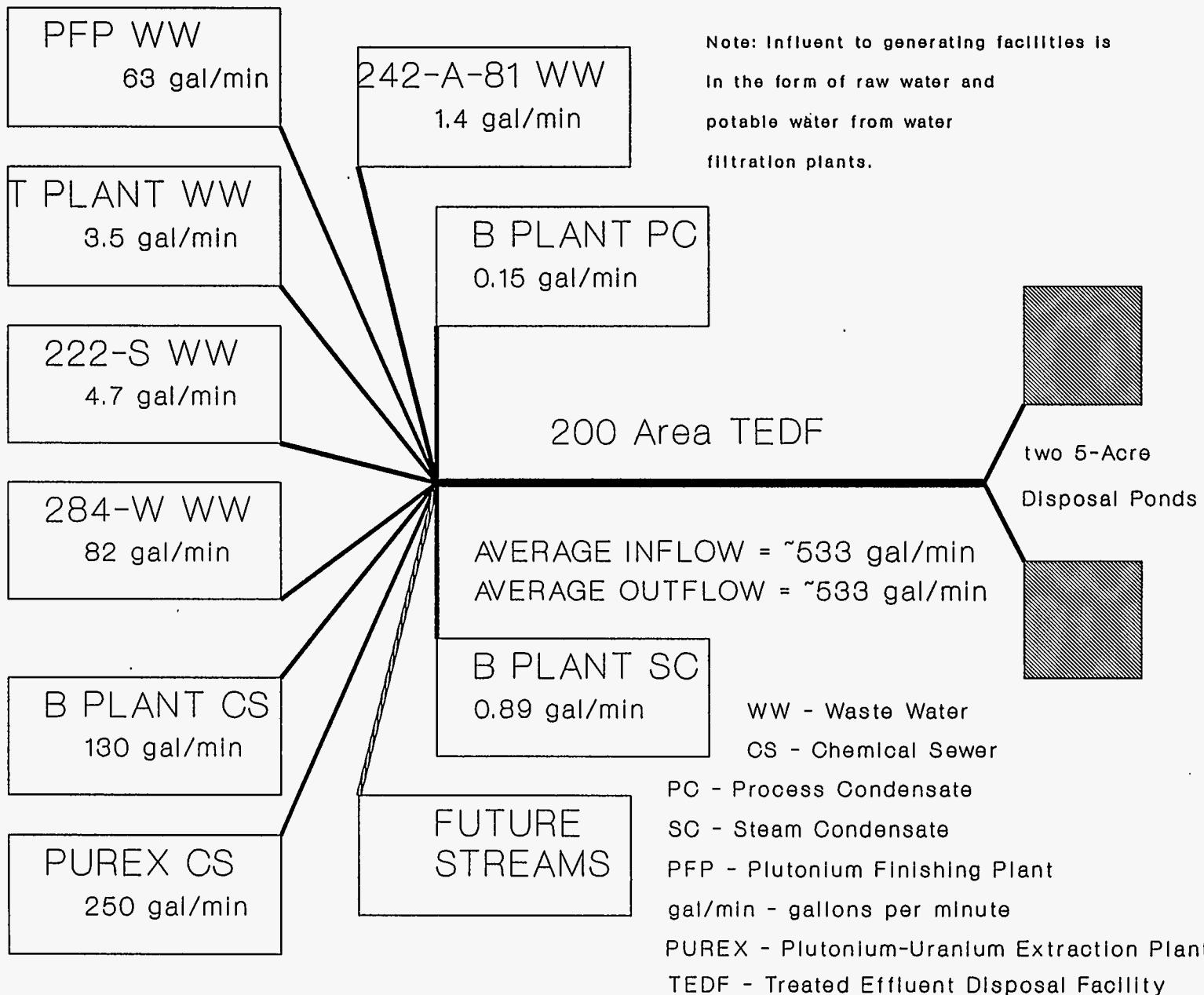



Figure D.3-1. Line Drawing for the 200 Area Treated Effluent Disposal Facility.

Facility: 200 Area TEDF

DOE/RL-94-29, Rev. 0  
08/94

This page intentionally left blank.

Facility: 200 Area TEDF

DOE/RL-94-29, Rev. 0  
08/94

1  
2  
3  
4

## APPENDIX E

### WASTE WATER INFORMATION

1

## APPENDIX E

2

3

4

## CONTENTS

5

6

7

8 E.1.0 PROVIDE MEASUREMENTS FOR THE PARAMETERS LISTED . . . . . APP E-1  
9  
10 E.2.0 WASTE WATER CHARACTERISTICS FOR TOXIC POLLUTANTS . . . . . APP E-3  
11  
12  
13

14

15

16

## TABLES

17

18

E.1-1. 200 Area Treated Effluent Disposal Facility Estimated  
Effluent Concentrations . . . . . APP E-2

19

E.2-2. Analytical Results Waste Water Characterization  
for Toxic Pollutants . . . . . APP E-4

20

21

1 APPENDIX E  
2  
3  
4  
5  
67 WASTE WATER INFORMATION  
8  
9  
10  
11  
12  
13

14 **E.1.0 PROVIDE MEASUREMENTS FOR THE TREATED WASTE WATER PRIOR TO LAND**  
15 **APPLICATION FOR THE PARAMERTERS LISTED BELOW, UNLESS WAIVED BY THE**  
16 **PERMITTING AUTHORITY. ALL ANALYTICAL METHODS USED TO MEET THESE**  
17 **REQUIREMENTS SHALL, UNLESS APPROVED OTHERWISE IN WRITING BY ECOLOGY,**  
18 **CONFORM TO THE GUIDELINES ESTABLISHING TEST PROCEDURES FOR THE ANALYSIS**  
19 **OF POLLUTANTS CONTAINED IN 40 CODE OF FEDERAL REGULATIONS (CFR)**  
20 **PART 136.**

21 The values in Table E.1-1 are estimates of streams concentrations after  
22 the implementation of BAT/AKART. These estimates are averages of projected  
23 estimates of the nine streams in this application taken from Table 2-7 of the  
24 Engineering Report. The present data in Table E.1-1 should be considered a  
25 placeholder until actual sampling data can be obtained. Data, as a result of  
26 the Sampling and Analysis Plans, will be available in the near future.  
27 However, reliable data may not be available until sometime after the facility  
is operating.

1  
2 Table E.1-1. 200 Area Treated Effluent Disposal Facility  
3 Estimated Effluent Concentrations.

| 4  | Parameter              | 200 Area TEDF Effluent<br>(parts per billion unless<br>otherwise noted) |
|----|------------------------|-------------------------------------------------------------------------|
| 5  | pH                     | 6.5-8.5                                                                 |
| 6  | Conductivity           | NA                                                                      |
| 7  | Total Dissolved Solids | 1.4 E+05                                                                |
| 8  | Total Suspended Solids | 2.7 E+03                                                                |
| 9  | BOD (5 day)            | ND                                                                      |
| 10 | COD                    | ND                                                                      |
| 11 | Ammonia-N              | 5.1 E+01                                                                |
| 12 | TKN-N                  | ND                                                                      |
| 13 | Nitrate-N              | 7.1 E+02                                                                |
| 14 | Ortho-phosphate-P      | ND                                                                      |
| 15 | Total-phosphate-P      | 3.1 E+02                                                                |
| 16 | Total Oil & Grease     | NA                                                                      |
| 17 | Calcium                | 2.3 E+04                                                                |
| 18 | Magnesium              | 5.3 E+03                                                                |
| 19 | Sodium                 | 2.6 E+04                                                                |
| 20 | Chloride               | 3.8 E+04                                                                |
| 21 | Sulfate                | 1.6 E+04                                                                |
| 22 | Fluoride               | 1.7 E+02                                                                |
| 23 | Cadmium (total)        | 5.6 E-01                                                                |
| 24 | Chromium (total)       | 1.9 E-03                                                                |
| 25 | Lead (total)           | 4.3 E+00                                                                |
| 26 | Mercury                | 6.3 E-02                                                                |
| 27 | Selenium (total)       | ND                                                                      |
| 28 | Silver (total)         | 4.9 E+00                                                                |
| 29 | Copper (total)         | 3.7 E+01                                                                |
| 30 | Iron (total)           | 1.9 E+02                                                                |
| 31 | Manganese (total)      | 1.0 E+01                                                                |
| 32 | Zinc (total)           | 4.8 E+01                                                                |
| 33 | Barium (total)         | 5.0 E+01                                                                |
| 34 | Total Coliform         | NA                                                                      |

35  
36 Notes: NA - Not Analyzed  
37 ND - Not Detected  
38

E.2.0 WASTE WATER CHARACTERISTICS FOR TOXIC POLLUTANTS

The intent of this question is to determine which chemicals are or might be present in the process water or waste water. For each chemical listed below:

- a. Use the letter A in the ABST column if the chemical is not likely to be present because it is not used in the production process or used on site.
- b. Use the letter S in the ABST column if the chemical may be present because it is used on site, but the chemical is not used in the production process.
- c. Use the letter P in the PRST column if the chemical is likely to be present because it is used in the production process, but the effluent has not been tested.
- d. Use the letter K in the PRST column if the effluent has been tested and found to be present. Attach the analytical results.

Table E.2-2 details the waste water characteristics for toxic pollutants for the combined effluent streams. Each of the effluent streams which will discharge to the 200 Area TEDF is currently being characterized. Table E.2-2 was completed using data available as of August 1994, from sampling and analyzing each effluent stream in accordance with Sampling and Analysis Plans approved by Ecology in 1992 and 1993.

Those constituents identified in the unvalidated analytical results in any of the effluent streams are indicated by the use of "K" in the present column. The unvalidated analytical data from the effluent stream which indicated the constituents as present, are being submitted as an attachment with this application. Validated data will be submitted at a later date to Ecology. When more analytical data becomes available, Table E.2-2 will be updated as necessary. Ecology will be informed of any changes. The available, unvalidated analytical data has indicated that other constituents, not listed in Table E.2-2, may be present in the effluent streams.

1  
2 Table E.2-2. Analytical Results Waste Water Characterization  
3 for Toxic Pollutants.  
4

| 5<br>Absent /<br>Present | 6<br>Constituent/CAS No.                | 7<br>Absent /<br>Present | 8<br>Constituent/CAS No.                         |
|--------------------------|-----------------------------------------|--------------------------|--------------------------------------------------|
| A                        | Acrylamide/79-06-1                      | A                        | 1,2 Dichloropropane/78-87-5                      |
| A                        | Acrylonitrile/107-13-1                  | A                        | 1,3 Dichloropropene/542-75-6                     |
| A                        | Aldrin/309-00-2                         | A                        | Dichlorvos/62-73-7                               |
| A                        | Aniline/62-53-3                         | A                        | Dieldrin/60-57-1                                 |
| A                        | Aramite/140-57-8                        | A                        | 3,3' Dimethoxybenzidine/119-90-4                 |
| K                        | Arsenic/7440-38-2                       | A                        | 3,3 Dimethylbenzidine/119-93-7                   |
| A                        | Azobenzene/103-33-3                     | A                        | 1,2 Dimethylhydrazine/540-73-8                   |
| A                        | Benzene/71-43-2                         | A                        | 2,4 Dinitrotoluene/121-14-2                      |
| A                        | Benzidine/92-87-5                       | A                        | 2,6 Dinitrotoluene/606-20-2                      |
| A                        | Benzo(a)pyrene/50-32-8                  | A                        | 1,4 Dioxane/123-91-1                             |
| A                        | Benzotrichloride/98-07-7                | A                        | 1,2 Diphenylhydrazine/122-66-7                   |
| A                        | Benzyl chloride/100-44-7                | A                        | Endrin/72-20-8                                   |
| A                        | Bis(chloroethyl)ether/111-44-4          | A                        | Epichlorohydrin/106-89-8                         |
| A                        | Bis(chloromethyl)ether/542-88-1         | A                        | Ethyl acrylate/140-88-5                          |
| K                        | Bis(2-ethylhexyl)phthalate/117-81-7     | A                        | Ethylene dibromide/106-93-4                      |
| K                        | Bromodichloromethane/75-27-4            | A                        | Ethylene thiourea/96-45-7                        |
| A                        | Bromoform/75-25-2                       | A                        | Folpet/133-07-3                                  |
| A                        | Carbazole/86-74-8                       | A                        | Furmecyclox/60568-05-0                           |
| K*                       | Carbon tetrachloride/56-23-5            | A                        | Heptachlor/76-44-8                               |
| A                        | Chlordane/57-74-9                       | A                        | Heptachlor epoxide/1024-57-3                     |
| A                        | Chlorodibromomethane/124-48-1           | A                        | Hexachlorobenzene/118-74-1                       |
| K                        | Chloroform/67-66-3                      | A                        | Hexachlorocyclohexane (alpha)/ 319-84-6          |
| A                        | Chlorthalonil/1897-45-6                 | A                        | Hexachlorocyclohexane (tech.)/ 608-73-1          |
| A                        | 2,4-D/94-75-7                           | A                        | Hexachlorodibenzo-p-dioxin, mix/ 19408-74-3      |
| A                        | DDT/50-29-3                             | A                        | Hydrazine/hydrazine sulfate/ 302-01-2            |
| A                        | Diallate/2303-16-4                      | A                        | Lindane/58-89-9                                  |
| A                        | 1,2 Dibromoethane/106-93-4              | A                        | 2 Methylaniline/100-61-8                         |
| A                        | 1,4 Dichlorobenzene/106-46-7            | A                        | 2 Methylaniline hydrochloride/ 636-21-5          |
| A                        | 3,3' Dichlorobenzidine/91-94-1          | A                        | 4,4' Methylene bis(N,N-dimethyl)aniline/101-61-1 |
| A                        | 1,1 Dichloroethane/75-34-3              | K                        | Methylene chloride (dichloromethane)/75-09-2     |
| A                        | 1,2 Dichloroethane/107-06-2             | A                        | Mirex/2385-85-5                                  |
| A                        | Nitrofurazone/59-87-0                   | A                        | O-phenylenediamine/106-50-3                      |
| A                        | N-nitrosodiethanolamine/ 1116-54-7      | A                        | Propylene oxide/75-56-9                          |
| A                        | N-nitrosodiethylamine/55-18-5           | A                        | 2,3,7,8-Tetrachlorodibenzo-p-dioxin/ 1746-01-6   |
| A                        | N-nitrosodimethylamine/62-75-9          | A                        | Tetrachloroethylene/127-18-4                     |
| A                        | N-nitrosodiphenylamine/86-30-6          | A                        | 2,4 Toluenediamine/95-80-7                       |
| A                        | N-nitroso-di-n-propylamine/ 621-64-7    | A                        | o-Toluidine/95-53-4                              |
| A                        | N-nitrosopyrrolidine/930-55-2           | A                        | Toxaphene/8001-35-2                              |
| A                        | N-nitroso-di-n-butylamine/ 924-16-3     | A                        | Trichloroethylene/79-01-6                        |
| A                        | N-nitroso-n-methylethylamine/10595-95-6 | A                        | 2,4,6-Trichlorophenol/88-06-2                    |
| A                        | PAH/NA                                  | A                        | Trimethyl phosphate/512-56-1                     |
| A                        | PBBS/NA                                 | A                        | Vinyl chloride/75-01-4                           |
| A                        | PCBs/1336-36-3                          |                          |                                                  |

50 \* Not used; storage only. The DOE-RL is locating offsite purchasers for the inventory.

Facility: 200 Area TEDF

DOE/RL-94-29, Rev. 0  
08/94

1  
2  
3  
4

**APPENDIX F**

**STORM WATER**

1 APPENDIX F  
2  
3  
4  
5  
67 CONTENTS  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44

|       |                                                                                                                        |          |
|-------|------------------------------------------------------------------------------------------------------------------------|----------|
| F.1.0 | DO YOU HAVE A WASHINGTON STATE STORM WATER BASELINE<br>GENERAL PERMIT? . . . . .                                       | APP F-1  |
| F.2.0 | HAVE YOU APPLIED FOR A WASHINGTON STATE STORM WATER<br>BASELINE GENERAL PERMIT? . . . . .                              | APP F-1  |
| F.3.0 | DO YOU HAVE ANY STORM WATER QUALITY OR QUANTITY DATA? . . . . .                                                        | APP F-1  |
| F.4.0 | DESCRIBE THE SIZE OF THE STORM WATER COLLECTION AREA . . . . .                                                         | APP F-1  |
| F.4.1 | 200 AREA TREATED EFFLUENT DISPOSAL FACILITY<br>(WASTE STREAM NO. 1) . . . . .                                          | APP F-1  |
| F.4.2 | SUPPLEMENTARY INFORMATION ON FACILITIES<br>DISCHARGING TO THE 200 AREA TREATED EFFLUENT<br>DISPOSAL FACILITY . . . . . | APP F-1  |
| F.5.0 | DOES YOUR FACILITY'S STORM WATER DISCHARGE TO . . . . .                                                                | APP F-3  |
| F.6.0 | AREAS WITH INDUSTRIAL ACTIVITIES AT FACILITY . . . . .                                                                 | APP F-3  |
| F.6.1 | 200 AREA TREATED EFFLUENT DISPOSAL FACILITY<br>(WASTE STREAM NO. 1) . . . . .                                          | APP F-3  |
| F.6.2 | SUPPLEMENTARY INFORMATION ON FACILITIES<br>DISCHARGING TO THE 200 AREA TREATED<br>EFFLUENT DISPOSAL FACILITY . . . . . | APP F-3  |
| F.7.0 | MATERIAL HANDLING/MANAGEMENT PRACTICES . . . . .                                                                       | APP F-6  |
| F.7.1 | 200 AREA TREATED EFFLUENT DISPOSAL FACILITY<br>(WASTE STREAM NO. 1) . . . . .                                          | APP F-6  |
| F.7.2 | SUPPLEMENTARY INFORMATION ON FACILITIES<br>DISCHARGING TO THE 200 AREA TREATED EFFLUENT<br>DISPOSAL FACILITY . . . . . | APP F-6  |
| F.8.0 | ATTACH A MAP SHOWING STORM WATER DRAINAGE/COLLECTION<br>AREAS, DISPOSAL AREAS AND DISCHARGE POINTS . . . . .           | APP F-10 |
| F.8.1 | 200 AREA TREATED EFFLUENT DISPOSAL FACILITY<br>(WASTE STREAM NO. 1) . . . . .                                          | APP F-10 |
| F.8.2 | SUPPLEMENTARY INFORMATION ON FACILITIES<br>DISCHARGING TO THE 200 AREA TREATED EFFLUENT<br>DISPOSAL FACILITY . . . . . | APP F-10 |

1      

|                        |  |
|------------------------|--|
| SECTION F. STORM WATER |  |
|------------------------|--|

## 1      F.1.0 DO YOU HAVE A WASHINGTON STATE STORM WATER BASELINE GENERAL PERMIT?

2              Note: This answer applies to all seven facilities.

3               Yes       No4              Federal facilities are excluded from coverage under the Washington  
5              State Storm Water Baseline Permit. However, an equivalent NPDES  
6              General Permit has been issued by EPA (General Permit No.: WAR00A17F).  
7              In addition, the Hanford Site is implementing a storm water pollution  
8              prevention program as described in *Hanford Site Storm Water Pollution*  
9              *Prevention Plan* (WHC 1993c)

10              If yes, please list the permit number here. \_\_\_\_\_

11      F.2.0 HAVE YOU APPLIED FOR A WASHINGTON STATE STORM WATER BASELINE GENERAL  
12      PERMIT?

13              Note: This answer applies to all seven facilities.

14               Yes       No15              Federal facilities are excluded from coverage under the Washington  
16              State Storm Water Baseline Permit. However, an equivalent NPDES  
17              General Permit has been issued by EPA (General Permit No.: WA-R-00-  
18              000F). In addition, the Hanford site is implementing a storm water  
19              pollution prevention program as described in *Hanford Site Storm Water*  
20              *Pollution Prevention Plan* (WHC 1993c).

## 21      F.3.0 DO YOU HAVE ANY STORM WATER QUALITY OR QUANTITY DATA?

22              Note: This answer applies to all seven facilities.

23               Yes       No

## 24      F.4.0 DESCRIBE THE SIZE OF THE STORM WATER COLLECTION AREA.

## 25      F.4.1 200 AREA TREATED EFFLUENT DISPOSAL FACILITY (WASTE STREAM NO. 1)

26              The 200 Area TEDF does not have any storm water collection areas.

1           **F.4.2 SUPPLEMENTARY INFORMATION ON FACILITIES DISCHARGING TO THE**  
2           **200 AREA TREATED EFFLUENT DISPOSAL FACILITY**3           **F.4.2.1 Plutonium Finishing Plant (Waste Stream No. 1a)**

|                                               |                           |
|-----------------------------------------------|---------------------------|
| 4           a. Unpaved Area                   | <u>33,474</u> square feet |
| 5           b. Paved Area                     | <u>10,014</u> square feet |
| 6           c. Other Collection Areas (Roofs) | <u>16,179</u> square feet |

7           **F.4.2.2 222-S Laboratory (Waste Stream No. 1b)**

|                                               |                           |
|-----------------------------------------------|---------------------------|
| 8           a. Unpaved Area                   | <u>12,530</u> square feet |
| 9           b. Paved Area                     | <u>5,869</u> square feet  |
| 10          c. Other Collection Areas (Roofs) | <u>5,725</u> square feet  |

11          **F.4.2.3 T Plant (Waste Stream No. 1c)**

|                                               |                           |
|-----------------------------------------------|---------------------------|
| 12          a. Unpaved Area                   | <u>60,141</u> square feet |
| 13          b. Paved Area                     | <u>4,595</u> square feet  |
| 14          c. Other Collection Areas (Roofs) | <u>9,958</u> square feet  |

16          **F.4.2.4 284-W Power Plant (Waste Stream No. 1d)**

17          Storm water from the 284-W Powerhouse and surrounding facilities  
18          is not collected for point source discharge to the 200 Area  
19          TEDF. Therefore, there is no storm water collection area for  
                the 284-W Power Plant.

20          **F.4.2.5 PUREX Facility (Waste Stream No. 1e)**

|                                               |                           |
|-----------------------------------------------|---------------------------|
| 21          a. Unpaved Area                   | <u>81,249</u> square feet |
| 22          b. Paved Area                     | <u>10,686</u> square feet |
| 23          c. Other Collection Areas (Roofs) | <u>18,999</u> square feet |

24          **F.4.2.6 B Plant (Waste Streams No. 1f, No. 1g, No. 1h)**

|                                               |                                      |
|-----------------------------------------------|--------------------------------------|
| 25          a. Unpaved Area                   | Approx. <u>1,084,107</u> square feet |
| 26          b. Paved Area                     | Approx. <u>1,668,420</u> square feet |
| 27          c. Other Collection Areas (Roofs) | Approx. <u>180,512</u> square feet   |

29          **F.4.2.7 242-A-81 Water Services Building (Waste Stream No. 1i)**

30          Storm water from the 242-A-81 Water Services Building is not  
                collected for point source discharge to the 200 Area TEDF.  
                Therefore, there is no storm water collection area for the  
                242-A-81 Water Services Building.

1      **F.5.0 DOES YOUR FACILITY'S STORM WATER DISCHARGE TO:**

2      Note: This answer applies to all seven facilities.

3      Storm water from the generating facilities is not discharged directly to  
4      ground waters of Washington State. The storm water has no point source  
5      discharge to surface water or a municipal storm sewer. Storm water will  
6      be discharged to two five acre disposal ponds of the 200 Area TEDF and  
7      to the surface of the ground.8       Storm sewer systems; name of storm sewer system  
9      (*operator*): \_\_\_\_\_  
10      Directly to surface waters of Washington State (e.g., river,  
11      lake, creek, estuary, ocean).  
12      Indirectly to surface waters of Washington State (*i.e.*, *flows*  
13      *over adjacent properties first*).  
14      Directly to ground waters of Washington State:  
15       dry well     drainfield     Other16     **F.6.0 AREAS WITH INDUSTRIAL ACTIVITIES AT FACILITY: (check all that apply)**17     **F.6.1 200 AREA TREATED EFFLUENT DISPOSAL FACILITY (WASTE STREAM NO. 1)**18     The 200 Area TEDF collects, transfers, and disposes of waste water from  
19     seven facilities. No other industrial activities are associated with  
20     the 200 Area TEDF.21     **F.6.2 SUPPLEMENTARY INFORMATION ON FACILITIES DISCHARGING TO THE**  
22     **200 AREA TREATED EFFLUENT DISPOSAL FACILITY**23     To help address this item, site maps with a boundaries drawn around each  
24     facility have been provided. Refer to Drawing H-13-000096 for the  
25     Plutonium Finishing Plant, Drawing H-13-000184 for the 222-S Laboratory,  
26     Drawing H-13-000185 for T Plant, Drawing H-13-000071 for the 284-W Power  
27     Plant, H-13-000041 for the PUREX Facility, Drawing H-13-000042 for B  
28     Plant, and Drawing H-13-000050 for the 242-A-81 Water Services Building.  
29     The facility boundary shown, has been drawn around the facilities  
30     considered applicable. Refer to Drawings H-13-000186 and H-13-000187  
31     for the Hanford Site Facility Map General Notes and Legend.32     **F.6.2.1 Plutonium Finishing Plant (Waste Stream No. 1a)**33      Manufacturing Building  
34      Material Handling  
35      Material Storage  
36      Hazardous Waste Treatment, Storage, or Disposal (Refers to RCRA,  
37      Subtitle C Facilities Only)  
38      Waste Treatment, Storage, or Disposal

1       Application or Disposal of Waste waters  
2       Storage and Maintenance of Material Handling Equipment  
3       Vehicle Maintenance  
4       Areas Where Significant Materials Remain  
5       Access Roads and Rail Lines for Shipping and Receiving  
6       Other

---

8      **F.6.2.2 222-S Laboratory (Waste Stream No. 1b)**

9       Manufacturing Building  
10      Material Handling  
11      Material Storage  
12      Hazardous Waste Treatment, Storage, or Disposal (Refers to RCRA,  
13       Subtitle C Facilities Only)  
14      Waste Treatment, Storage, or Disposal  
15      Application or Disposal of Waste waters  
16      Storage and Maintenance of Material Handling Equipment  
17      Vehicle Maintenance  
18      Areas Where Significant Materials Remain  
19      Access Roads and Rail Lines for Shipping and Receiving  
20      Other

---

22     **F.6.2.3 T Plant (Waste Stream No. 1c)**

23      Manufacturing Building  
24      Material Handling  
25      Material Storage  
26      Hazardous Waste Treatment, Storage, or Disposal (Refers to RCRA,  
27       Subtitle C Facilities Only)  
28      Waste Treatment, Storage, or Disposal  
29      Application or Disposal of Waste waters  
30      Storage and Maintenance of Material Handling Equipment  
31      Vehicle Maintenance  
32      Areas Where Significant Materials Remain  
33      Access Roads and Rail Lines for Shipping and Receiving  
34      Other

---

36     **F.6.2.4 284-W Power Plant (Waste Stream No. 1d)**

37      Manufacturing Building  
38      Material Handling  
39      Material Storage  
40      Hazardous Waste Treatment, Storage, or Disposal (Refers to RCRA,  
       Subtitle C Facilities Only)  
41      Waste Treatment, Storage, or Disposal  
42      Application or Disposal of Waste waters

1            Storage and Maintenance of Material Handling Equipment  
2            Vehicle Maintenance  
3            Areas Where Significant Materials Remain  
4            Access Roads and Rail Lines for Shipping and Receiving  
5            Other

---

7      **F.6.2.5      PUREX Facility (Waste Stream No. 1e)**

8            Manufacturing Building  
9            Material Handling  
10           Material Storage  
11           Hazardous Waste Treatment, Storage, or Disposal (Refers to RCRA, Subtitle C Facilities Only)  
12           Waste Treatment, Storage, or Disposal  
13           Application or Disposal of Waste waters  
14           Storage and Maintenance of Material Handling Equipment  
15           Vehicle Maintenance  
16           Areas Where Significant Materials Remain  
17           Access Roads and Rail Lines for Shipping and Receiving  
18           Other

---

1      **F.6.2.6      B Plant (Waste Stream No. 1f, No. 1g, No. 1h)**

22           Manufacturing Building  
23           Material Handling  
24           Material Storage  
25           Hazardous Waste Treatment, Storage, or Disposal (Refers to RCRA, Subtitle C Facilities Only)  
26           Waste Treatment, Storage, or Disposal  
27           Application or Disposal of Waste waters  
28           Storage and Maintenance of Material Handling Equipment  
29           Vehicle Maintenance  
30           Areas Where Significant Materials Remain  
31           Access Roads and Rail Lines for Shipping and Receiving  
32           Other

---

35     **F.6.2.7      242-A-81 Water Services Building (Waste Stream No. 1i)**

36           Manufacturing Building  
37           Material Handling  
38           Material Storage  
39           Hazardous Waste Treatment, Storage, or Disposal (Refers to RCRA, Subtitle C Facilities Only)  
40           Waste Treatment, Storage, or Disposal  
41           Application or Disposal of Waste waters  
42           Storage and Maintenance of Material Handling Equipment  
43           Other

- Vehicle Maintenance
- Areas Where Significant Materials Remain
- Access Roads and Rail Lines for Shipping and Receiving
- Other

## 6 F.7.0 MATERIAL HANDLING/MANAGEMENT PRACTICES.

#### F.7.1 200 AREA TREATED EFFLUENT DISPOSAL FACILITY (WASTE STREAM NO. 1)

The 200 Area TEDF collects, transfers, and disposes of waste water from seven facilities. No material handling or material management practices are associated with the 200 Area TEDF.

**F.7.2 SUPPLEMENTARY INFORMATION ON FACILITIES DISCHARGING TO THE 200 AREA TREATED EFFLUENT DISPOSAL FACILITY**

#### F.7.2.1 Plutonium Finishing Plant (Waste Stream No. 1a)

a. Types of materials handled and/or stored outdoors: (check all that apply)

|     |                                     |     |                       |
|-----|-------------------------------------|-----|-----------------------|
| [ ] | Solvents                            | [X] | Hazardous Wastes      |
| [X] | Scrap Metal                         | [X] | Acids or Alkalies     |
| [ ] | Petroleum or Petrochemical Products | [ ] | Paints/Coatings       |
| [ ] | Plating Products                    | [ ] | Woodtreating Products |
| [ ] | Pesticides                          | [ ] | Other (Please List)   |

b. Identify existing management practices employed to reduce pollutants in industrial storm water discharges: (check all that apply)

|                                     |                             |                          |                       |
|-------------------------------------|-----------------------------|--------------------------|-----------------------|
| <input type="checkbox"/>            | Oil/Water Separator         | <input type="checkbox"/> | Detention Facilities  |
| <input checked="" type="checkbox"/> | Containment                 | <input type="checkbox"/> | Infiltration Basins   |
| <input checked="" type="checkbox"/> | Spill Prevention            | <input type="checkbox"/> | Operational BMPs      |
| <input type="checkbox"/>            | Surface Leachate Collection | <input type="checkbox"/> | Vegetation Management |
| <input type="checkbox"/>            | Overhead Coverage           | <input type="checkbox"/> | Other (Please List)   |

## 1 F.7.2.2 222-S Laboratory (Waste Stream No. 1b)

2 a. Types of materials handled and/or stored outdoors: (check all  
3 that apply)4  Solvents  Hazardous Wastes  
5  Scrap Metal  Acids or Alkalies  
6  Petroleum or Petrochemical  Paints/Coatings  
7 Products  
8  Plating Products  Woodtreating Products  
9  Pesticides  Other (Please List \_\_\_\_\_  
10 \_\_\_\_\_  
11 \_\_\_\_\_12 b. Identify existing management practices employed to reduce  
13 pollutants in industrial storm water discharges: (check all that  
14 apply)15  Oil/Water Separator  Detention Facilities  
16  Containment  Infiltration Basins  
17  Spill Prevention  Operational BMPs  
18  Surface Leachate Collection  Vegetation Management  
19  Overhead Coverage  Other (Please List \_\_\_\_\_  
20 \_\_\_\_\_  
21 \_\_\_\_\_

## 22 F.7.2.3 T Plant (Waste Stream No. 1c)

23 a. Types of materials handled and/or stored outdoors: (check all  
24 that apply)25  Solvents  Hazardous Wastes  
26  Scrap Metal  Acids or Alkalies  
27  Petroleum or Petrochemical  Paints/Coatings  
28 Products  
29  Plating Products  Woodtreating Products  
30  Pesticides  Other (Please List \_\_\_\_\_  
31 \_\_\_\_\_  
32 \_\_\_\_\_33 b. Identify existing management practices employed to reduce  
34 pollutants in industrial storm water discharges: (check all that  
35 apply)36  Oil/Water Separator  Detention Facilities  
37  Containment  Infiltration Basins  
38  Spill Prevention  Operational BMPs  
39  Surface Leachate Collection  Vegetation Management  
40  Overhead Coverage  Other (Please List \_\_\_\_\_  
41 \_\_\_\_\_  
42 \_\_\_\_\_

## 1 F.7.2.4 284-W Power Plant (Waste Stream No. 1d)

2 a. Types of materials handled and/or stored outdoors: (check all that  
3 apply)4  Solvents  Hazardous Wastes  
5  Scrap Metal  Acids or Alkalies  
6  Petroleum or Petrochemical  Paints/Coatings  
7 Products  
8  Plating Products  Woodtreating Products  
9  Pesticides  Other (Please List) COAL  
10  
1112 Note: This item is considered not applicable because there is not a  
13 storm water collection area for point source discharges for the 284-W  
14 Power Plant.15 b. Identify existing management practices employed to reduce  
16 pollutants in industrial storm water discharges: (check all that  
17 apply)18  Oil/Water Separator  Detention Facilities  
19  Containment  Infiltration Basins  
20  Spill Prevention  Operational BMPs  
21  Surface Leachate Collection  Vegetation Management  
22  Overhead Coverage  Other (Please List)  
23  
24

## 25 F.7.2.5 PUREX Facility (Waste Stream No. 1e)

26 a. Types of materials handled and/or stored outdoors: (check all  
27 that apply)28  Solvents  Hazardous Wastes  
29  Scrap Metal (minor amounts)  Acids or Alkalies  
30  Petroleum or Petrochemical  Paints/Coatings  
31 Products  
32  Plating Products  Woodtreating Products  
33  Pesticides  Other (Please List)  
34  
3536 Note: This item is considered not applicable because there is not a  
37 storm water collection area for point source discharges for the PUREX  
38 facility. However, containment dikes around storage tanks capture  
39 rainwater and the rainwater is pumped to the Chemical Sewer Line or  
underground storage.

1           b. Identify existing management practices employed to reduce  
2           pollutants in industrial storm water discharges: (check all that  
3           apply)

|                  |                             |     |                           |
|------------------|-----------------------------|-----|---------------------------|
| 4            [ ] | Oil/Water Separator         | [X] | Detention Facilities      |
| 5            [X] | Containment                 | [ ] | Infiltration Basins       |
| 6            [ ] | Spill Prevention            | [ ] | Operational BMPs          |
| 7            [ ] | Surface Leachate Collection | [ ] | Vegetation Management     |
| 8            [ ] | Overhead Coverage           | [ ] | Other (Please List _____) |
| 9                |                             |     | _____                     |
| 10               |                             |     | _____                     |

11           **F.7.2.6       B Plant (Waste Stream No. 1f, No. 1g, No. 1h)**

12           a. Types of materials handled and/or stored outdoors: (check all  
13           that apply)

|                        |                            |     |                           |
|------------------------|----------------------------|-----|---------------------------|
| 14            [ ]      | Solvents                   | [X] | Hazardous Wastes          |
| 15            [X]      | Scrap Metal                | [ ] | Acids or Alkalies         |
| 16            [X]      | Petroleum or Petrochemical | [ ] | Paints/Coatings           |
| 17            Products |                            |     |                           |
| 18            [ ]      | Plating Products           | [ ] | Woodtreating Products     |
| 19            [ ]      | Pesticides                 | [ ] | Other (Please List _____) |
| 20                     |                            |     | _____                     |
| 21                     |                            |     | _____                     |

22           b. Identify existing management practices employed to reduce  
23           pollutants in industrial storm water discharges: (check all that  
24           apply)

|                   |                             |     |                           |
|-------------------|-----------------------------|-----|---------------------------|
| 25            [ ] | Oil/Water Separator         | [ ] | Detention Facilities      |
| 26            [X] | Containment                 | [ ] | Infiltration Basins       |
| 27            [X] | Spill Prevention            | [ ] | Operational BMPs          |
| 28            [ ] | Surface Leachate Collection | [ ] | Vegetation Management     |
| 29            [ ] | Overhead Coverage           | [ ] | Other (Please List _____) |
| 30                |                             |     | _____                     |
| 31                |                             |     | _____                     |

32           **F.7.2.7       242-A-81 Water Services Building (Waste Stream No. 1i)**

33           a. Types of materials handled and/or stored outdoors: (check all  
34           that apply)

|                        |                            |     |                           |
|------------------------|----------------------------|-----|---------------------------|
| 35            [ ]      | Solvents                   | [ ] | Hazardous Wastes          |
| 36            [ ]      | Scrap Metal                | [ ] | Acids or Alkalies         |
| 37            [ ]      | Petroleum or Petrochemical | [ ] | Paints/Coatings           |
| 38            Products |                            |     |                           |
| 39            [ ]      | Plating Products           | [ ] | Woodtreating Products     |
| 40            [ ]      | Pesticides                 | [ ] | Other (Please List _____) |
| 41                     |                            |     | _____                     |

1

2 Note: This item is considered not applicable because there is not a  
3 storm water collection area for point source discharges for the 242-A-81  
4 Water Services Building.

5 b. Identify existing management practices employed to reduce  
6 pollutants in industrial storm water discharges: (check all that  
7 apply)

|     |                             |     |                           |
|-----|-----------------------------|-----|---------------------------|
| [ ] | Oil/Water Separator         | [ ] | Detention Facilities      |
| [ ] | Containment                 | [ ] | Infiltration Basins       |
| [ ] | Spill Prevention            | [ ] | Operational BMPs          |
| [ ] | Surface Leachate Collection | [ ] | Vegetation Management     |
| [ ] | Overhead Coverage           | [ ] | Other (Please List _____) |

13  
14

15 F.8.0 ATTACH A MAP SHOWING STORM WATER DRAINAGE/COLLECTION AREAS, DISPOSAL  
16 AREAS AND DISCHARGE POINTS.

17 F.8.1 200 AREA TREATED EFFLUENT DISPOSAL FACILITY (WASTE STREAM NO. 1)

18 No storm water drainage/collection, disposal areas are associated with  
19 the 200 Area TEDF.

20 F.8.2 SUPPLEMENTARY INFORMATION ON FACILITIES DISCHARGING TO THE  
21 200 AREA TREATED EFFLUENT DISPOSAL FACILITY<sup>1</sup>

22 F.8.2.1 Plutonium Finishing Plant (Waste Stream No. 1a)

23 Storm drains are located in the yard area south, and west of the 291-Z  
24 Building. Storm water that runs off of the areas that slope into these  
25 drains is collected and discharged into the waste water system. Storm  
26 water is collected from the roof drains of the 234-5Z Building and is  
27 discharged to the waste water system. No detention capacity is provided  
28 in the system so the flow of rainwater is highly variable and dependent  
29 upon the severity, duration, and timing of rainfall events. No  
30 constituents are likely to be present in the water that enters this  
31 collection system. The Plutonium Finishing Plant has an active  
32 contamination control program that remediates any surface contamination  
33 as soon as it is detected. Refer to Drawing H-13-000096 for a facility  
34 map.

35 <sup>1</sup> For the Hanford Site Facility Map, general notes and legend, refer to  
36 Figures F-8 and F-9.

1                   **F.8.2.2 222-S Laboratory (Waste Stream No. 1b)**

2                   The majority of storm water run-off is discharged directly to ground  
3                   from roof areas and paved areas. However, small quantities of rainwater  
4                   are collected by sumps located under various stairwells. Refer to  
5                   Drawing H-13-000184 for a facility map.

6                   **F.8.2.3 T Plant (Waste Stream No. 1c)**

7                   Both the 214-T Building and the 211-T area contain blind sumps which  
8                   collect storm water run-off and waste water generated during facility  
9                   housekeeping and maintenance activities. These sumps have no drains;  
10                  therefore when a sump is full, a portable sump pump is used to transfer  
11                  the solution to the 271-T sump. This sump is then pumped to a  
12                  500 gallon stainless steel collection tank in the 221-T electrical  
13                  gallery, which could be sampled before emptying it into the chemical  
14                  sewer.

15                  In addition, two roof drains from 221-T and four roof drains from  
16                  214-T Buildings discharge storm water via downspouts direct to ground.  
17                  Refer to Drawing H-13-000185 for a facility site map.

}                   **F.8.2.4 284-W Power Plant (Waste Stream No. 1d)**

19                  There are no specific drainage/collection areas, disposal areas, or  
20                  discharge points for the 284-W Power Plant. Storm water run-off is  
21                  discharged directly to the ground from buildings and paved areas. Refer  
22                  to Drawing H-13-000071 for a facility site map.

23                  **F.8.2.5 PUREX Facility (Waste Stream No. 1e)**

24                  There are no specific drainage/collection areas, disposal area, or  
25                  discharge points for the PUREX Facility. Storm water run-off is  
26                  discharged directly to the ground from buildings and paved areas. Refer  
27                  to Drawing H-13-000041 for a facility map.

28                  **F.8.2.6 B Plant (Waste Stream No. 1f, No. 1g, No. 1h)**

29                  Three street drains and one yard drain are connected to the B Plant  
30                  Chemical Sewer, which is combined with the B Plant Cooling Water and  
31                  disposed of in the 216-B-3 Ponds. The B Plant Chemical Sewer is  
32                  combined temporarily with the B Plant cooling water until the 200 Area  
33                  TEDF is operational.

34                  One street drain is connected to a small french drain that discharges  
5                  directly to the ground.  
5

1 Downspouts from the roof areas discharge water to paved areas that route  
2 the water to the street and yard drains mentioned previously. Limited  
3 amounts of storm water may discharge directly from the paved areas to  
4 the ground. Refer to Drawing H-13-000042 for a facility map.

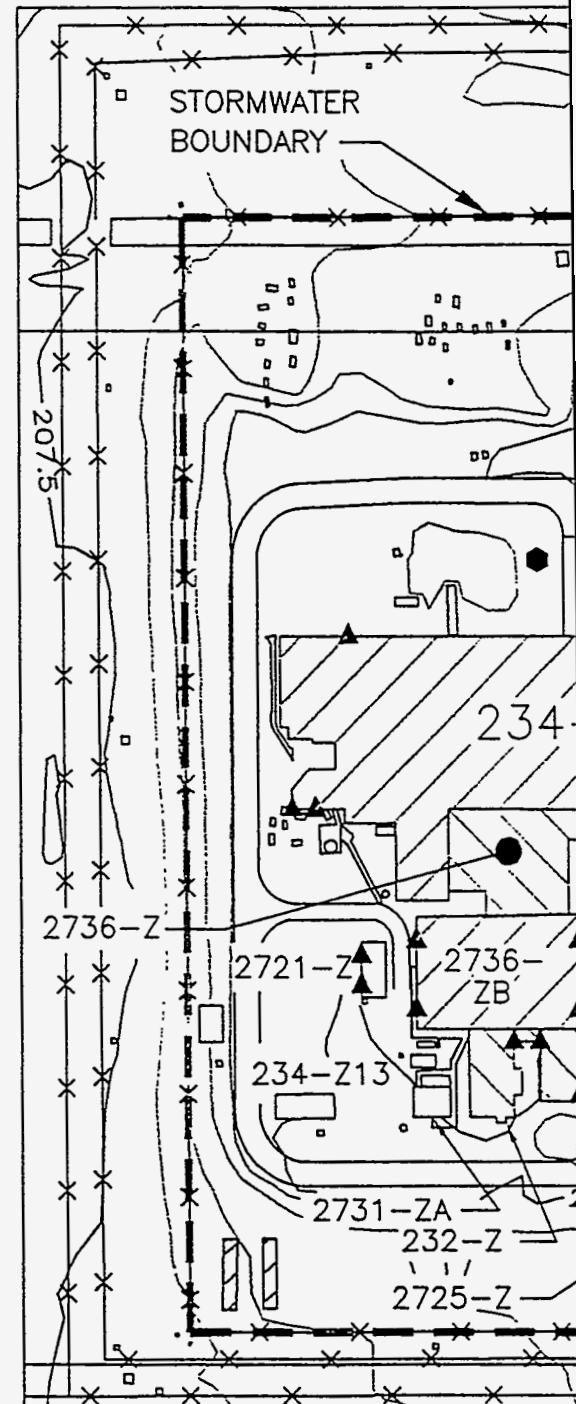
5 **F.8.2.7 242-A-81 Water Services Building (Waste Stream No. 1i)**

6 There are no specific drainage/collection areas, disposal area, or  
7 discharge points for the 242-A-81 Water Services Building. Storm water  
8 run-off is discharged to ground directly from roof areas and paved  
9 areas. Refer to Drawing H-13-000050 for a facility map.

FOR GENERAL NOTES AND LEGEND SEE: H-13-000187

OFFICIAL RELEASE  
BY WHC

DATE  
JUL 07 1994


## SITE PLAN

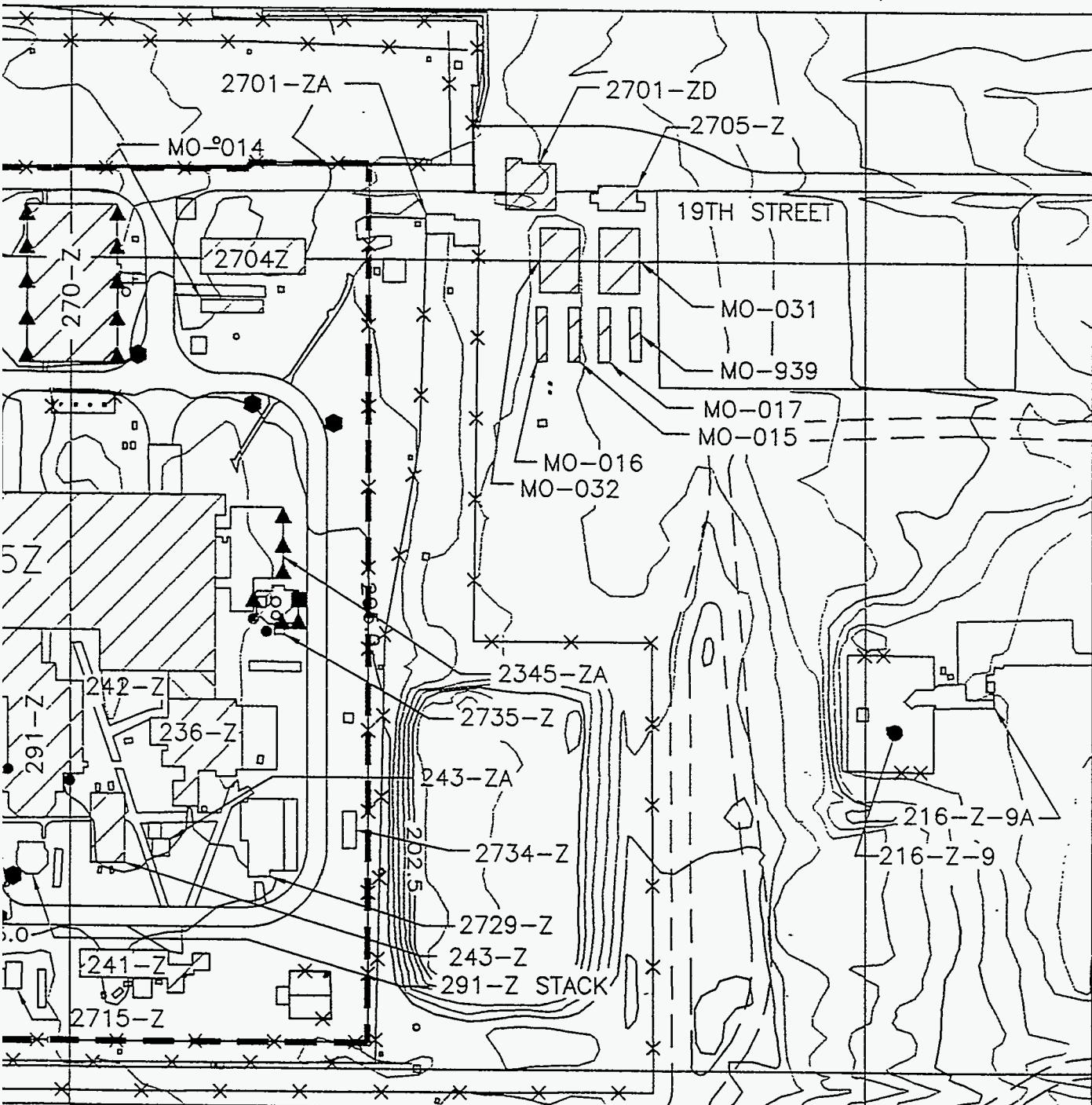
SCALE: 1:1800

0 18 36 72 108 144

1 cm = 18 meters

0 100 200 300 400 500 FEET




|              |                           |            |                  |             |
|--------------|---------------------------|------------|------------------|-------------|
| H-13-000000  | 200E AREA TOPOGRAPHIC MAP | MFG        | REV NO           | DESCRIPTION |
| H-13-000000  | 200E AREA TOPOGRAPHIC MAP |            |                  |             |
| REF NUMBER   | TITLE                     |            |                  |             |
| REFERENCE    |                           | REV<br>REL |                  | REVISIONS   |
| NEXT USED ON | H-13-000200               |            | CADFILE N000096A | CADCODE     |

E.566,500

E.566,750

N.135,750

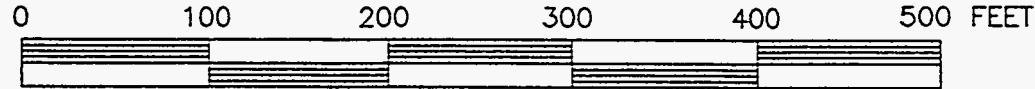
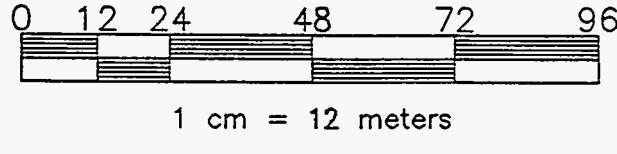
N.135,500



DWG NO H-13-000096 SH 1 OF 1 REV 0

|                             |                    |                   |                                                                                             |              |                             |
|-----------------------------|--------------------|-------------------|---------------------------------------------------------------------------------------------|--------------|-----------------------------|
| DRAWN RAFAEL TORRES         |                    | DATE<br>5-13-94   | U.S. DEPARTMENT OF ENERGY<br>DOE Field Office, Richland<br>Kaiser Engineers Hanford Company |              |                             |
| CHECKED <i>John Johnson</i> |                    | 6/1/94            | PFP                                                                                         |              |                             |
| DFTG APVD <i>John</i>       |                    | 6/1/94            | FACILITY MAP                                                                                |              |                             |
| COG ENGR <i>John</i>        |                    | 6/2/94            | SIZE                                                                                        | BLDG NO      | INDEX NO                    |
| CHK BY DATE                 | DFTG APPROV'D DATE | COG ENGR          | OTHER                                                                                       | OTHER        | DWG NO                      |
|                             |                    |                   |                                                                                             |              | B 234-5Z 0110 H-13-000096 0 |
| APPROVALS BY DATE           |                    | APPVD <i>John</i> | 6-2-94                                                                                      | SCALE SHOWN  | EDT 605125                  |
| APPROVALS BY DATE           |                    | APPVD             |                                                                                             | SHEET 1 OF 1 |                             |

DOS:6.0:ACD2:12.0:SS



CHK PRINT COMMENT PRINT

FOR GENERAL NOTES AND LEGEND SEE: H-13-000187

OFFICIAL RELEASE  
BY WHC  
DATE JUL 07 1994

## SITE PLAN

SCALE: 1:1200



H-13-000000 200E AREA TOPOGRAPHIC MAP

H-13-000000 200E AREA TOPOGRAPHIC MAP

REF NUMBER

TITLE

MFG

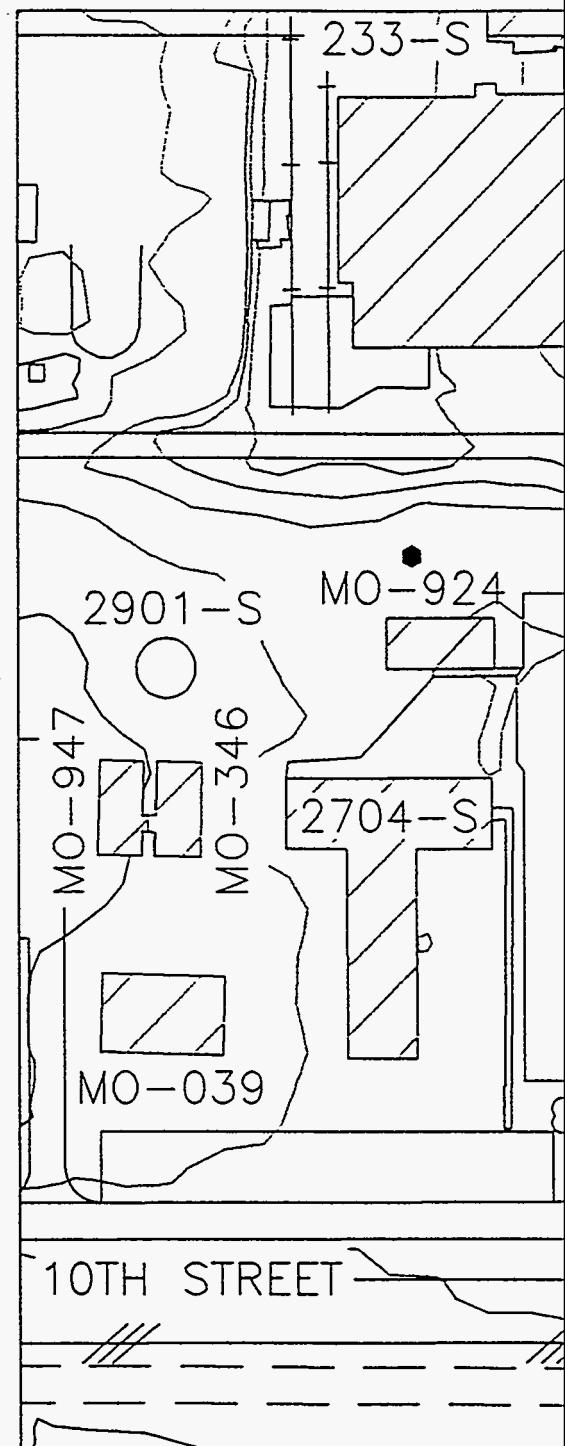
REV NO

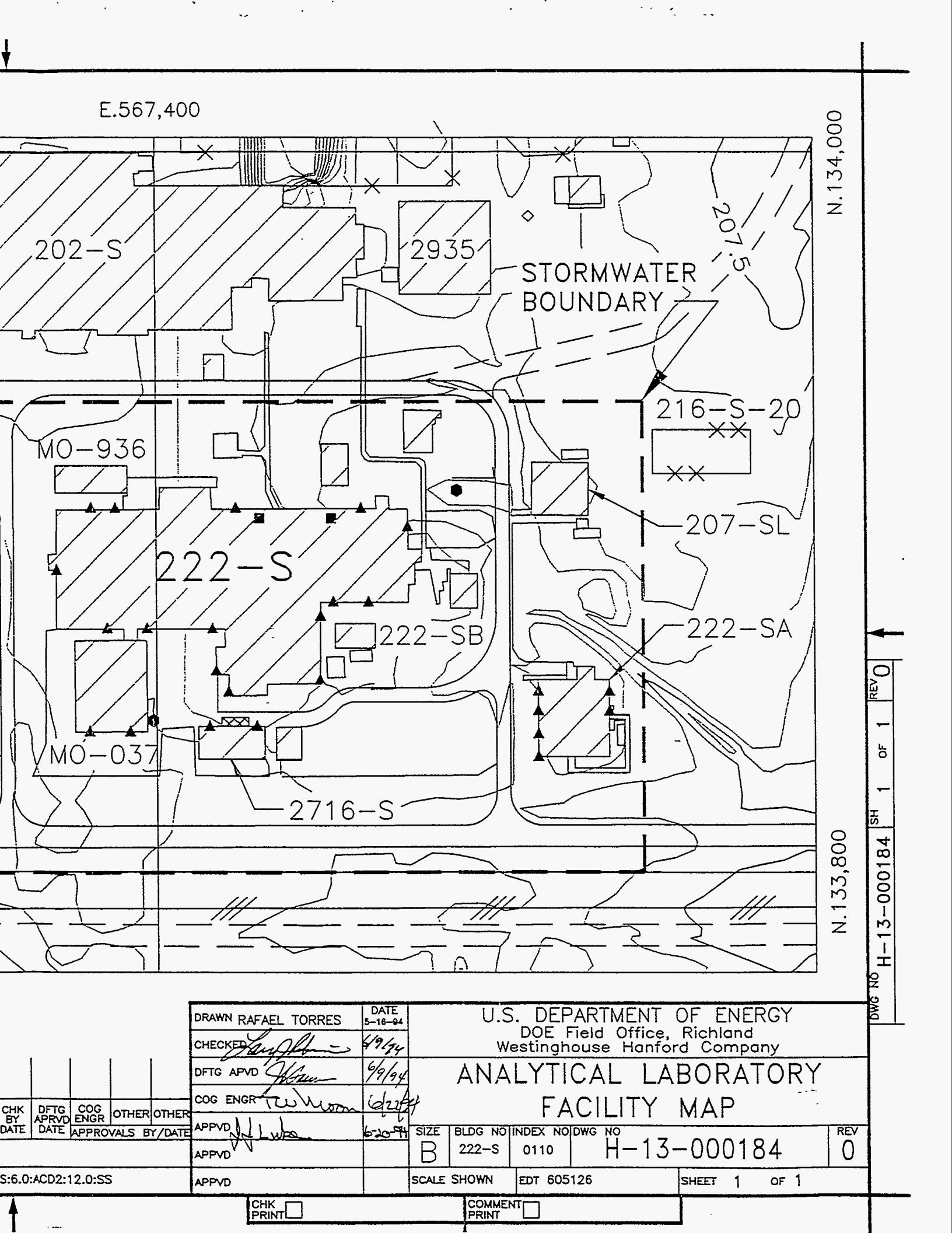
DESCRIPTION

RE  
BY  
DA

REFERENCE

REVISIONS


NEXT USED ON


H-13-000200

CADFILE N000184A

CADCODE

ZDJB0006

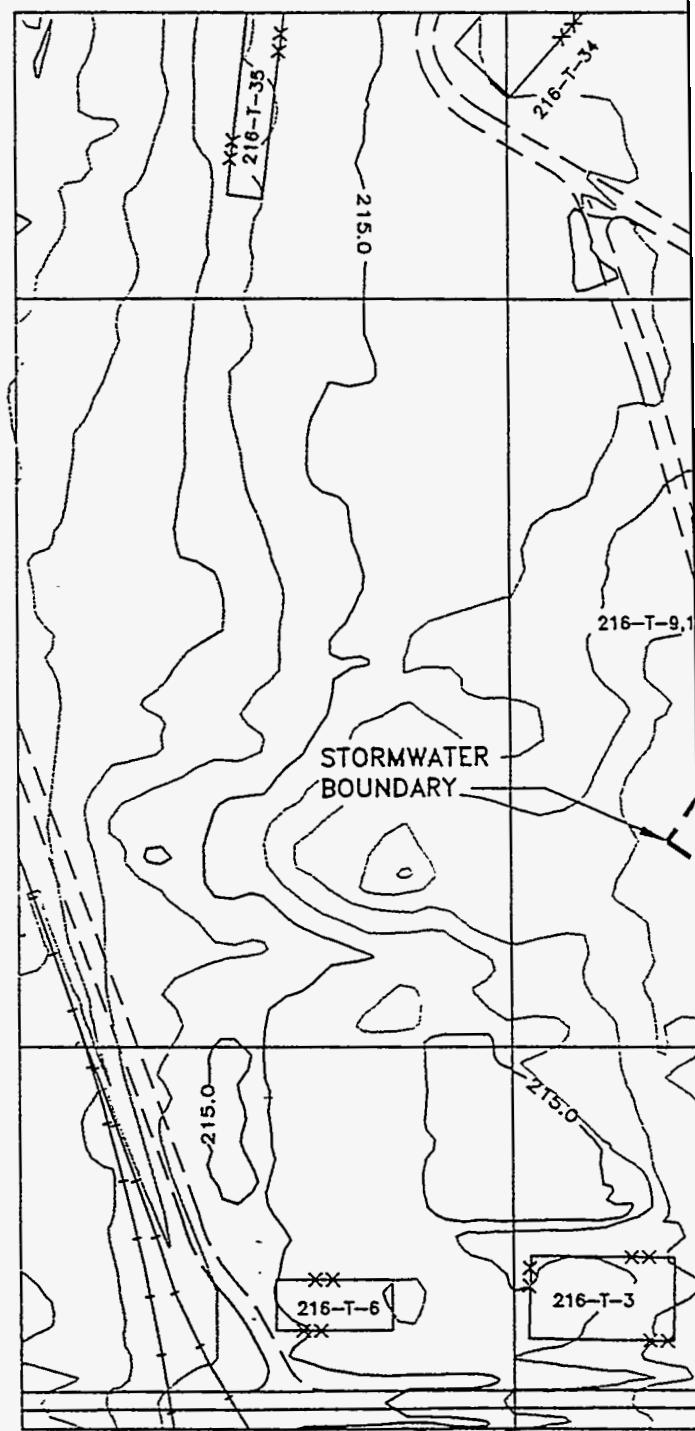




E.567,250

FOR GENERAL NOTES AND LEGEND SEE: H-13-000187

OFFICIAL RELEASE  
BY WHC  
DATE JUL 07 1994


## SITE PLAN

SCALE: 1:2500

0 25 50 100 150 200

1 cm = 25 meters

0 100 200 300 400 500 FEET



H-13-000211 200E AREA TOPOGRAPHIC MAP

REF NUMBER

TITLE

MFG

REV  
NO

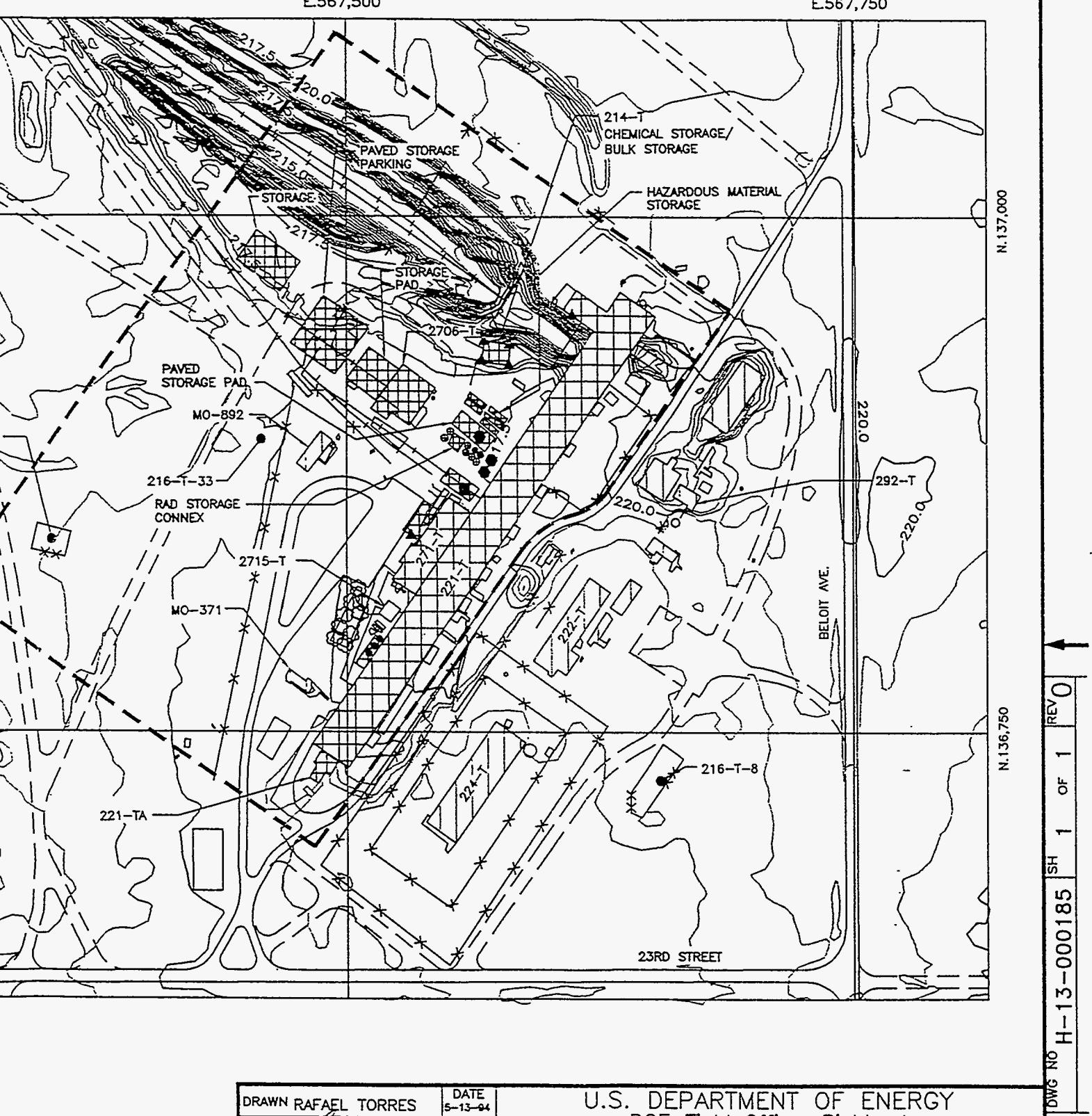
DESCRIPTION

R  
E  
D  
A

REFERENCE

REV  
REL

REVISIONS


NEXT USED ON

H-13-000200

CADFILE N000185A

CADCOD

ZDJB0006



|                                |                 |
|--------------------------------|-----------------|
| DRAWN RAFAEL TORRES            | DATE<br>5-13-94 |
| CHECKED <i>J. Angel Robles</i> | 5/13/94         |
|                                | 5/13            |

U.S. DEPARTMENT OF ENERGY  
DOE Field Office, Richland  
Westinghouse Hanford Company

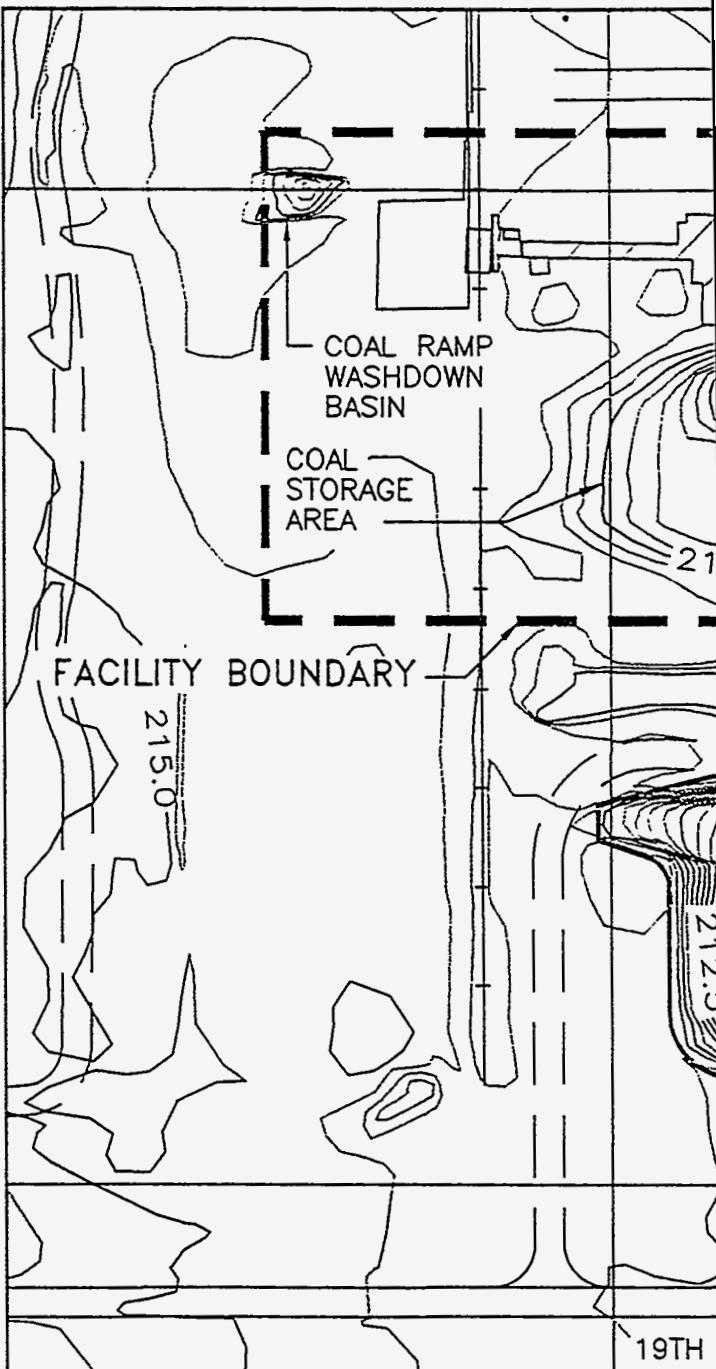
T-PLANT  
FACILITY MAP

|                     |                 |          |       |       |                                    |                         |         |            |             |              |  |
|---------------------|-----------------|----------|-------|-------|------------------------------------|-------------------------|---------|------------|-------------|--------------|--|
|                     |                 |          |       |       | DFTG APVD <i>1/19/94</i>           | 1-PLANT<br>FACILITY MAP |         |            |             |              |  |
| CHK BY DATE         | DFTG APRVD DATE | COG ENGR | OTHER | OTHER | COG ENGR <i>1/21/94</i>            |                         |         |            |             |              |  |
| APPROVALS BY DATE   |                 |          |       |       | APPV'D <i>John L. Lube</i> 6-20-94 | SIZE                    | BLDG NO | INDEX NO   | DWG NO      | REV          |  |
|                     |                 |          |       |       | APPVD <i>✓</i>                     | B                       | 221-T   | 0110       | H-13-000185 | 0            |  |
| OS:6.0:ACD2:12.0:SS |                 |          |       |       | APPV'D                             | SCALE SHOWN             |         | EDT 605127 |             | SHEET 1 OF 1 |  |

E.567,500

FOR GENERAL NOTES AND LEGEND SEE: H-13-000187

OFFICIAL RELEASE  
BY WHC  
DATE JUL 07 1994

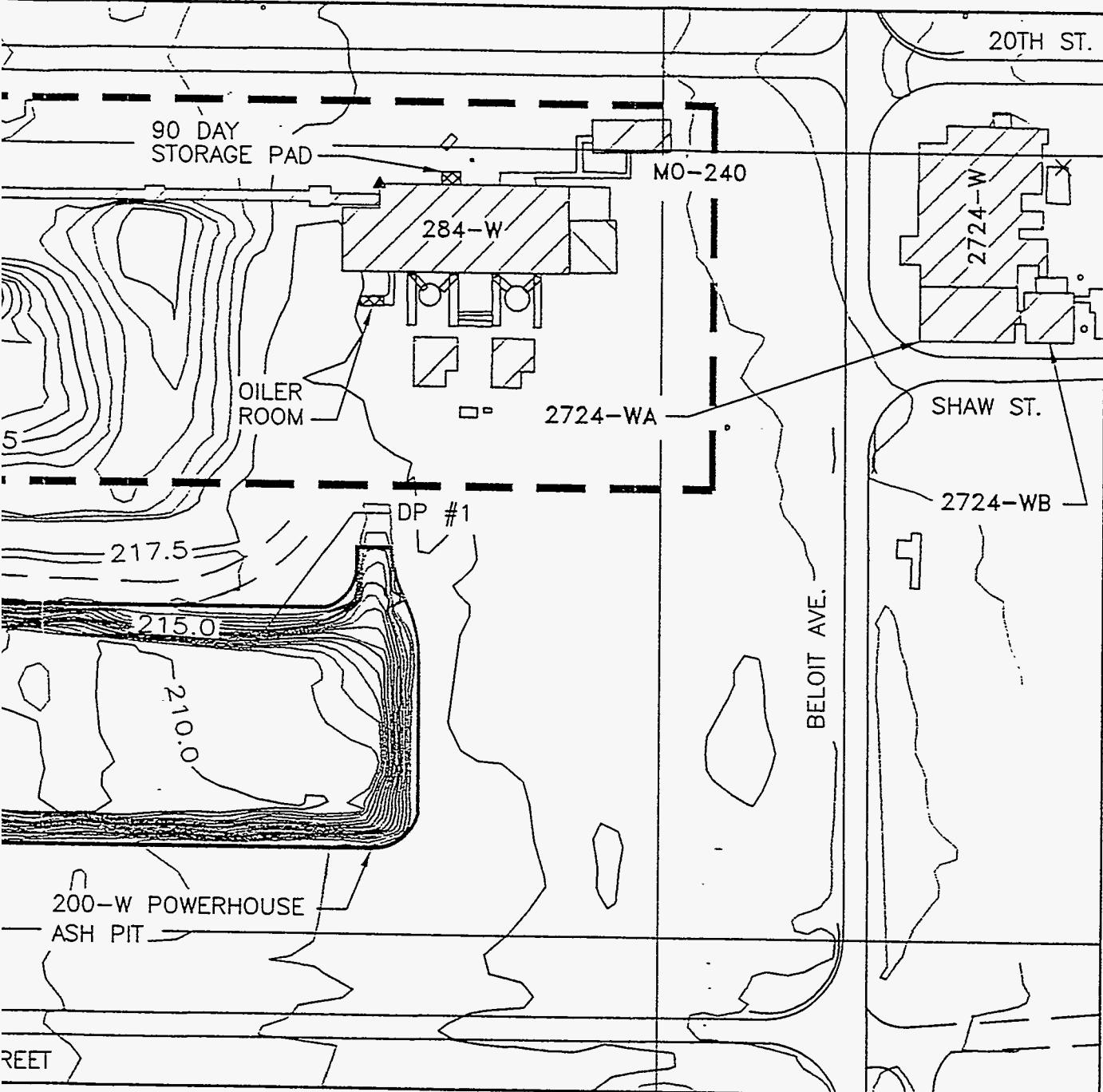

SITE PLAN

SCALE: 1:1500

0 15 30 60 90 120



1 cm = 15 meters




0 100 200 300 400



| REF NUMBER   | TITLE                     | MFG REV NO       | DESCRIPTION | REV D  |
|--------------|---------------------------|------------------|-------------|--------|
| H-13-000211  | 200E AREA TOPOGRAPHIC MAP |                  |             |        |
| H-13-000219  | 200E AREA TOPOGRAPHIC MAP |                  |             |        |
|              | REFERENCE                 | REV P            | REVISIONS   |        |
| NEXT USED ON | H-13-000200               | CADFILE N000071A |             | CADCOD |
| ZDJB0006     |                           |                  |             |        |

E.567,700



N.136,000

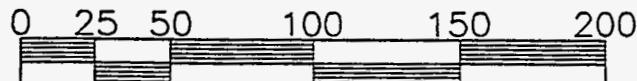
N.136,800

DWG NO H-13-000071 SH 1 OF 1 REV 0

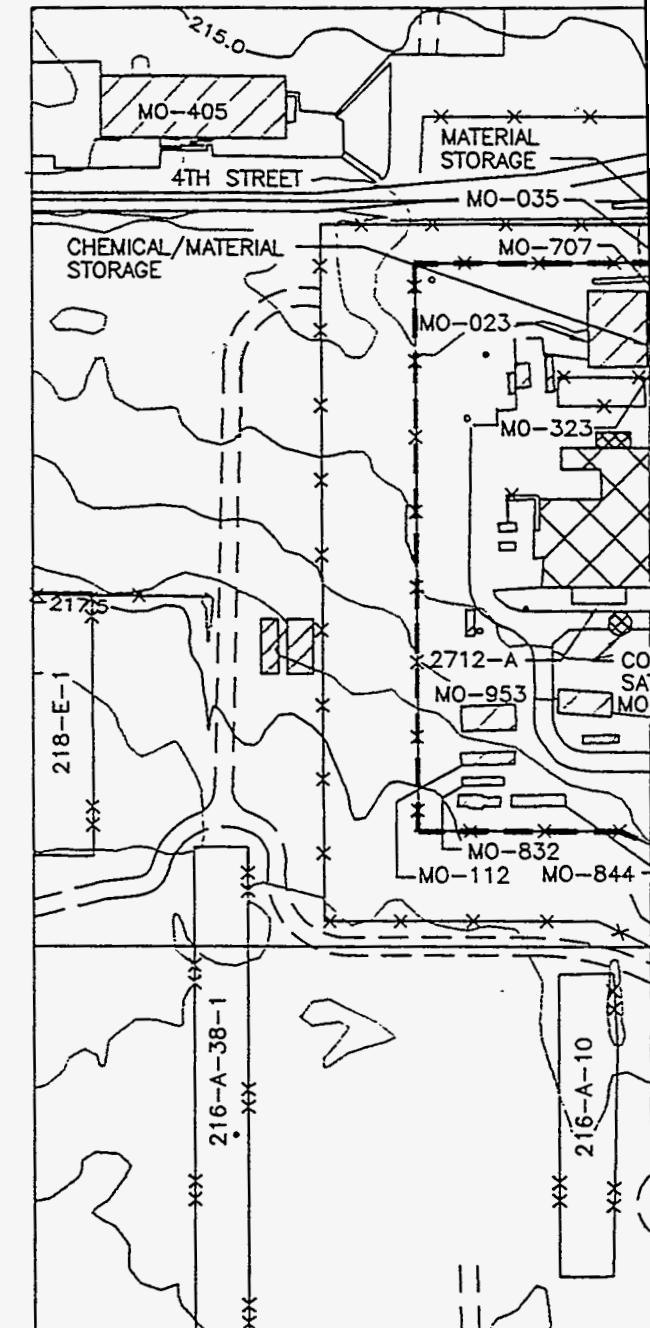
|         |                 |      |         |
|---------|-----------------|------|---------|
| DRAWN   | RAFAEL TORRES   | DATE | 5-16-94 |
| CHECKED | <i>Aug 1994</i> |      |         |
| DFTG    | APVD            |      | 6/9/94  |
| COG     | ENGR            |      | 6/20/94 |

U.S. DEPARTMENT OF ENERGY  
DOE Field Office, Richland  
Westinghouse Hanford Company

200-W POWER PLANT  
FACILITY MAP


|                     |                 |          |             |                   |       |     |         |             |         |          |              |     |
|---------------------|-----------------|----------|-------------|-------------------|-------|-----|---------|-------------|---------|----------|--------------|-----|
| CHK BY DATE         | DFTG APRVD DATE | COG ENGR | OTHER OTHER | APPROVALS BY DATE | APPVD | LWS | 8-20-94 | SIZE        | BLDG NO | INDEX NO | DWG NO       | REV |
|                     |                 |          |             |                   |       |     |         | B           | 284-W   | 0110     | H-13-000071  | 0   |
| OS:6.0:ACD2:12.0:SS |                 |          |             | APPVD             |       |     |         | SCALE SHOWN | EDT     | 605124   | SHEET 1 OF 1 |     |
|                     |                 |          |             | CHK PRINT         |       |     |         | COMMENT     | PRINT   |          |              |     |

E.575


FOR GENERAL NOTES AND LEGEND SEE: H-13-000186

# SITE PLAN

SCALE: 1:2500



1 cm = 25 meters

OFF  
DAT

H-13-000223 200E AREA TOPOGRAPHIC MAP

REF NUMBER

TITLE

MFG

REV  
RELREV  
NOREV  
BY  
DAT

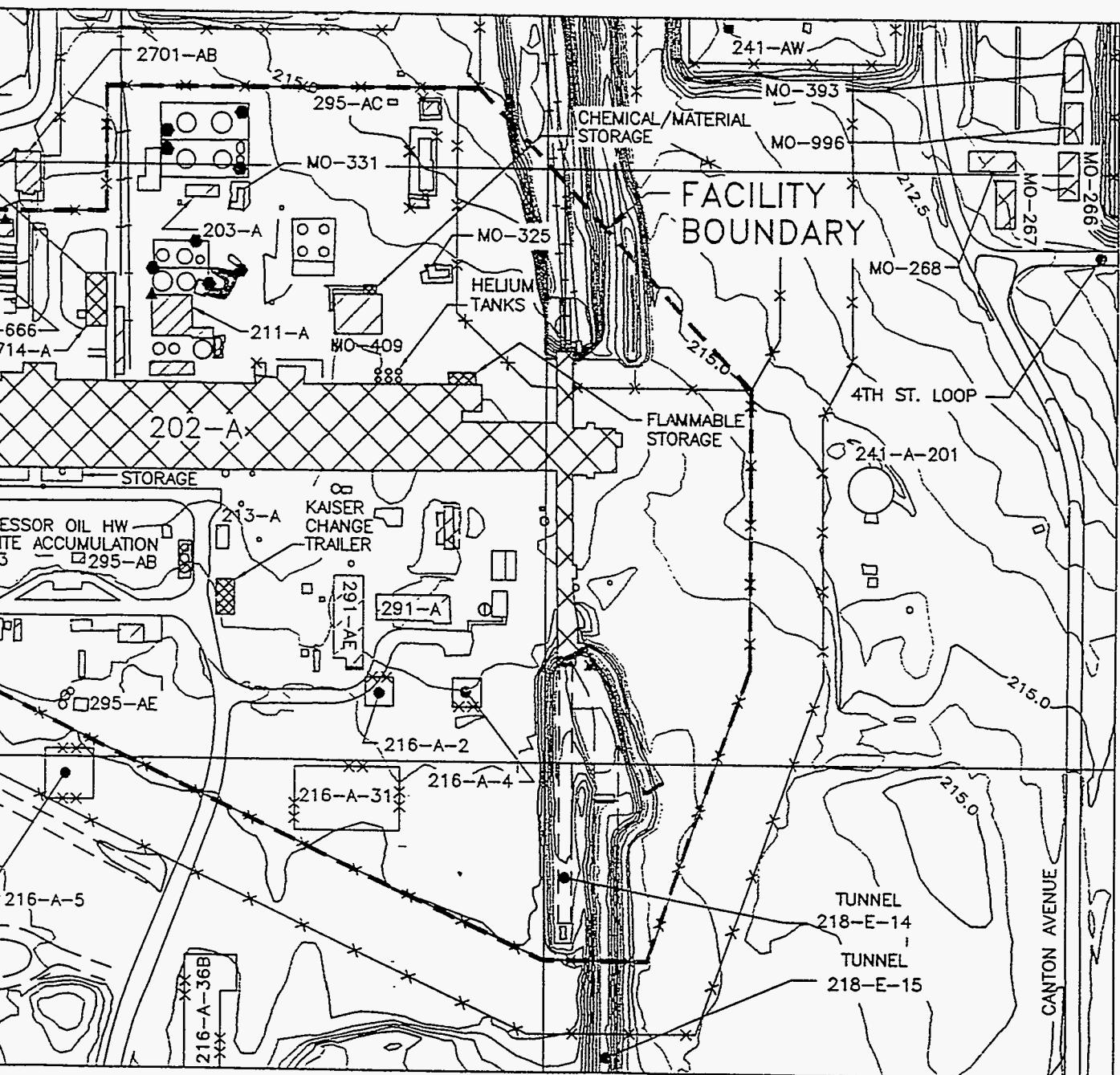
DESCRIPTION

REFERENCE

REVISIONS

NEXT USED ON

H-13-000200


CADFILE N000041A

CADCODE

ZDJB0006

00

E.575,250



FINAL RELEASE  
Y WHC

JUL 07 1994

|         |                      |                   |         |
|---------|----------------------|-------------------|---------|
| DRAWN   | RAFAEL TORRES        | DATE              | 5-18-94 |
| CHECKED | <i>Rafael Torres</i> | 6/9/94            |         |
| DFTG    | APVD                 | 6/9/94            |         |
| COG     | ENGR                 | 6/20/94           |         |
| CHK BY  | APPROVED             | APPROVALS BY/DATE | APVVD   |
| DATE    |                      |                   | 6-20-94 |

U.S. DEPARTMENT OF ENERGY  
DOE Field Office, Richland  
Westinghouse Hanford Company

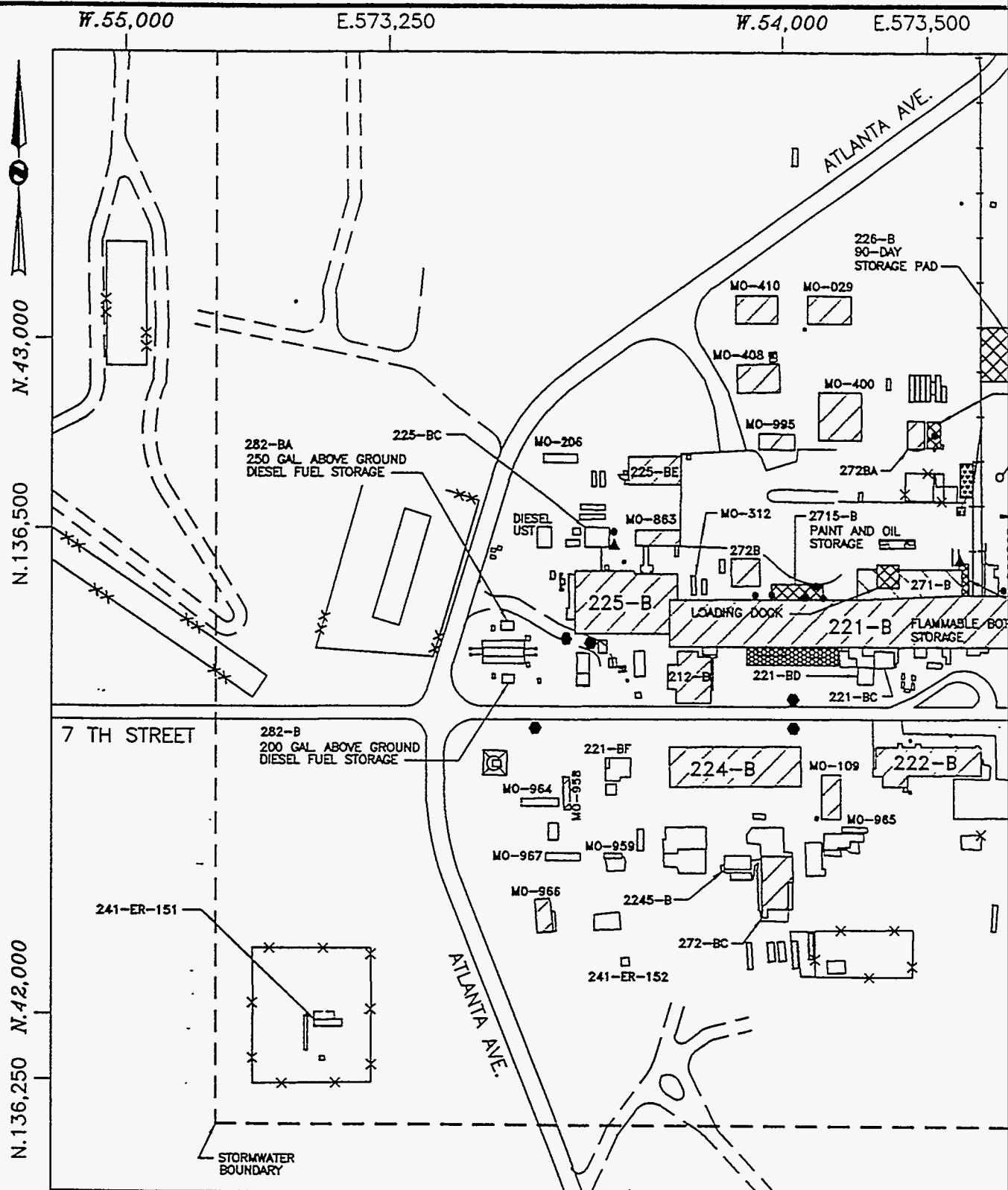
PUREX  
FACILITY MAP

|       |         |             |             |              |
|-------|---------|-------------|-------------|--------------|
| SIZE  | BLDG NO | INDEX NO    | DWG NO      | REV          |
| B     | 202-A   | 0110        | H-13-000041 | 0            |
| APPVD |         | SCALE SHOWN | EDT 605120  | SHEET 1 OF 1 |

S:6.0:ACD2:12.0:SS

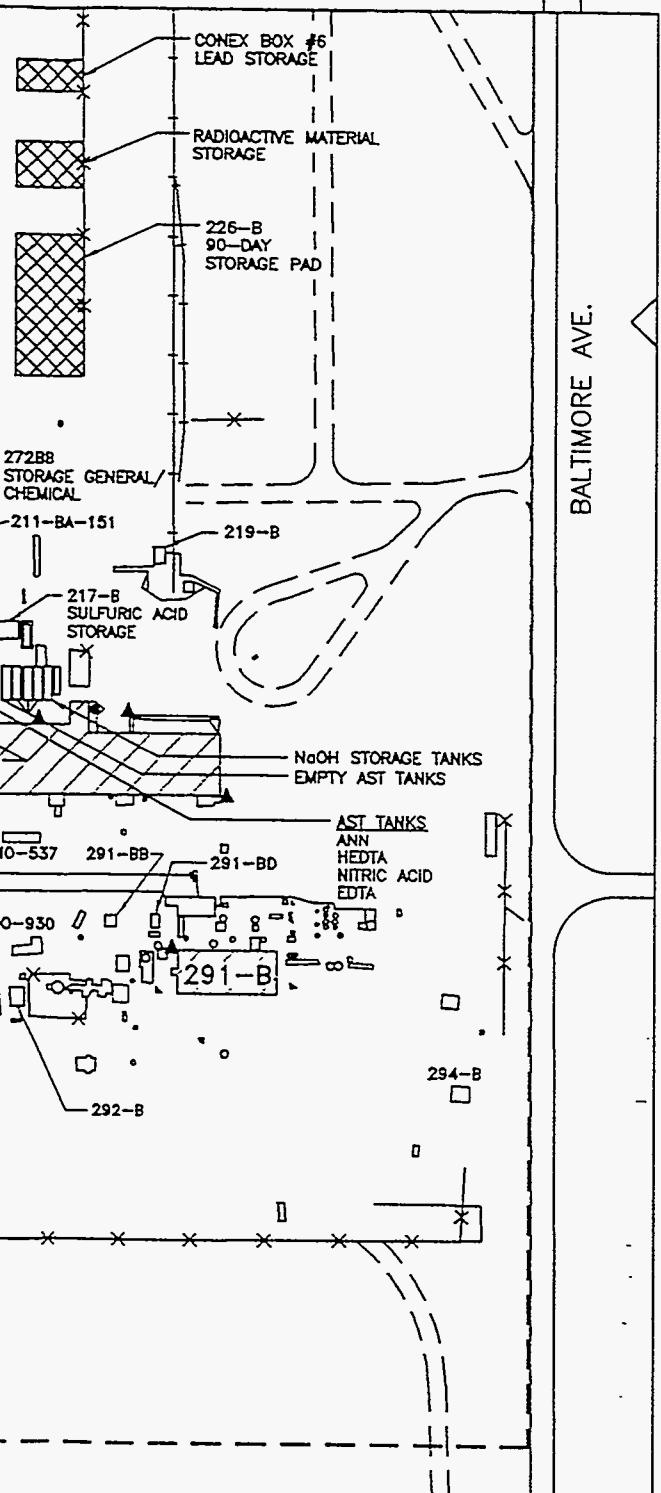
APPVD

SCALE SHOWN


EDT 605120

SHEET 1 OF 1

CHK  
PRINT


COMMENT  
PRINT

DWGS NO H-13-000041 SH 1 OF 1 REV 0



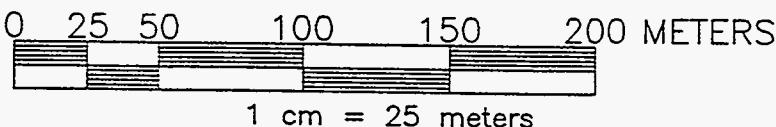
|              |                           |         |                  |             |
|--------------|---------------------------|---------|------------------|-------------|
| H-13-000214  | 200E AREA TOPOGRAPHIC MAP |         |                  |             |
| H-13-000200  | 200E AREA TOPOGRAPHIC MAP |         |                  |             |
| REF NUMBER   | TITLE                     | MFG     | REV NO           | DESCRIPTION |
|              |                           | REV REL |                  | REVISIONS   |
|              | REFERENCE                 |         |                  |             |
| NEXT USED ON | H-13-000200               |         | CADFILE N000042A | CADCODE     |

W.53,000 E.573,750



FOR GENERAL NOTES & LEGEND SEE H-13-000186

OFFICIAL RELEASE


BY WHC

DATE:

JUL 07 1994

## SITE PLAN

SCALE: 1:2500



NOTE: STORM DRAINS CONNECT TO CHEMICAL SEWER.

|                                |                       |                                           |
|--------------------------------|-----------------------|-------------------------------------------|
| DRAWN RAFAEL TORRES            |                       | DATE<br>5-18-94                           |
| CHECKED <i>Rafael Torres</i>   |                       | 6/15/94                                   |
| DFTG APVD <i>Rafael Torres</i> |                       | 6/8/94                                    |
| COG ENGR <i>Rafael Torres</i>  |                       | 6/20/94                                   |
| CHK BY<br>DATE                 | DFTG<br>APRVD<br>DATE | COG<br>ENGR<br>OTHER<br>APPROVALS BY/DATE |
|                                |                       | APPVD<br>6/20/94                          |
|                                |                       | APPVD<br>6/20/94                          |

U.S. DEPARTMENT OF ENERGY  
DOE Field Office, Richland  
Westinghouse Hanford Company

## B-PLANT FACILITY MAP

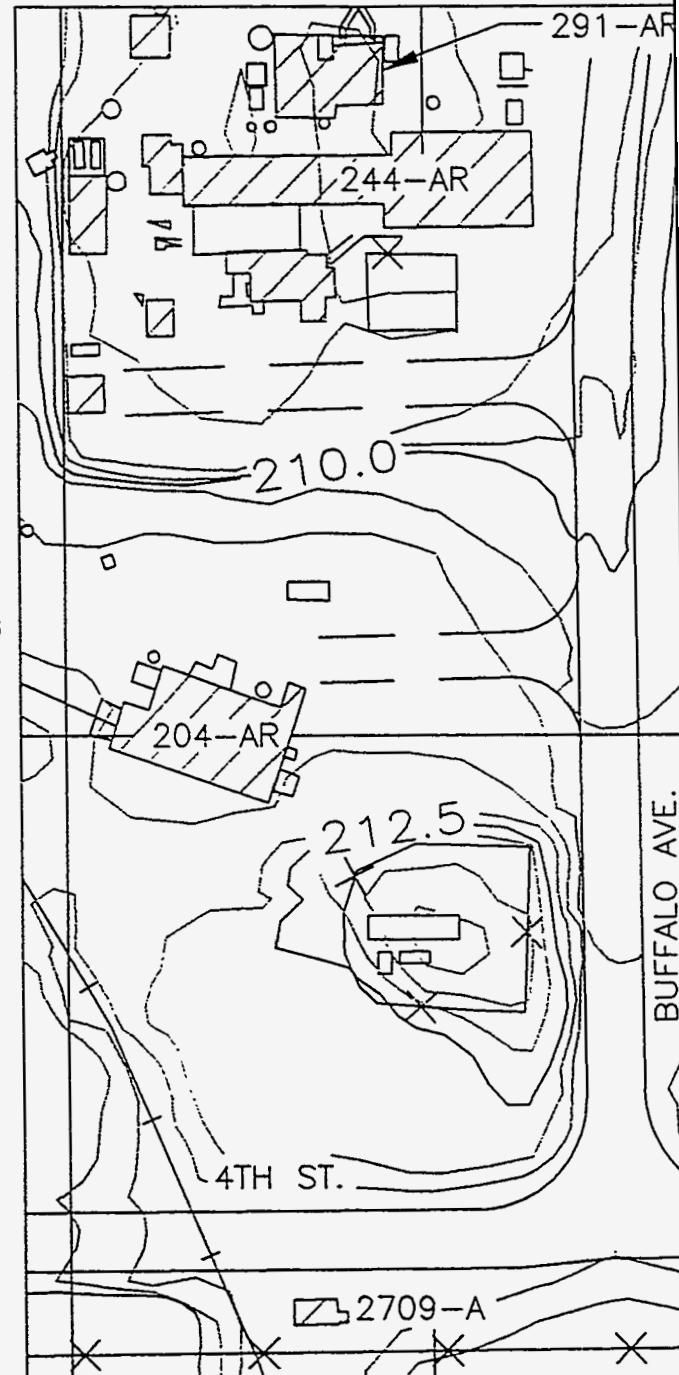
| SIZE | BLDG NO | INDEX NO | DWG NO      | REV |
|------|---------|----------|-------------|-----|
| B    | 221-B   | 0110     | H-13-000042 | 0   |

IS:6.0:ACD2:12.0:SS

APPVD

SCALE SHOWN

EDT 605121


SHEET 1 OF 1

CHK  
PRINT

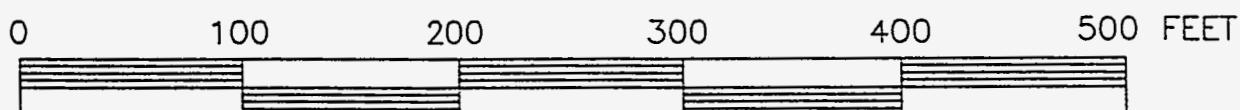
COMMENT  
PRINT

DWG NO H-13-000042 SH 1 OF 1 REV 0

E.575,200

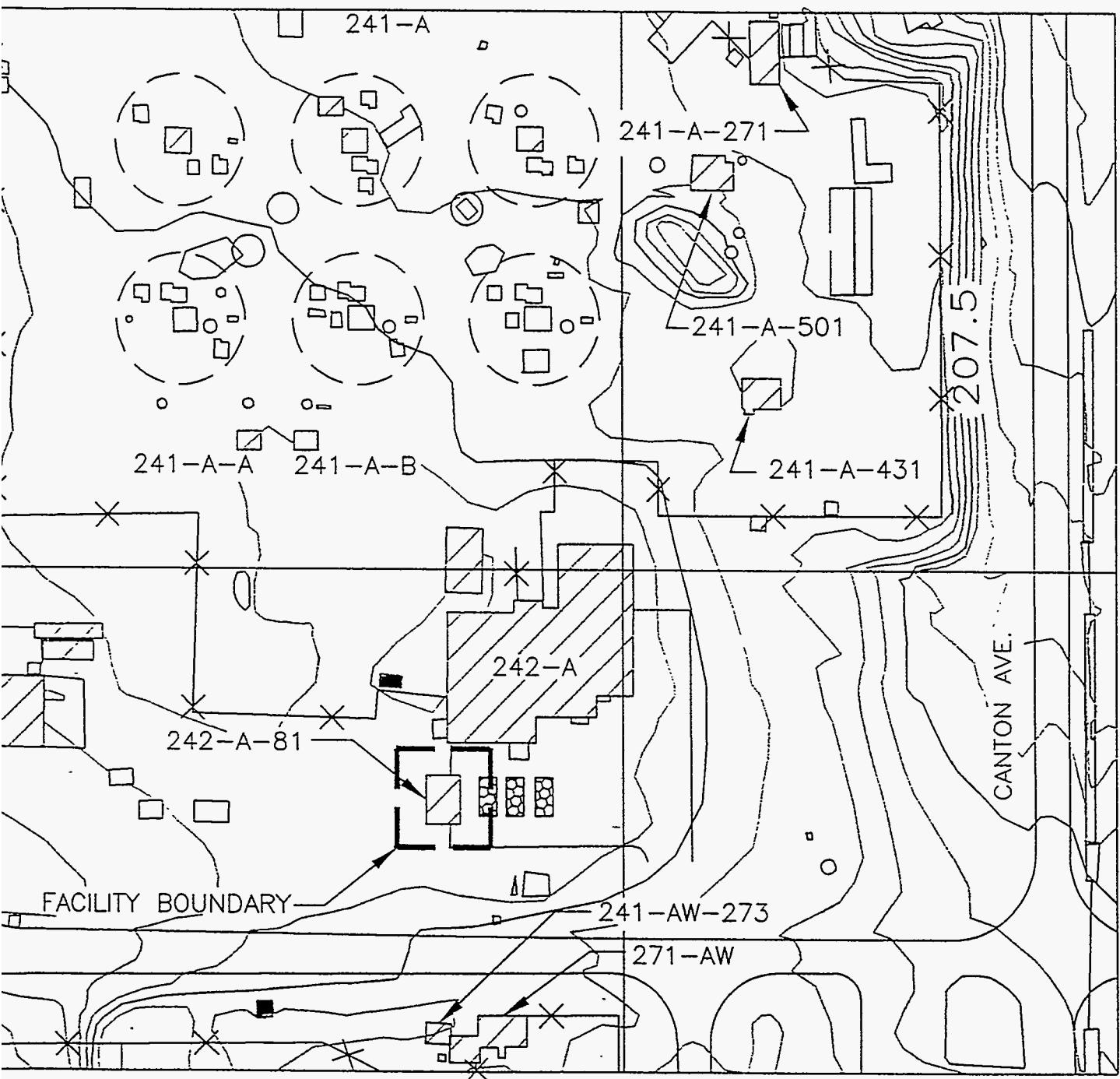


FOR GENEREAL NOTES AND LEGEND SEE: H-13-000186


OFFICIAL RELEASE  
BY WHC  
DATE JUL 07 1994

## SITE PLAN

SCALE: 1:1000




1 cm = 10 meters



| REF NUMBER   | TITLE       | MFG              | REV NO  | DESCRIPTION |
|--------------|-------------|------------------|---------|-------------|
| REFERENCE    |             | REV REL          | REV REL | REVISIONS   |
| NEXT USED ON | H-13-000200 | CADFILE N000050A |         | CADCO       |
| ZDJB0006     |             |                  |         |             |

E.575,400



N. 136,000

DWG NO H-13-000050 SH 1 OF 1 REV 0

DRAWN RAFAEL TORRES DATE 5-16-94

CHECKED *[Signature]* 6/9/94

DFTG APVD *[Signature]* 6/9/94

COG ENGR *[Signature]* 6/20/94

APVVD *[Signature]* 6/20/94

APPVD *[Signature]*

U.S. DEPARTMENT OF ENERGY  
DOE Field Office, Richland  
Westinghouse Hanford Company

## WATER SERVICES BUILDING FACILITY MAP

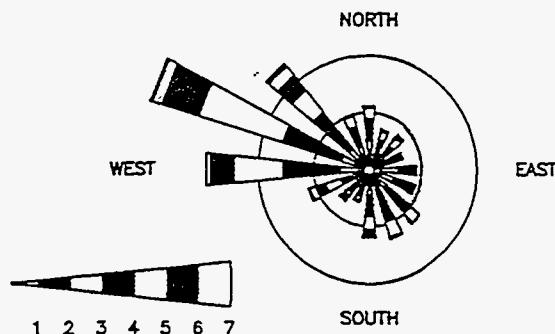
SIZE BLDG NO INDEX NO DWG NO  
B 242-A-81 0110 H-13-000050 REV 0

DOS:6.0:ACD2:12.0:SS

APPVD

SCALE SHOWN

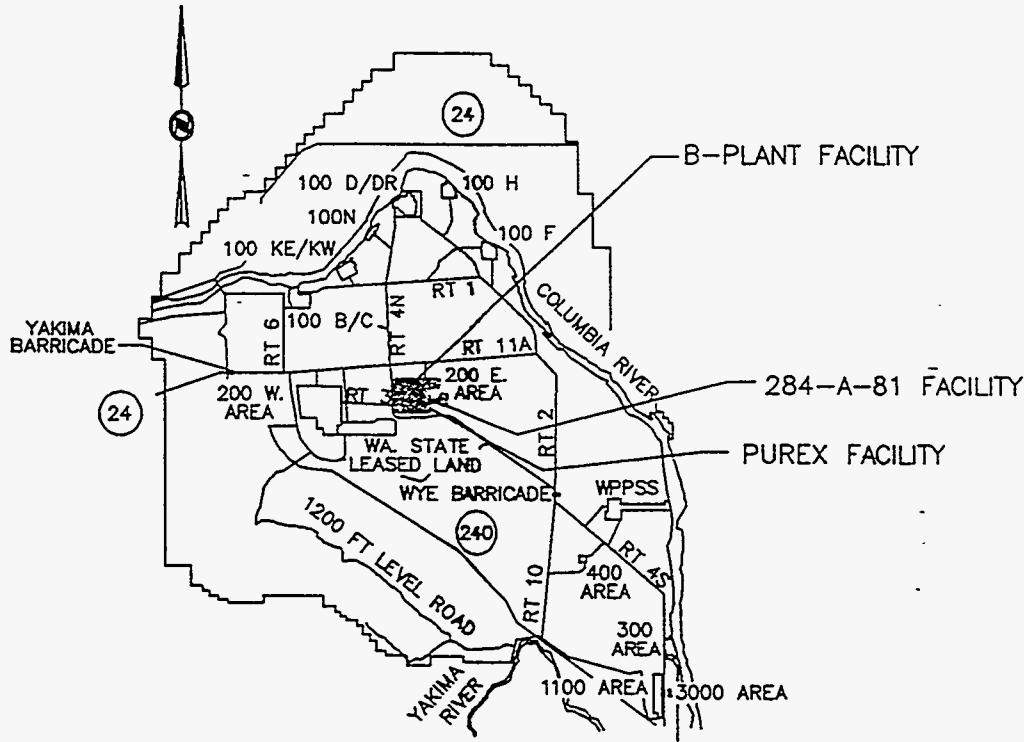
EDT 605122


SHEET 1 OF 1

CHK  
PRINT

COMMENT  
PRINT

WIND ROSE FOR 200E AREA  
% CALM WINDS = .7  
STATION NO.6


PERIOD COVERED  
1/1/93 - 12/31/93



PADDLES INDICATE DIRECTION WIND IS COMING FROM.  
RADIAL GRIDS REPRESENT 5.0% AND 10.0% OCCURRENCE.

| WIND CLASS | MILES/HOUR  |
|------------|-------------|
| 1          | >1.0 - 3.0  |
| 2          | 4.0 - 7.0   |
| 3          | 8.0 - 12.0  |
| 4          | 13.0 - 18.0 |
| 5          | 19.0 - 24.0 |
| 6          | 25.0 - 31.0 |
| 7          | 32.0 +      |

### WIND ROSE



### KEY PLAN

SCALE: NONE

|             |                       |
|-------------|-----------------------|
| H-13-000041 | PUREX FACILITY MAP    |
| H-13-000042 | B-PLANT FACILITY MAP  |
| H-13-000050 | 284-A-81 FACILITY MAP |

| REF NUMBER   | TITLE       | MFG       | REV NO   | DESCRIPTION | REV BY DATE |
|--------------|-------------|-----------|----------|-------------|-------------|
| REFERENCE    |             | REV REL   |          |             |             |
| NEXT USED ON | H-13-000200 | REVISIONS |          |             |             |
|              |             | CADFILE   | N000186A | CADCODE     |             |

## LEGEND

|             |               |                                             |                                                                                   |                                              |
|-------------|---------------|---------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------|
| COORDINATES | 2-E25-25<br>Φ | WELL<br>299-E25-25                          |  | CHEMICAL\ RADIOACTIVE<br>STORAGE FACILITIES  |
| COORDINATES | →→→           | SECURITY,WARNING,MISC FENCES                |  | RADIOACTIVE MATERIAL                         |
| ETERS)      | →→→→          | POST & CHAIN<br>(CRIB,BURIAL GROUND FENCES) |  | STAGING AREA                                 |
| OUR         | →→→→          | PERIMETER FENCES                            |  | SEPTIC TILE FIELD                            |
|             | 216-A-42      | CRIB                                        |  | STORM DRAIN AND TILE FIELD<br>(FRENCH DRAIN) |
|             | 218-E-10      | BURIAL GROUND                               |  | WASTE OIL                                    |
| LOTS        | ■ □ ▨         | BUILDINGS/STRUCTURES/TOWERS                 |  | FLAMMABLE MATERIAL<br>STORAGE LOCKER         |
|             | 242-A         | BUILDING NUMBER                             |  | DOWNSPOUTS                                   |
|             | ▨             | MOBIL OFFICES                               |  | STORM DRAINS                                 |
|             | ○ ○           | TANKS                                       |                                                                                   |                                              |

## GENERAL NOTES

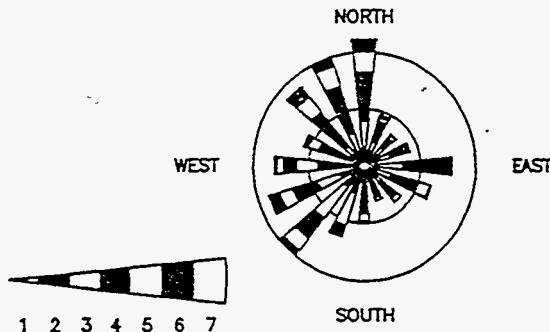
MAP IS BASED ON AERIAL PHOTOGRAPHY FLOWN ON 6-24-89. THE TOPOGRAPHIC MAP WAS PREPARED BY MERRICK & COMPANY AND CERTIFIED TO MEET NATIONAL MAP ACCURACY STANDARDS. ALL COPIES OF THE MERRICK MAPS THAT SHOW THE CERTIFICATE ARE LOCATED IN THE WESTINGHOUSE ENGINEERING FILES AS DRAWING NUMBERS H-2-79476 SHEET 1 AND H-2-79477 SHEET 1 THRU 37. AMES OF PHYSICAL FEATURES AND THE TITLE BLOCK OF THE H-13-000201 THROUGH H-13-000237 WERE ADDED BY WESTINGHOUSE HANFORD COMPANY.

NGTON COORDINATE SYSTEM: THE OFFICIAL STATE PLANE COORDINATE SYSTEM AS DEFINED BY THE  
ED CODE OF WASHINGTON (RCW). THE HANFORD SITE LIES WITHIN THE WASHINGTON COORDINATE SYSTEM,  
I ZONE. THIS GRID COVERS THE ENTIRE SITE AND USES X (EASTINGS) AND Y (NORTHINGS) COORDINATES.

DENTAL DATUM: NAD-83 LAMBERT PROJECTIONS

AL DATUM: NATIONAL GEODETIC SURVEY  
DATUM AS PROVIDED BY KAISER  
ENGINEERS HANFORD.

COORDINATES ARE SHOWN AS METERS.  
DURS ARE SHOWN AS 0.5 METERS.

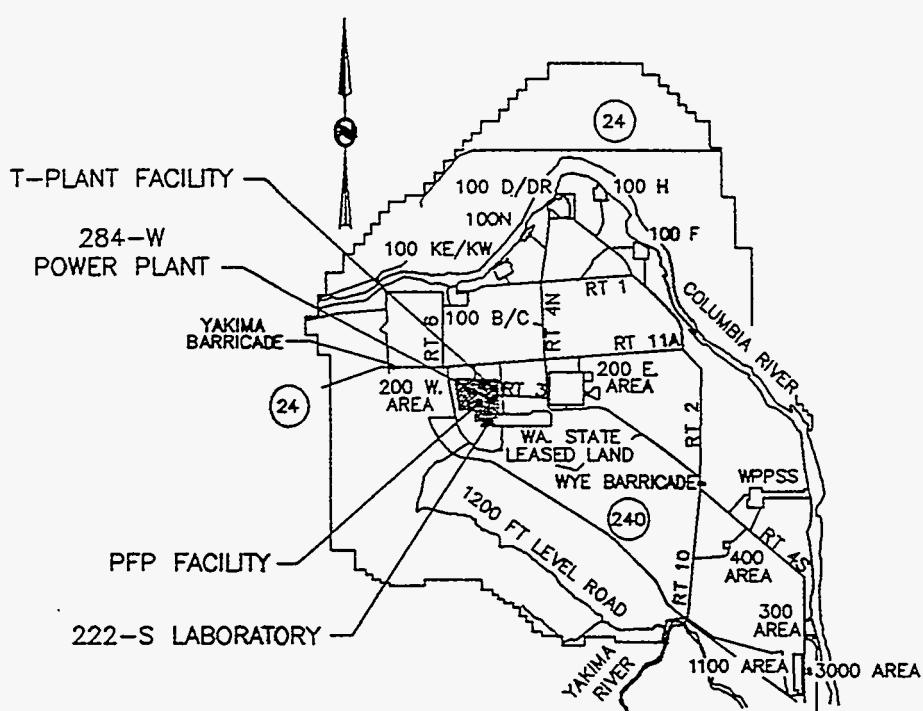

ORD PLANT GRID: A LOCAL GRID SYSTEM WITH ITS INITIAL POINT NORTHEAST OF THE 400 AREA. IT IS 200 EAST AND 200 WEST AREA AS WELL AS GENERAL SITE WORK SUCH AS WELLS AND BURIAL MOUNDS. COORDINATES ARE SHOWN AS FEET.

OFFICIAL RELEASE  
BY WHC  
DATE JUL 07 1994

|                                                                              |  |                 |                                                                                         |                 |                  |                       |          |
|------------------------------------------------------------------------------|--|-----------------|-----------------------------------------------------------------------------------------|-----------------|------------------|-----------------------|----------|
| DRAWN RAFAEL TORRES                                                          |  | DATE<br>5-13-94 | U.S. DEPARTMENT OF ENERGY<br>DOE Field Office, Richland<br>Westinghouse Hanford Company |                 |                  |                       |          |
| CHECKED <i>Aug 18/94</i>                                                     |  |                 |                                                                                         |                 |                  |                       |          |
| DFTG APVD <i>5/19/94</i>                                                     |  |                 | HANFORD SITE FACILITY MAP                                                               |                 |                  |                       |          |
| COG ENGR <i>Turner</i>                                                       |  |                 | GENERAL NOTES AND LEGEND                                                                |                 |                  |                       |          |
| APPVD <i>J. Lube</i>                                                         |  | 6-20-94         | SIZE<br>B                                                                               | BLDG NO<br>200E | INDEX NO<br>0110 | DWG NO<br>H-13-000186 | REV<br>0 |
| APPVD                                                                        |  |                 | SCALE SHOWN                                                                             |                 | EDT 605119       | SHEET 1 OF 1          |          |
| <input type="checkbox"/> <b>CHK</b><br><input type="checkbox"/> <b>PRINT</b> |  |                 | <b>COMMENT</b><br><input type="checkbox"/> <b>PRINT</b>                                 |                 |                  |                       |          |

WIND ROSE FOR: HANFORD MET STATION  
% CALM WINDS = .5  
STATION NO. 21

PERIOD COVERED  
1/1/93 - 12/31/93




PADDLES INDICATE DIRECTION WIND IS COMING FROM.  
RADIAL GRIDS REPRESENT 5.0% AND 10.0% OCCURRENCE.

| WIND CLASS | MILES/HOUR  |
|------------|-------------|
| 1          | >1.0 - 3.0  |
| 2          | 4.0 - 7.0   |
| 3          | 8.0 - 12.0  |
| 4          | 13.0 - 18.0 |
| 5          | 19.0 - 24.0 |
| 6          | 25.0 - 31.0 |
| 7          | 32.0 +      |

### WIND ROSE

|                        |                              |
|------------------------|------------------------------|
| W.47,000<br>N.43,000   | HANFORD PLANT CO<br>(FEET)   |
| E.576,250<br>N.136,000 | WASHINGTON STATE<br>(METERS) |
| 2150                   | INDEX CONTOUR (M)            |
| INTERMEDIATE CONTOUR   |                              |
| IMPROVED ROAD          |                              |
| UNIMPROVED ROAD        |                              |
| DIRT ROAD              |                              |
| SIDEWALKS\ PARKING     |                              |
| RAILROADS              |                              |



### KEY PLAN

SCALE: NONE

|             |                                |
|-------------|--------------------------------|
| H-13-000071 | 284-W POWER PLANT FACILITY MAP |
| H-13-000096 | PFP FACILITY MAP               |
| H-13-000184 | 222-S LABORATORY FACILITY MAP  |
| H-13-000185 | T-PLANT FACILITY MAP           |
| REF NUMBER  | TITLE                          |

| MFG REV NO | DESCRIPTION | REV BY DATE |
|------------|-------------|-------------|
| REV REL    |             |             |

#### REFERENCE

#### REVISIONS

NEXT USED ON

H-13-000200

CADFILE N000187A

CADCODE D

## LEGEND

|            |                |                                             |  |                                              |
|------------|----------------|---------------------------------------------|--|----------------------------------------------|
| RDINATES   | 2-E25-25<br>⊕  | WELL<br>299-E25-25                          |  | CHEMICAL\RADIACTIVE<br>STORAGE FACILITIES    |
| OORDINATES | —————<br>*—*   | SECURITY,WARNING,MISC FENCES                |  | RADIOACTIVE MATERIAL<br>STAGING AREA         |
| ERS)       | —————<br>*—*—* | POST & CHAIN<br>(CRIB,BURIAL GROUND FENCES) |  | SEPTIC TILE FIELD                            |
| IR         | —————<br>#—#—# | PERIMETER FENCES                            |  | STORM DRAIN AND TILE FIELD<br>(FRENCH DRAIN) |
| OTS        | 216-A-42       | CRIB                                        |  | WASTE OIL                                    |
|            | 218-E-10       | BURIAL GROUND                               |  | FLAMMABLE MATERIAL<br>STORAGE LOCKER         |
|            |                | BUILDINGS/STRUCTURES/TOWERS                 |  | DOWNSPOUTS                                   |
|            | 242-A          | BUILDING NUMBER                             |  | STORM DRAINS                                 |
|            |                | MOBIL OFFICES                               |  |                                              |
|            |                | TANKS                                       |  |                                              |

## GENERAL NOTES

JP IS BASED ON AERIAL PHOTOGRAPHY FLOWN ON 6-24-89. THE TOPOGRAPHIC MAP WAS PREPARED  
RICK & COMPANY AND CERTIFIED TO MEET NATIONAL MAP ACCURACY STANDARDS.

COPIES OF THE MERRICK MAPS THAT SHOW THE CERTIFICATE ARE LOCATED IN THE WESTINGHOUSE RING FILES AS DRAWING NUMBERS H-2-79476 SHEET 1 AND H-2-79477 SHEET 1 THRU 37. PICTURES OF PHYSICAL FEATURES AND THE TITLE BLOCK OF THE H-13-000201 THROUGH H-13-000237 ARE ADDED BY WESTINGHOUSE HANFORD COMPANY.

TON COORDINATE SYSTEM: THE OFFICIAL STATE PLANE COORDINATE SYSTEM AS DEFINED BY THE CODE OF WASHINGTON (RCW). THE HANFORD SITE LIES WITHIN THE WASHINGTON COORDINATE SYSTEM, ZONE. THIS GRID COVERS THE ENTIRE SITE AND USES X (EASTINGS) AND Y (NORTHINGS) COORDINATES.

ITAI DATUM: NAD-83 LAMBERT PROJECTIONS

- DATUM: NATIONAL GEODETIC SURVEY  
DATUM AS PROVIDED BY KAISER  
ENGINEERS HANFORD.

UNITS ARE SHOWN AS METERS.  
RS ARE SHOWN AS 0.5 METERS.

D PLANT GRID: A LOCAL GRID SYSTEM WITH ITS INITIAL POINT NORTHEAST OF THE 400 AREA. IT COVERS THE 200 EAST AND 200 WEST AREA AS WELL AS GENERAL SITE WORK SUCH AS WELLS AND BURIALS. COORDINATES ARE SHOWN AS FEET.

OFFICIAL RELEASE  
BY WHC  
DATE : JUL 07 1994

|                                       |  |                                           |                                                                                         |                 |                  |
|---------------------------------------|--|-------------------------------------------|-----------------------------------------------------------------------------------------|-----------------|------------------|
| DRAWN RAFAEL TORRES                   |  | DATE<br>5-13-94                           | U.S. DEPARTMENT OF ENERGY<br>DOE Field Office, Richland<br>Westinghouse Hanford Company |                 |                  |
| CHECKED<br><i>John J. Flannigan</i>   |  | 6/1/94                                    |                                                                                         |                 |                  |
| DFTG APVD<br><i>John J. Flannigan</i> |  | 6/1/94                                    | HANFORD SITE FACILITY MAP                                                               |                 |                  |
| COG ENGR<br><i>John J. Flannigan</i>  |  | 6/15/94                                   | GENERAL NOTES AND LEGEND                                                                |                 |                  |
| APPVD<br><i>John J. Flannigan</i>     |  | 6-20-94                                   | SIZE<br>B                                                                               | BLDG NO<br>200W | INDEX NO<br>0110 |
| APPVD<br><i>John J. Flannigan</i>     |  |                                           | DWG NO<br>H-13-000187                                                                   |                 | REV<br>0         |
| APPVD                                 |  | SCALE SHOWN                               | EDT 605123                                                                              |                 | SHEET 1 OF 1     |
| CHK<br>PRINT <input type="checkbox"/> |  | COMMENT<br>PRINT <input type="checkbox"/> |                                                                                         |                 |                  |

Facility: 200 Area TEDF

DOE/RL-94-29, Rev. 0  
08/94

1  
2  
3  
4

## APPENDIX G

### OTHER INFORMATION

## APPENDIX G

## CONTENTS

8 G.1.0 DESCRIBE LIQUID WASTES OR SLUDGES BEING GENERATED  
9 THAT ARE NOT DISPOSED OF IN THE WASTE STREAM(S) . . . . . APP G-1  
10 G.1.1 200 AREA TREATED EFFLUENT DISPOSAL FACILITY . . . . . APP G-1  
11  
12 G.2.0 DESCRIBE THE STORAGE AREAS FOR RAW MATERIALS, PRODUCTS  
13 AND WASTES . . . . . APP G-1  
14 G.2.1 200 AREA TREATED EFFLUENT DISPOSAL FACILITY . . . . . APP G-1  
15 G.2.2 SUPPLEMENTARY INFORMATION ON THE FACILITIES  
16 DISCHARGING TO THE 200 AREA TREATED EFFLUENT  
17 DISPOSAL FACILITY . . . . . APP G-1  
18  
19 G.3.0 HAVE YOU DESIGNATED YOUR WASTES ACCORDING TO THE  
20 PROCEDURES OF DANGEROUS WASTE REGULATIONS,  
21 CHAPTER 173-303 WAC? . . . . . APP G-2  
22 G.3.1 200 AREA TREATED EFFLUENT DISPOSAL FACILITY . . . . . APP G-2  
23 G.3.2 SUPPLEMENTARY INFORMATION ON THE FACILITIES  
24 DISCHARGING TO THE 200 AREA TREATED EFFLUENT  
25 DISPOSAL FACILITY . . . . . APP G-2  
26  
27  
28

1 APPENDIX G  
2  
3  
4  
5  
67 OTHER INFORMATION  
8  
9  
10

11 **G.1.0 DESCRIBE LIQUID WASTES OR SLUDGES BEING GENERATED THAT ARE NOT DISPOSED**  
12 **OF IN THE WASTE STREAM(S) AND HOW THEY ARE DISPOSED OF. FOR EACH TYPE**  
13 **OF WASTE, PROVIDE TYPE OF WASTE, NAME, ADDRESS, AND PHONE NUMBER OF**  
14 **HAULER.**

15 **G.1.1 200 AREA TREATED EFFLUENT DISPOSAL FACILITY**  
16  
17  
18

19 No liquid wastes are generated by the 200 Area TEDF. Sludges as a result  
20 of soil accumulation in the pump pits associated with the 200 Area TEDF will  
21 be disposed of on the Hanford Site as nonradioactive waste according to  
22 DOE 5400.5 [II.5.c(6) and IV.2.c].

23 **G.1.2 SUPPLEMENTARY INFORMATION ON THE FACILITIES DISCHARGING TO THE 200 AREA**  
24 **TREATED EFFLUENT DISPOSAL FACILITY**

25 Each facility, which discharges effluent to the 200 Area TEDF, generates  
26 liquid wastes or sludges that are not discharged to the 200 Area TEDF. The  
27 sanitary sewer from each facility is disposed of to a septic tank and drain  
28 field system. The mixed wastes are disposed of to double-shell tanks before  
29 processing by the 242-A Evaporator. The ash waste water from the 284-W Power  
30 Plant is disposed of in the ash disposal basin. The coal ramp at the 284-W  
31 Power Plant is washed with raw water and the waste water is discharged to a  
32 basin. Low-level radioactive liquid at B Plant is generated in maintaining  
33 the radioactive waste stored in B Plant. The low-level radioactive waste is  
34 stored temporarily in a 900 gallon tank in B Plant, before transfer to double-  
35 shell tanks.

36 **G.2.0 DESCRIBE THE STORAGE AREAS FOR RAW MATERIALS, PRODUCTS AND WASTES.**  
37  
3839 **G.2.1 200 AREA TREATED EFFLUENT DISPOSAL FACILITY**  
40  
41

42 Because the 200 Area TEDF is a liquid effluent collection, transfer, and  
43 disposal facility, no storage areas for raw materials, products and wastes are  
44 required.

45 **G.2.2 SUPPLEMENTARY INFORMATION ON THE FACILITIES DISCHARGING TO THE 200 AREA**  
46 **TREATED EFFLUENT DISPOSAL FACILITY**

47 Each facility that generates dilute mixed waste, stores the waste in  
48 double-shell tanks. The solid waste from sanitary sewers is retained in  
49 septic tanks before periodic pumping and disposal offsite.

1 **G.3.0 HAVE YOU DESIGNATED YOUR WASTES ACCORDING TO THE PROCEDURES OF**  
2 **DANGEROUS WASTE REGULATIONS, CHAPTER 173-303 WAC?**3  
4  
5 **G.3.1 200 AREA TREATED EFFLUENT DISPOSAL FACILITY**6  
7       In accordance with the procedures in WAC 173-303 for determining whether  
8 or not a waste stream is designated as a dangerous waste or extremely  
9 hazardous waste, the streams that will discharge to the 200 Area TEDF have  
10 been determined not to be dangerous waste or extremely hazardous wastes.11  
12  
13 **G.3.2 SUPPLEMENTARY INFORMATION ON THE FACILITIES DISCHARGING TO THE 200 AREA**  
14 **TREATED EFFLUENT DISPOSAL FACILITY**15  
16        Yes        No17  
18       Note: This answer applies for all streams discharging to the 200 Area  
19       TEDF.

Facility: 200 Area TEDF

DOE/RL-94-29, Rev. 0  
08/94

1  
2  
3  
4

## APPENDIX H

### SITE ASSESSMENT

1 APPENDIX H  
2  
3  
4  
5  
67 CONTENTS  
8  
9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35

|       |                                                                                                                                                         |         |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| H.1.0 | GIVE THE LEGAL DESCRIPTION OF THE LAND TREATMENT SITE(S) . . .                                                                                          | APP H-1 |
| H.2.0 | LIST ALL ENVIRONMENTAL CONTROL PERMITS OR APPROVALS<br>NEEDED FOR THIS PROJECT . . . . .                                                                | APP H-1 |
| H.3.0 | ATTACH A TOPOGRAPHIC MAP WITH CONTOUR INTERVALS USED BY<br>U.S. GEOLOGICAL SURVEY . . . . .                                                             | APP H-1 |
| H.4.0 | IDENTIFY ALL WELLS WITHIN 500 FEET OF THE SITE . . . . .                                                                                                | APP H-2 |
| H.5.0 | DESCRIBE SOILS ON THE SITE USING INFORMATION FROM LOCAL<br>SOIL SURVEY REPORTS . . . . .                                                                | APP H-2 |
| H.6.0 | DESCRIBE THE REGIONAL GEOLOGY AND HYDROGEOLOGY WITHIN<br>1 MILE OF THE SITE . . . . .                                                                   | APP H-2 |
| H.7.0 | LIST THE NAMES AND ADDRESSES OF CONTRACTORS OR CONSULTANTS<br>WHO PROVIDED INFORMATION AND CITE SOURCES OF INFORMATION<br>BY TITLE AND AUTHOR . . . . . | APP H-2 |

## FIGURES

|      |                                                                                |         |
|------|--------------------------------------------------------------------------------|---------|
| H-1. | Soils Type Map of the Hanford Site . . . . .                                   | APP H-3 |
| H-2. | Soils Type Map of the 200 Area Treated Effluent<br>Disposal Facility . . . . . | APP H-4 |

1 APPENDIX H  
2  
3  
4  
5  
67 SITE ASSESSMENT  
8  
9  
1011 H.1.0 GIVE THE LEGAL DESCRIPTION OF THE LAND TREATMENT SITE(S).  
12 GIVE THE ACREAGE OF EACH LAND TREATMENT SITE(S). ATTACH A  
13 COPY OF THE CONTRACT(S) AUTHORIZING USE OF THE LAND FOR TREATMENT.

## 14 Legal Description:

15 The land treatment site consists of two new adjacent 5-acre disposal  
16 basins. The four corners of the site of the two new adjacent 5-acre  
17 disposal basins are located:

|    | Longitude           | Latitude           |
|----|---------------------|--------------------|
| 18 | 119° 28' 27.884294" | 46° 33' 14.396998" |
| 19 | 119° 28' 6.767297"  | 46° 33' 14.248825" |
| 20 | 119° 28' 6.982550"  | 46° 32' 59.680524" |
| 21 | 119° 28' 28.097977" | 46° 32' 59.828684" |

22 A specific contract authorizing use of the new disposal basins does not  
23 exist; however, the Hanford Site was created to serve as a nuclear research  
24 and production facility for the U.S. Government. The Hanford Site has been in  
25 use since the early 1940's and all disposal facilities have been authorized by  
26 the U.S. Government.

27  
28  
29 H.2.0 LIST ALL ENVIRONMENTAL CONTROL PERMITS OR APPROVALS NEEDED FOR THIS  
30 PROJECT; FOR EXAMPLE, SEPTIC TANK PERMITS, SLUDGE APPLICATION PERMITS,  
31 OR AIR EMISSIONS PERMITS.

32 The following apply to this project:

33

- 34 • Hanford Environmental Compliance Environmental Assessment (DOE 1992)
- 35 • State Environmental Policy Act of 1971 checklist (WHC 1993d)
- 36 • Engineering Report (WHC 1993a) submitted pursuant to WAC 173-240.

37 H.3.0 ATTACH A TOPOGRAPHIC MAP WITH CONTOUR INTERVALS USED BY  
38 U.S. GEOLOGICAL SURVEY. SHOW THE FOLLOWING ON THIS MAP.

39

- 40 a. Location and name of internal and adjacent streets,
- 41 b. Surface water drainage systems,
- 42 c. Water supply and other wells within 500 feet of the site,
- 43 d. Surface water diversions within 500 feet of the site,
- 44 e. Chemical and product handling and storage facilities,
- 45 f. Infiltration sources, such as drainfields, lagoons, dry wells, and
- 46 abandoned wells within 500 feet of the site,
- 47 g. Waste water and cooling water discharge points with ID numbers
- 48 h. Other activities and land uses within 1/4 mile of the site.

1       A USGS topographic map shows these items with the exception of item e  
2 (chemical and product handling and storage areas). The 200 Area TEDF does not  
3 have any chemical and product handling and storage areas. The chemical and  
4 product handling and storage areas are shown on the facility maps in Appendix  
5 F, Section F.6.0, for each facility discharging to the 200 Area TEDF. The  
6 disposal site is not located adjacent to any of the facilities that are  
7 producing the waste streams and have chemical and product handling and storage  
8 areas.

9

10

11       H.4.0   ATTACH WELLS LOGS AND WELL I.D.# WHEN AVAILABLE FOR ALL WELLS WITHIN  
12       500 FEET AND ANY AVAILABLE WATER QUALITY DATA.

13

14       Monitoring wells within 500 feet of the disposal site include:

15

16       Refer to Figure 5, page 17, of the "Site Characterization Report: Results  
17 of Detailed Evaluation of the Suitability of the Site Proposed for Disposal of  
18 200 Areas Treated Effluent" (Site Characterization Report) (WHC 1993b) for  
19 locations of monitoring wells located within 500 feet of the disposal site.

20

21       The well logs for the groundwater monitoring wells for the 200 Area TEDF,  
22 (699-40-36, 699-42-37, and 699-41-35) are in Appendix A of the Site  
23 Characterization Report submitted to Ecology in October 1993. The Site  
24 Characterization Report documents the results of a detailed evaluation of the  
25 suitability of the site proposed for disposal of 200 Area treated effluents.

26

27

28       H.5.0   DESCRIBE SOILS ON THE SITE USING INFORMATION FROM LOCAL SOIL SURVEY  
29       REPORTS. (SUBMIT ON SEPARATE SHEET.)

30

31       Chapter 3.0 of the Site Characterization Report describes the  
32 stratigraphy and results of lithologic analyses of the 200 Area TEDF site.  
33 The Ringold and Hanford formations, physical properties, and chemical analyses  
34 of the sediments are discussed. The soil types mapped on the Hanford Site are  
35 shown in Figure H-1. Soil types mapped at the 200 Area TEDF are provided in  
36 Figure H-2.

37

38

39       H.6.0   DESCRIBE THE REGIONAL GEOLOGY AND HYDROGEOLOGY WITHIN 1 MILE OF THE  
40       SITE. (SUBMIT ON SEPARATE SHEET.)

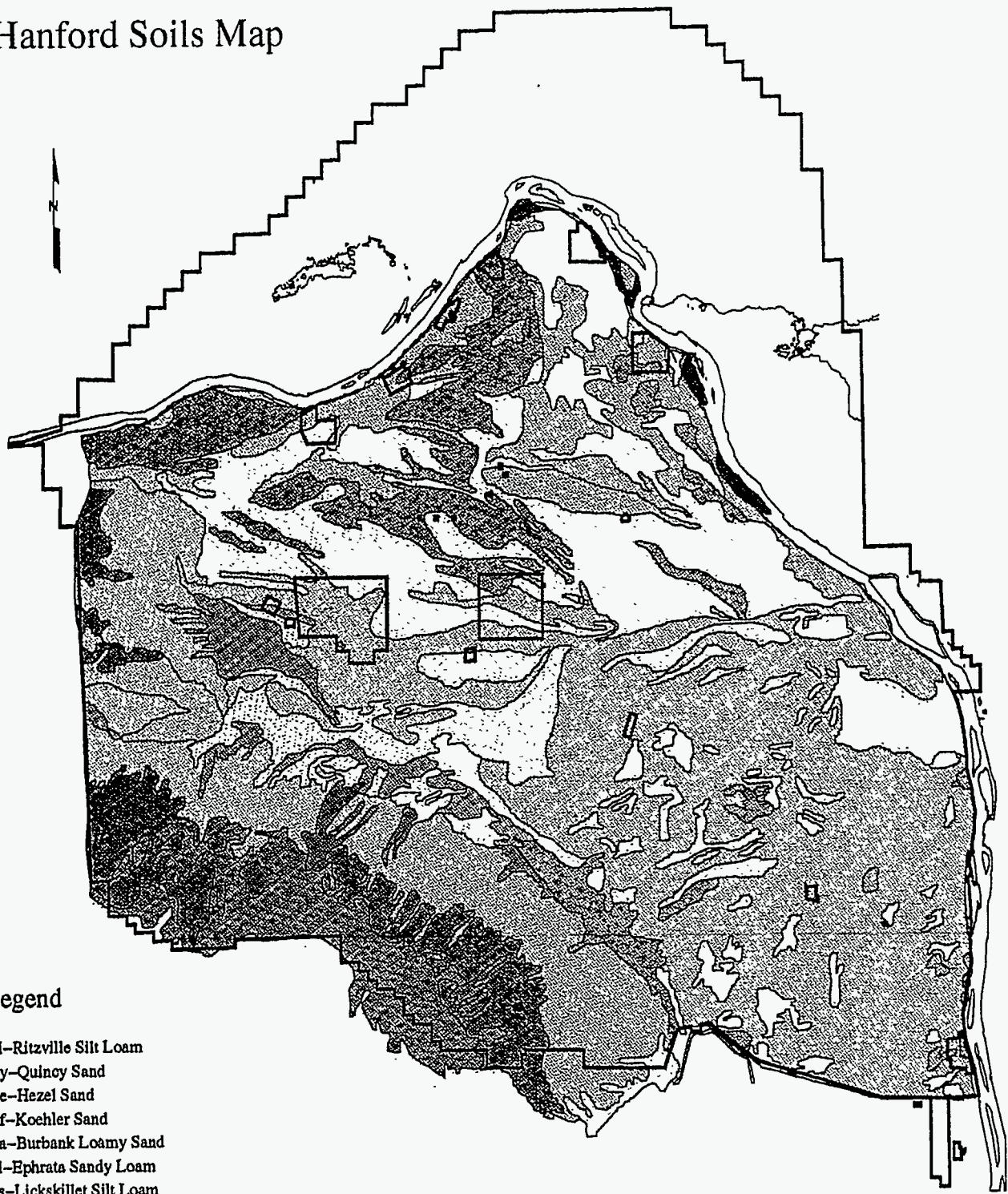
41

42       Chapter 2.0 of the Site Characterization Report describes the regional  
43 setting. Chapters 3.0 and 4.0 describe hydrogeologic, geologic and hydrology  
44 setting of the disposal site for the 200 Area TEDF. Chapter 4.0 provides  
45 detailed information on the hydrostratigraphic relationships, hydraulic  
46 gradient, groundwater quality, baseline infiltration rates, hydraulic tests,  
47 and the predicted effects of the operation of the 200 Area TEDF on the  
48 uppermost aquifer.

49

50

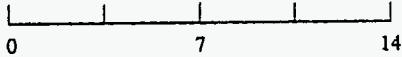
1    **H.7.0 LIST THE NAMES AND ADDRESSES OF CONTRACTORS OR CONSULTANTS WHO PROVIDED**  
2    **INFORMATION AND CITE SOURCES OF INFORMATION BY TITLE AND AUTHOR.**


3  
4    A reference list is included in Section 2.0 of the document for all  
5    references cited in this permit application. Additionally, the Site  
6    Characterization Report (1993b) provides an extensive list of references.

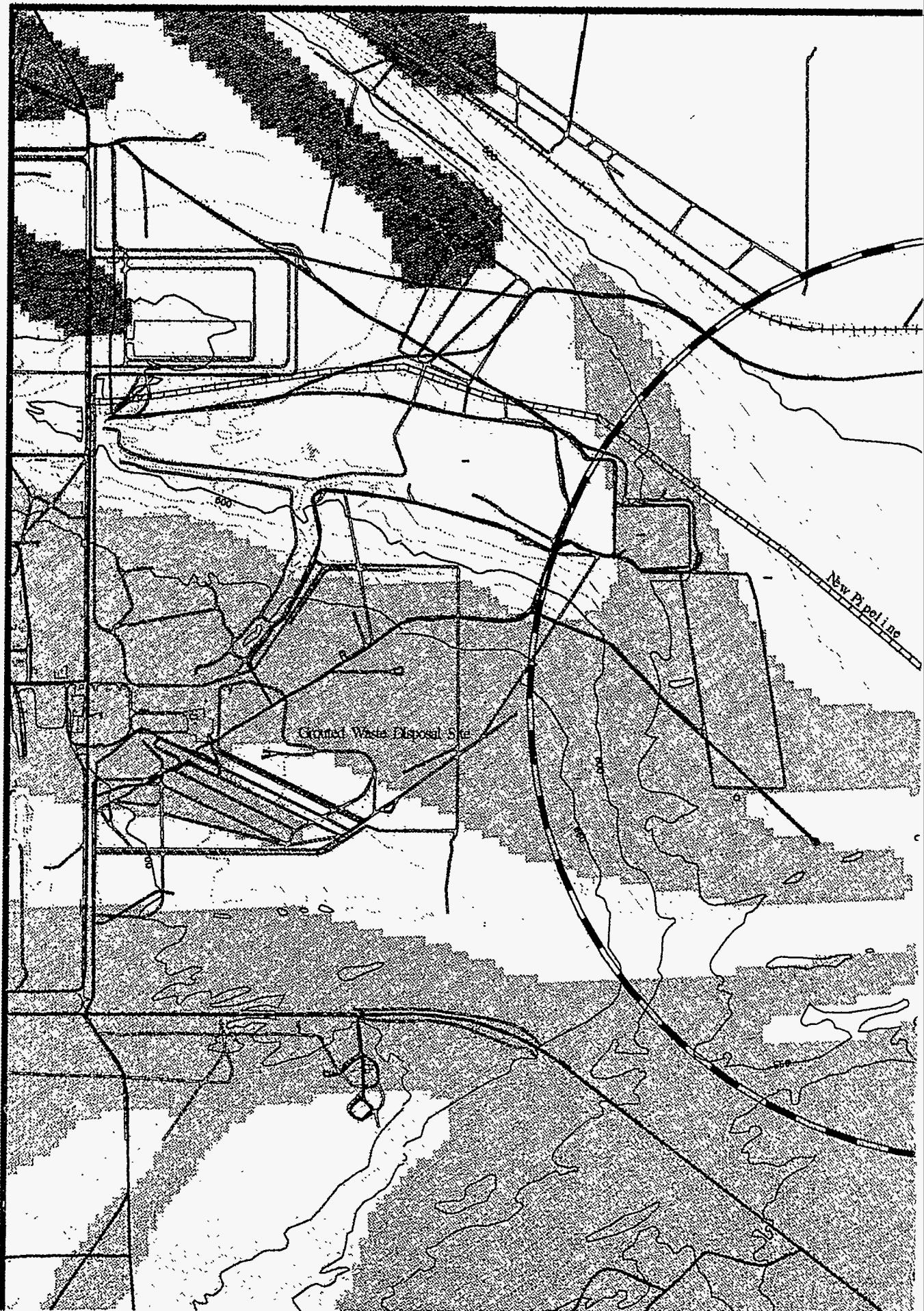
Facility: 200 Area TEDF

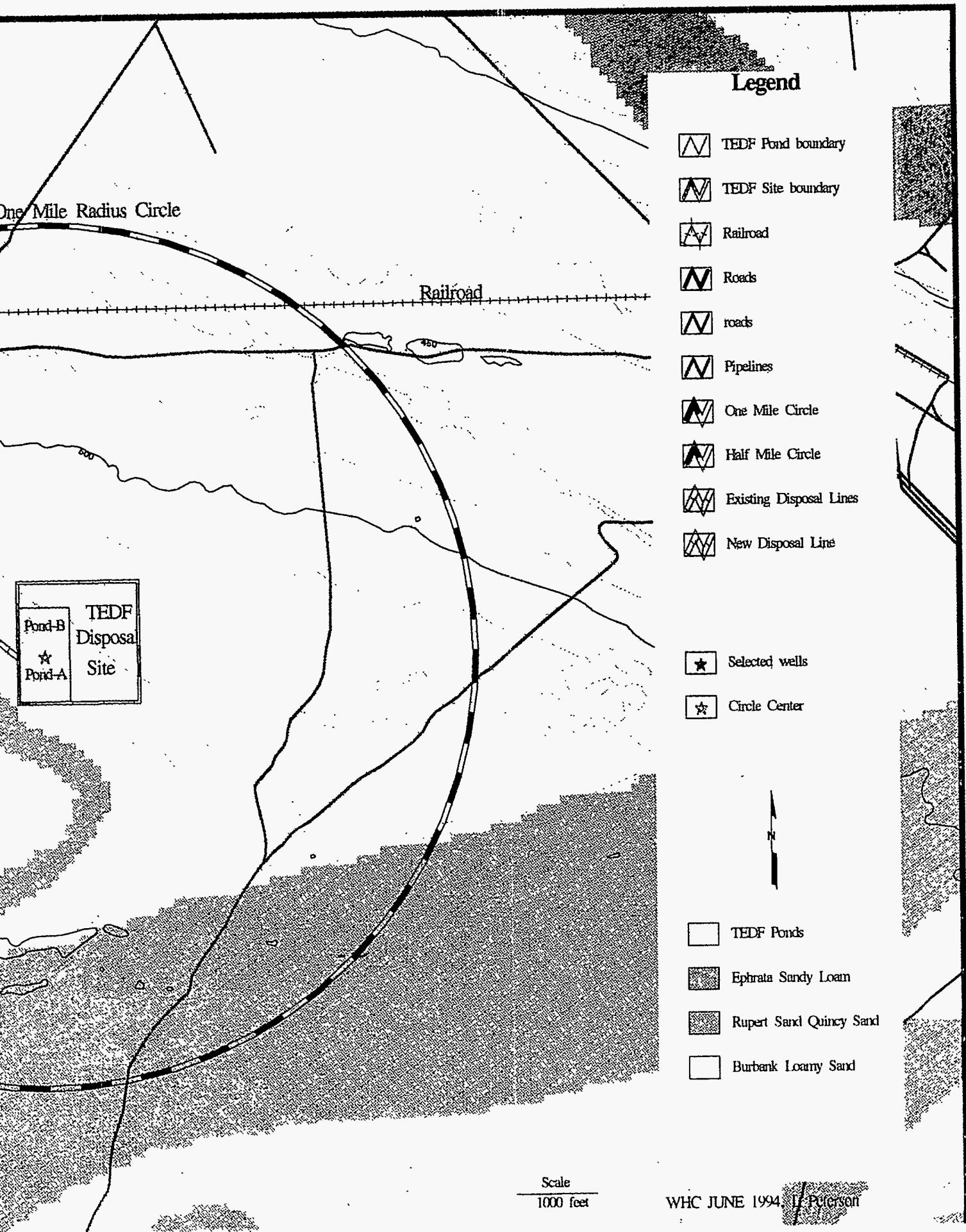
DOE/RL-94-29, Rev. 0  
08/94

This page intentionally left blank.

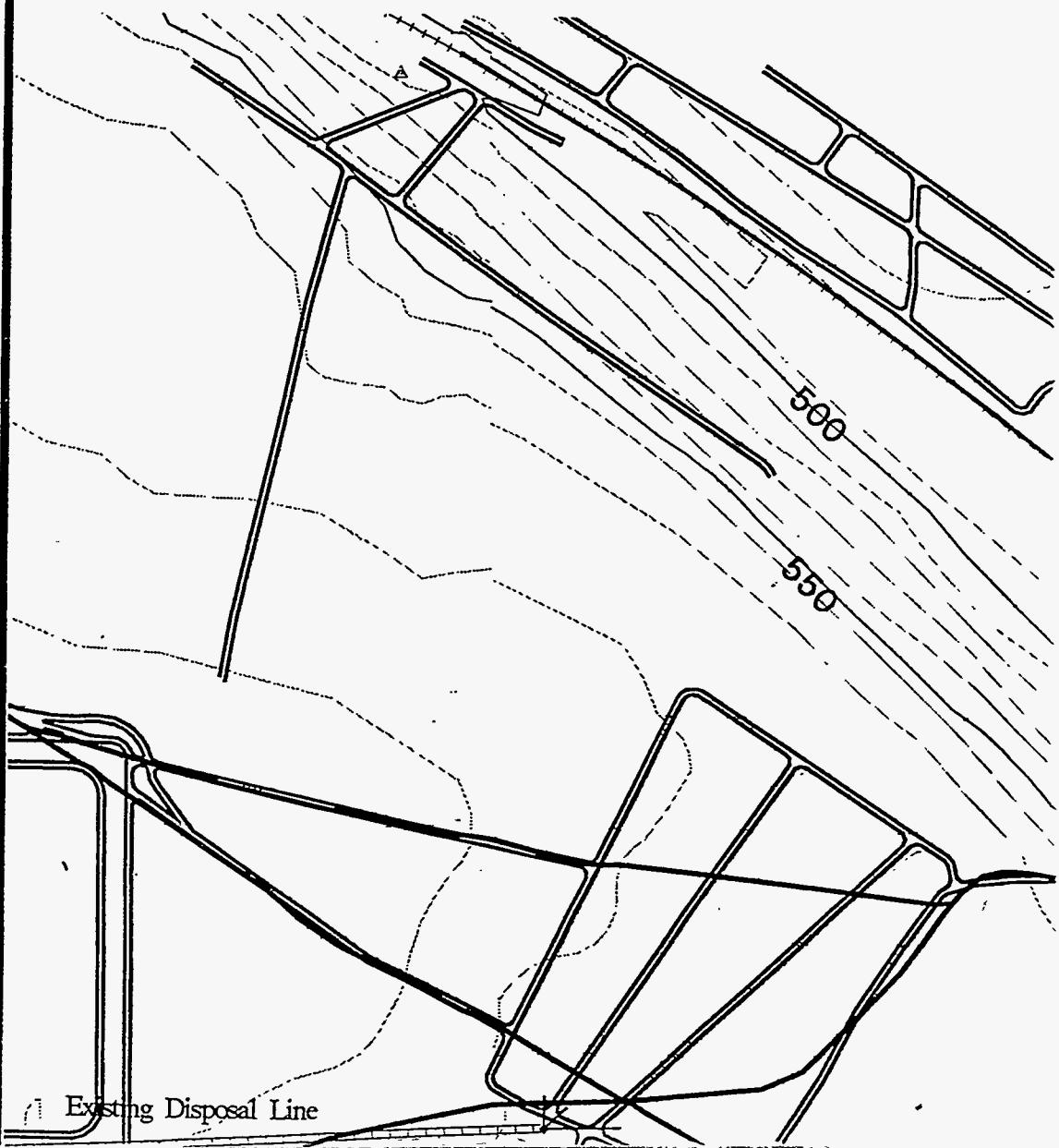

# Hanford Soils Map



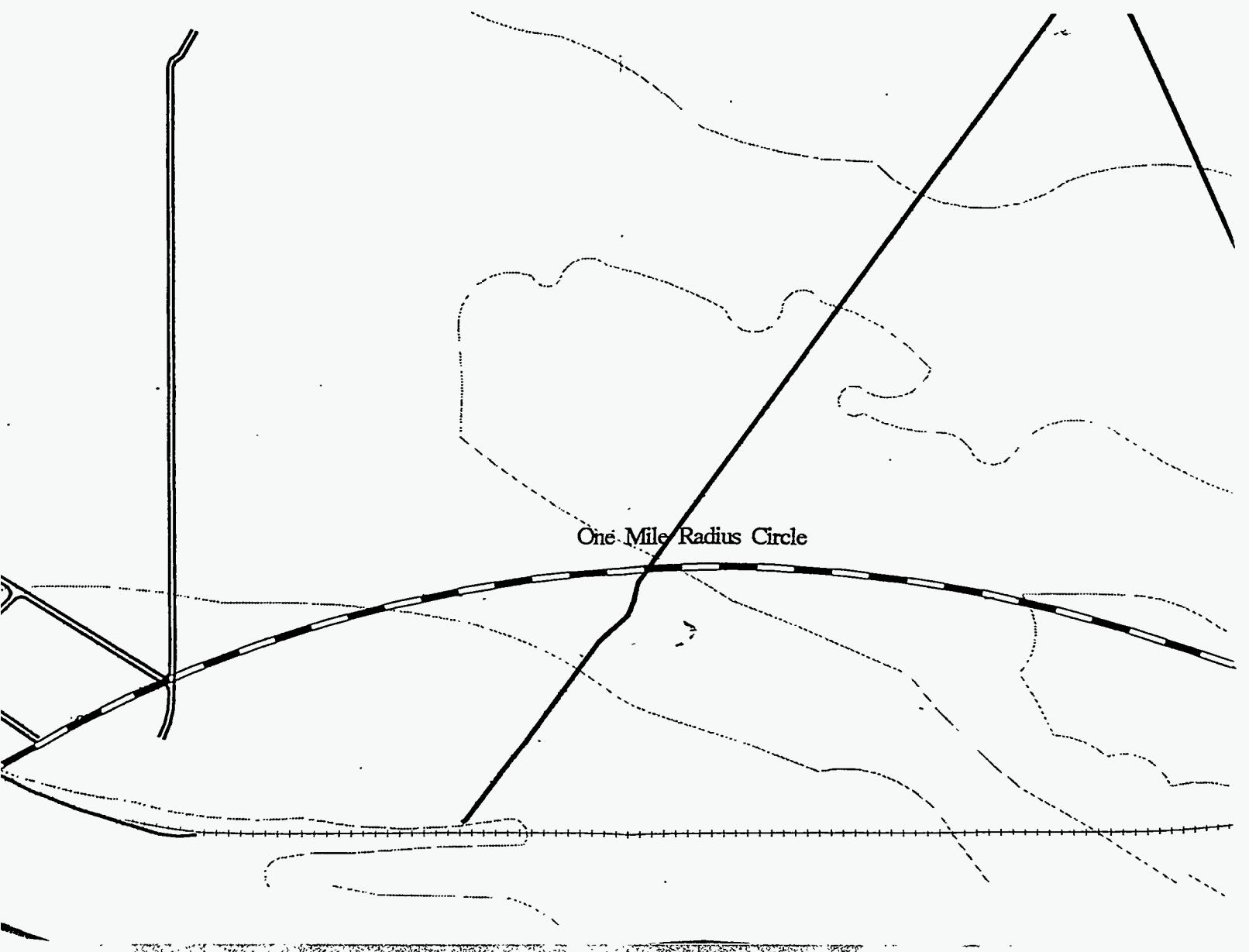

## Legend


- Ri-Ritzville Silt Loam
- Qy-Quincy Sand
- He-Hezel Sand
- Kf-Koehler Sand
- Ba-Burbank Loamy Sand
- El-Ephrata Sandy Loam
- Ls-Lickskillet Silt Loam
- Eb-Ephrata Stoney Loam
- Kl-Kloana Silt Loam
- Wa-Warden Silt Loam
- So-Scootney Stony Silt Loam
- P-Pasco Silt Loam
- Qu-Esquatzel Silt Loam
- Rv-Riverwash
- D-Dunesand

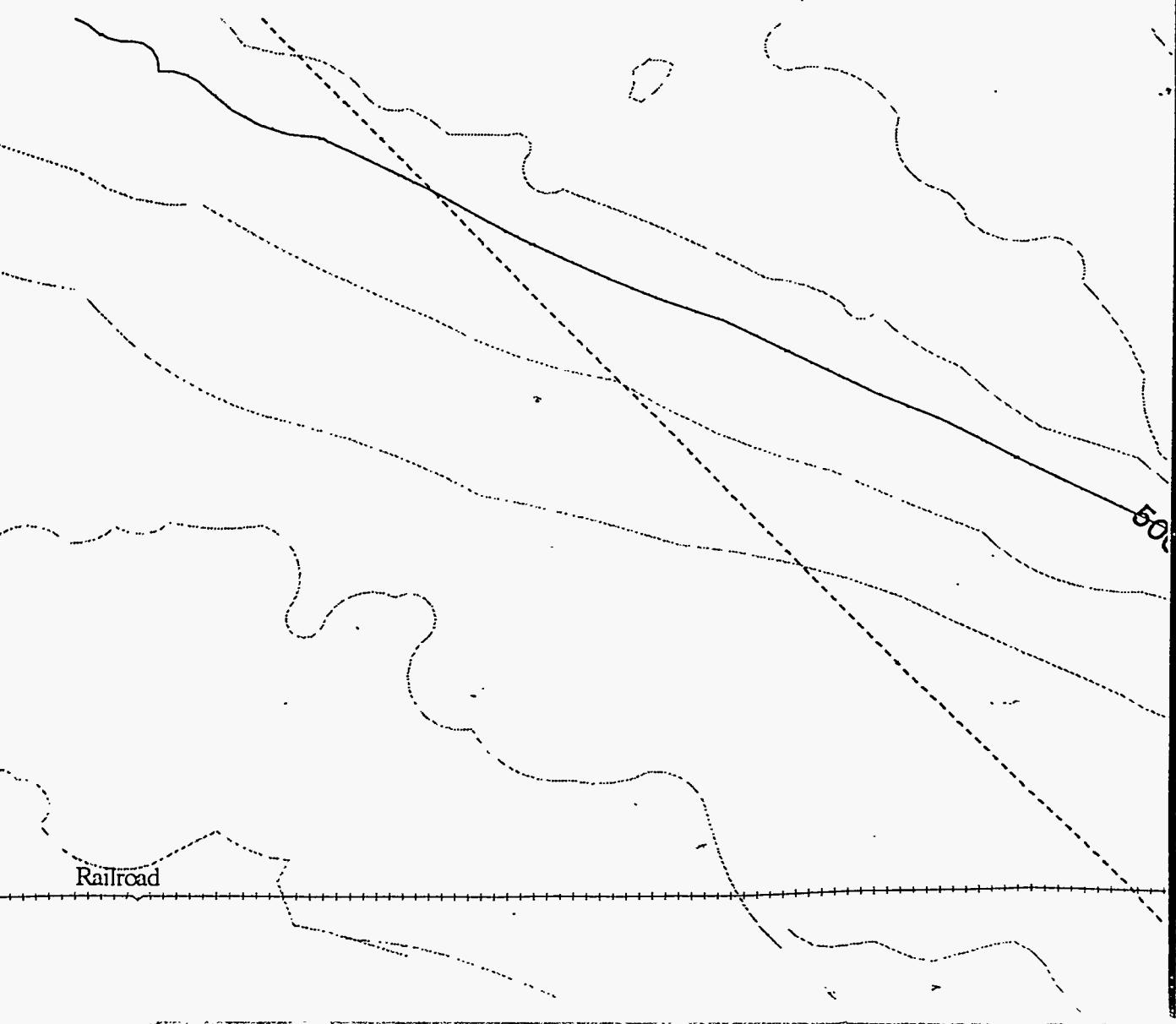
Scale Kilometers

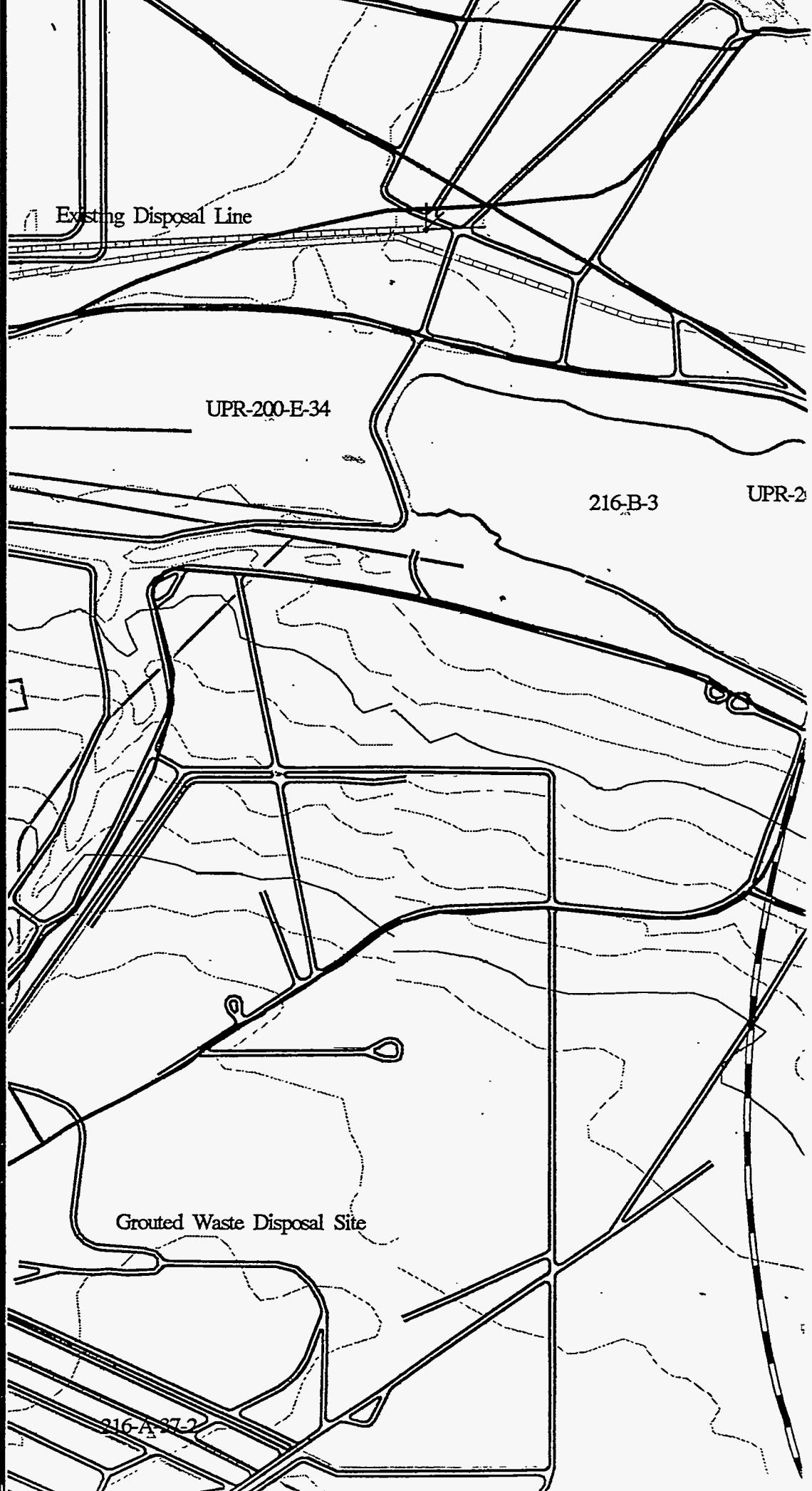


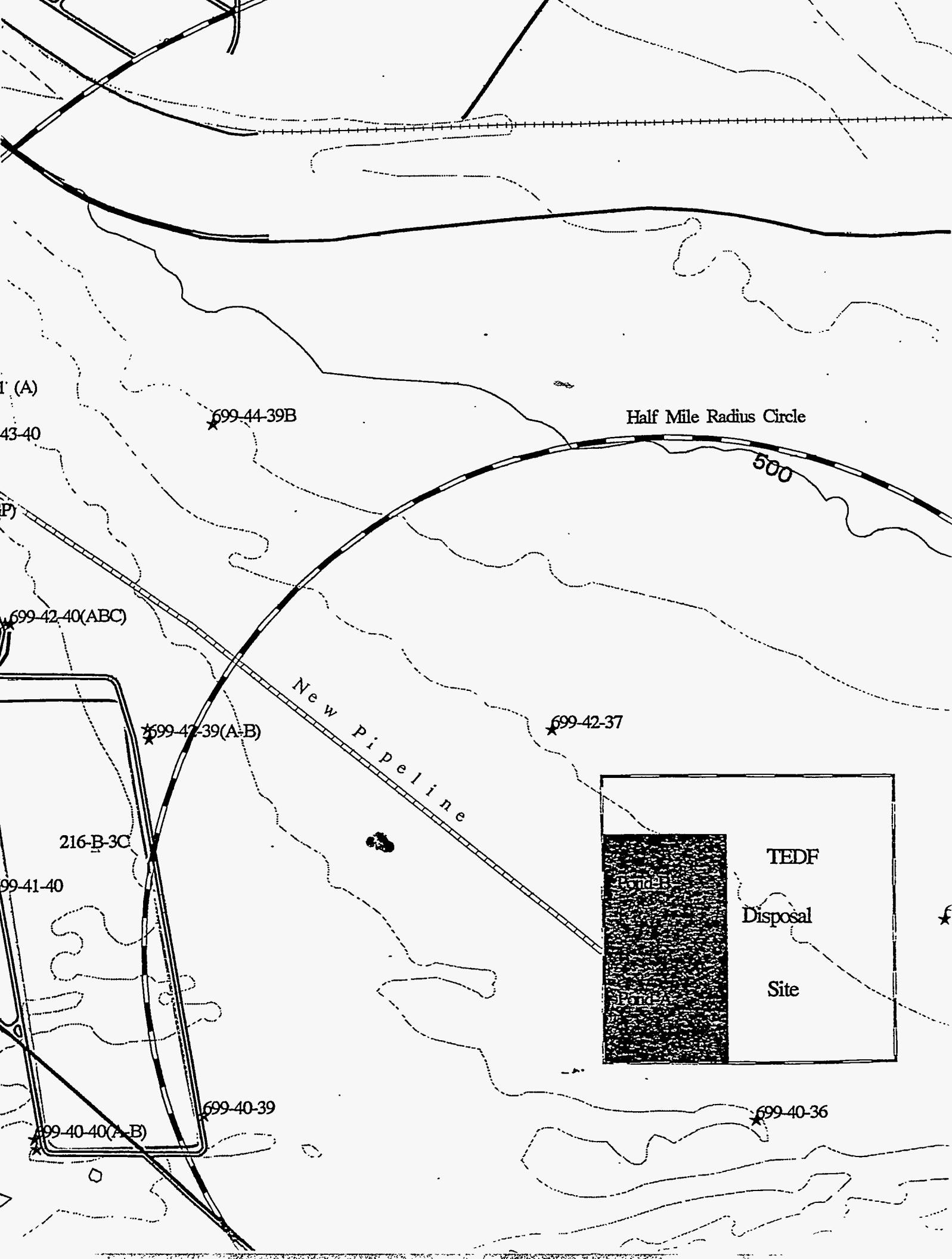

Soils Map of the Hanford Site (modified from Hajek 1966)  
WHCLAD2-3-94

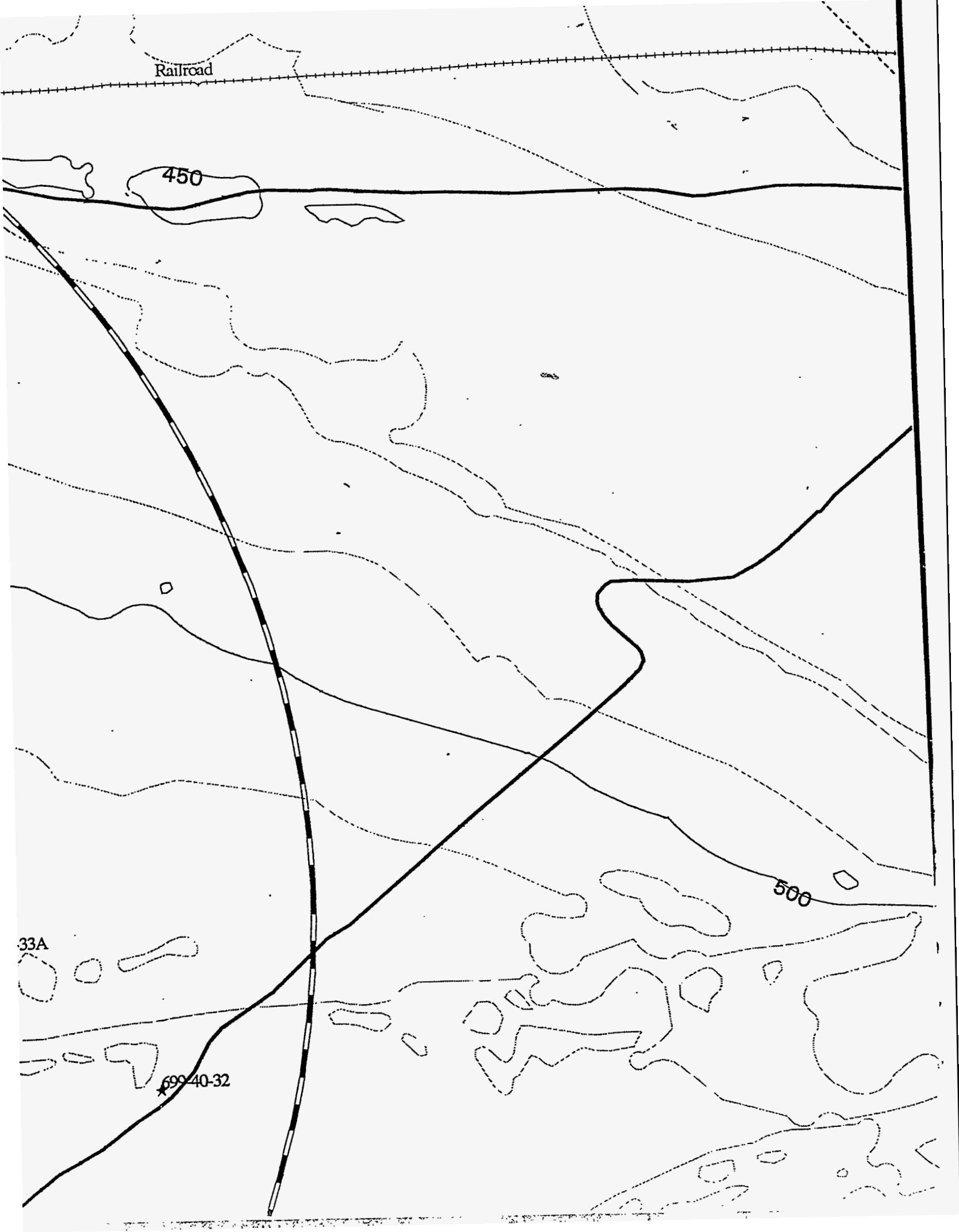


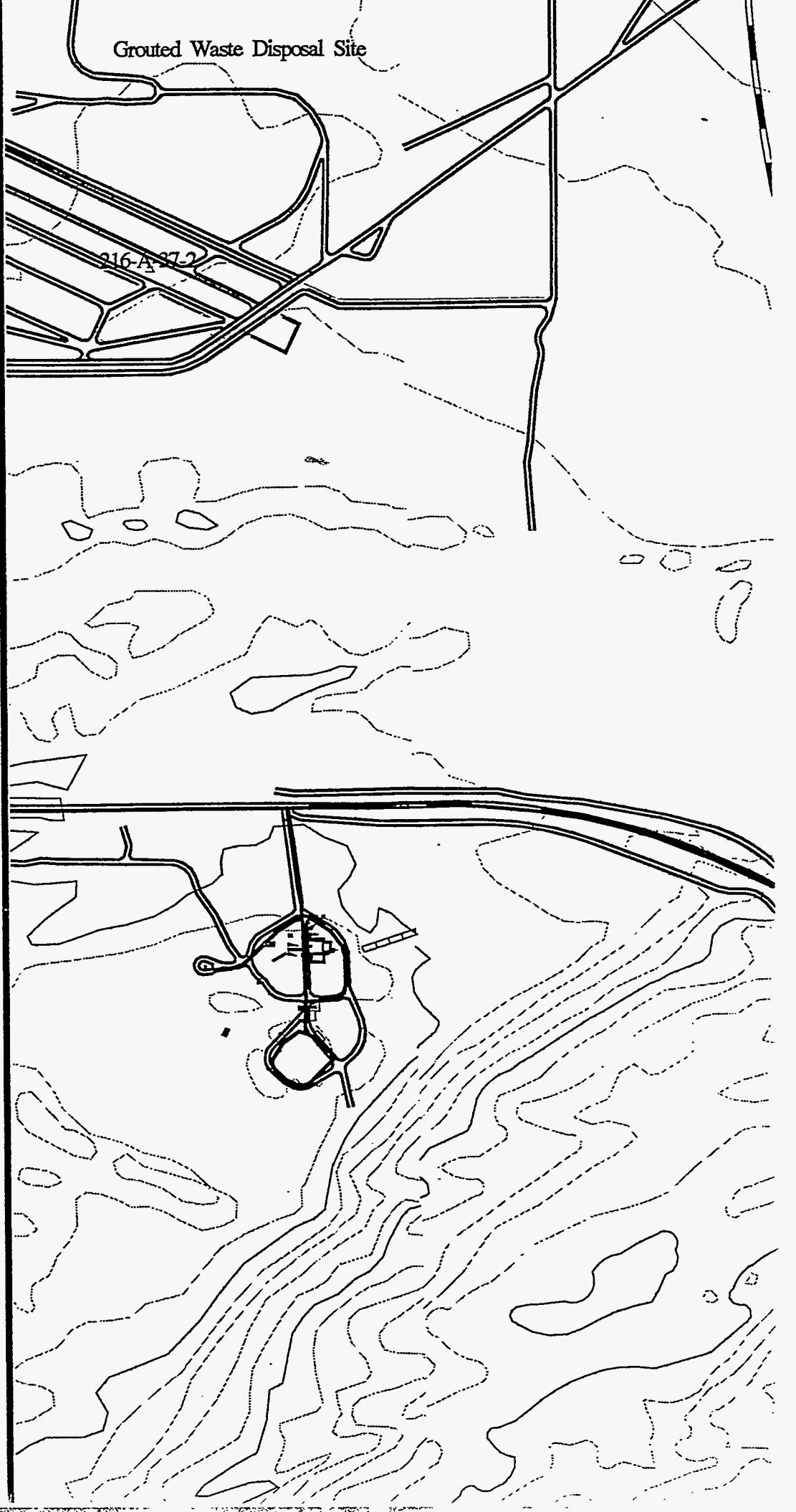


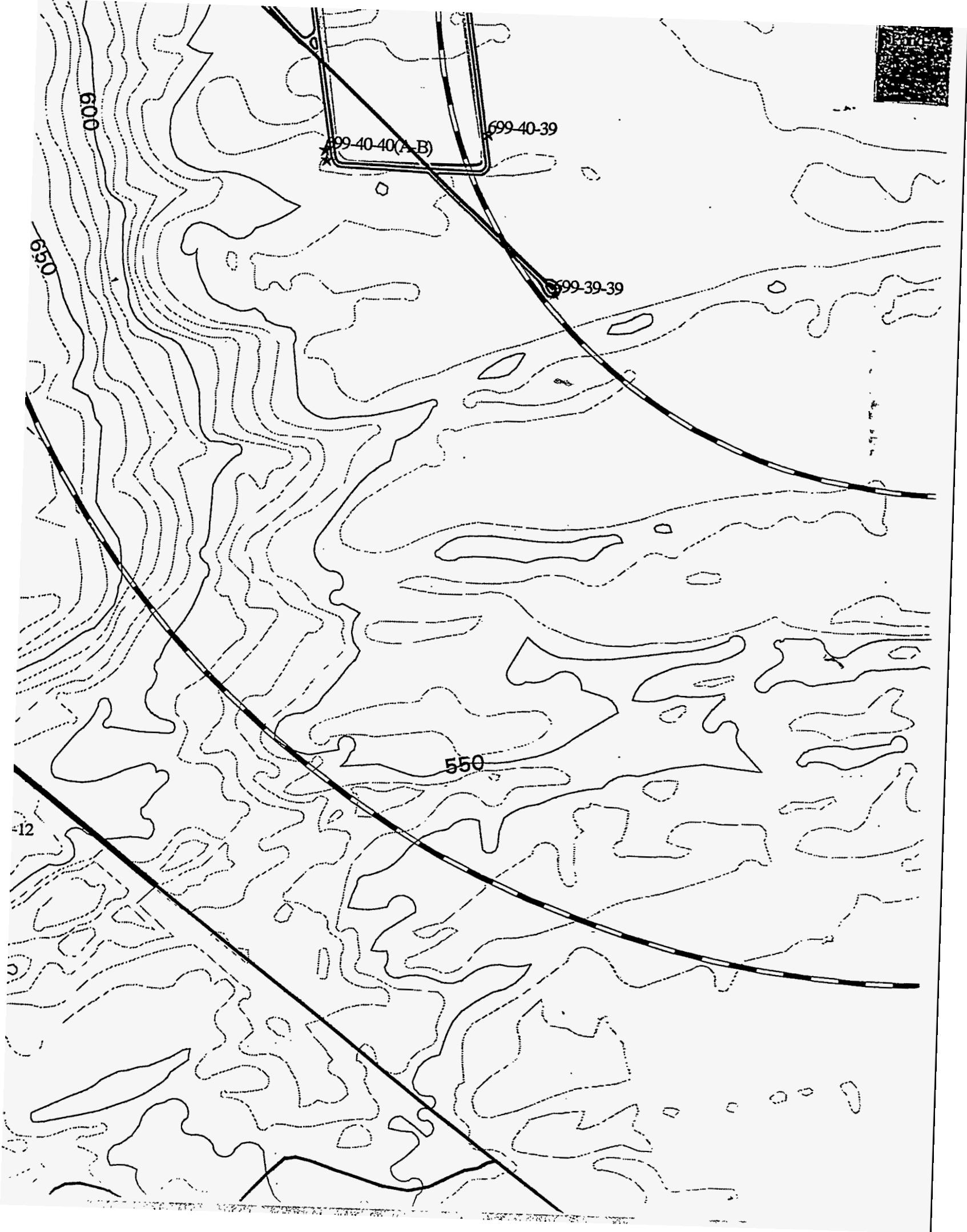


# W-049

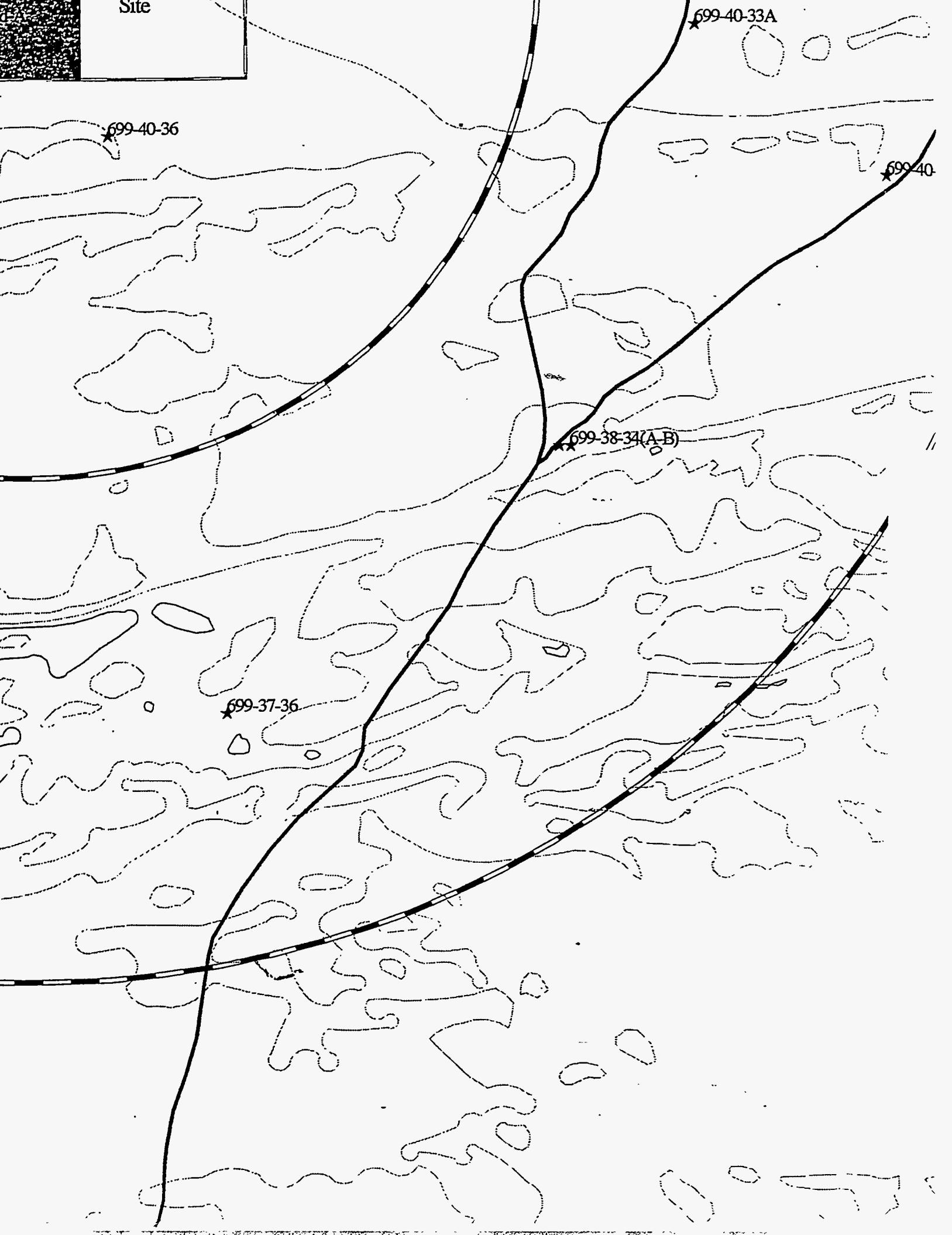


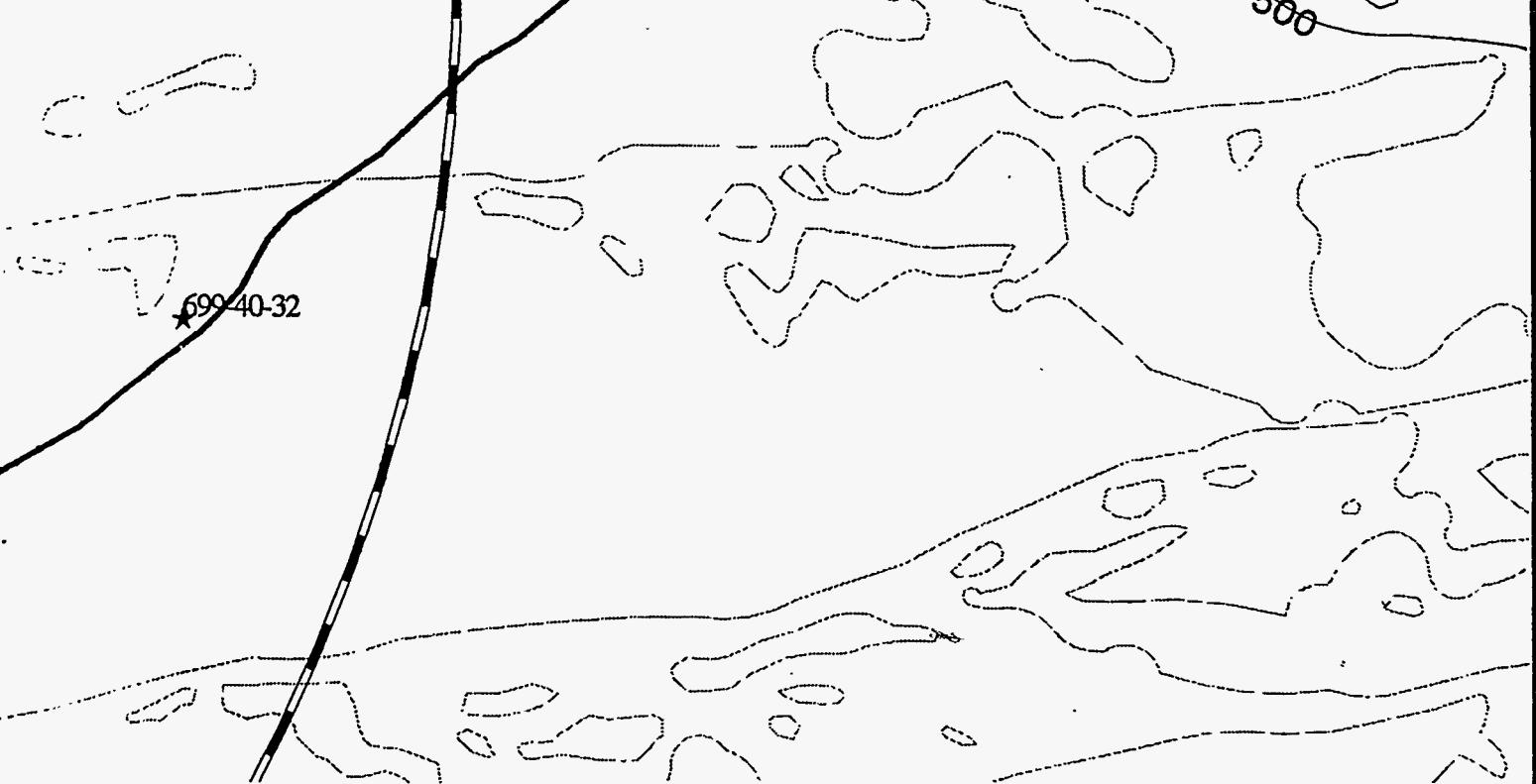


# AREA TEDF DISPC





# EA





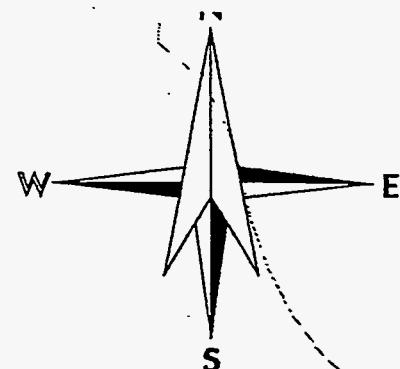









 TEDF Pond boundary  roads  Existing Disposal Lines


 TEDF Site boundary  Pipelines  New Disposal Line

 Railroad  One Mile Circle

 Roads  Half Mile Circle

 Selected wells

 Circle Center



Scale

1000 feet

Facility: 200 Area TEDF

DOE/RL-94-29, Rev. 0  
08/94

1 APPENDIX I

2 ADDITIONAL STREAM ACCEPTANCE CRITERIA

Facility: 200 Area TEDF

DOE/RL-94-29, Rev. 0  
08/94

1 APPENDIX I

2 CONTENTS

3 I.1.0 ADDITIONAL STREAM ACCEPTANCE CRITERIA . . . . . APP I-1

1 APPENDIX I

2 I.1.0 ADDITIONAL STREAM ACCEPTANCE CRITERIA

3       Additional streams will be accepted into the 200 Area TEDF if the flow  
4 does not exceed the hydraulic capacity of the system and wastewater  
5 characteristics meet the permit limit. For existing streams, compliance with  
6 permit discharge limits will be demonstrated by flow and analytical data; and  
7 if the future stream is not yet in existence, compliance will be demonstrated  
8 by engineering analysis.

Facility: 200 Area TEDE

DOE/RL-94-29, Rev. 0  
08/94

1

This page intentionally left blank.

DISTRIBUTION

Number of Copies

| <u>OFFSITE</u> |                                                                                     | <u>MSIN</u>    |
|----------------|-------------------------------------------------------------------------------------|----------------|
| 4              | <u>Washington State Department of Ecology</u>                                       |                |
|                | David C. Nylander, Kennewick Office<br>Melodie A. Selby, Kennewick Office (2)       | B5-18<br>B5-18 |
|                | Joann Chance<br>P. O. Box 47600<br>Olympia, WA 98504-7600                           |                |
| 1              | <u>U.S. Environmental Protection Agency</u>                                         |                |
|                | Doug Sherwood - EPA Region 10<br>712 Swift Boulevard, Suite 5<br>Richland, WA 99352 | B5-01          |
| 1              | <u>Confederated Tribes of the<br/>Umatilla Indian Nation</u>                        |                |
|                | W. Burke<br>P.O. Box 638<br>Pendleton, Oregon 97801                                 |                |
| 1              | <u>Nez Perce Tribe</u>                                                              |                |
|                | D. Powaukee<br>P.O. Box 305<br>Lapwai, ID 80540                                     |                |
| 2              | <u>Yakima Indian Nation</u>                                                         |                |
|                | B. Cook<br>1933 Jadwin Avenue<br>Suite 110<br>Richland, WA 99352                    |                |
|                | R. Jim<br>P.O. Box 151<br>Toppenish, WA 98948                                       |                |
| <u>ONSITE</u>  |                                                                                     |                |
| 1              | <u>Pacific Northwest Laboratory</u>                                                 |                |
|                | Hanford Technical Library                                                           | K1-11          |

DISTRIBUTION

ONSITE

13      U.S. Department of Energy,  
Richland Operations Office

|                  |       |
|------------------|-------|
| A. V. Beard      | S7-55 |
| R. N. Krekel (8) | A5-15 |
| R. A. Quintero   | S7-55 |
| J. E. Rasmussen  | A5-15 |
| Reading Room (2) | H2-53 |

39      Westinghouse Hanford Company

|                                        |       |
|----------------------------------------|-------|
| W. C. Alaconis                         | H6-32 |
| B. P. Atencio                          | H6-25 |
| J. T. Belcher                          | T3-28 |
| M. L. Bell                             | T6-16 |
| D. M. Bogen                            | S6-65 |
| M. J. Brown                            | T7-38 |
| P. J. Crane                            | T3-28 |
| S. E. Dieterle                         | S2-20 |
| A. J. DiLiberto                        | H6-32 |
| D. L. Flyckt                           | T7-38 |
| L. A. Garner                           | R1-52 |
| D. L. Halgren                          | S6-70 |
| M. J. Hall                             | T6-07 |
| D. G. Hamrick                          | S6-15 |
| D. R. Herman                           | S2-12 |
| D. R. Hirzel                           | T5-54 |
| M. C. Hughes                           | X5-55 |
| G. J. LeBaron                          | S6-19 |
| J. J. Luke                             | H6-25 |
| P. J. Mackey                           | B3-15 |
| D. J. McBride                          | T5-54 |
| T. W. Moon                             | H6-25 |
| M. R. Morton                           | X5-55 |
| W. E. Ross                             | S5-07 |
| S. J. Skurla                           | H6-28 |
| J. E. Turnbaugh                        | H6-25 |
| E. C. Vogt                             | T5-50 |
| G. J. Warwick                          | T6-12 |
| B. F. Weaver                           | T7-38 |
| R. D. Weissenfels                      | S6-70 |
| D. L. Wiegand                          | S6-17 |
| J. D. Williams                         | H6-28 |
| M. S. Wright                           | T3-28 |
| Central Files                          | L8-04 |
| EDMC (2)                               | H6-08 |
| Information Release Administration (3) | H4-17 |

MSIN